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Abstract

We present new classes of time operators of a Hamiltonian H (a self-adjoint op-
erator) with discrete eigenvalues which may be degenerate. Moreover we formulate
necessary and sufficient conditions for H to have time operators, determining the
general form of them. As corollaries, non-existence theorems of time operators for
some classes of H are derived.
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1 Introduction

Let H be a complex Hilbert space and H be a self-adjoint operator on H. A symmetric
operator T on H is called a time operator of H if there is a subspace D 6= {0} such that
D ⊂ D(TH) ∩ D(HT ) (for a linear operator A on H, D(A) denotes the domain of A)
and the canonical commutation relation (CCR) on D

[T, H]ψ = iψ, ∀ψ ∈ D (1.1)

holds, where [T, H] := TH −HT and i is the imaginary unit. The name “time operator”
comes from the physical context where H is the Hamiltonian of a quantum system (in
that case, a canonical conjugate T to H is interpreted as an operator representing “time”
in a suitable sense). But we use this terminology in the general mathematical context
too. We call the subspace D a CCR-domain for the pair (T, H). We do not assume that
D is dense, since it is more natural and general, leaving possibility to have wider classes
of time operators.
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From purely mathematical point of view, the pair (T, H) is a (not necessarily self-
adjoint) representation of the CCR with one degree of freedom. A study from this point
of view has been made by Dorfmeister [7] in the case where H is bounded.

There is a stronger version of time operator using the weak Weyl relation, a stronger
form of the CCR ([1]–[5], [9]–[11]). But, in this paper, we do not discuss this type of time
operators.

In the present paper we consider time operators of a self-adjoint operator H whose
spectrum “essentially” consists of discrete eigenvalues only (see Hypothesis (H) below
and (2.5)), having in mind applications to the case where H is a Hamiltonian in quan-
tum theory. Such a time operator was proposed by Galapon [8] first. Then detailed,
mathematically rigorous analysis on the Galapon time operator has been made by Arai-
Matsuzawa [6]. In the paper [6], however, considered was only the case where all the
discrete eigenvalues of H are simple with some growth condition. In the present paper,
we do not assume the simplicity of the eigenvalues. We are interested in finding necessary
and sufficient conditions for H to have time operators as well as determining the general
form of them. In this paper we solve this problem with respect to two classes of time op-
erators. The first one is discussed in Section 2 and the second in Section 3. As corollaries
of the main results on the problem, some non-existence theorems of time operators are
established.

2 Time Operators of a Hamiltonian with Discrete

Eigenvalues (I)

We denote the inner product and the norm of H by 〈·, ·〉 (linear in the second variable)
and ‖ · ‖ respectively.

Let N = {1, 2, 3, · · ·} be the set of natural numbers. A basic assumption in the present
paper is as follows:

Hypothesis (H)

The self-adjoint operator H has a complete orthonormal system (CONS) {enα|n ∈
N, α = 1, · · · ,Mn} ⊂ H of eigenvectors with discrete eigenvalues {En}n∈N (En 6=
Em, n 6= m,n, m ∈ N):

Henα = Enenα, n ∈ N, α = 1, · · · ,Mn, (2.1)

〈enα, emβ〉 = δnmδαβ, α = 1, · · · ,Mn, β = 1, · · · ,Mm, (2.2)

where δab is the Kronecker delta and Mn ∈ N is the multiplicity of eigenvalue En,
obeying

Mn ≤ Mn+1, n ∈ N. (2.3)

We set
M := M1. (2.4)

Hypothesis (H) implies that the spectrum of H, denoted σ(H), is given by

σ(H) = {En}∞n=1, (2.5)
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where the right hand side is the closure of the set {En}∞n=1 and σ(H) \ {En}∞n=1 contains
no eigenvalues of H.

Remark 2.1 In the previous paper [6], only the case Mn = 1,∀n ∈ N (i.e., the case
where each eigenvalue En is simple) is considered. In the present paper we do not impose
this condition on the multiplicities Mn.

The subspace
D0 := l.i.h.{enα|n ∈ N, α = 1, · · · ,Mn}

algebraically spanned by the vectors enα (n ∈ N, α = 1, · · · ,Mn) is dense in H.

