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Abstract

A physical subspace and physical Hilbert space associated with asymptotic
fields of nonrelativistic quantum electrodynamics are constructed through the
Gupta-Bleuler procedure. Asymptotic completeness is shown and a physical
Hamiltonian is defined on the physical Hilbert space.

1 Introduction

1.1 The Gupta-Bleuler formalism

Quantization of the electromagnetic field does not cohere with normal postulates such

as Lorentz covariance and existence of a positive definite metric on some Hilbert space.

This means that we chose to quantize in a manner sacrificing manifest Lorentz co-

variance; conversely if the electromagnetic field is quantized in a manifestly covariant

fashion, the notion of a positive definite metric must be sacrificed and the existence

of negative probability arising from the indefinite metric renders invalid a probabilis-

tic interpretation of quantum field theory. One prescription for quantization of the
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2 Physical state

electromagnetic field in a Lorentz covariant manner is the Gupta-Bleuler procedure

[Ble50, Gup50]. This procedure provides a covariant procedure for quantization at the

cost of a cogent physical interpretation.

In this paper we will consider the so-called nonrelativistic quantum electrodynamics

(NRQED). A significant point is that NRQED is nonrelativistic with respect to the

motion of an electron only; the electromagnetic field is always relativistic. Although

it is customary to adopt the Coulomb gauge in the theory of NRQED, it can be

investigated using the Lorentz gauge by the Gupta-Bleuler approach [Bab82]. This

will be rigorously pursued in this paper.

Indefinite metric and Lorentz condition: Let Aµ = Aµ(x, t), µ = 0, 1, 2, 3, be a

quantized radiation field and ˙Aµ = ˙Aµ(x, t) its time derivative. Aµ and its time

derivative ˙Aν satisfy the commutation relations

[Aµ(x, t), ˙Aν(x
′, t)] = −igµνδ(x− x′), (1.1)

[Aµ(x, t),Aν(x
′, t)] = 0, (1.2)

[ ˙Aµ(x, t), ˙Aν(x
′, t)] = 0, (1.3)

where gµν is the metric tensor given by (2.9). An inevitable consequence of the com-

mutation relations (1.1)-(1.3) is to introduce an indefinite metric (·|·) onto the state

space. This creates problems in physical interpratations and in formulating things in a

mathematically well defined way. For example, the Hamiltonian H cannot be defined

as a self-adjoint operator and so the time-evolution eitH is not unitary. So we have to

investigate questions concerning the domain of eitH .

In addition to the indefinite metric, the Lorentz condition also poses a dilemma.

We impose the Lorentz condition:

∂µAµ(x, t) = 0 (1.4)

as an operator identity. Here and in what follows ∂µXµ is the conventional abbreviation

for ∂µXµ = ∂tX0− ∂x1X1− ∂x2X2− ∂x3X3. Under (1.4), as is well known, we find that

the conventional Lagrangian formalism is not available.

To resolve this difficulty, in the Gupta-Bleuler procedure mentioned below, we first

single out the so-called physical subspace from the Lorentz condition, and it is required

that the Lorentz condition is valid only in terms of expectation values on the physical

subspace. The sesquilinear form (·|·) restricted to the physical subspace is merely

semidefinite. So, we define the physical Hilbert space to be the quotient space of the
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physical subspace divided by the subspace with zero norm with respect to (·|·). This

space has a positive definite form, and a self-adjoint Hamiltonian can also be derived.

Gupta-Bleuler formalism: Here we present an outline of the Gupta-Bleuler formal-

ism in NRQED for the reader’s convenience, without mathematical rigor. Let Htot be

the full Hamiltonian for NRQED with form factor ϕ . Note that Htot is not self-adjoint.

Let X be an operator. Generally, a solutions X(t) to the Heisenberg equation:

d

dt
X(t) = i[Htot, X(t)], X(0) = X, (1.5)

is called a Heisenberg operators of X associated with Htot. Since Htot is, however, not

self-adjoint, intuitively a solution to (1.5) is possibly not unique. In order to ensure

uniqueness we give an alternative definition of Heisenberg operators in Definition 3.10.

Let p and q be the momentum and position operators respectively of an electron,

and A (f) = (A0(f), ~A (f)) the smeared electromagnetic field, i.e.,

A (f) =

∫
f(x)A (x)dx.

Let p(t), q(t) and A (f, t) = (A0(f, t), ~A (f, t)) be the Heisenberg operators of p, q and

A (f), respectively. We denote A (f, t) by

A (f, t) =

∫
f(x)A (x, t)dx.

Then formally the equations

� ~A (x, t) = ~J(x, t), (1.6)

�A0(x, t) = ρ(x, t) (1.7)

can be derived. Here ρ and ~J are the charge and the current density of the electron,

respectively, given by

ρ(x, t) = eϕ(x− q(t)), (1.8)

~J(x, t) =
e

2

(
ϕ(x− q(t))~v(t) + ~v(t)ϕ(x− q(t))

)
(1.9)

where e denotes the charge on an electron and ~v(t) the velocity:

~v(t) = q̇(t) =
1

m

(
p(t)− e

∫
~A (z, t)ϕ(z − q(t))dz

)
.
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It can be seen from (1.8) and (1.9) that the 4-current j = (ρ, ~J) = (j0, j1, j2, j3) satisfies

the continuity equation

∂µjµ = 0. (1.10)

By this, together with (1.6) and (1.7), the kernel A (x, t) automatically satisfies that

the condition

�∂µAµ(x, t) = 0. (1.11)

Equation (1.11) tells us that ∂µAµ is a free field and hence formally, it can be described

in terms of some annihilation operator c(k) and the creation operator c†(k) by

∂µAµ(x, t) =

∫ (
c(k)e−i|k|t+ikx + c†(k)ei|k|t−ikx

)
dk. (1.12)

The term including the factor e−i|k|t in (1.12) is called the positive frequency part of

∂µAµ(x, t) and written as [∂µAµ](+)(x, t). On the other hand the negative frequency

part [∂µAµ](−)(x, t) is defined by the term including e+i|k|t. As is mentioned above

the Lorentz condition (1.4) is not valid as an operator identity. We may demand that

some state Ψ should satisfy ∂µAµ(x, t)Ψ = 0. This is however too severe a condition

to demand, since [∂µAµ](+)(x, t)Ψ + [∂µAµ](−)(x, t)Ψ = 0 and the negative frequency

part contains creation operators, so not even the vacuum could satisfy this identity.

However, since the positive frequency part contains the annihilation operator, we could

adopt the less demanding requirement

[∂µAµ](+)(x, t)Ψ = 0. (1.13)

The state Ψ in (1.13) is called the physical state, and (1.13) is called the Gupta-Bleuler

subsidiary condition. The set of physical states is denoted by Vphys and is called the

physical subspace. Moreover the Lorentz condition is realized as the expectation value

on the physical subspace:

(Ψ|∂µAµΨ) = 0, Ψ ∈ Vphys.

In much of the physical literature little attention is paid to the existence of a

nontrivial physical subspace. The absence of a physical subspace was, however, recently

pointed out in [Suz07]. In this paper we want to derive sufficient conditions for the

existence of a physical subspace and characterize such a subspace in the NRQED

framework.
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1.2 Main results and plan of the paper

Our main concern in this paper is to develop the Gupta-Bleuler formalism for NRQED,

and to characterize the physical subspace rigorously. The physical subspace, however,

can be trivial because of the infrared singularity [Suz07]. The difficulty in construction

of the physical subspace of our system is due to the fact that Htot is η-self-adjoint

but not self-adjoint on a Klein space. Therefore one cannot realize the solution of the

Heisenberg equation (1.5) as eitHtotA e−itHtot .

In this paper we introduce a dipole approximation to Htot to reduce this difficulty.

Let H denote the Hamiltonian with a dipole approximation. Even so, although the

Hamiltonian H is η-self-adjoint, it is not yet self-adjoint. However, thanks to the dipole

approximation, we can construct the Heisenberg operators A0(f, t) and ~A (f, t) exactly.

See Theorem 3.12.

On the other hand, there is a disadvantage in using the dipole approximation.

Unfortunately, with this approximation, the system does not conserve the 4-current

jdip = (ρdip, ~Jdip). In fact, the 4-current in the dipole approximation turns out to be

ρdip(x, t) = eϕ(x), (1.14)

~Jdip(x, t) =
e

2

(
ϕ(x)~vdip(t) + ~vdip(t)ϕ(x)

)
(1.15)

where

~vdip(t) =
1

m

(
p(t)− e

∫
~A (z, t)ϕ(z)dz

)
and

∂µjdipµ 6= 0. (1.16)

Hence ∂µAµ is not a free field in the sense of (1.11), and we lose the method of defining

the positive frequency part [∂µAµ](+). Therefore, in the dipole approximation, the

physical subspace cannot be defined in the usual way.

Nevertheless the asymptotic field provides a tool for employing the Gupta-Bleuler

formalism. Decompose H with respect to the spectrum of the electron momentum:

H =

∫ ⊕
R3

HPdP. (1.17)

We shall generally consider HP for an arbitrary fixed P ∈ R3 throughout this paper.

The main results of this paper are

(i) Asymptotic completeness of HP based on the LSZ method (Theorem 4.3);
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(ii) Characterization of the physical subspace (Theorems 5.8 and 5.9) and the physical

Hilbert space (6.5);

(iii) Construction of the physical scattering operator (Theorem 6.4);

(iv) Construction of the physical self-adjoint Hamiltonian (Theorem 6.11).

(i) The explicit form of the Heisenberg operator with respect to HP allows us to

construct the asymptotic fields A out/in
µ (f, t, P ) exactly and we prove the asymptotic

completeness in Theorem 4.3. As far as we know, the asymptotic completeness of

NRQED with the dipole approximation was proven initially by Arai [Ara83a, Ara83b]

but for the model without both a scalar and a longitudinal component. See also Spohn

[Sup97]. We extend this to our case.

(ii) A out/in
µ (f, t, P ) is a free field defined in terms of asymptotic annihilation and

creation operators, therefore so is ∂µA out/in
µ (f, t, P ). Therefore one can define the non-

trivial physical subspace V out/in
P,phys associated with ∂µA out/in

µ (f, t, P ) by the Gupta-Bleuler

subsidiary condition

[∂µA out/in
µ ](+)(f, t, P )Ψ = 0. (1.18)

We characterize V out/in
P,phys and prove that V out/in

P,phys is positive semi-definite in Theorem 5.8.

Moreover, in Theorem 5.9, we show that

V out
P,phys 6= V in

P,phys

which cannot occur in the case where the 4-current is conserved [Sun58, IZ80]. The

physical subspace is decomposed as the direct sum: V out/in
P,phys = V out/in

P [+̇]V out/in
P,null , where

V out/in
P,null is the null space with respect to an indefinite metric and the Hamiltonian leaves

it invariant. Then the physical Hilbert space is given as the quotient space

H out/in
P,phys = V out/in

P,phys /V
out/in
P,ull .

See [KO79, Nak72].

(iii) Next we determine the physical scattering operator. Consider the scattering

operator

SP : V out
P,phys → V in

P,phys

as a unitary operator; namely SPV out
P,phys = V in

P,phys. We can check that SP leaves the

null space invariant and define the physical scattering operator SP,phys by

SP,phys[Ψ]out := [SPΨ]in
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for [Ψ]out/in ∈H out/in
P,phys . It can be shown that this is also a unitary operator from H out

P,phys

to H in
P,phys in Theorem 6.4.

(iv) It can be seen from Lemma 6.10 that

H
out/in
P,phys =

[
HP dD(HP )∩V ex

P,phys
P ex
]

ex

is a well defined operator on H ex
P,phys, where P ex denotes the projection onto V ex

P . We

call this the physical Hamiltonian. It is proven in Theorem 6.11 that H
out/in
P,phys is a self-

adjoint operator on H out/in
P,phys . Note that the physical Hamiltonian H

out/in
P,phys is self-adjoint,

whereas our Hamiltonian HP is not self-adjoint,

This paper is organized as follows. In Section 2 we define NRQED. In Section 3 we

present the explicit form of the Heisenberg operators. In Section 4 we construct the

asymptotic fields A out/in
µ (f, t, P ) based on the LSZ formalism and define the scattering

operator SP . In section 5 we define physical subspaces in an abstract way, and char-

acterize the physical subspace at time t and for t = ±∞. In Section 6 we define the

physical Hamiltonian on the quotient space H out/in
P,phys .

2 NRQED in the Lorentz gauge

2.1 Boson Fock space

We begin by defining elements of a Boson Fock space. The Boson Fock space over

the Hilbert space ⊕4L2(R3) is given by the infinite direct sum of the n-fold symmetric

tensor product of ⊕4L2(R3):

F := Fb(⊕4L2(R3)) =
∞⊕
n=0

(
n⊗
s

(
⊕4L2(R3)

))
. (2.1)

Here ⊗ns denotes the symmetric tensor product and we set ⊗0
s(⊕4L2(R3)) = C. We

denote the scalar product on F by

(Φ,Ψ)F :=
∞∑
n=0

(Φ(n),Ψ(n))⊗n(⊕4L2(R3)) (2.2)

for Ψ = {Ψ(n)}∞n=0 and Φ = {Φ(n)}∞n=0 ∈ F , which is anti-linear in Φ and linear in Ψ.

