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Abstract

We consider the problem of a body moving within an incompressible fluid at constant speed parallel
to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible Navier-
Stokes equations in an exterior domain in a half space, with appropriate boundary conditions on the
wall, the body, and at infinity. Here we prove existence of stationary solutions for this problem for
the simplified situation where the body is replaced by a source term of compact support.
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1 Introduction

The present paper is the main step in an effort to develop the mathematical framework which is necessary
for the precise computation of the hydrodynamic forces that act on a body that moves at small constant
speed parallel to a wall in an otherwise unbounded space filled with a fluid.

A very important practical application of such a situation is the description of the motion of bubbles
rising in a liquid parallel to a nearby wall. Interesting recent experimental work is described in [7] and
in [9]. Numerical studies can be found in [I], [], [6], and [§]. The computation of hydrodynamic forces
is reviewed in [5].

In what follows we consider the situation of a single bubble of fixed shape which rises with constant
velocity in a regime of Reynolds numbers less than about fifty. The resulting fluid flow is then laminar.
The Stokes equations provide a good quantitative description (forces determined within an error of one
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percent) only for Reynolds numbers less than one. For the larger Reynolds numbers under consideration
the Navier-Stokes equations need to be solved in order to obtain precise results. The vertical speed of the
bubble depends on the drag, and the distance from the wall at which the bubble rises requires one to find
the position relative to the wall where the transverse force is zero. Since at low Reynolds numbers the
transverse forces are orders of magnitude smaller than the forces along the flow, this turns out to be a
very delicate problem which needs to be solved numerically with the help of high precision computations.
But, if done by brute force, such computations are excessively costly even with today’s computers. In [2]
we have developed techniques that lead for similar problems to an overall gain of computational efficiency
of typically several orders of magnitude. See also [3] and [5]. These techniques use as an input a precise
asymptotic description of the flow. The present work is an important step towards the extension of this
technique to the case of motions close to a wall.

In what follows we consider the two dimensional case. For convenience later on we place the position
of the wall at y = 1. Namely, let x = (z,y), let Q, = {(z,y) € R?|y > 1}, let B C Q, be a compact
set with smooth boundary 0B, and let e; = (1,0). Then, in a frame comoving with the body, the
Navier-Stokes equations are

—u-Vu—-9,u+Au—-Vp=0, (1)
V-u=0, (2)

which have to be solved in the domain Q = Q \ B, subject to the boundary conditions

u(z,1) =0, rzeR, (3)
A u(x) =0, (4)
N —— 5)

Let u1 be a smooth solution of the above problem and let 1[) be the corresponding stream function, i.e.,
u= (—Gyz/;, azz/?) One can then always use a smooth cut off function y such that the function v = o
is equal to 15 outside a sufficiently large disk D C € containing B and zero inside some smaller disk D,
(but sufficiently large to still contain B). Inside B, v is also defined equal zero. Let u = (—0yv, 0,v).
Then, since u = @ in the complement of D, we find that u satisfies (), for a certain smooth force
term F of compact support. Motivated by these remarks we consider in what follows the equation

—0yu+Au=F+u-Vu+Vp, (6)

in the domain €., subject to the incompressibility conditions and the boundary conditions and
, and with F a smooth vector field with compact support in Q, i.e., F € C°(Q).

The following theorem is our main result (see Section [B] Theorem [7] and Theorem [§] for a precise formu-
lation):

Theorem 1 For all F € C (1) with F sufficiently small in a sense to be defined below, there exist a
unique vector field u = (u,v) € H'(2y) and a function p satisfying the Navier-Stokes equations (@, @)
in Q4 subject to the boundary conditions (@) and .

The rest of this paper is organized as follows. In Section [2[ we reduce the equation @ and to
a set of integral equations for an evolution equation for which the coordinate y plays the role of time.
In Section [3| we formulate the problem as a functional equation and prove the uniqueness of solutions.
Existence of solutions is proved in Section [4]

2 Reduction to an evolution equation

Let u = (u,v) and F = (F}, F3). Then, the Navier-Stokes equations @ are equivalent to

w=—0yu+ 0, (7)
—OywtAw =q+p, (8)
Ogu+0yv =0, (9)



where

q = 0z (uw) + 0y (vw) , (10)

The function w is the vorticity of the fluid. Once the equations @—@D are solved, the pressure p can be
obtained by solving the equation
Ap=-V-(F+u-Vu)

in 2, subject to the Neumann boundary condition

Oyp(z,1) = 831)(:6, 1).

We now rewrite —@D as an evolution equation with y playing the role of time. Let

qo = uw , (12)
g1 =vw , (13)
and let furthermore
Qo =qo+ F2, (14)
Qi=q - F, (15)
and
Q = 0,Qo + 9,Q1 - (16)

Then, instead of —, we get the system of equations

Oyw =1 , (17)
Oyl = —0iw + 0pw + Q , (18)
Oyt = —w + 0,0 (19)
Oyv = —0zu . (20)

As we will see later on, the equations — have a special algebraic structure which permits to rewrite
the solution as a sum of functions with different asymptotic behavior at infinity, and this splitting will
make the analysis simpler. With this in mind, we set
v=w+vY, (21)
u=09;" (~7+9) . (22)

From we then get that 7+ 0yy) = Oyv = —0,u =1 — ¢, and therefore that Oy = —¢, and from
we get that

Oyt = —w+ 0,0 = —w + Opw + O . (23)
Taking the derivative of (23) with respect to z gives, using , that —0,n + aqu = 0y0,u = —0yw +
2w + 0%, which, using (18)), gives that —(—02w + O,w + Q) + 9y = —0pw + O%w + 921, and therefore

we get that 8yg5 = 021+ Q. We conclude that, instead of the system of equations —, we can solve
the system of equations

Oyw =1 , (24)
Oy = —03w + Opw + 8:Qo + 9y Q1 (25)
Oy =—¢ , (26)
Oy = O2p + 0,Qo + 0yQ1 , (27)

with v given by and u given by .