2.1 A general class of time operators of H

Suppose that, for some n0 ∈ N,
∞∑

n=n0

1

E2
n

< ∞. (2.6)

Then, in the same way as in [6], one can define a linear operator T0 as follows:

D(T0) := D0, (2.7)

T0ψ := i
∞∑

n=1

M∑
α=1

( ∞∑

m6=n

〈emα, ψ〉
En − Em

)
enα, ψ ∈ D(T0). (2.8)

It is easy to see that T0 is a symmetric operator.

Remark 2.2 Under condition (2.6), H is unbounded, since (2.6) implies that |En| → ∞
as n →∞.

Remark 2.3 Galapon [8] proposed a time operator in the case where Mn = M ≥ 2 for
all n ∈ N. In our notation, his time operator, denoted TM , is defined by

TMψ = i
∞∑

n=1

M∑
α=1

( ∞∑

m6=n

M∑

β 6=α

〈emβ, ψ〉
En − Em

)
enα, ψ ∈ D(TM) := D0. (2.9)

It is asserted in [8] that TM is a time operator of H with a CCR-domain for (TM , H)
including the vectors enα− emα, n, m ∈ N, α = 1, · · · ,M . But, unfortunately, this is false,
because one has

[TM , H](enα − emα) = i
M∑

β 6=α

(enβ − emβ),

cf. the proof of Theorem 2.6 below. Besides this, the definition of TM given by (2.9) is
somewhat unnatural, because it does not cover the case M = 1 as a special case. Our
definition (2.8) is a generalization of the time operator in the case Mn = 1,∀n ∈ N [6, 8].

Remark 2.4 In [8] and [6], it is assumed that H is bounded below with En < En+1, n ∈
N. But, in the present paper, we do not assume the semi-boundedness (boundedness
below or boundedness above).
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We introduce a subspace:

EM := l.i.h.{enα − emα|n,m ∈ N, α = 1, · · · ,M}. (2.10)

This subspace is not necessarily dense in H:

Lemma 2.5 The subspace EM is dense in H if and only if M = Mn for all n ∈ N.

Proof. We denote by E⊥M the orthogonal complement of EM . By a general theorem,
EM is dense in H if and only if E⊥M = {0}.

(Necessity) Suppose that there is an n0 such that Mn0 > M . Then

〈
en0(M+1), enα − emα

〉
= 0 (n,m ∈ N, α = 1, · · · ,M),

which implies that E⊥M 6= {0}. Hence EM is not dense.
(Sufficiency) Suppose that M = Mn for all n ∈ N. Let ψ ∈ E⊥M . Then 〈enα, ψ〉 =

〈emα, ψ〉 , n,m ∈ N, α = 1, · · · ,M . Hence, for all N ∈ N,

N∑
n=1

M∑
α=1

| 〈enα, ψ〉 |2 = N
M∑

α=1

| 〈emα, ψ〉 |2.

Since {enα|n ∈ N, α = 1, · · · ,M} is a CONS of H under the present assumption, the left
hand side converges to ‖ψ‖2 as N → ∞. Hence

∑M
α=1 | 〈emα, ψ〉 |2 = 0. Thus ‖ψ‖ = 0,

implying ψ = 0. ¤
The next theorem shows that T0 is a time operator of H with EM being a CCR-domain

for (T0, H):

Theorem 2.6 Under assumptions (2.3) and (2.6), EM ⊂ D(T0H) ∩D(HT0) and

[T0, H]ψ = iψ, ∀ψ ∈ EM . (2.11)

Proof. It is enough to show that, for all n,m ∈ N and α = 1, · · · ,M ,

ψnm := enα − emα

is in D(T0H) ∩D(HT0) and (2.11) holds for ψ = ψnm. We have for all n ∈ N

T0enα = i

∞∑

k 6=n

1

Ek − En

ekα. (2.12)

Hence

T0ψnm = i(En − Em)
∞∑

k 6=n,m

1

(Ek − En)(Ek − Em)
ekα +

i

Em − En

emα − i

En − Em

enα.

Since ∞∑

k 6=n,m

∣∣∣∣
Ek

(Ek − En)(Ek − Em)

∣∣∣∣
2

< ∞
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by (2.6) and H is closed, it follows that T0ψnm ∈ D(H) (i.e., ψnm ∈ D(HT0)) and

HT0ψnm = i(En − Em)
∞∑

k 6=n,m

Ek

(Ek − En)(Ek − Em)
ekα +

iEm

Em − En

emα

− iEn

En − Em

enα.