Then F becomes a Hilbert space with scalar product given by (2.2).

The creation operator a∗(F ) : F → F with a smeared function F ∈ ⊕4L2(R3) is

defined by

(a∗(F )Ψ)(n+1) =
√
n+ 1Sn+1(F ⊗Ψ(n)), n ≥ 0, (2.3)
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with domain

D(a∗(F )) =

{
{Ψ}∞n=0 ∈ F

∣∣∣∣∣
∞∑
n=0

(n+ 1)‖Sn+1(F ⊗Ψ(n))‖2 <∞

}
,

where Sn denotes the symmetrizer defined by Sn(F1⊗· · ·⊗Fn) = (n!)−1
∑

π∈Sn
Fπ(1) · · ·⊗

Fπ(n) with Sn the set of permutations of degree n. The annihilation operator a(F ) is

defined by the adjoint of a∗(F̄ ) with respect to the scalar product (2.2), i.e., a(F ) =(
a∗(F̄ )

)∗
. We can identify F as

F ∼= F1 ⊗F2 ⊗F3 ⊗F0, (2.4)

where Fµ = Fb(L2(R3)), µ = 0, 1, 2, 3. Hereinafter we make this identification without

further notice, and under this identification we set

a(f, µ) :=


a(f, 1) = a(f)⊗ 1⊗ 1⊗ 1,
a(f, 2) = 1⊗ a(f)⊗ 1⊗ 1,
a(f, 3) = 1⊗ 1⊗ a(f)⊗ 1,
a(f, 0) = 1⊗ 1⊗ 1⊗ a(f).

We also define a∗(f, µ) in a similar manner and formally write

a](f, µ) =

∫
a](k, µ)f(k)dk, a] = a, a∗,

with the informal kernel a](k).

Ω ∈ F denotes the Fock vacuum defined by Ω = {1, 0, 0, ...}. The Fock vacuum

is the unique vector such that a(f, µ)Ψ = 0 for all f ∈ L2(R3) and µ = 0, 1, 2, 3. Let

Ωµ ∈ Fµ be the Fock vacuum. Then Ω = Ω1⊗Ω2⊗Ω3⊗Ω0 follows. The set of vectors

Ffin := L.H.

{
n∏
i=1

a∗(fi, µi)Ω, Ω

∣∣∣∣∣ fj ∈ L2(R3), µj = 0, 1, 2, 3

}
is called the finite particle subspace and it is dense in F . The annihilation and creation

operators leave Ffin invariant and satisfy the canonical commutation relations:

[a(f, µ), a∗(g, ν)] = δµν(f̄ , g), [a](f, µ), a](g, ν)] = 0, µ, ν = 0, 1, 2, 3, (2.5)

on Ffin.

Next we define the second quantization. Let C (K) denote the set of contraction

operators on Hilbert space K. The functor Γ : C (⊕4L2(R3))→ C (F ) is given by

Γ(T )
n∏
i=1

a∗(Fi)Ω =
n∏
i=1

a∗(TFi)Ω
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and Γ(T )Ω = Ω for T ∈ C (⊕4L2(R3)), which is called the second quantization of T .

Let

ω(k) = |k|, k ∈ R3. (2.6)

The second quantization of the one-parameter multiplicative unitary group e−itω on

L2(R3) induces the one-parameter unitary group {Γ(⊕4e−itω)}t∈R on F . Its self-adjoint

generator is denoted by Hf , i.e.,

Γ(⊕4e−itω) = e−itHf , t ∈ R, (2.7)

and it is formally written as

Hf =
3∑

µ=0

∫
ω(k)a∗(k, µ)a(k, µ)dk. (2.8)

Replacing ω(k) with the multiplication by the identity 1 in (2.8), we define the number

operator Nf of F . Furthermore let

N0
f =

∫
a∗(k, 0)a(k, 0)dk.

This is the number operator on F0.

2.2 Indefinite metric

Let g be the 4× 4 matrix g = (gµν)µ,ν=0,1,2,3 given by

gµν =


1, µ = ν = 0,
−1, µ = ν 6= 0,

0, µ 6= ν.
(2.9)

Now we introduce the indefinite-metric on F . Let [g] be the linear operator induced

from the metric tensor g:

[g] =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 : ⊕4L2(R3)→ ⊕4L2(R3),

and define η : F → F by the second quantization of −[g], i.e.,

η := Γ(−[g]) = (−1)N
0
f . (2.10)
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From the definition,

η2 = 1. (2.11)

By using η we introduce an indefinite metric on F by

(Ψ|Φ) := (Ψ, ηΦ)F . (2.12)

In order to define the adjoint with respect to the indefinite metric (2.12) we introduce

the η-adjoint of a(f, µ) by

a†(f, µ) := ηa∗(f, µ)η. (2.13)

Then (Ψ|a†(f, µ)Φ) = (a(f̄ , µ)Ψ|Φ) and

a†(f, µ) =

{
a∗(f, j), µ = j = 1, 2, 3,
−a∗(f, 0), µ = 0

(2.14)

hold. Hence we have the commutation relations:

[a(f, µ), a†(g, ν)] = −gµν(f̄ , g), [a†(f, µ), a†(g, ν)] = 0. (2.15)

Let us define the quantized radiation field Aµ(f, x), x ∈ R3, µ = 0, 1, 2, 3, for a test

function f ∈ L2(R3). Let ej(k) ∈ R3, k ∈ R3, j = 1, 2, 3, be unit vectors such that

e3(k) = k/|k|, and let three vectors e1(k), e2(k) and e3(k) form a right-handed system

for each k ∈ R3. We fix them. The quantized radiation field,(
A0(f, x),−A1(f, x),−A2(f, x),−A3(f, x)

)
=
(
A 0(f, x), ~A (f, x)

)
, (2.16)

smeared by the test function f ∈ L2(R3) at time zero is defined by

~A (f, x) =
1√
2

3∑
j=1

∫
dk

ej(k)√
ω(k)

(
a†(k, j)f̂(k)e−ikx + a(k, j)f̂(−k)eikx

)
,

A0(f, x) =
1√
2

∫
dk

1√
ω(k)

(
a†(k, 0)f̂(k)e−ikx + a(k, 0)f̂(−k)eikx

)
and its derivative by

~̇A (g, x) =
i√
2

3∑
j=1

∫
dkej(k)

√
ω(k)

(
a†(k, j)ĝ(k)e−ikx − a(k, j)ĝ(−k)eikx

)
,

˙A0(g, x) =
i√
2

∫
dk
√
ω(k)

(
a†(k, 0)ĝ(k)e−ikx − a(k, 0)ĝ(−k)eikx

)
.
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A 0 is a scalar potential and ~A a vector potential. Conventionally the vector potential
~A is decomposed as ~A = A ⊥ + A ‖, where A ⊥ is the transversal part and A ‖ the

longitudinal part given by

A ⊥(f, x) =
1√
2

∑
j=1,2

∫
dk

ej(k)√
ω(k)

(
a†(k, j)f̂(k)e−ikx + a(k, j)f̂(−k)eikx

)
,

A ‖(f, x) =
1√
2

∫
dk

e3(k)√
ω(k)

(
a†(k, 3)f̂(k)e−ikx + a(k, 3)f̂(−k)eikx

)
.

Note that
∑3

l=1 ∂xl
A ⊥
l (f, x) = 0. Set

Aµ(f) := Aµ(f, 0), µ = 0, 1, 2, 3. (2.17)

By the canonical commutation relations (2.5) and (2.15) we have

[Aµ(f), ˙Aν(g)] = −igµν(f̄ , g) (2.18)

and

[Aµ(f),Aν(g)] = 0, [ ˙Aµ(f), ˙Aν(g)] = 0 (2.19)

for all f, g ∈ L2(R3). It can also be seen that

[Hf , a
†(f, µ)] = a†(ωf, µ), [Hf , a(f, µ)] = −a(ωf, µ), (2.20)

by which we have

[Hf ,Aµ(f)] = −i ˙Aµ(f), [Hf , ˙Aν(f)] = iAµ(−∆f). (2.21)

We introduce notions of η-self-adjointness and η-unitarity [Bog73] below.

Definition 2.1 (1) A densely defined linear operator X is η-self-adjoint if and only

if ηX∗η = X.

(2) A densely defined linear operator X is η-unitary if and only if X is injective and

X−1 = ηX∗η.

The next lemma immediately follows from the definition of η-self-adjointness.

Lemma 2.2 (1) X is η-self-adjoint if and only if ηX is self-adjoint. (2) Let X be

η-self-adjoint. Then X is closed on D(X). (3) Let X be η-self-adjoint and ηX is

essentially self-adjoint on D. Then D is a core of X.

For real-valued f , note that the closures of Aj(f, x) and ˙Aj(f, x), j = 1, 2, 3, are

self-adjoint and η-self-adjoint for each x ∈ R3. However the closure of A0(f, x) and
˙A0(f, x) for real-valued f are η-self-adjoint but not even symmetric. Moreover the free

Hamiltonian Hf is self-adjoint and η-self-adjoint.
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2.3 Definition of NRQED in the Lorentz gauge

The Hilbert space of our system consisting of one electron coupled with photons is

given by the tensor product of L2(R3) and F :

H := L2(R3)⊗F , (2.22)

where L2(R3) describes the state space of one electron and F the photon field. The

full Hamiltonian of our system is defined by

Htot :=
1

2m

(
p⊗ 1− e ~A (ϕ̂, ·)

)2

+ 1⊗Hf + e1⊗A0 (2.23)

for a given fixed test function ϕ̂ on R3 which satisfies some conditions mentioned later.

Let m > 0 and e ∈ R denote the mass and charge of the electron, respectively, and p =

−i~∇x denote the momentum operator of the electron. Instead of this full Hamiltonian

in this paper we take the dipole approximation; namely we replace A (ϕ̂, ·) in Htot by

1⊗A (ϕ̂). We set

Aµ := Aµ(ϕ̂). (2.24)

We make the following assumptions about ϕ̂ throughout this paper.

Assumption 2.3 (Assumptions for η-self-adjointness). ϕ̂/ω, ϕ̂/
√
ω,
√
ωϕ̂ ∈ L2(R3)

and ϕ̂(−k) = ϕ̂(k).

Then our Hamiltonian is given by

H :=
1

2m

(
p⊗ 1− e1⊗ ~A

)2

+ 1⊗Hf + e1⊗A0 (2.25)

with domain

D(H) := D(−∆⊗ 1) ∩D(1⊗Hf). (2.26)

Proposition 2.4 H is η-self-adjoint and ηH is essentially self-adjoint on any core of

−∆⊗ 1 + 1⊗Hf . In particular H is closed and an arbitrary core of −∆⊗ 1 + 1⊗Hf

is also a core of H.

Proof: Set H ′ = H − e1⊗A0. Let L = −∆⊗ 1 + 1⊗Hf + 1. Then we have

|(LΨ, H ′Φ)− (H ′Ψ, LΦ)| ≤ C‖L1/2Φ‖‖L1/2Ψ‖
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for some constant C by the fundamental inequality ‖a](f)Ψ‖ ≤ C ′‖(Hf + 1)1/2Ψ‖.
Thus by the Nelson commutator theorem, H ′ is self-adjoint on D(−∆⊗1)∩D(1⊗Hf).

We can also see that

‖ηA0Ψ‖ ≤ C ′(‖(H0
f )1/2Ψ‖+ ‖Ψ‖) (2.27)

and [H ′, η] = 0, which implies that

‖ηA0Ψ‖ ≤ C ′(‖(H ′)1/2Ψ‖+ ‖Ψ‖) ≤ ε‖ηH ′Ψ‖+ bε‖Ψ‖

for arbitrary ε > 0. Since A0 is skew symmetric and {A0, η} = 0, we have (ηH)∗ =

H∗η ⊃ ηH, which yields the result that ηH is symmetric. Then we can see by the

Kato-Rellich theorem that ηH is self-adjoint on D(−∆⊗1)∩D(1⊗Hf). This completes

the proof. qed

We divide H into a scalar part and a vector part. Let H0 := F0, FTL = F1 ⊗
F2 ⊗F3 and HTL := L2(R3) ⊗FTL. Then H can be realized as the tensor product

of the scalar part and the vector part:

H ∼= HTL ⊗H0. (2.28)

We use this identification without further notice through this paper. This identification

is inherited by the Hamiltonian H and we have

H = HTL ⊗ 1 + 1⊗H0, (2.29)

where HTL is the vector component of H:

HTL :=
1

2m
(p⊗ 1− e1⊗ ~A )2 + 1⊗HTL

f (2.30)

defined on HTL = L2(R3)⊗FTL, and H0 the scalar component:

H0 := eA0 +H0
f (2.31)

defined on H0. Here HTL
f denotes the free Hamiltonian in FTL:

HTL
f =

3∑
j=1

∫
ω(k)a∗(k, j)a(k, j)dk =

3∑
j=1

∫
ω(k)a†(k, j)a(k, j)dk

and H0
f in F0:

H0
f =

∫
ω(k)a∗(k, 0)a(k, 0)dk = −

∫
ω(k)a†(k, 0)a(k, 0)dk.
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Proposition 2.5 (1) HTL is self-adjoint on D(−∆⊗ 1)∩D(1⊗HTL
f ) and essentially

self-adjoint on any core of −∆⊗ 1 + 1⊗HTL
f . (2) H0 is η-self-adjoint on D(H0

f ). In

particular H0 is closed on D(H0
f ) and an arbitrary core of H0

f is also a core of H0.