We now make a second change of variables which allows to express u in a more direct way. This will
lead to additional significant simplifications. Namely, we set

=0+ Q1 , (28)
¢=0:0+ Q1 . (29)
Substituting — into - we get that
Oyw = 00+ Q1 , (30)
020yn = —02w + 0w + 0, Qo , (31)
Oy = =00 — Q1 , (32)
8,0y = 970 + 9, Qo - (33)

All the terms on the right hand side containing only y-derivatives have disappeared and we can therefore

instead of — solve the equations

Oyw = 0yn+ Q1 , (34)
Oy = —0zw +w+ Qo , (35)
Oy = =0, — Q1 , (36)
Oy = 09 + Qo , (37)

with v given by and with u given by
u=-n+¢. (38)
We now convert — into a system of ordinary differential equations by taking the Fourier trans-
form in the z-direction.
Definition 2 Let f be a complex valued function in L* (Q4). Then, we define the inverse Fourier trans-
form f = F~1[f] by the equation,
—17 4 1 —ikx ¢
fag) = (fwn) = 5 [ (k) db (3)
R

We note that for a function f which is smooth and of compact support in €2, we have that f = F~! [f],
where

fli) = FUAE9) = [ € Flay) do (10)
With these definitions we formally have in Fourier space, instead of —, the equations
0,6 = —iki+ Q1 (41)
dyf = (ik + )@+ Qo (42)
Oyth = ikp — Q1 (43)
8y = —ikih + Qo . (44)
From , we get
Qo =Go+ I, (45)
Qi=d —F1, (46)
from , we get
o= (250) | (47)
ii= 5 (0+0) | (48)



and instead of and we have the equations
—N+é, (49)
D=+ . (50)

=3
||

It is — that we solve in Sectionin appropriate function spaces. We also show that the constructed
solutions correspond via inverse Fourier transform to strong solutions of , , @ with finite Dirichlet
integral.

We now rewrite — as a system of integral equations. From now we will use s, ¢ > 1 instead of
y for the time variable, and o, 7 > 0 for time differences. We set

k= Vk?— ik, (51)

and define, for £ € R\ {0} and 7 > 0, the functions K, by,

K, (k,7)= %e*’” , forn=1,2, (52)

Ks(k,7) = %% (e —e™ 7Y | (53)
and the functions G,, by,

Gn(k,7) = %e“kh , forme 1,2, (54)

Gy(k,7) = %% (elk‘T - e_|k|T> . (55)

We furthermore define, for ¢ > 1, and n = 1,...,3, the intervals I, by, Il = [L,¢], and I, = [t,00),
otherwise. Using this notation, a representatlon of a classical solution to ., which satisfies the

boundary condition (3, in the sense that @(k, 1) = —A(k, 1)+¢(k, 1) = 0 and v(k 1) =k, 1)+0(k,1) =
0, is (see Appendix [B|for a derivation):

A=) im o=y O (56)

m=0,1n=1,2,3 m=0,1n=1,2,3
QZ): Z J)n,m y 1/; = Z l/;n,m ) (57)
m=0,1n=1,2,3 m=0,1n=1,2,3
with

ﬁn,m(kat) K (k t— 1)/ 9n m(k s — 1) Qm(k 8) d ) (58)
I,

O (k1) = Ko (ky t — 1)/ Fam(kys —1) Qu(k,s) ds (59)
I,

G (kyt) = Gk, t — 1)/ knm(kys —1) Qu(k,s) ds (60)
I,

Vnm (b, t) = Gk, t — 1)/ B (ky 5 — 1) Quu(k, s) ds (61)
I

n



with K, and I,, as defined above, with

. 2
g10(k,0) = % (7’:650 _ Ok‘%@eﬂw +2(|k| + r) elko) , (62)
K ik k| + k)? ko _lklo
g20(k,0) = 1= (% By oy ) 4 ) ) , (63)
ik
g3,0(k,0) = —;e_m ) (64)
K k| + k) o El( k +/£ lkle
Dalho) = 2 <+ L0 LIRS B ) | (65)
K k| + k) ko El(Jk] +£) _iglo
i) = & (<1+ (L0 o LKL +0) ) | (66)
g31(k,0) =€ "7, (67)
with fl,m(ka‘o—) = %gl,m(kao—)a f3,m(kag) = 7%93,m(k30—)7 fQ,O(kaU) = %(9270(1@0—)4’267%0)7 and
ng(k‘,O’) = %9271(]{7,0') — 267'“7, with
kEl (ik 5 k| +K)? 4, .
kio(k,o0) = | |(|k [kl (|||k|)e klo _o(|k| + k)e ) ) (68)
k ik k|l +k —klo —Kko
taalho) = B (2 UL yemie 1y o) (69)
zk
kg’o(k7g) = |k.| “f‘o' , (70)
LI T +5)° N o (L )
k(o) =2 (e e +2—— e , (71)
L U7 o o RUE+R)
haalho) = ( (1 R e : (72)
Baa(ky0) = 417 (73)

and with hy p(k,0) =

and ho 1 (k,0) = — f,f‘ ko (k,0)

— ikt m(k, 0), han(k,0) = (ks m(k, 0), hoo(k,0) = = (ka,0(k, o) +2¢7¥17),

+ 2¢ Ikl

3 Functional framework

We start by defining adequate

Let furthermore

function spaces. Let o, » > 0 and k € R, and let
1

,uoc,r(k,t) = W (74)
fo(k,t) = paa (K, t)
ﬂa(kat) = Na-,Q(k’t) :

Definition 3 Let Ry =R\ {0}. We define, for fized oo > 0, and p, ¢ > 0, Bq,p,q to be the Banach space

of functions f € C(Rg x [1,0),C
If; B

is finite. Furthermore, we set B, = B,,

), for which the norm
| op U

1 k€Ry tplj‘a(k t) ta ﬂa(k’t)
15, and Vo =B, 51 X B, 1
272

a,p,q

g % Ba, 3

T
3 2



The following properties of the spaces By, 4 Will be important below and will be routinely used
without mention:

-if a, @’ >0, and p, p', ¢, ¢ > 0, then By p g N Bo g C Bminfa’ .}, min{p’,p},min{a’q}-
-ifa>1p>0andq>0, then
1 1
(kat) = Eﬂa(kat) € LQ(Q—F)a (kvt) = Eﬂa(kat) € LQ(Q-F) :
Therefore, and because the Fourier transform is an isometry of L2(R), we have that f = F~'[f]
L%*(Q4), whenever f € B, 4 for some a > 1, p >0, ¢ > 0.