On the other hand, we have Hψnm = Enenα − Ememα. Hence ψnm ∈ D(T0H) and

T0Hψn,m = iEn

∞∑

k 6=n

1

Ek − En

ekα − Emi

∞∑

k 6=m

1

Ek − Em

ekα

= i(En − Em)
∞∑

k 6=n,m

Ek

(Ek − En)(Ek − Em)
ekα + i

En

Em − En

emα

−i
Em

En − Em

enα.

Therefore we obtain
T0Hψnm −HT0ψnm = iψnm

as desired. ¤

Remark 2.7 It is easy to see that
∑∞

k 6=n E2
k/|Ek − En|2 = ∞. Hence it follows from

(2.12) that T0enα 6∈ D(H). Therefore D0 is not a CCR-domain for (T0, H).

We next consider a perturbation of T0 by a symmetric operator T1 such that T0 + T1

is a time operator of H.
Let a := {an(α, β)|n ∈ N, α, β = 1, · · · ,Mn} be a set of complex numbers such that

an(α, β)∗ = an(β, α), n ∈ N, α, β = 1, · · · ,Mn, (2.13)

where an(α, β)∗ is the complex conjugate of an(α, β). Then we define a linear operator
T1(a) on H as follows:

D(T1(a)) :=



ψ ∈ H|

∞∑
n=1

Mn∑
α=1

∣∣∣∣∣
Mn∑

β=1

an(α, β) 〈enβ, ψ〉
∣∣∣∣∣

2

< ∞


 , (2.14)

T1(a)ψ :=
∞∑

n=1

Mn∑
α=1

(
Mn∑

β=1

an(α, β) 〈enβ, ψ〉
)

enα, ψ ∈ D(T1(a)). (2.15)

It follows that
D0 ⊂ D(T1(a))

with

T1(a)enα =
Mn∑

β=1

an(β, α)enβ, ∀n ∈ N, α = 1, · · · ,Mn. (2.16)
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It is easy to see that T1(a) is a symmetric operator.
Using (2.16), we see that D0 ⊂ D(HT1(a)) ∩D(T1(a)H) and

T1(a)Hψ = HT1(a)ψ, ∀ψ ∈ D0.

By this fact and Theorem 2.6 we obtain the next theorem:

Theorem 2.8 Assume (2.3) and (2.6). Let a be as above and

T (a) := T0 + T1(a). (2.17)

Then T (a) is a time operator of H with EM being a CCR-domain for (T (a), H).

Thus (2.6) gives a sufficient condition for H with Hypothesis (H) and (2.3) to have
time operators of the form (2.17).

Remark 2.9 Boundedness or unboundedness of T (a) can be investigated in the same
way as in [6]. But, here, we do not go into the details.

2.2 Necessary condition for H to have time operators and the
general form of them

We are now ready to derive a necessary condition for H to have time operators and their
general form.

Theorem 2.10 Let H be a self-adjoint operator satisfying Hypothesis (H) and (2.3), and
T be a time operator of H such that EM is a CCR-domain for (T, H) and enα ∈ D(T ),∀n ∈
N, α = 1, · · · ,M . Then H is unbounded and there is an n0 ∈ N such that (2.6) holds.

Moreover, the following (i) and (ii) hold:

(i) Let M = Mn, ∀n ∈ N. Then, for all ψ ∈ D(T ),

∞∑
n=1

M∑
α=1

∣∣∣∣∣i
∞∑

m6=n

〈emα, ψ〉
En − Em

+
M∑

β=1

〈enα, T enβ〉 〈enβ, ψ〉
∣∣∣∣∣

2

< ∞ (2.18)

and

Tψ =
∞∑

n=1

M∑
α=1

(
i
∞∑

m6=n

〈emα, ψ〉
En − Em

+
M∑

β=1

〈enα, T enβ〉 〈enβ, ψ〉
)

enα. (2.19)

In particular, one has

T = T (a(T )) = T0 + T1(a(T )) on D0, (2.20)

where
a(T )n(α, β) := 〈enα, T enβ〉 , n ∈ N, α, β = 1, · · · ,M.
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(ii) Let k be a natural number such that M = Mn, n = 1, · · · , k, and Mn > M,n ≥
k + 1. Then, for all ψ ∈ D(T ),