Proof: (1) has been proven in the proof of Proposition 2.4. By (2.27), ηH0 is self-adjoint

on D(H0
f ). Hence the proof is complete. qed

3 Heisenberg equations

In this section we first diagonalize the total Hamiltonian by making use of a certain η-

unitary operator, and solve the Heisenberg equation exactly. The first rigorous results

on the diagonalization of NRQED are in Arai [Ara83a, Ara83b], where the electromag-

netic field is quantized with respect to the Coulomb gauge and then there is no scalar

potential A0 nor longitudinal potential A ‖.

In addition to Assumption 2.3, from now on we make the following assumption.

Assumption 3.1 We assume (1)-(5).

(1)
∫

R3 |ϕ̂(k)|2/ω(k)3dk <∞,

(2) there exists ε > 0 such that ‖e+εωϕ̂‖∞ <∞,

(3) there exists a function ρ on [0,∞) such that ϕ̂(k) = ρ(|k|),

(4) ρ(s) > 0 for s 6= 0,

(5) F (s) := ρ(
√
s)2
√
s ∈ Lp([0,∞); ds) for some 1 < p, and there exists 0 < α < 1

such that |F (s+ h)− F (s)| ≤ K|h|α for all s and 0 < h ≤ 1.

We explain Assumption 3.1.

(1) This condition is called the infrared regular condition, which is used to construct

η-unitary operators V0 in Section 3.1 and UP in Section 3.2.

(2) This ensures that ‖ωϕ̂‖∞ < ∞, ‖
√
ωϕ̂‖∞ < ∞ and ‖ϕ̂‖∞ < ∞. Then the

operators T and W ij
± introduced in Section 3.2 can be defined as bounded operators.

Furthermore we can construct the Heisenberg operators defined by Definition 3.10 by

(2), where we need analytic continuation of e−itωϕ̂ with respect to t.

(3) This means that ϕ̂ is rotation invariant.
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In Section 3.2 we introduce the function

D±(s) = m− e2

2
4π

{
lim
ε→0

∫
|s−r|>ε,r>0

ρ(
√
r)2
√
r

s− r
dr ∓ 2πiρ(

√
s)2
√
s

}
(3.1)

and define

Q(k) =
ϕ̂(k)

D+(ω(k)2)
. (3.2)

Conditions (4) and (5) are used to ensure that Q is well defined.

(4) This condition implies that the imaginary part of D± is strictly positive for all

s > 0, in particular it is non-zero except for s = 0.

(5) Note that

HF (s) = (2πi)−1 lim
ε→0

∫
|s−r|>ε,r>0

F (s)

s− r
dr

is the Hilbert transform of F (s). By the Lipshitz condition (5) the real part of D± is

also Lipshitz continuous with the same order α as F (s) and belongs to Lp(R). See e.g.,

[Tit36, p.145, THEOREM 106]. This yields the result that the real part of D±(s)→ 0

as s→∞.

Thus (4) and (5), together with D±(0) > 0, ensure that there exists c > 0 such that

|D±(s)| > c, ∀s ≥ 0 (3.3)

and hence Q is well defined.

Assumption (4), however, seems to be unusual. We note that, as mentioned above,

assumptions (4) and (5) are sufficient to allow the definition of Q. It is possible

to choose an alternative ρ so that Q is well defined. In particular, one can choose

ρ satisfying (5) but not (4). For example suppose that ρ(s) has compact support

|s| < N . Then in order to define Q it is enough to assume further that ReD+(s) =

m − (2πe2)(2πi)HF (s) > δ > 0 for all |s| > N − 1 for some δ > 0. Notice that this

assumption is satisfied, because HF (s)→ 0 as s→∞ and m > 0. We omit the detail.

3.1 Scalar potential

Let us begin by discussing the scalar part of the Hamiltonian. The scalar part H0 of

H can be easily diagonalized by an η-unitary (but not unitary) operator. Let

V0 = exp

(
e√
2

(
a∗
(

ϕ̂

ω3/2
, 0

)
+ a

(
ϕ̂

ω3/2
, 0

)))
. (3.4)
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This is unbounded η-unitary on F0. It can be seen that the finite particle subspace

F0,fin of F0 contains analytic vectors of V0. Then

V0Ψ =
∞∑
n=0

1

n!

(
a∗
(

ϕ̂

ω3/2
, 0

)
+ a

(
ϕ̂

ω3/2
, 0

))n
Ψ (3.5)

for Ψ ∈ F0,fin. By the commutation relations and (3.5), we have

(H∗0 Φ, V0Ψ) = (Φ, V0(H0
f + E0)Ψ)

for Ψ,Φ ∈ F0,fin, where

E0 :=
e2

2
‖ϕ̂/ω‖2. (3.6)

Thus V0Ψ ∈ D(H0) and H0V0Ψ = V0(H0
f +E0)Ψ; furthermore H0V0Ψ ∈ D(V −1

0 ). Then

we have

V −1
0 H0V0 = H0

f + E0 (3.7)

on F0,fin. Since F0,fin is a core of H0
f , we have

V −1
0 H0V0dF0,fin

= H0
f + E0 (3.8)

on D(H0
f ). From (3.7), we can see that V0Ω0 is an eigenvector of H0 associated with

eigenvalue E0:

H0V0Ω0 = E0V0Ω0. (3.9)

Define

b(f, 0) := a(f, 0)− e√
2

(ϕ̂/ω3/2, f), (3.10)

b†(f, 0) := a†(f, 0)− e√
2

(ϕ̂/ω3/2, f). (3.11)

These operators satisfy the canonical commutation relations:

[b(f, 0), b†(g, 0)] = −(f̄ , g), [b(f, 0), b(g, 0)] = 0 = [b†(f, 0), b†(g, 0)] (3.12)

and

[H0, b
†(f, 0)] = b†(ωf, 0), [H0, b(f, 0)] = −b(ωf, 0). (3.13)

Thus the quadruple

(F0, V0Ω0, {b†(f, 0), b(f, 0)|f ∈ L2(R3)}, H0) (3.14)

corresponds to the free case (F0,Ω0, {a(f, 0), a∗(f, 0)|f ∈ L2(R3)}, H0
f ), but H0 is not

self-adjoint.



Physical state 17

3.2 Vector potential

In this subsection we investigate the vector part HTL of H. HTL is quadratic and can

also be diagonalized by a Bogoliubov transformation.

HTL is self-adjoint on D(−∆ ⊗ 1) ∩ D(1 ⊗ Hf) and essentially self-adjoint on any

core of (−1/2)∆⊗ 1 + 1⊗Hf . This can be proven by virtue of the Nelson commutator

theorem as stated in the proof of Lemma 2.4. Since HTL commutes with pj, j = 1, 2, 3,

HTL and HTL are decomposable with respect to the spectrum of pj and are given by

HTL =

∫ ⊕
R3

HTL,PdP

and

HTL =

∫ ⊕
R3

HTL,PdP,

where HTL,P = FTL and HTL,P is the self-adjoint operator on FbTL, given by

HTL,P =
1

2m
(P − e ~A )2 +HTL

f , P ∈ R3. (3.15)

The fiber Hamiltonian HTL,P is, indeed, self-adjoint on D(HTL
f ) for all (P, e) ∈ R3 × R

and bounded from below. In the similar way as Proposition 2.4 this can also be

proven by virtue of the Nelson commutator theorem with the conjugate operator L

replaced by NTL + 1, where NTL denotes the number operator on FTL. Now for

each (P, e) ∈ R3 × R, let us construct a quadruple (3.16) relevant to the free case

(FTL,ΩTL, {a(f, j), a∗(f, j)|f ∈ L2(R3), j = 1, 2, 3}, HTL
f ):(

FTL,ΩTL,P , {bP (f, j), b∗P (f, j)|f ∈ L2(R3), j = 1, 2, 3}, HTL,P

)
(3.16)

such that

(1) bP (f, j) and b∗P (g, j) satisfy the canonical commutation relations,

[bP (f, j), b∗P (g, i)] = δij(f̄ , g), [bP (f, j), bP (g, i)] = 0 = [b∗P (f, j), b∗P (g, i)],

(2) [HTL,P , bP (f, j)] = −bP (ωf, j) and [HTL,P , b
∗
P (f, j)] = b∗P (ωf, j),

(3) ΩTL,P is the unique vector such that bP (f, j)ΩTL,P = 0 and is the ground state of

HTL,P .
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From (1) to (3) above we will be able to infer the unitary equivalences: ΩTL,P
∼= Ω,

b]P (f, j) ∼= a](f) and HTL,P
∼= HTL

f +ETL(P ) for each P , where ETL(P ) = inf Sp(HTL,P )

is given explicitly.

In order to construct b]P we make explicit the relationship between a] and ~A . It

can be seen that the creation operator and the annihilation operator can be expressed

as

a(f, l) =
1√
2

3∑
j=1

(
Âj(e

l
j

√
ωf) + i

ˆ̇Aj(e
l
j

1√
ω
f)

)
, (3.17)

a∗(f, l) =
1√
2

3∑
j=1

(
Âj(ẽ

l
j

√
ωf̃)− i ˆ̇Aj(ẽ

l
j

1√
ω
f̃)

)
, (3.18)

where Â (f) := A (f̂) and
ˆ̇A (g) := ˙A (ĝ), and f̃(k) = f(−k). Note that

ˆ̂
f =

˜̂̌
f = f̃ .

Modifying the right-hand side of (3.17) and (3.18), we can construct b] in (3.16). Let

Gεf(k) :=

∫
R3

f(k′)

(ω(k)2 − ω(k′)2 + iε)ω(k)1/2ω(k′)1/2
dk′, ε > 0.

Then Gε is bounded and skew-symmetric on L2(R3). Moreover the strong limit G :=

limε↓0Gε exists as a bounded skew-symmetric operator.

Let

D(z) := m− e2

∫
R3

|ϕ̂(k)|2

z − ω(k)2
dk, (3.19)

which is analytic on C\ [0,∞). Let D±(s) := limε↓0D(s±iε) for s ∈ [0,∞); then we see

that |D±(s)| > c for some c > 0 by (4) and (5) of Assumption 3.1. See (3.3) and (3.1)

for the explicit form of D±. Then we can define Q(k) := ϕ̂(k)/D+(ω(k)2). Operator

T : L2(R3)→ L2(R3) is given by

Tf := f + e2Q
√
ωG
√
ωϕ̂f. (3.20)

Since G is skew-symmetric, we have T ∗f = f − e2ϕ̂
√
ωG
√
ωQ̄f .

Lemma 3.2 T satisfies the following algebraic relations:

(1) T is unitary on L2(R3) and bounded on L2(R3, ωndk), n = ±1;

(2) T ∗
1

ω2
Q =

ϕ̂

meffω2
, where meff := D(0) = m+ e2‖ϕ̂/ω‖2;

(3) [ω2, T ∗]f = −e2(Q, f)ϕ̂, [ω2, T ]f = +e2(ϕ̂, f)Q;
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(4) T ϕ̂ = mQ.

Proof: This is a slight modification of [Ara83a, Ara83b]. We omit the proof. qed

Now, for f ∈ L2(R3), we define

bP (f, l) :=
1√
2

3∑
j=1

(
Âj(T

∗elj
√
ωf) + i

ˆ̇Aj(T
∗elj

1√
ω
f)− Pj

(
eeljQ

ω3/2
, f

))
, (3.21)

b∗P (f, l) :=
1√
2

3∑
j=1

(
Âj(T̄

∗ẽlj
√
ωf̃)− i ˆ̇Aj(T̄

∗ẽlj
1√
ω
f̃)− Pj

(
eeljQ̄

ω3/2
, f

))
(3.22)

and set b](F ) :=
∑3

l=1 b
](Fl, l) for F ∈ ⊕3L2(R3).