-ifa>1,p>0and g >0, then f € By, is bounded by || f;Bapqll(1 + |k])~%, uniformly in ¢.
Therefore, the function k — sup |f( . ,t)| is in L'(R).
t>1

Next, we rewrite the problem of solving - as a functional equation:

Lemma 4 Let o > 1. Then,

C: Va X Va — Ba,
(@180, 51), (o Tz B2) (o (@ #@2) s ok (31 % B2) (75)
defines a continuous bilinear map.
Lemma 5 Let a > 1. Then,
L : B, — Va (76)

0:Q1) — (@,a,9),
defines a continuous linear map. Here, (@, 1,7) = (&, =0 + b, &+ ), with (&,9,,0) given in terms of
the integral equations (@), , with (Qo, Q1) = (Qo,Ql)

Lol

(

The maps C and £ are studied in Section and Section 4.2} respectively. Now let F = (F1, F») €
C (), and let F = (Fy, Fy) = (F[F], FIF ]) be the Fourier tranbform of F. Note that (Fy, F}) € B,
for all a > 1.

Definition 6 Let a > 1. A triple (O, 4, 0) is called an a-solution if:

(”) (a),ﬂ,@) = [’[C[(‘Dvaa 6)7 ((D?ﬂ' ﬁ)] (F2a Fl)] .

With this definition at hand we can now give a precise formulation of Theorem

Theorem 7 (Eristence) Let o > 1, F = (Fy,Fy) € OF(Qy), and let F = (F\, Fy) be the Fourier
transform of F. If ||(Fy, F1); Ba I s suﬁ'iczently small, then there exists a unique a-solution (&,a,T) in
Vo, with (@, 1, 0); Va|| < Coll(Fa, F1); Bo||Y/2, for some constant Cy, depending only on the choice of a.

Proof. Let €4 = |(Fa, F1); By||. Since @ > 1, we have by Lemma {4 and Lemma [5| that the map
N V4 — Vo, Nz] = L[C[z, 2] + (Fy, —F})] is continuous. We now show that for &, small enough there
is a constant p, such that A is a contraction on the ball Y = {x € Vo | ||#;Val| < po}. Namely, let
2 € Uy. Then, by Lemma there exists a constant C; such that ||C[z, z]; Ba|| < C1(pa)?, and therefore
C[z, ] + (Fo, —F1); Bal| < C1(pa)? + €a. Using now Lemma it follows that there exists a constant Cy
such that [|N[z]; Va|| < C2(C1(pa)? +€a). We set

C,=C?. (77)



Now, we assume that
1C.\*
« YR = ) 78
Ea < (2 Cz) Ea ( )
and let
Pa = Ca\/ Ea - (79)
Then, we find that
[Mz]; Vall < 2Coea = (2C2v/E0) VEa
< Ca VEa = Pa »

which shows that that for p, as defined in and with ¢, satisfying we have that VU] C U. Now
let z, y € U. By the linearity of L,

Nlz] = Nly] = LIClz, 2] = Cly, y]] ,
and therefore by the bilinearity of C,
Nz] = Ny] = L[Clx — y, 2] + Cly, z — y]] -
With the same constants C; and Cs as before, and using , , and , we therefore find that

||N[$] - N[y}a voz“ S 2CQClpa||:C - Y Voz“
<lz—y;Vall .

This shows that N is a contraction of U into U. Theorem [7] now follows by the contraction mapping
principle. =

The definition of a-solutions has been obtained from @, , on a formal level. We now prove that
for @ > 3 any a-solution provides a classical solution (u,v,p) to @7 7 . In what follows (Fy, F)
is a smooth source term of compact support and a > 3. So assume (@, %, ) is an a-solution for given
(F1, F3) (not necessarily small). By definition, we have that

@EBQ,%J, ’IEEBO"%’O, 566(1’%’1 (80)
Applying Lemma {4} we obtain that the functions (qo, ¢1) = C[(®, @, D), (@, 4, V)] satisfy
GoeB, 15, (leBa%g. (81)

A, 555 3

Therefore Qo = o — F[F5] and Q1 = q1 + F[F1] belong to the same spaces. Finally, by definition of
a-solution, we have that (©,4,7) = L[(Qo, Q1)]. We now use the detailed results for £ (see Section
and the lemmas therein) to conclude that @ = —7 + ¢ and ¥ = @ + ¢, with

ﬁEBa’%’O7 ’L[JEB 13, dN)GB 13 . (82)

REPED) REIPED)

tem of ordinary differential equations j{) with continuous coefficients, and the functions (@, 7, 0, q~5)
therefore admit partial derivatives with respect to their second argument. Using - and the above

information about (&, 7,1, ¢, Qo, Q1), it is straightforward to verify that

By construction, when replacing (QO, by (Qo, Ql), the functions (@, 7, 0, é) are a solution of the sys-
(41

QyweBy 159, OyNEB, 1351, 0,1 € B, 135, 0,0 € B, 133, (83)

(SIS

and therefore that
8y71 6 BO&*I,%,I 5 ay'lj 6 BOL*L%,Q . (84)

In order to get information on the second order derivatives of (&, 1, z/;, (5) we need to differentiate 1)
with respect to y. For this purpose we note that standard techniques for integrals depending on a
parameter imply that ¢y and ¢; admit partial derivatives with respect to their second argument, and that

(OyT* @+ U * Oyw) , ay@:%(ayam+f)*aya) .

6 q, f—
vdo 2



Using Corollary [10[ we find from , that

ayqo € Ba71,4)% ) @y(ﬁ € Ba71,47% ’ (85)

and since (8;‘]52,8?}51) € B, for all n,m € Ny := NU{0}, & > 0 we find that 3yQ0 and 8yQ1 exist and
are also in B,_; 3.9 Therefore we can differentiate in — with respect to y, and using the above

information on (0,@, 0,1, 33,@/;, 3y¢~>, 9,Qo,0,Q1) it is straightforward to verify that

Oyyw € By 913, Oyl €By 555 Oyyh € B,y g, Dyy € B, 23 (86)

5 9 .
12 2

We now set
w=Fa|, u=F"a], v=F"'1].

Using the properties of the spaces B, ¢ and standard techniques for integrals depending on a parameter,
it follows that the functions (w,u,v) are well-defined and are in C?(Q,) (remember that we assume that
a > 3). Also, since F is an isometry in L?(R) it follows that (u,v, Vu, Vv) € L?(Q4 ) and therefore (u,v)
have a finite Dirichlet integral, and (u,v) € H}(€Q,). Next, since (o, 1) € Ba, and since §o = @ * & and
q1 = ¥ * w, we find that

F gl =ww, Fla]=ww,

and therefore, since (&, 4, 0) satisfy —, we find that (w,u,v) satisfy , and ([7)-(L1). Finally,
by standard arguments, there exists a function p, such that (u, v, p) is a solution to , (13), (6). By abuse
of terminology we also refer in what follows to solutions u = (u,v) constructed this way as a-solutions.

