CONSTRUCTION OF WHISKERS FOR THE QUASIPERIODICALLY
FORCED PENDULUM

MIKKO STENLUND

ABSTRACT. We study a Hamiltonian describing a pendulum coupled with several
anisochronous oscillators, giving a simple construction of unstable KAM tori and their
stable and unstable manifolds for analytic perturbations.

We extend analytically the solutions of the equations of motion, order by order in
the perturbation parameter, to a uniform neighbourhood of the time axis.

1. MAIN CONCEPTS AND RESULTS

1.1. Background and history. A quasiperiodic motion of a mechanical system is
composed of incommensurable periodic motions; the trajectory in phase space winds
around on a torus filling its surface densely. An integrable Hamiltonian system has a
great profusion of quasiperiodic motions: if one picks an initial phase point according to
a uniform distribution, the trajectory will be quasiperiodic with probability one. The
remaining trajectories are periodic.

KAM theory deals with the stability of quasiperiodic motions, or persistence of invari-
ant tori, under small perturbations. Poincaré [Poi93a] called this the general problem
of dynamics.

In 1954, Kolmogorov [Kol54] outlined a result, made rigorous by Arnold in 1963
[Arn63], that quasiperiodic motions are typical also for nearly integrable analytic Hamil-
tonians under suitable nondegeneracy conditions. Thus, only a small fraction of the tori
would be destroyed by the perturbation. Moser managed to prove the same for twist
maps [Mos62] in 1962, and later for Hamiltonians [Mos66a, Mos66b], in the smooth
(non-analytic) setting (see also [Mos67]).

The difficult problem to overcome is the following. Suppose that the Hamiltonian
reads H = Ho + AH;, where H, is integrable and ) is considered small. Then one can
formally represent a solution to the equations of motion by a power series in A, known
as the Lindstedt series in this context, conditioned to agree for A = 0 with a quasiperi-
odic solution obtained in the integrable case. When one computes the coefficients of
the Lindstedt series, however, one encounters expressions containing arbitrarily small
denominators. The latter seem to imply that the kth coefficient grows like k!® with a
large power . Thus, there is little hope of being able to sum the series and obtain a
true solution, unless a miracle occurs.

The proofs mentioned above relied on a rapidly convergent Newton-type iteration
scheme, which is interesting in its own right, and yields solutions analytic in A\. On the
other hand, one is then left to wonder why the Lindstedt series does converge.
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In 1988, an answer was provided by Eliasson [Eli96], who managed to identify enor-
mous cancellations among the small denominator contributions and to sum the Lind-
stedt series “manually”. Gallavotti [Gal94a, Gal94b| interpreted the cancellations in a
Renormalization Group (RG) framework. For a review and some extensions, see Gentile
and Mastropietro [GM96]. The importance of these achievements has to be stressed:
they prove the existence of quasiperiodic solutions in an essentially constructive way.

Motivated by the RG approach of Gallavotti, in the 1999 paper [BGK99] Bric-
mont, Gawedzki, and Kupiainen identified the cancellations as a consequence of Ward
identities (corresponding to a translation invariance of an action functional) in a suitable
field theory.

Returning to much earlier works, Moser [Mos67] and Graff [Gra74] showed that also
hyperbolic tori—tori having local stable and unstable manifolds—would typically persist
under small perturbations. In another landmark paper [Arn64], Arnold had described a
mechanism how a chain of such “whiskered” tori could provide a way of escape for special
trajectories, resulting in instability in the system. (As discussed above, a trajectory
would typically lie on a torus and therefore stay eternally within a bounded region
in phase space.) The latter is often called Arnold mechanism and the general idea of
instability goes by the name Arnold diffusion. It is conjectured in [AA68] that Arnold
diffusion due to Arnold mechanism is present quite generically, among others in the
three body problem.

Arnold mechanism is based on Poincaré’s concept of biasymptotic solutions, discussed
in the last chapter of [Poi93b], that are formed at intersections of whiskers of tori. Fol-
lowing such intersections a trajectory can “diffuse” in a finite time from a neighbourhood
of one torus to a neighbourhood of another, and so on.

Chirikov’s work [Chi79] is a very nice physical account on Arnold diffusion. Lochak’s
compendium [Loc99] discusses more recent developments in a readable fashion and is a
good point to start learning about diffusion.

The proofs of Moser and Graff mentioned above use the rapidly convergent method
of Kolmogorov, but there now exist also constructive proofs in the spirit of Eliasson and
Gallavotti. We refer here to Gallavotti [Gal94b] and Gentile [Gen95a, Gen95b].