Lemma 3.3 It follows that (bP (f, j))∗ = b∗P (f̄ , j), and the commutation relations below

hold:

[bP (f, i), b∗P (g, j)] = δij(f̄ , g), [bP (f, j), bP (g, i)] = 0 = [b∗P (f, j), b∗P (g, i)], (3.23)

[HTL,P , bP (f, j)] = −bP (ωf, j), [HTL,P , b
∗
P (f, j)] = b∗P (ωf, j). (3.24)

Proof: By the definition of b]P we have

bP (f, j) =
3∑
i=1

(
a∗(W ij

− f, i) + a(W ij
+ f, i) +

3∑
l=1

(PlL
j
l , f)

)
,

b∗P (f, j) =
3∑
i=1

(
a∗(W̄ ij

+ f, i) + a(W̄ ij
− f, i) +

3∑
l=1

(PlL̄
j
l , f)

)
,

where X̄f = Xf̄ , Ljl = e
1√
2

ejlQ

ω3/2
and W ij

P,± : L2(R3)→ L2(R3) is defined by

W ij
+ f :=

1

2

3∑
l=1

eil

(
1√
ω
T ∗
√
ω +
√
ωT ∗

1√
ω

)
ejl f,

W ij
− f :=

1

2

3∑
l=1

eil

(
1√
ω
T ∗
√
ω −
√
ωT ∗

1√
ω

)
ẽjl f̃ .

Then W± =
(
W ij
±
)

1≤i,j≤3
: ⊕3L2(R3) → ⊕3L2(R3) has the symplectic structure (3.26)

below. Let

W =

[
W+ W̄−
W− W̄+

]
:

2⊕
[⊕3L2(R3)]→

2⊕
[⊕3L2(R3)]. (3.25)
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Using (4) and (5) of Lemma 3.2, it can be determined that W satisfies

W∗JW = WJW∗ = J, (3.26)

where

J :=

[
1 0
0 −1

]
, W∗ :=

[
W ∗

+ W ∗
−

W̄ ∗
− W̄ ∗

+

]
.

This is equivalent to (3.23). Next we show (3.24). Note that

[Aj, bP (f, l)] = −m 1√
2

(
eljQ√
ω
, f

)
, [Aj, b

∗
P (f, l)] = +m

1√
2

(
eljQ̄√
ω
, f

)
, j, l = 1, 2, 3,

and

[Hf , bP (f, l)] =
1√
2

3∑
j=1

(
−Âj

(
ω2T ∗elj

1√
ω
f

)
− i ˆ̇Aj

(
T ∗elj
√
ωf
))

,

[Hf , b
∗
P (f, l)] =

1√
2

3∑
j=1

(
Âj

(
ω2T̄ ∗ẽlj

1√
ω
f̃

)
− i ˆ̇Aj

(
T̄ ∗ẽlj
√
ωf̃
))

.

Then we have

[HTL,P , bP (f, l)]

= − e

m

3∑
j=1

Pj[Aj, bP (f, l)] +
e2

m

3∑
j=1

Aj[Aj, bP (f, l)] + [Hf , bP (f, l)]

=
3∑
j=1

(
− e

m
Pj

1√
2

(−m)

(
eljQ√
ω
, f

)
+
e2

m
Aj(−m)

1√
2

(
eljQ√
ω
, f

)

+
1√
2

(
−Âj

(
ω2T ∗elj

f√
ω

)
− i ˆ̇Aj

(
T ∗elj
√
ωf
)))

=
1√
2

3∑
j=1

(
−Âj

(
T ∗elj
√
ωωf

)
− i ˆ̇Aj

(
T ∗elj

1√
ω
ωf

)
+ Pj

(
eeljQ

ω3/2
, ωf

))
= −bP (ωf, l) .

Here we used the fact that ω2T ∗elj
1√
ω
f = T ∗elj

√
ωωf − e2

(
eljQ√
ω
, f

)
ϕ̂. See (2) of

Lemma 3.2. Then (3.24) follows. qed

Lemma 3.4 There exists a unitary operator UP : FTL → FTL such that

U−1
P b]P (f, j)UP = a](f, j), f ∈ L2(R3). (3.27)
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Proof: Since W− is a Hilbert-Schmidt operator on ⊕3L2(R3), there exists a canonical

linear transformation U(W) associated with W [Rui78] such that for F = (F1, F2, F3) ∈
⊕3L2(R3), U(W)−1B](F )U(W) = a](F ), where[

B(F )
B∗(F )

]
=

[∑3
i=1

∑3
j=1

(
a(W ij

+ Fj, i) + a∗(W ij
− Fj, i)

)∑3
i=1

∑3
j=1

(
a(W̄ ij

− Fj, i) + a∗(W̄ ij
+ Fj, i)

)
.

]

Since [
bP (F )
b∗P (F )

]
=

[
B(F )
B∗(F )

]
+

[∑3
j=1

∑3
l=1(PlL

j
l , Fj)∑3

j=1

∑3
l=1(PlL̄

j
l , Fj)

]
,

we see that

UP := S(P )U(W) (3.28)

satisfies (3.27), where S(P ) is the unitary operator given by

S(P ) := exp

(
e√
2

3∑
j=1

3∑
l=1

Pj
meff

(
a

(
eljϕ̂

ω3/2
, l

)
− a∗

(
eljϕ̂

ω3/2
, l

)))
. (3.29)

Hence the lemma is complete. qed

Let

ΩTL,P := UPΩTL ∈ FTL, (3.30)

where ΩTL = Ω1 ⊗ Ω2 ⊗ Ω3 ∈ FTL.

Lemma 3.5 (1) It follows that UP maps D(HTL
f ) onto D(HTL,P )(= D(HTL

f )) and

U−1
P HTL,PUP = HTL

f + ETL(P ), (3.31)

where

ETL(P ) =
1

2meff

|P |2 +
3

2π

∫ ∞
−∞

e2s2‖ϕ̂/(s2 + ω2)‖2

m+ e2‖ϕ̂/
√
s2 + ω2‖2

ds. (3.32)

(2) ΩTL,P is the unique ground state of HTL,P . (3) ΩTL,P is the unique vector such that

bP (f, j)Ψ = 0, j = 1, 2, 3, for all f ∈ L2(R3).

Proof: (3.32) is a minor modification of [HS01]. Suppose that bP (f, j)Ψ = 0 for all

f ∈ L2(R3) and j = 1, 2, 3. Then we have UPa(f, j)U−1
P Ψ = 0 and U−1

P Ψ = αΩTL,

α ∈ C. Hence (3) follows. By the commutation relation [HTL,P , bP (f, j)] = −bP (ωf, j)
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we can see that bP (f, j)eitHTL,P ΩTL,P = eitHTL,P bP (eitωf, j)ΩTL,P = 0 for all f ∈ L2(R3).

Then there exists a real number c such that eitHTL,PUPΩTL = eitcΩTL,P and

U−1
P eitHTL,PUP

n∏
i=1

a∗(fi, ji)ΩTL = eitc
n∏
i=1

a∗(eitωfi, ji)ΩTL.

Since the linear hull of
∏n

i=1 a
∗(fi, ji)ΩTL is dense in FTL,

U−1
P eitHTL,PUP = eit(H

TL
f +c)

and c = ETL(P ) follows. Then (1) is valid. (2) follows from (1). qed

3.3 Total Hamiltonian

In the previous sections we diagonalized HTL,P and H0. Thus we can also diagonalize

the total Hamiltonian. Define

HP := HTL,P ⊗ 1 + 1⊗H0 (3.33)

with domain

D(HP ) = D(Hf) (3.34)

for P ∈ R3 on F = FTL ⊗F0.

Proposition 3.6 HP is η-self-adjoint. In particular HP is closed and an arbitrary

core of Hf is also a core of HP .

Proof: The proof is similar to that of Proposition 2.4. qed

We have already shown that HP can be diagonalized by making use of the η-unitary

UP ⊗ V0. We summarize with a proposition. Let

ΨP := ΩTL,P ⊗ V0Ω0. (3.35)

Proposition 3.7 It follows that

(UP ⊗ V0)−1HP (UP ⊗ V0)dD(HTL
f )⊗F0,fin

= (HTL
f +ETL(P ))⊗ 1 + 1⊗ (H0

f +E0). (3.36)

Moreover

HPΨP = (E0 + ETL(P ))ΨP . (3.37)
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Proof: On D(HTL
f )⊗F0,fin it follows that

(UP ⊗ V0)−1HP (UP ⊗ V0) = (HTL
f + ETL(P ))⊗ 1 + 1⊗ (H0

f + E0). (3.38)

Since D(HTL
f )⊗F0,fin is a core of the right hand side of (3.38), the proposition follows.

qed

Remark 3.8 The operator UP ⊗ V0 is η-unitary.

Next we will indicate the diagonalization of Hamiltonian H. Note that

H =

(∫ ⊕
R3

HTL,PdP

)
⊗ 1 + 1⊗H0.

Define the η-unitary operator by

U :=

(∫ ⊕
R3

UPdp

)
⊗ V0 = U(−i~∇)⊗ V0 : H →H . (3.39)

Thus we have the proposition.

Proposition 3.9 U is η-unitary on H and

U −1HU dD(HTL)⊗F0,fin
= − 1

2meff

∆⊗1+1⊗Hf +
3

2π

∫ ∞
−∞

e2s2‖ϕ̂/(s2 + ω2)‖2

m+ e2‖ϕ̂/
√
s2 + ω2‖2

ds+E0.

(3.40)

Proof: It can be seen that

U(−i~∇)−1HTLU(−i~∇) = HTL
f + ETL(−i∇). (3.41)

Then by (3.7)

U −1HU = ETL(−i∇)⊗ 1 + 1⊗Hf + E0 (3.42)

follows on D(HTL)⊗F0,fin. Since D(HTL)⊗F0,fin is the core of the right hand side of

(3.42), the proposition follows. qed
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3.4 Heisenberg operators

In this section we construct a Heisenberg operator X(t) as a solution to the Heisenberg

equation
d

dt
X(t) = i[H,X(t)], X(0) = X, (3.43)

where we notice that H is not self-adjoint but η-self-adjoint. In particular the solution

to (3.43) cannot always be expressed as eitHX(0)e−itH . So care is required in defining

the Heisenberg operator associated with the non-self-adjoint operator H.

Set

HS = S (R3)⊗̂FS , (3.44)

where ⊗̂ denotes the algebraic tensor product and

FS = L.H.

{
n∏
i=1

a∗(fi, µi)Ω,Ω

∣∣∣∣∣ fi ∈ S (R3), µi = 0, 1, 2, 3, i = 1, · · · , n, n ≥ 1

}
.

The dense subspace HS is useful to study algebraic computations of operators, since

HS ⊂ D(Hn) for all n ≥ 1.

Definition 3.10 (Heisenberg operators) X(t), t ∈ R, is called the Heisenberg op-

erator associated with H with the initial condition X(0) = X if and only if

(1) For each t ∈ R, X(t) is closed and HS is its core.

(2) For each Ψ,Φ ∈HS , HΦ ∈ D(X(t)) and (Ψ|X(t)Φ) is differentiable with

d

dt
(Ψ|X(t)Φ) = i ((HΨ|X(t)Φ)− (Ψ|X(t)HΦ)) .

(3) For each Ψ,Φ ∈ HS , the function (Ψ|X(·)Φ) on R can be analytically contin-

ued to some domain O ⊂ C, which is also denoted by (Ψ|X(z)Φ) for z ∈ O.

Furthermore, for all n ≥ 1, HnΦ ∈ D(X) and

dn

dzn
(Ψ|X(z)Φ)

∣∣∣∣
z=0

= in(Ψ|adn(H)XΦ),

where (Ψ|adn(H)XΦ) is defined by

(Ψ|adn(H)XΦ) =
n∑
j=0

n!

j!(n− j)!
(−1)n−j(HnΨ|XHn−jΦ), Ψ,Φ ∈HS .
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(2) of Definition 3.10 is a realization of the Heisenberg equation (3.43) in the weak

sense. (3) ensures the uniqueness of the Heisenberg operator. See [Suz08] for the

detail.