In the remainder of this section we discuss the uniqueness of solutions. Consider the equation

/Vu:V¢dx+/ (Ozu+F+u-Vu) - ¢dx=0. (87)

A vector field u € H} () that satisfies for an arbitrary solenoidal vector field ¢ € C2°(€24.) is called
a weak solution of (1)) with data F. In particular, if u is an a-solution with « > 3, then if we multiply the
Navier-Stokes equation by an arbitrary solenoidal vector field ¢ € C2°(€y), integrate over Q4 and
use then the regularity results established above to integrate by parts, we get . Therefore, a-solutions

are weak solutions of , for a > 3. The following theorem shows that for small data F the a-solutions
of Theorem [7] are the only weak solutions for a given F.

Theorem 8 (Uniqueness). Let a > 3, and let F be as in Theorem @ Then, there exists exactly one
weak solution of equation with data F'.

Proof. By Theorem [7] there exists an a-solution (@, ,?7) € V, satisfying
(@, @, 0); Vol < Cav/ea ,

with C, as in Theorem [7| and with e, = |(Fa, F1); Bal, and furthermore, for o > 3, u := (u,v) =
(Fa], F~1[7]) € HY(Q4). Since, for a > 3 and y > 1,

IN

<

b

@ | ot

/°° ( 1 1, 1 ) P
—oo \WH L+ ([Kly)> 1+ (Jkly?)* y?

we find for (z,y) € Q4 the pointwise bounds

(e, y)] < C2VE e,y < GovEe (88)

y Y
Now let u; € H}(€24) be a weak solution for data F, and let @ := u—u;. From we then get that

Vﬁ:V¢dX+/ (Ozu+u-Vu—u; -Vuy)-9dx=0,

Qy Q



for arbitrary solenoidal ¢ € C°(Q,). Using standard continuity arguments one can extend this weak
formulation to arbitrary ¢ € H(Q4) so that we can take ¢ = 1 as a test-function. We get, after

recombination of the nonlinear terms, that

/ |Val|? dx+/ (Ozu-u+(@-Vu)-a+(u-Va)-a) dx=0.
Q. Q.
Integration by parts in the second integral in gives
/ [Oy0 -0+ (@-Vu) -a+ (u;-Va) - q dx:—/ (A®@u)-Vadx,
Qy Qy
and therefore we get from , using Holder’s inequality, that

[ VAP dx < asw )] Vs L@
Q4

Finally, using the pointwise estimates and then Hardy’s inequality, we get from that

oo 00 | 2 3
/ |Vu|2dxscaaa</ i [ '“(zy)'dy) IV 220
Q+ — 00 1

< 40asa/ Va2 dx |
Q4

(89)

(90)

and it follows that Vu = 0, and therefore @ = 0, provided &, < min{4C;',£%}, with ), as given in (78).

4 Proof of main lemmas

In what follows we give a proof of Lemma [4] and Lemma

4.1 Proof of Lemma [4]

Proposition 9 Let o, 5 > 1, and v, s > 0 and let a, b be continuous functions from Ry x [1,00) to C

satisfying the bounds (see for the definition of fia,» and pg, s, respectively),

‘a(k7t)‘ S .u’aﬂ"(kvt) )
b(k, t)| < pp,s(k,t)

Then, the convolution a * b is a continuous function from R x [1,00) to C and we have the bound

1 1
|(a *b) (k,t)| < const. (tr‘uﬁvs(k’t) + ﬁuaﬂ,(k,t)) ,

uniformly int > 1, k € R.

(91)

Proof. We only prove . Since the functions p,,» and pg s are even in k, it suffices to consider the

case k > 0. Cutting the integral into two parts we have,

(@ xb) (k,1)]

< g a(k/2,1) /

— 00

o0

k/2
Lo (K1) dK + pa,(k/2, t)/ pp.s(k— K t) dk'
k/2

1 1
< const. (tr,ug’s(kﬂf) + ts,ua’,,(ht)) ,
and (91)) follows. m

10



Corollary 10 Let, fori=1,2, a; > 1, and p;, ¢; > 0. Let f; € By, p,.q;» and let

a=min{a,as} ,
p=min{p; +p2+1,p1 +q2+2,p2 +q1 + 2},
g=min{g1+@+2,p+@+Lp+q+1}.

Then fi x fo € By pq and there exists a constant C, depending only on oy, such that

”fl * f2;BoéJMIH <C ||f1;Ba17p17lI1|| ’ Hf2§80c27p27Q2”

Proof. Using Proposition [9 we find that

1 _ 1 _ 1 _ 1
(g5 e 0500+ i () ) = (s 8+ (0

tP1
const. _ const. _
< pprrpart Pminfanaa} (B 8) + 205 fimin s ) (K5 )
const. _ const. _ const. _ const. _
prranra Foa (o) + o flaa (ks 8) + o g e (R 8) + o s flaa (K T)

and the claim follows after regrouping of the terms involving i and fi, respectively. m

Now let (w1, 1,901), (@2,1U2,02) € Vo = By 31 X By 10 % By 1. Using Corollarywe find for ¢,
j €{1,2} that 4; *@; € B, 1 s, and that
la; * @;; B

ezl < const i By ol 1353 By

< const.[|(@i, @i, i); Vall - [1(@5, @5, 05); Vol

Similarly we find that 0; * @; € B, 7 5, and that

[[0i % @j3 By z 5]l < const.|[03; By 1 1| &5 B, s 4l

< const.|| (@i, e, 8:); Vall - 1@y, 7); Vel

We conclude that (%1}1 * (0, %51 xwy) € By = B,

(S

s x B, z 5, and that
%55 55

1. 1. o N
||(§u1 o, 50 * W); Bal| < const.||(@1, a1, 01); Vo - (02, G2, T2); Va|

This completes the proof of Lemma [

4.2 Proof of Lemma [5
Let x be as defined in , and define A_ by

A_ :—Re(n):—%\/2\/k2+k4+2k2 . (92)

We have that
|k = (B + BV < kY2 + k| < 29/4k] < 2%% (1 + [K]) | (93)

and that
k| < JA-| < |x] < V2IA-] . (94)

Therefore, we have in particular that for ¢ > 0

et < eIkl (95)
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In what follows we prove Lemma [5| by providing bounds for the norms of 7, w, #, and ¢ in terms of
the norms of Qg and @;. We systematically use the notation introduced above, but, for simplicity, we
set

1 1.
“(k’ 5) = Tﬂa(ka 5) + ?Noz(ka 5) ) (96)
S2 S2
and ||Q| = C [[(Qo, Q1); Bo|| with C a constant independent of k and ¢. This constant may be different
from instance to instance changing even within the same line.