∞∑
n=1

M∑
α=1

∣∣∣∣∣i
∞∑

m6=n

〈emα, ψ〉
En − Em

+
Mn∑

β=1

〈enα, T enβ〉 〈enβ, ψ〉
∣∣∣∣∣

2

< ∞, (2.21)

∞∑

n=k+1

Mn∑
α=M+1

| 〈enα, Tψ〉 |2 < ∞ (2.22)

and

Tψ =
∞∑

n=1

M∑
α=1

(
i
∞∑

m6=n

〈emα, ψ〉
En − Em

+
Mn∑

β=1

〈enα, T enβ〉 〈enβ, ψ〉
)

enα + ST ψ, (2.23)

where

ST ψ :=
∞∑

n=k+1

Mn∑
α=M+1

〈enα, Tψ〉 enα

with

D(ST ) :=

{
ψ ∈ H|

∞∑

n=k+1

Mn∑
α=M+1

| 〈enα, Tψ〉 |2 < ∞
}

.

Proof. By (1.1) with D = EM and (2.1), we have

EnTenα − EmTemα −H(Tenα − Temα) = i(enα − emα), n, m ∈ N, α = 1, · · · ,M.

Let n 6= m and take the inner product of the both sides with emβ, β = 1, · · · ,Mm. Then,
by the symmetry of H and (2.1), we have

〈emβ, T enα〉 =
i

Em − En

δαβ.

Since {emβ|m ∈ N, β = 1, · · · ,Mm} is a CONS of H, it follows from the Parseval equality

that ‖Tenα‖2 =
∑∞

m=1

∑Mm

β=1 | 〈emβ, T enα〉 |2, implying that

∞∑

m6=n

1

|Em − En|2 < ∞ (2.24)

with

‖Tenα‖2 =
∞∑

m6=n

1

|Em − En|2 +
Mn∑

β=1

| 〈enβ, T enα〉 |2

and

Tenα =
∞∑

m6=n

i

Em − En

emα +
Mn∑

β=1

〈enβ, T enα〉 enβ. (2.25)

7



Property (2.24) is equivalent to (2.6) and hence |Em| → ∞ as m → ∞. Hence H is
unbounded. Thus the first half of the theorem is proved.

Next we prove the latter half of the theorem.
(i) Let Mn = M, ∀n ∈ N. Then {enα|n ∈ N, α = 1, · · · ,M} is a CONS of H. Hence,

each vector ψ ∈ D(T ), we have by the Parseval equality

‖Tψ‖2 =
∞∑

n=1

M∑
α=1

| 〈enα, Tψ〉 |2 =
∞∑

n=1

M∑
α=1

| 〈Tenα, ψ〉 |2

with the expansion

Tψ =
∞∑

n=1

M∑
α=1

〈enα, Tψ〉 enα =
∞∑

n=1

M∑
α=1

〈Tenα, ψ〉 enα.

Then, by (2.25), we have (2.18) and (2.19).
(ii) Under the present condition, {enα|n ∈ N, α = 1, · · · ,M} ∪ {enβ|n ≥ k + 1, β =

M + 1, · · · ,Mn} is a CONS of H. Hence, for all ψ ∈ D(T ), we have by the Parseval
equality

‖Tψ‖2 =
∞∑

n=1

M∑
α=1

| 〈enα, Tψ〉 |2 +
∞∑

n=k+1

Mn∑
α=M+1

| 〈enα, Tψ〉 |2.

Hence (2.21) and (2.22) follow. Also we have for all ψ ∈ D(T )

Tψ =
∞∑

n=1

M∑
α=1

〈enα, Tψ〉 enα +
∞∑

n=k+1

Mn∑
α=M+1

〈enα, Tψ〉 enα.

The first term on the right hand side is of the same form as that in part (i). The second
term is equal to ST ψ. ¤

Remark 2.11 Consider the case where at least one of En’s is degenerate. Let D be a
subspace including {enα−enβ|n ∈ N, α, β = 1, · · · ,Mn}. Then there exist no time operators
T of H such that D0 ⊂ D(T ) and D is a CCR-domain for (T, H).

Indeed, suppose that there existed such a time operator T of H. Let En0 be a degener-
ate eigenvalue of H: Mn0 ≥ 2. Then, putting ψ = en0α − en0β (α 6= β, α, β = 1, · · · ,Mn0)
in (1.1), we have En0(Ten0α − Ten0β) − H(Ten0α − Ten0β) = i(en0α − en0β). Taking the
inner product of the both sides with en0α, we have 0 = i, which is a contradiction.