Now let us consider the Heisenberg operators with the initial conditions X =

p, q, Aµ(f) and ˙Aµ(f), where p = −i∇ and q = x. Define the operator b](f, j) on

H = L2(R3)⊗Fb by b]P (f, j) with P ∈ R3 replaced by p, i.e.,

b(f, l) :=
1√
2

3∑
j=1

(
Âj

(
T ∗elj
√
ωf
)

+ i
ˆ̇Aj

(
T ∗elj

1√
ω
f

)
− pj

(
eeljQ

ω3/2
, f

))
, (3.45)

b∗(f, l) :=
1√
2

3∑
j=1

(
Âj

(
T̄ ∗ẽlj
√
ωf̃
)
− i ˆ̇Aj

(
T̄ ∗ẽlj

1√
ω
f̃

)
− pj

(
eeljQ̄

ω3/2
, f

))
. (3.46)

Define the operators Aj(f, t), ˙Aj(f, t), A0(f, t), ˙A0(f, t), pj(t) and qj(t), j = 1, 2, 3, by

Aj(f, t) =
1√
2

3∑
l=1

(
b∗
(
eiωt

1√
ω
eljT f̂ , l

)
+ b

(
e−iωt

1√
ω
eljT

˜̂
f, l

))

− e

meff

(
ϕ̂

ω3/2
,
f̂√
ω

)
pj, (3.47)

˙Aj(f, t) =
i√
2

3∑
l=1

(
b∗
(
eitω

1√
ω
eljTωf̂ , l

)
− b
(
e−itω

1√
ω
eljTω

˜̂
f, l

))
, (3.48)

A0(f, t) =
1√
2

(
a∗
(
eitω

1√
ω
f̂ , 0

)
+ a

(
e−itω

1√
ω

˜̂
f, 0

))
−e

2

(
ϕ̂

ω3/2
, (eitω − 1)

f̂√
ω

+ (e−itω − 1)
˜̂
f√
ω

)
, (3.49)

˙A0(f, t) =
i√
2

(
a∗
(
eitω
√
ωf̂ , 0

)
− a

(
e−itω

√
ω

˜̂
f, 0
))

−ie
2

(
ϕ̂√
ω
, eitωf̂ − e−itω ˜̂

f

)
, (3.50)

pj(t) = pj, (3.51)

qj(t) = qj +
t

m

(
1 +

e2

meff

‖ϕ̂/ω‖2

)
pj

+e
i√
2

3∑
l=1

{
b∗
(

(eiωt − 1)elj
Q̄

ω3/2
, l

)
− b
(

(e−iωt − 1)elj
Q

ω3/2
, l

)}
.(3.52)

Remark 3.11 All the operators above are defined on H = L2(R3)⊗Fb, but we omit

the tensor notation ⊗ for notational convenience. For example we used pj for pj ⊗ 1
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and a](f) for 1⊗ a](f), etc.

Since the operators Aj(f, t)dHS
, ˙Aj(f, t)dHS

, A0(f, t)dHS
, ˙A0(f, t)dHS

, pj(t)dHS
and

qj(t)dHS
are closable, we denote their closed extensions simply by Aj(f, t), ˙Aj(f, t),

A0(f, t), ˙A0(f, t), pj(t) and qj(t), respectively.

Theorem 3.12 Let f ∈ C∞0 (R3). Then Aµ(f, t) (resp. ˙Aµ(f, t), p(t), q(t)) is the

Heisenberg operator associated with H with the initial condition Aµ(f, 0) = Aµ(f)

(resp. ˙Aµ(f, 0) = ˙Aµ(f), p(0) = p, q(0) = q).

The heuristic idea of the proof of Theorem 3.12 is as follows. We note that A0 commutes

with HTL and Aj, p, q commute with H0. So the informal solutions to the Heisenberg

equation (3.43) for the initial condition X = q, p,Aj(f) and ˙Aj(f) are given by

q̃j(t) := eitHTLqje
−itHTL , p̃j(t) := eitHTLpje

−itHTL (3.53)

and

Ãj(f, t) := eitHTLAj(f)e−itHTL ,
˜̇A j(f, t) := eitHTL ˙Aj(f)e−itHTL (3.54)

for j = 1, 2, 3, respectively.

Moreover since A0(f) and HTL commute, in order to construct the Heisenberg

operators with initial conditions A0(f) and ˙A0(f), it is enough to find the Heisenberg

operators Ã0(f, t) and
˜̇A 0(f, t) associated with H0 instead of H:

d

dt
Ã0(f, t) = i[H0, Ã0(f, t)],

d

dt
˜̇A 0(f, t) = i[H0,

˜̇A 0(f, t)]. (3.55)

We will show that Ãµ(f, t) = Aµ(f, t),
˜̇A µ(f, t) = ˙Aµ(f, t), p̃j(t) = pj(t) and q̃j(t) =

qj(t) on HS and prove that they are the Heisenberg operators.

Proof of Theorem 3.12

By the assumption f ∈ C∞0 (R3) and (2) of Assumption 3.1, ‖e+εωϕ̂‖∞ <∞, it is im-

mediate that (HΨ|Aµ(f, t)Φ) (resp. (HΨ| ˙Aµ(f, t)Φ), (HΨ|pj(t)Φ) and (HΨ|qj(t)Φ))

can be analytically continued to some domain with respect to t. So it is enough to

check (2) of Definition 3.10.

We see directly that (3.49) and (3.50) satisfy the Heisenberg equation (3.43).
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Next we examine (3.47) and (3.48). The vector potentials Aj(f) and ˙Aj(f) can be

expressed by means of b∗P and bP . In fact direct computation shows that

Aj(f) =
1√
2

3∑
l=1

(
b∗P

(
1√
ω
eljT f̂ , l

)
+ bP

(
1√
ω
eljT

˜̂
f, l

))
− ePj

(
ϕ̂

meffω3/2
,
f̂√
ω

)
,

(3.56)

˙Aj(f) =
i√
2

3∑
l=1

(
b∗P

(
1√
ω
eljTωf̂ , l

)
− bP

(
1√
ω
eljTω

˜̂
f, l

))
. (3.57)

Note that

eitHTL,P bP (f, j)e−itHTL,P = bP (e−iωtf, j), eitHTL,P b∗P (f, j)e−itHTL,P = b∗P (eiωtf, j).

Then Aj(f, t, P ) = eitHTL,P Aj(f)e−itHTL,P is given by

Aj(f, t, P ) =
1√
2

3∑
l=1

(
b∗
(
eiωt

1√
ω
eljT f̂ , l

)
+ b

(
e−iωt

1√
ω
eljT

˜̂
f, l

))

−ePj

(
ϕ̂

meffω3/2
,
f̂√
ω

)
. (3.58)

Thus (3.47) satisfies the Heisenberg equation (3.43).

Finally we analyze (3.51) and (3.52). By the dipole approximation, p and eitHTL

commute. Then eitHTLpje
−itHTL = pj. Thus it is trivial to see that pj is the Heisenberg

operator. We see that

qj(t)Ψ =

∫ t

0

ieisHTL [HTL, qj]e
−isHTLΨds+ qjΨ

=
1

m

∫ t

0

eisHTL(pj − eAj)e
−isHTLΨds+ qjΨ

=
t

m
pjΨ + qjΨ−

e

m

∫ t

0

Aj(ϕ, s)Ψds.

By (3.47) we can compute e
m

∫ t
0
Aj(ϕ, s)Ψds as

e

m

∫ t

0

Aj(ϕ, s)Ψds

=
e

m

i√
2

3∑
l=1

{
b∗
(

(eiωt − 1)elj
Q̄

ω3/2
, l

)
− b
(

(e−iωt − 1)elj
Q

ω3/2
, l

)}
+

t

m

e2

meff

‖ϕ̂/ω‖2pj.

Then (3.52) satisfies the Heisenberg equation (3.43). qed
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We utilize (3.53)-(3.55), Maxwell’s equations and Newton’s equation of motion for

NRQED. For all f ∈ S (R3),

d2

dt2
~A (f, t)− ~A (∆f, t) =

∫
R3

~J(x, t)f(x)dx,

d2

dt2
~A0(f, t)− ~A0(∆f, t) =

∫
R3

ρ(x, t)f(x)dx,

and
d2

dt2
q(t) = −e ~̇A (ϕ, t),

where

~J(x, t) =
e

2m

(
ϕ(x)(p(t)− e ~A (ϕ, t)) + (p(t)− e ~A (ϕ, t))ϕ(x)

)
,

ρ(x, t) = eϕ(x).

4 LSZ formalism and asymptotic completeness

We shall construct the asymptotic field a∗P,±(f, µ) by the LSZ method in this section.

Let

aP,t(f, j) := i
3∑
l=1

( ˙Al(f
l,j
t , t, P )−Al(ḟ

l,j
t , t, P )), j = 1, 2, 3, (4.1)

aP,t(f, 0) := i( ˙A0(f 0
t , t)−A0(ḟ 0

t , t)), (4.2)

for f ∈ L2(R3), where both A0(f, t) and ˙A0(f, t) are regarded as operators in F ,

Al(f, t, P ) = eitHTL,P Al(f)e−itHTL,P , ˙Al(f, t, P ) = eitHTL,P ˙Al(f)e−itHTL,P and

f 0
t = F−1

(
eitω√

2ω
f̃

)
, f l,jt (k) = F−1

(
e+itω

√
2ω
ẽjl f̃

)
, j = 1, 2, 3, (4.3)

ḟ 0
t = F−1

(
iω

eitω√
2ω
f̃

)
, ḟ l,jt (k) = F−1

(
iω
e+itω

√
2ω
ẽjl f̃

)
, (4.4)

and F−1 denotes the inverse Fourier transformation of L2(R3). We also set

a†P,t(f, µ) =

{ (
aP,t(f̄ , µ)

)∗
, µ = j = 1, 2, 3,

−
(
aP,t(f̄ , 0)

)∗
, µ = 0.

From the expression of (3.17) and (3.18) it can be seen that

aP,t(h, j) = eitHTL,P e−itH
TL
f a(h, j)eitH

TL
f e−itHTL,P (4.5)
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for j = 1, 2, 3 and

aP,t(f, 0) = a(f, 0)− e√
2

(
ϕ̂

ω3/2
, (1− eitω)f

)
. (4.6)

From (4.6), the strong limit of a]P,t(f, 0) as t → ±∞ is easily obtained. In order to

have an explicit form for a]P,t(h, j), j = 1, 2, 3, it is enough to obtain explicit forms

for Al(f, t) and ˙Al(f, t). Fortunately this can be done using (3.47) and (3.48). In the

next lemma we show that the strong limits of a]P,t(f, µ) can be represented by b]P (f, µ)

defined in (3.10),(3.11), (3.21) and (3.22).

Lemma 4.1 Let Ψ ∈ Ffin. Then the strong limits

aP,out/in(h, µ)Ψ = s− lim
t→±∞

aP,t(h, µ)Ψ, (4.7)

a†P,out/in(h, µ)Ψ = s− lim
t→±∞

a†P,t(h, µ)Ψ (4.8)

exist where ”out”, ”in” stand for t → +∞, t → −∞ respectively, and are given

explicitly by

aP,in(h, j) = bP (h, j), (4.9)

a†P,in(h, j) = b∗P (h, j), (4.10)

aP,out(h, j) =
3∑
i=1

bP (Lijh, i), (4.11)

a†P,out(h, j) =
3∑
i=1

b∗P (L̄ijh, i), (4.12)

aP,out(h, 0) = b(h, 0) = aP,in(h, 0), (4.13)

a†P,out(h, 0) = b†(h, 0) = a†P,in(h, 0), (4.14)

where Lijh = δijh− iπe2Qϕ̂ω
∑3

l=1 e
i
l[e

j
lh] and [f ](k) :=

∫
S2
f(|k|S)dS, dS = sin θdθdφ,

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

Proof: The proof is parallel with [Ara83b]. (4.13) and (4.14) can be proven by the

Riemann-Lebesgue lemma. We shall prove (4.9)-(4.12). By Theorem 3.12 we have

i

3∑
l=1

( ˙Al(h
l,j
t , t, P )−Al(ḣ

l,j
t , t, P ))

=
3∑
i=1

(
b∗P (e−itω(W̄ ji

− )∗e+itωĥ, i) + bP (e−itω(W ji
+ )∗e+itωĥ, i)

)
+ const.
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Since we can see that W ji
− is an integral operator with kernel in L2(R3 × R3), it is a

Hilbert-Schmidt operator. Then ‖(W̄ ji
− )∗eitωh‖ → 0 as t→ ±∞. Hence b∗P (e−itω(W̄ ji

− )∗eitωĥ, i)→
0 as t→ ±∞. Next we shall estimate bP (e−itω(W ji

+ )∗eitωĥ, i). LetXij(t) = e−itω(W ji
+ )∗eitωh.

Then

d

dt
Xij(t) =

−i
2

3∑
l=1

e−itωeil

[
ω,

1√
ω
T
√
ω +
√
ωT

1√
ω

]
ejl e

itωh

=
−i
2

3∑
l=1

e−itωeil[ω
2, T ]ejl e

itωh

=
−ie2

2

3∑
l=1

e−itωeilQ√
ω

(
ejl e
−itωϕ̂√
ω

, h

)
:=
−ie2

2
%ij(t, ·).

Then

Xij(t) = (W ji
+ )∗h+

−ie2

2

∫ t

0

ds%ij(s, ·). (4.15)

Since

∣∣∣∣∣
(
ejl e
−isωϕ̂√
ω

, h

)∣∣∣∣∣ ≤ const./s2, the integral of the right-hand side of (4.15) as

t→ ±∞ is well defined. First we investigate the case t→ −∞. Then

−ie2

2

∫ −∞
0

ds%ij(s, k)

=
ie2

2

3∑
l=1

lim
ε↓0

∫ 0

−∞
ds

∫
dk′e−is(ω(k)−ω(k′)+iε) e

i
l(k)ejl (k

′)Q(k)ϕ̂(k′)h(k′)√
ω(k)

√
ω(k′)

= −e
2

2

3∑
l=1

lim
ε↓0

∫
dk′

eil(k)ejl (k
′)Q(k)ϕ̂(k′)h(k′)

(ω(k)− ω(k′) + iε)
√
ω(k)

√
ω(k′)

= −e
2

2

3∑
l=1

lim
ε↓0

∫
dk′

(ω(k) + ω(k′))eil(k)ejl (k
′)Q(k)ϕ̂(k′)h(k′)

(ω(k)2 − ω(k′)2 + iε)
√
ω(k)

√
ω(k′)

= −(W ji
+ )∗h(k) + δijh(k).