For 1 we have:

Proposition 11 Let g; ; be as given in Section , Then we have the bounds

lg1.0(k, )| < const.(1+ [A_])el*~17 min{1,|A_|?0?} , (97)
|g2.0(k, )| < const.(1 + [k|)eIFlo (98)
|g3.0(k, )| < const.e®~7 min{1,|A_|} , (99)
o) < { o Ry Tor 1 (o)
|g2.1(k, )| < const.(1 + |k|)eIFlo (101)
93,1 (k, o) < &7, (102)

uniformly in o > 0 and k € Ry (and uniformly in k € Ry, |k| < 1 and k € Ry, |k| > 1, respectively, for

the case of (100)).
Proof. From we get that
lg1.0(k, )| < const.(1+ [A_|)elA-17 .

Expanding the exponential functions in the first two terms cancel, so that

2
g1o(k,0)=(e"" —1— ko) — (|k|z+’€) (e7"7 — 1+ ko)
E(kl+K) (ko
+2 (e — 1+ k| o) , (103)

and therefore, since for all z € C with Re(z) <0 and N € N,

z N 1.n
EZ%’”Z < const. , (104)
z
and for all z € C with Re(z) > 0
z _ N 1._n
623+;0mz < const.eRe(®) | (105)
z

we find from ([103]) using that
lg1.0(k,0)| < const.|A_[2a?(1 + |A_|)el*-17 .

This completes the proof of . The bounds and follow using , and . We now prove
(100). Using we find from for k > 1 that

lg1.1(k, )| < const.(1+ [A_|)elA-17 .

For |k| <1 we use the fact that if we expand the exponential functions in the first term cancels, so

that
ko) = <(em 1y QLA (oo gy IR (e 1)) . (09)

12



From (106 we find, using , (104)), and (105]) that
|g1,1(k, )| < const. <|||cre|A o 4o+ |/<:|20) < const.el-17g

2k% + 2|k ||

To prove (101]) we use that
(k] + r)°
1 =
+ ik ik ’

and the result again follows using 7 and . The bound (102) is trivial. m

As a consequence of Proposition [11] we have
Then (Qo,Ql) — 171 defines a continuous linear map from B

@ to Ba7%70

5
X353

Proposition 12 Let o > 1.
More precisely, (QO,Ql) — T4, with 7; ; as given in (@), defines continuous linear maps on By, with
) 3, a’ﬂd’ﬁg’lEBa,%’%.

values ’171"0 S Ba’g’%, 1 =1,2,3, 771’1 S Ba,%,m 2.1 € B
Proof. Using Proposition and Proposition [21| we find, with the notation that

Ltk 5)) ds

5
S2

| —

t
71,0(k, )] < |Q| eA’(t_l)/ (1+ [A-e* 1D min{1, |A_[*(s — 1)°} p(k, s) d
1
fo(k, s) +
S

[ME]

/(1+MI)A'51mmﬂIA|@1)}(

= Q| et
1_ 1.
< ”Q” t ,Uf(x(k; t) g /-La(kas) gua(kat) )
and therefore 7; o € Ba)%)% Using and Proposition [25( we find that
a0 < QU [ (1 e M6 5) d
t
a0 |

< @l (-De M) () +
Using with min{1,|A_|} < |A_| and Proposition . we find that

n(t71)>’/ eA,(571)|A_| /JJ(/C,S) ds
t

5 3.
REPED)

and therefore 729 € B
_ K ( wlt—
|wﬁ@¢n§Han;G >
1
< HQ” 5 Ma(k t) gﬂa(kat) )
and therefore 739 € Ba 5 3. Using (1 , Proposition [20[ and Proposition we find for |k| > 1 that

t
|muhwhqwn&*“”/eM**UMJM@ﬁww
1

1 -
al0) + (k)

~+
wle| M

<HQH<quﬂ

and for |k| <1 that
1) p(k,s) ds

t
a(kt)] < Q) - [ it
1

t+1

<1QI M0 [T 1) k) ds
1 1
Qe 0 e (S0 + i) s
S2 S2
1 _ 1
Sa(ht) + iak0) |

t

m\w

SIQHQM%O t

13



and therefore 711 € B, s o. Using (101) and Proposition [25) we find that
I%Mhﬂbﬂwnﬁ*“”/ (14 ) e MO () ds
t
fnli))

and therefore 71 € Ba,%% . Finally, using 1] and Proposition [22[ we find that

1
< @l (=De e () +
2

~
w\w‘ =

a0 Q) |15 (e — )| [T ed o0 i) ds
t

fal.0)

<@l (gm(k.0+

\ —

N

t
and therefore 731 € B, s

1.
1272

For & we have:

Proposition 13 Let f; ; be as given in Section @ Then we have the bounds

const. (1 + |k|) e~ 1Flo |

(107)
(108)
(109)
< const.(1 4+ [A_])e!*~1" min{1,|A_|o} , (110)
(111)
const.e®= min{1,|A_|} , (112)

[VARVAN

uniformly in o > 0 and k € Ry.

Proof. Since
A
1+ \

(1107)) follows immediately from (97)), . ) from - ) from (| ., - ) from (101] , and ( - ) from

(102). Finally, in order to prove (110]), we note that

— < const

< const. min{1, |A_|} ,
K

(M 46 s LKL+ s

fualh, o) = e 4 S5 — (113)

and therefore we find using that |f11(k,o)| < const.(1 + |A_|)e/*-l7. Expanding the exponential
functions in ((113) we see that

Fralk, o) = ("7 — 1) + W (e —1) — QW (e—lkla - 1) :

and therefore we find using , ., and (105) that |f11(k,0)| < const.(1+ |A_|)elA-17|A_|o. m
As a consequence of Proposition [[T] we have:

Proposition 14 Let o > 1. Then, (Qo,Ql) — @ defines a continuous linear map from B, to B%%J

More precisely, (Qo, Q1) — w; j, with @; ; as in @, defines continuous linear maps on By, with values
(:)LO € Ba%,%, (:)2»0 € Ba73’2, (:)3,0 € Ba,g,%, (:)1,1 € Ba,g,l, and (:)1'71 S BO&%%’ 1=2,3.