2.3 Non-existence theorems of time operators

Theorem 2.10 can be read as non-existence theorems of time operators for a class of H
as shown below.

Theorem 2.12 Let H be a self-adjoint operator with Hypothesis (H) and (2.3) such that
∞∑

n=n0

1

E2
n

= ∞ (2.26)

for some n0 ∈ N. Then there exist no time operators T of H such that D0 ⊂ D(T ) and
EM is a CCR-domain for (T, H).
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Proof. This follows from the contraposition of Theorem 2.10. ¤
A simple consequence of this theorem is given as follows:

Theorem 2.13 Let H be a self-adjoint operator with Hypothesis (H) and (2.3). Suppose
that there exist a constant α ∈ [0, 1/2] and a real bounded sequence {bn}∞n=1 satisfying

En = bnn
α + o(nα) (n →∞). (2.27)

Then there exist no time operators T of H such that D0 ⊂ D(T ) and EM is a CCR-domain
for (T, H).

Proof. Let b := supn∈N |bn| < ∞. Then, by (2.27) and Hypothesis (H), there are
constants n0 ∈ N and b′ > 0 such that

0 < |En| ≤ (b + b′)nα, n ≥ n0.

Hence ∞∑
n=n0

1

E2
n

≥ 1

(b + b′)2

∞∑
n=n0

1

n2α
= ∞.

Therefore (2.26) holds. Thus the desired result follows. ¤

Theorem 2.14 Let H be a bounded self-adjoint operator with Hypothesis (H) and (2.3).
Then there exist no time operators T of H such that D0 ⊂ D(T ) and EM is a CCR-domain
for (T, H).

Proof. If H is bounded, then the sequence {En}∞n=1 is bounded. Hence this is the case
where α = 0 in (2.27). Thus Theorem 2.13 implies the desired result. ¤

3 Time Operators of a Hamiltonian with Discrete

Eigenvalues (II)

In this section we present another type of time operators of H. Here we do not assume
(2.3).

We define

ēn :=
1√
Mn

Mn∑
α=1

enα.

Then
Hēn = Enēn, n ∈ N (3.1)

and {ēn}∞n=1 is an orthonormal system of H: 〈ēn, ēm〉 = δnm, n,m ∈ N.
We introduce a subspace:

F0 := l.i.h.{ēn|n ∈ N}.
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It is easy to see that F0 is dense if and only if Mn = 1 for all n ∈ N.
Assume (2.6). Then, as in the case of the operator T0 in Section 2, one can define a

linear operator T̂0 on H as follows:

D(T̂0) := {ψ = ψ1 + ψ2|ψ1 ∈ F0, ψ2 ∈ F⊥0 } (3.2)

T̂0ψ := i

∞∑
n=1

( ∞∑

m6=n

〈ēm, ψ〉
En − Em

)
ēn, ψ ∈ D(T̂0), (3.3)

It is easy to see that T̂0 is densely defined and symmetric.
We remark that, if Mn = 1, ∀n ∈ N, then

T̂0 = T0.

Let
F− := l.i.h.{ēn − ēm|n,m ∈ N}. (3.4)

It is obvious that
F− ⊂ F0.

It is shown that, if every En is simple, then F− is dense in H [6, 8]. But F− is not dense
if at least one of En (n ∈ N) is degenerate.

Theorem 3.1 The operator T̂0 is a time operator of H with F− being a CCR-domain for
(T̂0, H). Namely

F− ⊂ D(T̂0H) ∩D(HT̂0)

and
[T̂0, H]ψ = iψ, ∀ψ ∈ F−. (3.5)

Proof. Let ψ̄nm := ēn − ēm. Then, in quite the same way as in the proof of Theorem
2.6, one can show that ψ̄nm ∈ D(T̂0H) ∩D(HT̂0) and

T̂0Hψ̄nm −HT̂0ψ̄nm = iψ̄nm.