Hence limt→−∞Xij(t)h = δijh and (4.9), i.e., ain(h, j) = bP (h, j) follows. Next we show

that

lim
t→+∞

Xij(t)h = δijh− ie2πQϕ̂ωeiµ[helj]. (4.16)

We have

lim
t→+∞

Xij(t)h = (W ji
+ )∗h+

−ie2

2

∫ ∞
0

ds%ij(s, ·) =
−ie2

2

∫ ∞
−∞

ds%ij(s, ·) + δijh.



Physical state 31

Since, by the Fourier transformation, we have

−ie2

2

3∑
l=1

∫ ∞
−∞

e−isωeilQ√
ω

(
ejl e
−isωϕ̂√
ω

, h

)
ds = −ie2πQϕ̂ω

3∑
l=1

eil[he
j
l ],

(4.16) and then (4.11) follows. (4.12) is similarly proven. Then the proof is complete.

qed

In what follows ”ex” stands for ”out” or ”in”. Next we consider the asymptotic field

F ex
P and construct the scattering operator S connecting F in

P and F out
P . We denote by

F ex
P,fin = F ex

P,fin the linear hull of the set{
n∏
i=1

a†P,ex(hi, µi)ΨP ,ΨP

∣∣∣hi ∈ S (R3), µi = 0, 1, 2, 3, i = 1, · · ·n, n ≥ 1

}

and by F ex
P the closure of F ex

P,fin in F . In the next lemma, commutation relations are

established.

Lemma 4.2 The following commutation relations hold for F ex
P,fin:

[aP,ex(h, µ), a†P,ex(g, ν)] = −gµν(h̄, g), (4.17)

[aP,ex(h, µ), aP,ex(g, ν)] = 0 = [a†P,ex(h, µ), a†P,ex(g, ν)], (4.18)

[HP , aP,ex(h, µ)] = −aP,ex(ωh, µ), (4.19)

[HP , a
†
P,ex(h, µ)] = a†P,ex(ωh, µ) (4.20)

and aP,ex(h, µ)ΨP = 0 for all h ∈ L2(R3).

Proof: (4.19) and (4.20) follow directly from the commutation relations between HP

and b]. The commutation relations in (4.17) for µ = 0 or ν = 0 are obtained by

direct computation. Other commutation relations can be proven by aP,ex(h, j) :=

limt→±∞ aP,t(h, j) = eitHTL,P e−itH
TL
f a(h, j)eitH

TL
f e−itHTL,P and a limiting argument. qed

We constructed the quadruple

(F ex
P , HP , {aP,ex(h, µ), a†P,ex(h, µ)|h ∈ L2(R3)},ΨP ) (4.21)

relevant to (3.16), including the scalar potential.

Theorem 4.3 (Asymptotic completeness) It follows that F in
P = F out

P = F .
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Proof: Let

F ex
P,fin,TL =

{
n∏
i=1

a†P,ex(hi, ji)ΩTL,P ,ΩTL,P

∣∣∣hi ∈ S (R3), ji = 1, 2, 3, i = 1, · · ·n, n ≥ 1

}
and

F ex
fin,0 =

{
n∏
i=1

a†P,ex(hi, 0)V0Ω0, V0Ω0

∣∣∣hi ∈ S (R3), i = 1, · · ·n, n ≥ 1

}
.

Since F ex
P,fin = F ex

P,fin,TL⊗̂F ex
fin,0, we need only prove that F ex

P,fin,TL (resp. F ex
fin,0) is dense

in FTL (resp. F0). We assume that there exists a vector Φ ∈ FTL such that(
n∏
i=1

a†P,in(hi, ji)ΩTL,P ,Φ

)
= 0

for all hi and ji = 1, 2, 3. By Lemma 4.1 and the relations U−1
P b](f, j)UP = a](f, j), we

have (
n∏
i=1

a†(hi, ji)ΩTL, U
−1
P Φ

)
= 0

for all hi and ji = 1, 2, 3. Thus Φ = 0, which yields that F in
P,fin,TL is dense in FTL.

Similarly, suppose that (
∏n

i=1 a
†
P,out(hi, ji)ΩTL,P ,Φ) = 0 for all hi and ji = 1, 2, 3. Then

we have
3∑

i1,...,in=1

(
n∏
i=1

a†(L̄lijihi, li)ΩTL, U
−1
P Φ

)
= 0. (4.22)

Let L = (Lij)1≤i,j≤3 ⊕3 L2(R3) → ⊕3L2(R3). We note that, as a consequence, L =

limt→+∞ e
−itωW ∗

+e
itω. From the symplectic structure W∗JW = WJW∗ = J , it fol-

lows that W ∗
+W+ − W ∗

−W− = 1. In particular it follows that e−itωW ∗
+W+e

itω =

e−itωW ∗
−W−e

itω + 1. Thus

LL∗ = lim
t→+∞

e−itωW ∗
+W+e

itω = 1,

since e−itωW ∗
−W−e

itω vanishes as t→ ±∞. Then L has an inverse as an operator from

⊕3L2(R3) to itself and the linear hull of vectors of the form
∏n

i=1 a
†(Lfi)ΩTL is dense

in FTL. Hence (4.22) implies that Φ = 0 and F out
P,fin,TL is dense in FTL.

We prove that F ex
fin,0 is dense in F0. Denoting by Ffin,0 the linear hull of the set{

n∏
i=1

b†(hi, 0)V0Ω0, V0Ω0

∣∣∣hi ∈ S (R3), i = 1, · · ·n, n ≥ 1

}
,
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by Lemma 4.1, we have Ffin,0 = F ex
fin,0, and hence we need only prove that Ffin,0 is

dense in F0. Setting

D0 =

{
n∏
i=1

a†(hi, 0)Ω0,Ω0

∣∣∣hi ∈ S (R3), i = 1, · · ·n, n ≥ 1

}
,

we have the result that the linear hull of D0 is dense in F0. Let

U0 = exp

(
e√
2

(
a∗
(

ϕ̂

ω3/2
, 0

)
− a

(
ϕ̂

ω3/2
, 0

)))
.

Then we observe that U0 is unitary and that

V0Ω0 = ee
2/2‖ϕ̂/ω3/2‖2U0Ω0. (4.23)

We shall prove D0 ⊂ U−1
0 Ffin,0 by induction. It is clear from (4.23) that Ω0 ∈ U−1

0 Ffin,0.

Assume that
∏n

i=1 a
†(hi, 0)Ω0 ∈ U−1

0 Ffin,0. Then we have

n+1∏
i=1

a†(hi, 0)Ω0

=
(
b†(hn+1, 0)− e(ϕ̂/ω3/2, hn+1)

) n∏
i=1

a†(hi, 0)Ω0 + e(ϕ̂/ω3/2, hn+1)
n∏
i=1

a†(hi, 0)Ω0

= U−1
0 b†(hn+1, 0)U0

n∏
i=1

a†(hi, 0)Ω0 + e(ϕ̂/ω3/2, hn+1)
n∏
i=1

a†(hi, 0)Ω0.

It follows that
∏n+1

i=1 a
†(hi, 0)Ω0 ∈ U−1

0 Ffin,0 and we have the desired result. qed

Let SP : F out
P → F in

P be defined by

SP

n∏
i=1

a†P,out(fi, µi)ΨP :=
n∏
i=1

a†P,in(fi, µi)ΨP . (4.24)

Then ‖SPΦ‖ = ‖Φ‖ for Φ ∈ F out
fin follows from (4.13) and (4.14) in Lemma 4.1 and the

commutation relations (4.17) and (4.18) in Lemma 4.2. Thus SP can be extended to a

unitary operator from F out
P to F in

P . SP is called the scattering operator.

Theorem 4.4 SP is unitary and η-unitary, i.e., S∗P = S−1
P = S†P .

Proof: The unitarity of SP is already proven. [SP , η] = 0 implies that SP is η-unitary.
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5 Physical subspace

5.1 Abstract setting

We begin with an abstract version of physical subspace. Let K be a Klein space with

a metric (·|·). For a densely defined linear operator X on K, we denote by X† the

adjoint of X with respect to (·|·). We denote the set of densely defined operators on

K by C (K).

Definition 5.1 The map F : S (R3)→ C (K) is called an operator valued distribution

if and only if there exists a dense subspace D such that

(1) F (αf + βg)Ψ = (αF (f) + βF (g))Ψ for α, β ∈ C, f, g ∈ S (R3) and Ψ ∈ D;

(2) the map S (R3) 3 f 7→ (Ψ|F (f)Φ) is a tempered distribution for Ψ,Φ ∈ D.

Definition 5.2 Let B = {B(·, t)}t∈R be a family of operator valued distributions. This

family is in class D(K) if and only if

(1) there exists a dense subspace DB in K such that, for all t ∈ R and f ∈ S (R3),

DB ⊂ D(B(f, t)) ∩D(B(f, t)†) and B(f, t)†|DB
= B(f̄ , t)|DB

;

(2) for each Ψ ∈ DB, B(f, t)Ψ is strongly differentiable in t and its derivative, de-

noted by Ḃ(f, t)Ψ, is continuous in t.

By Definition 5.2, {B(·, t)}t∈R ∈ D(K) implies that Ḃ(·, t) is also an operator-valued

distribution which satisfies (1) of Definition 5.2 with B replaced by Ḃ. We now provide

an abstract definition of a free field .

Definition 5.3 A family of operator valued distributions {B(·, t)}t∈R ∈ D(K) is called

a free field if and only if B(f, t)Ψ is strongly two-times differentiable in t and

d2

dt2
B(f, t)Ψ−B(∆f, t)Ψ = 0 (5.1)

holds for all f ∈ S (R3) and Ψ ∈ DB. The set of free fields is denoted by Dfree(K).

Further to introducing the Gupta-Bleuler subsidiary condition, the positive fre-

quency part of it has to be defined. Let {B(·, t)}t∈R ∈ D(K). Then one can automati-

cally construct a free field from B(·, t), as described below. Define

cs(g) := i
(
Ḃ(gs, s)−B(ġs, s)

)
, (5.2)
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where gs and ġs are defined by

gs = F−1

(
g̃

2ω
eisω
)
, ġs = ∂sgs = F−1

(
i
g̃

2
eisω
)
. (5.3)

Note that in (5.2)

Ḃ(gs, s) = Ḃ(f, s)df=gs .

Set c†s(h) :=
(
cs(h̄)

)†
. Let us define the operator F (f, s, t) : K → K for f ∈ S (R3) and

s, t ∈ R, by

F (f, s, t) := cs

(
e−itω

˜̂
f
)

+ c†s

(
eitωf̂

)
. (5.4)

It can be proven that for each s ∈ R, {F (·, s, t)}t∈R ∈ Dfree(K). Then we can define the

family of maps Θs, s ∈ R,

Θs : D(K)→ Dfree(K), {B(·, t)}t∈R 7→ {F (·, s, t)}t∈R.

In particular Θs leaves Dfree(K) invariant. In the next lemma a stronger statement is

established.

Lemma 5.4 Let B = {B(·, t)}t∈R ∈ D . Then

(1) B(f, t) = F (f, t, t) holds for all f ∈ S (R3) and t ∈ R;

(2) If, in addition, we assume that B ∈ Dfree(K) and that for each Ψ ∈ DB, there

exists a continuous semi-norm CΨ on S (R3) such that

sup
t∈R
‖B(f, t)Ψ‖+ sup

t∈R
‖Ḃ(f, t)Ψ‖ ≤ CΨ(f), (5.5)

then cs(h) (resp. c†s(h)) is independent of s ∈ R and

B(f, t) = c(e−itω
˜̂
f) + c†(eitωf̂).

holds. Here we set cs = c and c†s = c†.

Proof: We have

cs(e
−itω ˜̂

f, t) = i

(
Ḃ

(
e−i(t−s)ω

2ω
f, s

)
− iB

(
e−i(t−s)ω

2
f, s

))
,

c†s(e
itωf̂ , t) = −i

(
Ḃ

(
ei(t−s)ω

2ω
f, s

)
+ iB

(
ei(t−s)ω

2
f, s

))
.
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Together with (5.4) we have (1). Let us fix arbitrarily Ψ,Φ ∈ DB and define the

function β(s) by β(s) = (Φ|cs(h)Ψ). Under the assumption of (2), we have

d

ds
β(s) = i

(
Φ
∣∣∣ (B(∆gs, s)−B(∂2

sgs, s)
)

Ψ
)

= 0.