14



Proof. Using (107]), Proposition and Proposition [21| we find that

t
w10k, )] < 1Ql eA’(H)/ M1 min{]A_|, [A-P(s = 1)%} u(k, s) ds
1

fio (K, 5)) )

and therefore @; o € Ba’%,%. Using 1} and Proposition [25( we find that

MH‘ —
=

ﬂa(k, s)+

NS

<l ( fia (K1) + :

Bao(k. 1) < |QI| A0~ / (K] + [K[Y2)e M6 Lk, 5) ds
t

_ 1_ 1.
< QI A0 M (L) + o)

and therefore @s g € By 32. Using that min{1,|A_|?} < |A_| we get from (109 and Proposition [22] that

Bralkyt)] < QI 35 (70 = e )| [ A DA ko) ds
t

<1l (gl + a0 |

and therefore w3 o € B,,, 53 Using 1] and Proposition [20| we find that

t
@11 (k)] < QI A [ (U (Al ming1 A (s = 1)} ) d
1

<11 (Fakt) + 5ol )+ giia(it))

and therefore 011 € B, 5 1. Using (111)) and Proposition [25 we find that
1 o0
|21 (k, )] < [|Q §€A7(t_1)/ (1+ [k[) e =D ke, s) ds
t
1
< QI A (6 + i)
2

5 . Finally, using 1' and Proposition [22| we find that

2
19

| —

o

and therefore we 1 € B,

K _ e o )
@5,1(k, )] < QI \—( ) )| T i1 A ) uks) ds
t

k

t\:\m‘ =

<11 (g (b) + a0 |
]

and therefore w3 ; € B, .,

N\w

For (;NS we have:

Proposition 15 Let k; ; be as given in Section @ Then we have the bounds

k1.0(k, 0)| < const.(1 + |k|)e™” min{1, |k*/* 0%}
|ka.0(k, )| < const.(1 + |k|)e~ Ikl

ks o0(k,0)] < e~ Iklo

k.1 (k, 0)| < const.(1 + |k|)e™” min{1, (1 + |k|/2) |k|*/? o}
ko1 (k,0)| < const.(1 + |k|)e~ 1kl

|ks1(k,0)] < e~ Iklo

uniformly in o > 0 and k € Ry.
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|k|)e!¥lo. Expanding the exponential functions

Proof. From we get that |k1,0(k,0)| < const.(
in we find that
kro(k, o) (elklff 1 |k| ) + W (e"k“’ 1+ |k| ) W (67" — 1+ ko) |
2ell7 k2 02(1 + |K|) + |A_| a)
. From ( .

and therefore using and (104) that

[0 (k, )| < const. (K
< const.(1 + |k|) |k|*/? o2elklo
and
) we find that

) and (| we find ( -,
(e 1)) ,

(
PExpandmg the exponentlal functlons in 1
k
G

This completes the proof of (114 - Using
we get that |k; 1 (k,0)| < const.(1 4 |k|)el*l7
‘]f| + K/)2 ( — k| ) K
TR 1) +2
ik \° AT

k11(k,0) = | | ((elk” — 1) (

and therefore using and (104) that
k1 1(k, )| < const. (\k|aelk\“+|k\g(1+|k|) (1+ k) A |g)
< const.(1 + |k|)(1 + [k[|Y/?) |k|*/2 gel*lo .

o to Ba)%,%

[
As a consequence of Proposition [I5] we have
Proposition 16 Let o > 1. Then (Qo,Ql) — q’; defines a continuous linear map from B
,1=2,3,7=0,1.

More precisely, (Qo, Q1) — (5”, with (5”» as in , define continuous linear maps on By, with values
¢10€Ba717%,¢17166 3, Lmd(buel‘)’a,z,2
Proof. Using , Proposition and Proposition [24] we find that

*=) min{1, 1)?} w(k,s) ds

3 114
t
‘¢10 k t)‘ < HQ” e—\k\(t—l)/ (1 + |k:\) |k|(s—1) mm{l |k|3/2(
1 1
f_a(k,t) =+ tg,uo,(k,t)) s

t3

< 1l (75t 2Rl ) +
and therefore ¢y o € B, ; 3. Using 1D and Proposition [25( we find that
( e M

[Gan(k.0)] < Q1 e [+ e MO ) ds
< Qe (t oo )+ fia(k, >) 7

Using 1) and Proposition [25( we find that
oo B ( B
t

falh0)

o~
m\w‘ [l

and therefore &z,o € BQ,Q
'¢,30 k t)’ <l ‘|k| elkl(tfl), —k[(t=1) ‘/ e lkl(s—1) (k,s) d

<1l (g (k.



and therefore (53,0 € Ba,%,%. Using 1' Proposition and Proposition [24] we find that

t
Bra )| < 1QU €M [0t el min L (14 6172) ' (5 = D) ) ds
1
1
3

ok ) + 1ﬁa<k,t>) ,

1.
<101 (ipsmath0) + 3

and therefore 451,1 € Ba,%,%. Using || and Proposition [25( we find that
Gaa(.8)] < 1QU e M0 [ (14 e MO ) ds

< [[Qlle-2kIe- (t <k,t>+;ﬂa<k,t>> 7
2

5 H
2

and therefore 452,1 € Ba,g,%. Using 1) and Proposition [25( we find that

’és,l(k,t)’ <1 "k' e|k|<t1>6|k|<t1>>‘/ e IKIG=1) (k. ) ds
t

falh.0)

o~
m\w‘ [l

<@l (gm(k.0 +
and therefore ¢3 1€B,53:. =

For 1/; we have:

Proposition 17 Let h; ; be as given in Section @ Then we have the bounds

h10(k, )| < const.(1 + |k|)e/*? min{1, |k[*? 62} (120)
|ha.o(k, )| < const.(1 4 |k[)eIFlo | (121)
|hso(k,0)] < e Flo (122)
\h11(k,0)| < const. (1 + [kDe™ 7 min{1, (1 + [k|*/2) |k|"? o} | (123)
|ho.1(k,0)| < const.(1 4 |k[)eIFlo | (124)
By (k, o) < e M7, (125)

uniformly in o > 0 and k € Ry.
Proof. The bounds (120))-(125) immediately follow from (114)-(119)) using the definitions. =
As a consequence of Proposition [17] we have:

Proposition 18 Let o > 1. Then, (QO,Ql) — 1/~1 defines a continuous linear map from B, to 3(17%7%
More precisely, (Qo,Ql) — 1/317]-, with 1/;” as in , define continuous linear maps on B, with values
1/}1,0 € Ba717%7 ¢1,1 € Ba,%,%: and wi,j € Ba,%,%; 1=2,3,5=0,1.