Thus the desired result follows. ¤
For a real sequence c = {cn}∞n=1, we define a linear operaotr S(c) on H as follows:

D(S(c)) :=

{
ψ ∈ H|

∞∑
n=1

|cn|2| 〈ēn, ψ〉 |2 < ∞
}

, (3.6)

S(c)ψ :=
∞∑

n=1

cn 〈ēn, ψ〉 ēn, ψ ∈ D(S(c)). (3.7)

Obviously we have
F0 ⊂ D(S(c))

with
S(c)ēn = cnēn, ∀n ∈ N. (3.8)
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Hence cn is an eigenvalue of S(c). It follows that S(c) is a symmetric operator. Using
(3.8), we see that F0 ⊂ D(HS(c)) ∩D(S(c)H) and

S(c)Hψ = HS(c)ψ, ∀ψ ∈ F0.

Thus the operator
T̂ (c) := T̂0 + S(c) (3.9)

is a time operator of H with F− being a CCR-domain for (T̂ (c), H).
Let

F := F0. (3.10)

We denote the range of T by Ran(T ).

Theorem 3.2 Let H be a self-adjoint operator satisfying Hypothesis (H) and T be a time
operator of H such that F0 ⊂ D(T ), Ran(T ) ⊂ F and F− is a CCR-domain for (T, H).
Then H is unbounded and there is an n0 ∈ N such that (2.6) holds.

Moreover, for all ψ ∈ D(T ),

∞∑
n=1

∣∣∣∣∣i
∞∑

m6=n

〈ēm, ψ〉
En − Em

+ 〈ēn, T ēn〉 〈ēn, ψ〉
∣∣∣∣∣

2

< ∞ (3.11)

and

Tψ =
∞∑

n=1

(
i
∞∑

m6=n

〈ēm, ψ〉
En − Em

+ 〈ēn, T ēn〉 〈ēn, ψ〉
)

ēn. (3.12)

In particular, one has

T = T̂ (c(T )) = T̂0 + S(c(T )) on F0, (3.13)

where
c(T ) := {〈ēn, T ēn〉}∞n=1.

Proof. By (1.1) with D = F− and (3.1), we have

EnT ēn − EmT ēm −H(T ēn − T ēm) = i(ēn − ēm), n, m ∈ N.

Let n 6= m and take the inner product of the both sides with ēm. Then we obtain

〈ēm, T ēn〉 =
i

Em − En

.

Since {ēm}∞m=1 is an orthonormal system of H and Ran(T ) ⊂ F, it follows from the
Parseval equality that ‖T ēn‖2 =

∑∞
m=1 | 〈ēm, T ēn〉 |2, implying (2.24) with

‖T ēn‖2 =
∞∑

m6=n

1

|Em − En|2 + | 〈ēn, T ēn〉 |2
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and

T ēn =
∞∑

m6=n

i

Em − En

ēm + 〈ēn, T ēn〉 ēn. (3.14)

Hence (2.6) holds. In particular, |Em| → ∞ as m →∞. Hence H is unbounded.
By condition Ran(T ) ⊂ F and the Parseval equality again, we have for all ψ ∈ D(T ),

‖Tψ‖2 =
∑∞

n=1 | 〈ēn, Tψ〉 |2 and

Tψ =
∞∑

n=1

〈ēn, Tψ〉 ēn =
∞∑

n=1

〈T ēn, ψ〉 ēn.

Then, by (3.14), we have (3.11) and (3.12). ¤
As in Theorem 2.10, Theorem 3.2 can be read as non-existence theorems of time

operators for a class of H.

Theorem 3.3 Let H be a self-adjoint operator with Hypothesis (H) such that (2.26)
holds for some n0 ≥ 1. Then there exist no time operators T of H such that F0 ⊂ D(T ),
Ran(T ) ∈ F and F− is a CCR-domain for (T, H).

Proof. This follows from the contraposition of Theorem 3.2. ¤

Theorem 3.4 Let H be a self-adjoint operator with Hypothesis (H). Suppose that there
exist a constant α ∈ [0, 1/2] and a real bounded sequence {bn}∞n=1 such that (2.27) holds.
Then there exist no time operators T of H such that F0 ⊂ D(T ), Ran(T ) ⊂ F and F− is
a CCR-domain for (T, H).

Proof. Similar to the proof of Theorem 2.13. ¤

Theorem 3.5 Let H be a bounded self-adjoint operator with Hypothesis (H). Then there
exist no time operators T of H such that F0 ⊂ D(T ), Ran(T ) ⊂ F and F− is a CCR-
domain for (T, H).

Proof. Similar to the proof of Theorem 2.14 ¤
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