Hence, by the arbitrariness of Ψ ∈ DB, we obtain the desired results. qed

By virtue of the above lemma, we introduce the definition of the positive (resp.

negative) frequency part of a given family in the class D(K).

Definition 5.5 (Positive frequency part and physical subspace)

(1) Let {B(·, t)}t∈R ∈ Dfree(K) and (5.5) be satisfied. Then we call c(e−itω
˜̂
f) (resp.

c†(eitωf̂)) the positive (resp. negative) frequency part of B(f, t) and denote it by

B(+)(f, t) := c(e−itω
˜̂
f), (resp.B(−)(f, t) := c†(eitωf̂)). (5.6)

(2) Let B = {B(·, t)}t∈R ∈ D(K) and ct(h) be defined by (5.2). For each t ∈ R, we

define the physical subspace V t by

V t := {Ψ ∈ DB|ct(h)Ψ = 0, h ∈ S (R3)}. (5.7)

Remark 5.6 In the abstract setting the physical subspace V t depends on time t. The

physical subspace associated with free fields is, however, independent of t. More pre-

cisely, assume that {B(·, t)}t∈R ∈ Dfree(K) and (5.5) is satisfied. Then V = V t is

independent of t ∈ R.

5.2 Physical subspace at time t

We return to NRQED. Applying the abstract theory explained in the previous section,

we shall construct a physical subspace at time t < ∞ as the kernel of some operator.

First we define an operator valued distribution. Let

BP (f, t) := ∂µAµ(f, t, P ), (5.8)

ḂP (f, t) := ∂µ ˙Aµ(f, t, P ). (5.9)

More precisely the right-hand side of (5.8) and (5.9) are abbreviations of

∂µAµ(f, t, P ) = ∂tA0(f, t) + A1(∂x1f, t, P ) + A2(∂x2f, t, P ) + A3(∂x3f, t, P ), (5.10)

∂µ ˙Aµ(f, t, P ) = ∂t ˙A0(f, t) + ˙A1(∂x1f, t, P ) + ˙A2(∂x2f, t, P ) + ˙A3(∂x3f, t, P ). (5.11)
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Then {BP (·, t)}t∈R ∈ D(F ). Define the positive frequency part of BP (h, t) as

cP,t(h) := i
(
ḂP (ht, t)−BP (ḣt, t)

)
,

where the functions ht and ḣt are defined as in (5.3), and the physical subspace is

defined as

V t
P,phys := {Ψ ∈ F |cP,t(h)Ψ = 0, h ∈ S (R3)}. (5.12)

Of course, in general, V t
phys is not independent of time t. To characterize V t

P,phys, we

introduce unitary operators. Let Γ([γ]) be a unitary operator defined by the second

quantization of the unitary operator

[γ] :=


1 0 0 0
0 1 0 0

0 0 1/
√

2 1/
√

2

0 0 1/
√

2 −1/
√

2

 : ⊕4L2(R3)→ ⊕4L2(R3), (5.13)

Furthermore we define the unitary operator W by

W := exp

(
− e√

2

(
a∗
(

ϕ̂

ω3/2
, 3

)
− a

(
ϕ̂

ω3/2
, 3

)))
Γ([γ]). (5.14)

Theorem 5.7 V t
P,phys is positive semi-definite and

V t
P,phys = eitHTL,P e−itH

TL
f WF (0)

TL , (5.15)

where F (0)
TL = FTL ⊗ {αΩ0|α ∈ C}.

Proof: We notice that

cP,0(h) = a(
√
ωh, 3)− a(

√
ωh, 0) +

e√
2

(h̄, ϕ̂/ω), (5.16)

and by the definition of cP,t(h) we can observe that

cP,t(h) =
i√
2
eitHTL,P e−itH

TL
f c0(h)eitH

TL
f e−itHTL,P .

Moreover, it follows directly that W−1cP,0(h)W =
√

2a(
√
ωh, 0), where we have used

Γ([γ])a(f, j)Γ([γ])−1 = a(f, j), j = 1, 2,

Γ([γ])a(f, 3)Γ([γ])−1 =
1√
2

[a(f, 3) + a(f, 0)],

Γ([γ])a(f, 0)Γ([γ])−1 =
1√
2

[a(f, 3)− a(f, 0)].
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Hence (5.15) follows from the equality {Ψ ∈ F |cP,0(h)Ψ = 0} = WF (0)
TL . Let Ψ =

eitHTL,P e−itH
TL
f WΦ ∈ V t, where Φ ∈ F (0)

TL . Then (Ψ|Ψ) = (Γ([γ])Φ, ηΓ([γ])Φ) =

(Φ,−Γ([γgγ])Φ) ≥ 0. Here

−[γgγ] =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 : ⊕4L2(R3)→ ⊕4L2(R3)

denotes the interchange between the 0th and 3rd components. Then the theorem is

complete. qed

W leaves the transversal part F1 ⊗F2 invariant, F0 and F3 are, however, mixed

together by W . Although the Hamiltonian HP = HTL,P ⊗ 1 + 1 ⊗ H0 is subdivided

into a scalar and a vector component , the physical subspace is, however, of a more

complicated form.

5.3 Physical subspace at t = ±∞

In this subsection we consider the physical subspace at t = ±∞. We have already

presented the explicit form of the asymptotic field aP,ex(h, µ), µ = 0, 1, 2, 3, and proven

its asymptotic completeness. We can construct the free field in terms of aP,ex(h, µ) and

define the physical subspace independent of t.

Formally, we write

a]P,ex(h, µ) =

∫
h(k)a]P,ex(k, µ)dk.

We now define the smeared field A ex
µ (f, t, P ) in terms of a]P,ex by

A ex
j (f, t, P ) =

3∑
l=1

∫
dk

elj(k)√
2ω(k)

(
a†P,ex(k, l)f̂(k)eiω(k)t + aP,ex(k, l)f̂(−k)e−iω(k)t

)
,

j = 1, 2, 3, (5.17)

A ex
0 (f, t, P ) =

∫
dk√
2ω(k)

(
a†P,ex(k, 0)f̂(k)eiω(k)t + aP,ex(k, 0)f̂(−k)e−iω(k)t

)
. (5.18)

Let us define the operator valued distribution

BP,ex(f, t) := ∂µA ex
µ (f, t, P ), ḂP,ex(f, t) := ∂µ ˙A ex

µ (f, t, P ). (5.19)



Physical state 39

Here the right-hand side of (5.19) is understood as in (5.10) and (5.11) with Aµ replaced

by A ex
µ . Then {BP,ex(·, t)}t∈R ∈ D(F ). In addition, by the definition of A ex

µ it is clear

that {BP,ex(·, t)}t∈R ∈ Dfree(H ). From Lemma 5.4, the positive frequency part

cP,ex(g) := i
(
ḂP,ex(gt, t)−BP,ex(ġt, t)

)
(5.20)

is independent of t, and the physical subspace at time t = ±∞ is defined by

V ex
P,phys := {Ψ ∈ F |cP,ex(h)Ψ = 0, h ∈ S (R3)}. (5.21)

Let

WP := UPW (5.22)

We can characterize the physical subspace V ex
P in the theorem below.

Theorem 5.8 Both V in
P,phys and V out

P,phys are positive semi-definite and

V in
P,phys =WPF (0)

TL , (5.23)

V out
P,phys = S−1

P WPF (0)
TL . (5.24)

Proof: Directly, we have

cP,ex(h) =
i√
2

(
aP,ex(

√
ωh, 3)− aP,ex(

√
ωh, 0)

)
. (5.25)

Here we have used
∑

j=1,2

∑3
l=1 kle

j
l = 0. In particular

U−1
P cP,in(h)UP =

i√
2

(
a(
√
ωh, 3)− a(

√
ωh, 0)

)
follows. Then (5.23) follows. By a]P,in(h, µ)SP = SPa

]
P,out(h, µ), (5.24) also follows.

Finally the semidefinite property of V ex
P,phys can be obtained from the fact that SP is η

unitary and [UP , η] = 0. Then the proof is complete. qed

By Theorem 5.8, we observe that V in
P,phys = SPV out

P,phys. We find, however, that V in
P,phys

is not identical to V out
P,phys.

Theorem 5.9 We have V in
P,phys 6= V out

P,phys.

Proof: Let Ψ =WPΦ ∈ V in
P,phys with Φ ∈ F (0)

TL . Then we have

cP,out(h)Ψ =
i√
2
UP

(
3∑
l=1

a(Ll3
√
ωh, l)− a(

√
ωh, 0)

)
WΦ.

One can easily find some vector Φ ∈ F (0)
TL such that the right-hand side above does not

vanish. Then the theorem follows. qed
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6 Physical Hamiltonian

6.1 Physical Hilbert space and physical scattering operator

We defined V ex
P,phys in the previous section and it includes the null space V ex

P,null with

respect to (·|·). We want to define the physical Hilbert space by V ex
P,phys divided by the

null space and a self-adjoint physical Hamiltonian on it.

We first of all characterize the null space of V ex
P,phys. Let FT = F1 ⊗F2 and

F (0)
T = FT ⊗ {αΩ3|α ∈ C} ⊗ {αΩ0|α ∈ C}. (6.1)

Then F (0)
TL can be decomposed as F (0)

TL = F (0)
T ⊕

(
F (0)⊥

T ∩F (0)
TL

)
. Let

V in
P :=WPF (0)

T , V in
P,null :=WP

(
F (0)⊥

T ∩F (0)
TL

)
, (6.2)

V out
P := S−1

P V in
P , V out

P,null := S−1
P V in

P,null. (6.3)

Then V ex
P,phys is also decomposed as

V ex
P,phys = V ex

P ⊕ V ex
P,null. (6.4)

Here V ex
P is closed, positive definite and satisfies (Ψ1|Ψ′1) = (Ψ1,Ψ

′
1) for Ψ1,Ψ

′
1 ∈ V ex

P ,

and V ex
P,null is closed, neutral and

V ex
P,null = {Ψ0 ∈ V ex

P,phys|(Ψ0|Ψ0) = 0}.

Definition 6.1 For subspaces Y , Z and X in F , we use the notation

X = Y [+̇] Z

if and only if (1) for all x ∈ X, there exist unique vectors y ∈ Y and z ∈ Z such that

x = y + z, (2) (y|z) = 0 holds for all y ∈ Y and z ∈ Z.

Lemma 6.2 It follows that V ex
P,phys = V ex

P [+̇] V ex
P,null.

Proof: Since V ex
P,phys is positive semi-definite with respect to the metric (·|·), we have,

by the Schwartz inequality, |(Ψ1|Ψ0)|2 ≤ (Ψ1|Ψ1)(Ψ0|Ψ0) = 0 for Ψ1 ∈ V ex
P and Ψ0 ∈

V ex
P,null. Hence (Ψ1|Ψ0) = 0. Then the lemma follows. qed

We define the physical Hilbert space in terms of the quotient Hilbert space

H ex
P,phys := V ex

P,phys/V
ex
P,null. (6.5)
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We denote by [Ψ]ex the element of H ex
P,phys associated with Ψ ∈ V ex

P,phys and the induced

scalar product on H ex
P,phys is denoted by (·, ·)ex, i.e., ([Ψ]ex, [Φ]ex)ex = (Ψ,Φ). Further-

more let πex : V ex
p →H ex

P,phys be the natural onto map defined by πex(Φ) := [Φ]ex. Thus

πex is an isometry and so is a unitary operator between V ex
p and H ex

P,phys.

We have already defined the scattering operator SP . This operator maps the null

space V out
P,null into the null space V in

P,null. Now we can define the physical scattering

operator.

Definition 6.3 The physical scattering operator SP,phys : H out
P,phys −→ H in

P,phys is de-

fined by

SP,phys[Ψ]out := [SPΨ]in. (6.6)

Theorem 6.4 (Physical scattering operator) SP,phys is unitary.

Proof: Since SP is a unitary operator from V out
P to V in

P , the theorem follows. qed

6.2 Physical Hamiltonian

In the previous section we defined the physical Hilbert space. Next we define the

physical Hamiltonian Hex
P,phys on H ex

P,phys and prove its self-adjointness.

We define

P in :=WPPTLW−1
P , P out := S−1WPPTLW−1

P S.

Here PTL = 1 ⊗ 1 ⊗ 1 ⊗ PΩ0 is the orthogonal projection onto F (0)
TL , where PΩ0 is the

orthogonal projection onto {αΩ0|α ∈ C}. Then P ex is the orthogonal projection onto

V ex
P,phys. We have to say something about relationships between the domain of HP and

V ex
P,phys.

Lemma 6.5 (1) P ex leaves D(HP ) invariant, i.e., P exD(HP ) ⊂ D(HP ).

(2) HP leaves V ex
P,phys invariant, i.e., HP (D(HP ) ∩ V ex

P,phys) ⊂ V ex
P,phys.