Proof. The bounds . are identical to the bounds -, and the proof is therefore the
same as for Proposition . m
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A Basic bounds

A.1 Continuity of semi-groups
We have:

Proposition 19 Let o/, 8, v >0 with o’ — ' ++' >0, and let n > 0. Then, we have the bound

1 C(t—1\" 1 1
ﬁeyA_(tfl) |A_‘B () < const. 7 o — B4~
1+ [k] ! ke

uniformly in k € R and t > 1. Similarly, for positive o', 3, vy with o' — ' ++' > 0 and p > 0 we have

the bound '
) N
1+ k| t P+ (Bl )

uniformly in k € R and t > 1.

Proof. For 1 <t < 2 and |k| <1 we have that

1 Clt—1\" 1 1
ﬁeuAf(t—l) |A_|5 <> < const. < const. & p T
1+ |kl t 871+ (k| £2) !

and that ,
1 , t—=1\" 1 1
ﬁe—ulk\(t—l) |]<;‘:3 () < const. < const. e gzl
1+ |k| 3 71+ (k| ) K

Next, for 1 <t < 2 and |k| > 1 we have that

'Y/
1 A1) |A,|ﬁl <t—1>
1+ |k|” 3

1 , .
< const. ———— et (At —1))" |A_|7 T
1+ |k|

1

A < const. ——————
¥ 1+ |k|* P

1
< const. S E——
1+ |k

1 1
< const. — TR
- 1 4 (k| 2)™

and similarly that

’y/
L ukien) gy (H)

1+ [k t
1 ’ 17 !’
< const. ———— e HEIED (K (£ — 1)) k77
+ |k|
1 v 1
S const. PE—— ‘k|ﬁ v S const. W
1+ |k 1+ |k K
1
< const.

' + (lk't)a’fﬁ”r“/' ’

18



Finally, for t > 2 and k € R we have
o —B' ’ , t— 1 ’Yl
(1 + (|k| t2) B+ ) A (t—1) |A_t\6 ( ; )

< const. (1 + (|k|£%)" s ) ezhh-t \A,t|ﬁ’

< const. (1 + (|&| tz)a ST ohuh-t |A_t|ﬁ,)

a 7[3 + 2a’ ’ Y

< const. [ 1+ \A | —— e |A_t| (@'=B"+7) |A,t|6 eBhA-t
a "—B'+v

< const. | 1+ \A |2(a, 5y | S const.

and similarly that

o —g’ ’ r(t—1 e
(1 Qa7+ et gagg” (251
< const. (1 + (|k| t)al*ﬁ#'yl) eIkl {3 t)ﬁl < const. .

A.2 Convolution with the semi-group e®-?

In order to bound the integrals over the interval [1,¢] we systematically split them into integrals over

[1, 4] and integrals over [1£,¢] and bound the resulting terms separately. We have:

Proposition 20 Let >0, p>0and 6 >0 and v+ 1> 3> 0. Then,

t+1

— 2 S— s — 1 ’Y
oAt 1)/ elA-I( 1)‘A_|ﬁ%,ua,p(k7s) ds
1
1
const.t—ﬁﬂa(k,t), if 0 >v+1

log(1+t
const.%ﬂa(k,t% ifé=v+1 (126)

IN

$y+1=9
const.Tﬂa(k,t), ifo<y+1

uniformly int > 1 and k € R.

Proof. We have that

t4+1
= _ 1 vy
eA_(t—l)/ : e\A—I(s—1)|A_|5¥MQ)p(k,s) ds
1 S
t+1
Tz — 1)
< A-ODATSH APy, (k, 1)/ Q
1 S

1L,if 6>y +1

t—1\"" e
< const. ( ; ) AT AP g (k1) log(1+1t),if 6 =v+1

S <y + 1

From the last expression ([126|) follows using Proposition [ ]
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Proposition 21 Leta >0,p >0, § € R, and g € {0,1}. Then,

At [ et L ) ds < S k) (121)
" Hav,p 10— o144 Hep

uniformly int > 1 and k € R.

Proof. If B = 0 we have that

t

- t const.
oA (t=1) L - L uap(k s) ds < m —5 Hap(k, t)/ ds

t+1
2

and (|127) follows, and if 5 = 1 we have that

t
eA,(tfl)/ elA=1G=DA_ |5f,uap(k s) ds
1

2
t t t
< o g p (ke D) / MDA | ds < o i (k)

- t+1

and (|127) follows. Using Holder’s inequality the proposition can also be proved for intermediate values
of 3, but this is not needed here. m

Next we have:

Proposition 22 Let« >0, p >0, > 1, and f € {0,1}. Then,

.
eIAfl(t—l)/ Ae=D)|p \ﬁﬂmp(k s) ds < tcé()_riﬁﬂw(k,t), (128)

K A_|(t—1 (t—1 oA (51 8 const.
’%(a -1 _, ) ‘/ (s=1|A_| 7ua,,(k $) ds < S pap(k,t) . (129)

uniformly int > 1 and k € R.

Proof. We first prove ([128)). If 5 = 0 we have that

1 1
e\AJ(t—l)/ A (s—1) éluap(k,s) dsguw(k,t)/ S—éds,
t t

and (|128)) follows, and if 5 = 1 we have that

ew\(m)/ NGV Ly s) ds < t—éua,p(k,t)e'A*'“*“/ A G=DIA | ds

t S t
1
S tTg,U“Oé,p(k7t) 9

and ([128)) follows. We now prove (129)). For |k| < 1 we have that
(eIA I(t=1) _ A*(t_l))‘ < const.'?k||eA|(t_1)A|(t -1)

< const.e/A-1(=1¢ ,

‘zk

and the bound on ([129) now follows as in the the proof of (128). For |k| > 1 we have that
‘ ( |A_|(t-1) _ AJH))‘ < const.elA-10=1)
ik - ’

and the bound on (129) now again follows as in the the proof of (128). The proposition can also be
proved for intermediate values of 3, but this is not needed here. m
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A.3 Convolution with the semi-group e I

In order to bound the integrals over the interval [1,¢] we systematically split them into integrals over

[1, 4] and integrals over [1££,¢] and bound the resulting terms separately. We have:

Proposition 23 Leta>0,p>0andd >0 andy+1> 5 >0. Then,
t+1

e = . s—1)7
oIkl 1)/ elEl( 1)|k|5%‘ua7p(k,s) ds
1

1
const.t—ﬁﬂa(k,t), ifo>~v+1

t.log(;iﬁ“)ﬂa(k,t), o=+l (130)

IN

cons

pr+1-=4
tB

fa(k,t), if 0 <y +1

const.

uniformly int > 1 and k € R.
Proof. The proof is as for Proposition ]

Next we have:
Proposition 24 Leta« >0, p >0, 0 € R, and 8 € {0,1}. Then,

const.

t
G- s ]
o Ikl-1) Al D] o (R 8) ds < oo (k)

2

uniformly int > 1 and k € R.

Proof. The proof is as for Proposition [2I] Using Holder’s inequality the proposition can also be proved
for intermediate values of 3, but this is not needed here. m

Next we have:

Proposition 25 Leta>0,p >0, > 1, 8 € [0,1] Then,

_ k(s 1 const.
e‘kl(t 1)/15 € IkIC 1)|k|ﬁ875/ia,p(kvs) ds < mﬂa,p(k7t) ) (131)

k %0 1 £.
% (el#it=) — g=lele=n) ‘/t e MOV p (b 5) ds < s pap(hit) . (132)

uniformly int > 1 and k € R.
Proof. For |k| < 1/t and 0 < 8 < 1 we have that

[e’¢) kfﬁ
elkl(t*l)/75 eflkl(sfl)%/«ta,p(k,s) ds

oo ¢=B const.

t
< Ma,p(kyt)/t = ds < mﬂa,p(kat) ;
and or |k| > 1/t and 0 < 8 < 1 we have that

[e%e] k B
GlFI(E=1) / e“k'(s‘”%ua,p(k, 5) ds
t

k|? > k[P 1
< Ma,P(k’t)USekm_l)/t e IFI=1) gg < |t‘|5|k|'ua’p(k,t)

1 1 1
= gwﬂa,p(kaf) < woirpHan(kit)
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and ([L31)) follows. Finally, since for all k£ € R

L} (et e—w(t—l))‘ <9 (k-1 |
ik

the bound on ([132)) follows immediately from (131). m

B Derivation of the integral equations

In order to derive the integral equations (56, we note that the equations (41)-(44) are of the form

z=1Lz + q, with z = (wfﬁaq&’(ﬁ)) q= (Q17Q07 _QlaQAO) and with
_( La(k) 0

0 —ik
Ll(k):<ik+1 0 >

La(k) = ( A lg) :

Then, we have that L = 51D15’f1, where

1 1
Sl(n n)a

where

and where

(133)

(134)

(135)

(136)

and where D; is the diagonal matrix with entries x and —&, and furthermore that Lo = S2D2.55, 1, where

1 1
Sz(k)=< ik ik ) ,
k] [k|

and where D5 is the diagonal matrix with entries |k| and —|k|. We have that

) 1 —ik

-1_( 2 73

So=1 % )
2 2K

ik
2|k|
2|k

and that

S
—
—
=
N
Il
N
N N~
|
-
e

Let

and z = SC. Then ¢ = D¢ + S~ 'q with

N A T (O
s = (70" 0 )
Let ¢ = (@y,&_,%1,¢_). Using the definitions we find that from (41)-(44),

R N 14 ik A
Oywy = KWy + §Q1 - %Qo ;

R . 14 ik A
Oyw— = —kw_ + 5@1 + %Qo )

A N 1. ik A
Oythy = [k|y — 5@1 + m@o )

R . 1 A ik 4
0= =~ V- — 501~ 5100
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(137)

(138)

(139)

(140)

(141)

(142)
(143)

(144)

(145)



Note that, in component form, we have for z = S( :

G=ad, +a_, (146)
= %(—m +w-), (147)
Y=vy+9Y_, (148)
b= f,ij( by +90) (149)

For given (Qo, Q1), a classical representation of solutions to (142)—(145) is (we use from now on ¢ instead
of the y for the “time variable”):

1 [ A 1k A
Grh) =~ / £ (t=9) (Ql(k,s)—”“cgo(k,s)> ds | (150)
t
1 t
W (k,t) = w* (k)e "= 4 5/ r(t=s) (Ql(k 5) 4+l Qo(k s)> ds (151)
1
Uy (k,t) :% elklt=9) <Q1(k,s) — FMQO(k,s)> ds (152)
t
) c pye—tHe=n _ L7 pie—s (6 L
v_(k,t) =¥* (k)e 5] e Q1(k,s) + on(k, s) | ds. (153)
1
The functions w* and 1)* are determined by the boundary condition (3f). At ¢ =1 we have
~ 1 > r(l1—s) A ik A
Wy (k1) = ~3 e Q1(k,s) — ;Qo(k,s) ds , (154)
1
w_(k,1)=w"(k), (155)
A 1 o0 A ok A
Bl =5 [0 (Qulhs) = Q) ) s, (156)
1
b (k,1) = 9= (k) . (157)
Substituting (150)-(153) into (146)-(149) and the result into and we get, when evaluating at
t=1,
0=w (k) + ¢~ (k) — Qu(k) ,
where
1 oo
- Kk(l1—s) |E|(1—s)
2/1 ( —e )Q (k,s) ds
1 [ yik ik
= w(1=s) elkl(1=s)
TG i) Qulis) s (158)
and "
K
=——w(k u )
0= — a0t (k) = S0 () — Qu(
where
L/ [ ||
S r(1=s) o Ikl(1-s)
Quin =5 ([ e m>Q1< ) d
1 oo
i k(l—=s) _ _|k|(1—s
2/1 (e e )Qo(k s) ds . (159)
Since

-1
1 1 Lkl
(L w) =owen( s 1), (160)
ik ik ik
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we find that

(58) -0 (5 1) (E0) o

from which we get that

ey LT (R +R)? sy S EIE+R) s 5
W?(k) = 5[ (me QTe Ql(k, S) dS
L[> /(K 2 , 2\ A
- 5/ (W&“ﬂ” —2(|k| + m)elk(l_é)> Qo(k,s) ds , (162)
1
and that
e LR+ hams o RUE+FR) came) A
v (k) = 2/1 < e e 2 T e Q1(k,s) ds
L[> kl+ & § —s Kk(l—s 9
— 5/ <(||k)ek(1 ) — 2(|k| 4 k)ert >> Qo(k, s) ds . (163)
1

Substituting @* given by into gives, after splitting the integral over [1, co] into an integral over
[1,¢] and over [t, 00], the representation in for 7). Similarly, substituting @* given by into
gives the representation in for w, substituting z/;i given by into gives the representation
in for (;AS, and substituting or given by into gives the representation in for 1).
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