Proof: Let us define the operator

H̃P := Hf − a∗(ϕ̂/
√
ω, 3)− a( ˜̂ϕ/

√
ω, 0) + ETL(P ) + E0

with domain D(H̃P ) = D(Hf). Since −a∗(ϕ̂/
√
ω, 3) − a( ˜̂ϕ/

√
ω, 0) is infinitesimally

small with respect to Hf , we have ‖HfΨ‖ ≤ C(‖H̃PΨ‖ + ‖Ψ‖) for some constant C.
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Then H̃P is closed. Furthermore by ‖H̃PΨ‖ ≤ c(‖HfΨ‖+‖Ψ‖) for some constant c, an

arbitrary core of Hf is also a core of H̃P . Thus both HP and H̃P are closed and have

the same domain D(HP ) = D(Hf) = D(H̃P ); moreover have the common core

Ffin(ω) := L.H.

{
n∏
i=1

a∗(fi, µi)Ω,Ω

∣∣∣∣∣ fi ∈ D(ω), µi = 0, 1, 2, 3, i = 1, ..., n, n ≥ 1

}
.

It is immediate thatW−1
P HPWP = H̃P on the common core Ffin(ω). ThenWPD(HP ) ⊂

D(HP ) and we have the operator equation W−1
P HPWP = H̃P . Since, by PTLHf ⊂

HfPTL, PTL leaves D(HP ) invariant, we have

P inD(HP ) ⊂ WPPTLD(HP ) ⊂ WPD(HP ) ⊂ D(HP ),

P outD(HP ) ⊂ S−1
P WPPTLD(HP ) ⊂ S−1

P WPD(HP ) ⊂ D(HP ),

where we have used the intertwining property SPHP = HPS
−1
P . Thus the first half of

the lemma is proven. For Ψ ∈ D(HP ) ∩ V in
P,phys, we have

HPΨ = HPP
inΨ =WP H̃PPTLW−1

P Ψ

=WPPTL

(
Hf − a∗(ϕ̂/

√
ω, 3) + ETL(P ) + E0

)
W−1

P Ψ ∈ V in
P,phys. (6.7)

Then for Ψ ∈ D(HP ) ∩ V out
P,phys,

HPΨ = S−1
P HPP

outΨ =WP H̃PPTLW−1
P SPΨ

= S−1
P WPPTL

(
Hf − a∗(ϕ̂/

√
ω, 3) + ETL(P ) + E0

)
W−1

P SPΨ ∈ V out
P,phys. (6.8)

Hence the proof is complete. qed

Let Kex
P be the restriction of HP to D(HP ) ∩ V ex

P,phys:

Kex
P := HP dD(HP )∩V ex

P,phys
. (6.9)

By Lemma 6.5 Kex
P is a densely defined closed operator on V ex

P,phys. Note that V ex
P,phys is

closed. In order to study Kex
P we introduce the operator

ĤP := Hf − a∗(ϕ̂/
√
ω, 3) + ETL(P ) + E0

with domain D(ĤP ) = D(Hf). In a similar way as in the proof that H̃p is closed, one

can determine that ĤP is closed. By (6.7) and (6.8), we have, for all Ψ ∈ D(Kex
P ),

K in
P Ψ =WP ĤPW−1

P Ψ, (6.10)

Kout
P Ψ = S−1

P WP ĤPW−1
P SPΨ. (6.11)
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Lemma 6.6 (1) K in
P is reduced by V in

P,phys, i.e., P inK in
P ⊂ K in

P P
in.

(2) Kex
P leaves V ex

P,null invariant, i.e., Kex
P (D(Kex

P ) ∩ V ex
P,null) ⊂ V ex

P,null.

Proof: (1) follows from (6.10), (6.11) and the fact that ĤP is reduced by F (0)
TL , i.e.,

PTLĤP ⊂ ĤPPTL. Let Ψ0 ∈ D(K in
P ) ∩ V in

P,null and set Φ0 = W−1
P Ψ0 ∈ D(ĤP ). Then

Φ0 ∈ F (0)⊥
T ∩F (0)

TL . Since ĤPΦ0 ∈ F (0)⊥
T ∩F (0)

TL , we have K in
P Ψ0 =WP ĤPΦ0 ∈ V in

P,null.

Thus K in
P leaves V in

P,null invariant. Similarly, one can prove that Kout
P leaves V out

P,null

invariant. qed

We denote by ρ(X) the resolvent set of a linear operator X. By (6.10) and (6.11)

it follows that ρ(ĤP ) ⊂ ρ(Kex
P ) and for z ∈ ρ(ĤP ),

(K in
P − z)−1 =WP (ĤP − z)−1W−1

P , (6.12)

(Kout
P − z)−1 = S−1

P WP (ĤP − z)−1W−1
P SP . (6.13)

Let us now define the physical Hamiltonian Hex
P,phys on the physical Hilbert space

H ex
P,phys. In order to define the domain D(Hex

phys) consistently, we first consider the

resolvent of Kex
P .

Let

R =

{
z ∈ ρ (Hf + ETL(P ) + E0)

∣∣∣2ε+
‖ϕ̂/ω‖2/(2ε) + ‖ϕ̂/

√
ω‖/
√

2

|ETL(P ) + E0 − z|
< 1 for some ε > 0

}
.

Since ‖a∗(ϕ̂/
√
ω, 3)(Hf + ETL(P ) + E0 − z)−1‖ < 1 for z ∈ R, for all z ∈ R, the

Neumann expansion is valid and

(ĤP −z)−1 =
∞∑
n=0

(Hf +ETL(P )+E0−z)−1
(
a∗(ϕ̂/

√
ω, 3)(Hf + ETL(P ) + E0 − z)−1

)n
.

(6.14)

Let us fix z ∈ R. Then, by (6.12) and (6.13), z ∈ ρ(Kex
P ) and the resolvent

Rex
P (z) := (Kex

P − z)−1 (6.15)

is bijective on V ex
P,phys.

Lemma 6.7 Rex
P (z) is reduced by V ex

P,phys and leaves V ex
P,null invariant, i.e., P exRex

P (z) =

Rex
P (z)P ex and Rex

P (z)V ex
P,null ⊂ V ex

P,null.
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Proof: The first half of this lemma has already been proven via Lemma 6.6 (1). We

prove the second half. Let Ψ0 ∈ V in
P,null and set Φ0 =W−1

P Ψ0. Then Φ0 ∈ F (0)⊥
T ∩F (0)

TL .

By (6.12), (6.13) and (6.14), we observe that

Rin
P (z)Ψ0 =WP (ĤP − z)−1Φ0 ∈ WP (F (0)⊥

T ∩F (0)
TL ) = V in

P,null. (6.16)

Thus Rin
P (z) leaves V in

P,null invariant. Similarly one can prove that Rout
P (z) also leaves

V out
P,null invariant. qed

Since Rin
P (z) leaves the null space invariant, the following operator, [Rex

P (z)]ex, on

H ex
P,phys is well-defined:

[Rex
P (z)]ex[Ψ]ex := [Rex

P (z)Ψ]ex.

It is clear that [Rex
P (z)]ex is bounded and ‖[Rex

P (z)]ex‖ex ≤ ‖Rex
P (z)‖ holds.

Lemma 6.8 [Rex
P (z)]ex is injective and [Rex

P (z)]−1
ex is closed.

Proof: By the boundedness of [Rex
P (z)]ex, [Rex

P (z)]−1
ex is closed if [Rex

P (z)]ex is injective.

Let [Rex
P (z)]ex[Ψ]ex = 0. Then Rex

P (z)Ψ ∈ VP,null. It follows from Lemma 6.6 (2) that

Ψ = (Kex
P − z)Rex

P (z)Ψ ∈ V ex
P,null. Thus [Ψ]ex = 0 and [Rex

P (z)]ex is injective. qed

Definition 6.9 We define the physical Hamiltonian Hex
P,phys on H ex

P,phys by

Hex
P,phys := z + [Rex

P (z)]−1
ex . (6.17)

By Lemma 6.8, Hex
P,phys is closed. We further prove that Hex

P,phys is independent of z ∈ R
and that the domain of Hex

P,phys is dense in H ex
P,phys. We define P ex by

P in
1 :=WPPTW−1

P , P out
1 := S−1

P WPPTW−1
P SP . (6.18)

Here PT = 1 ⊗ 1 ⊗ PΩ3 ⊗ PΩ0 . Then P ex
1 is the orthogonal projection onto V ex

P . We

define a linear operator Jex
P on H ex

P,phys by

Jex
P [Ψ]ex = [Kex

P P
ex
1 Ψ]ex, (6.19)

D(Jex
P ) =

{
[Ψ]ex ∈H ex

P,phys|P ex
1 Ψ ∈ D(Kex

P )
}
. (6.20)

Note that the domain D(Jex
P ) is independent of the representative. Indeed if [Ψ]ex =

[Ψ′]ex, then P ex
1 Ψ = P ex

1 Ψ′ because Ψ − Ψ′ ∈ V ex
P,null and P ex

1 V ex
P,null = {0}. Thus the

operator Jex
P is well-defined. Moreover since P ex

1 leaves D(Kex
P ) invariant, D(Jex

P ) is

dense in H ex
P,phys.
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Lemma 6.10 It follows that

Hex
P,phys = Jex

P . (6.21)

In particular, Hex
P,phys is a densely defined closed operator and independent of z ∈ R.

Proof: Let [Ψ]ex ∈ D(Jex
P ). Then P ex

1 Ψ ∈ D(Kex
P ) and set Φ0 := (Kex

P − z)P ex
1 Ψ. We

observe that

[Ψ]ex = [P ex
1 Ψ]ex = [Rex

P (z)]ex[Φ0]ex ∈ D([Rex
P (z)]−1

ex )

and hence D(Jex
P ) ⊂ D(Hex

P,phys). We show the inverse inclusion. Let [Ψ]ex ∈ D(Hex
P,phys).

Then there exists a vector [Φ]ex ∈H ex
P,phys such that [Ψ]ex = [Rex

P (z)]ex[Φ]ex = [Rex
P (z)Φ]ex.

Since P ex
1 leaves D(Kex

P ) invariant, we have P ex
1 Ψ = P ex

1 Rex
P (z)Φ ∈ D(Kex

P ). Then

D(Jex
P ) ⊃ D(Hex

P,phys) follows. Thus

D(Hex
P,phys) = D(Jex

P ).

For all [Ψ]ex ∈ D(Hex
P,phys), we see that (1) there exists [Φ]ex ∈ H ex

P,phys such that

[Ψ]ex = [Rex
P (z)]ex[Φ]ex and (2) P ex

1 Ψ ∈ D(Kex
P ). We have

Hex
P,phys[Ψ]ex − Jex

P [Ψ]ex = [zΨ + Φ−Kex
P P

ex
1 Ψ]ex.

We need only prove that zΨ+Φ−Kex
P P

ex
1 Ψ ∈ V ex

P,null. Together, (1) and (2) imply that

P ex
1 Ψ−Rex

P (z)Φ ∈ V ex
P,null ∩D(Kex

P ), which, together with Lemma 6.6, yields

zΨ + Φ−Kex
P P

ex
1 Ψ = z(1− P ex

1 )Ψ− (Kex
P − z)(P ex

1 Ψ−Rex
P (z)Φ) ∈ V ex

P,null.

Thus the lemma follows. qed

Now we are in a position to state the main theorem in this section:

Theorem 6.11 Hex
phys is self-adjoint and has a unique ground state with energy ETL(P )+

E0.

Proof: For all [Ψ]ex ∈ D(Jex
P ), we have Jex

P [Ψ]ex = πexP
ex
1 Kex

P P
ex
1 π−1

ex [Ψ]ex. This equality

implies that

Jex
P ⊂ πexP

ex
1 Hex

P,physP
ex
1 π−1

ex .

Conversely if [Ψ]ex ∈ D(πexP
ex
1 Kex

P P
ex
1 π−1

ex ), then P ex
1 Ψ = P ex

1 π−1
ex [Ψ]ex ∈ D(Kex

P ) and

henceforth D(πexP
ex
1 Hex

P,physP
ex
1 π−1

ex ) ⊂ D(Jex
P ). Thus we have obtained the result that

Jex
P = πexP

ex
1 Kex

P P
ex
1 π−1

ex . (6.22)
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Combining Lemma 6.10 and (6.22), we establish that

Hex
P,phys = πexP

ex
1 Kex

P P
ex
1 π−1

ex .

Then Hex
P,phys is self-adjoint if and only if P ex

1 Kex
P P

ex
1 is self-adjoint. By (6.10), (6.11)

and (6.18), we have

P in
1 K

in
P P

in
1 =WPPTĤPPTW−1

P = UPPT(HT
f + ETL(P ) + E0)PTU

−1
P (6.23)

and, by the intertwining property,

P out
1 Kout

P P out
1 = S−1

P WPPTĤPPTW−1
P SP

= S−1
P UPPT(HT

f + ETL(P ) + E0)PTU
−1
P SP , (6.24)

where HT
f =

∑
j=1,2

∫
ω(k)a∗(k)a(k)dk. The above equations imply that P ex

1 Kex
P P

ex
1 is

self-adjoint and hence we have the desired properties. qed
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