1.2. The model. We consider the Hamiltonian
H(I, ¢, A 0) = 3I° + g°cos ¢ + 1A% — Mf(¢, ) (1.1)

of a pendulum coupled to d rotators, with ¢ € S' := R/27Z and I € R the coordinate
and momentum of the pendulum, and ¢ € T?¢ := (S')? and A € R? the angles and
actions of the rotators, respectively. The perturbation f is assumed to be real-valued and
real-analytic in its arguments, and \ is a (small) real number, whereas the gravitational
coupling constant ¢ is taken to be positive. This Hamiltonian is sometimes called the
generalized Arnold model or the Thirring model. 1t is the prototype of a nearly integrable
Hamiltonian system close to a simple resonance, as is explained in the introduction
of [Gen95b]. A review of applications can be found in [Chi79.
The equations of motion are

db=1, v=A, I=g*sinéd+\d,f, A=N0,f. (1.2)
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For the parameter value A\ = 0, which is addressed as the unperturbed case, the pen-
dulum and the rotators decouple. The former then has the separatrix flow ¢ : R — S!
given by
o(t) = @°(e?),
where
®°(2) = 4arctan z.

By elementary trigonometry, this function possesses the symmetry property
PO(z) =27 — Bz 7). (1.3)
It is also odd,
PY(—2) = —d%(2).
The phase space of the unperturbed pendulum looks as in Figure 1, where the separatrix,
given by ®° separates closed trajectories (libration) from open ones (rotation).

A
N

FIGURE 1. A (¢, I) plot showing the unperturbed pendulum separatrix
that intersects the ¢ axis at integer multiples of 2r—the upright position
of the pendulum.

On the other hand, ¢ : R — T% is quasiperiodic:
P(t) =9(0) +wt (mod 27),

such that the vector

satisfies the Diophantine condition
lw-q| >alq|™ for qeZ% q¢+#0, (1.4)

with a and v positive. Thus, at the instability point of the pendulum, the flow possesses
the invariant tori

Ty = {(¢,¢,I,A) — (0,6,0,) ) 0 c Td}

indexed by w, with stable and unstable manifolds (W3 and W, respectively) coinciding:
Wit = {(6,0.1,4) = (2°(2),0,9:0.9°(),0) | z € [~o0,00), 6T} (15)

Remark 1.1. The constant g is the Lyapunov exponent for the unstable fixed point of
the pendulum motion; in the limit s — —oo two nearby initial angles ¢(s) and ¢(s+ds)
separate at the exponential rate e9s. As ¢(t) = ®°(e!/9"), the Lyapunov exponent
fixes a natural time scale of g~! units, characteristic of the pendulum motion in the
unperturbed Hamiltonian system (1.1).
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When the perturbation is switched on (A # 0), we show that some of the invariant
tori survive and have stable and unstable manifolds—or “whiskers” as Arnold has called
them—that may not coincide anymore.

1.3. Main theorems. Our approach will be to construct the perturbed manifolds in a
form similar to (1.5) as graphs of analytic functions over a piece of [—oc, 0o] x T?. To
see how this can be achieved, note that the unperturbed stable and unstable manifolds,
W; and W], consist of trajectories

(6(1), () = (2%(e”), wt)
that at time +oo become quasiperiodic, as they wrap tighter and tighter around the
invariant torus Zp; indeed (¢(t), 4 (t)) ~ (0,wt) in the limit t — +oo.
Analogously, we will find the stable and unstable manifolds of the perturbed tori by
looking for solutions of the form

(6(t),¥(t)) = (P(,wt),wt + V(" wt)) = (0,wt) + (O, ¥) (e, wt) (1.6)

with quasiperiodic behavior in one of the two limits ¢t — +o00. Note especially that we
anticipate the Lyapunov exponent v > 0 to depend on A, with v|,_, = ¢.

Remark 1.2. One should not assume asymptotic quasiperiodicity in both of the limits
t — oo, as the unstable and stable manifolds, which we denote W} and WY, are
generically expected to depart for nonzero values of the perturbation parameter .
Therefore, either the past or future asymptotic of a trajectory will evolve so as to
ultimately reach the (deformed) invariant torus 7. The separatrix in Figure 1 is thus
transformed into something like the pair of curves in Figure 2.

N

& 7
FIGURE 2. A schematic [-versus-¢ plot, on a section of constant ¢ (d =

1). The stable and unstable manifolds are expected to split, as opposed
to coincide. The origin has been shifted for convenience.

Let us denote the total derivative d/dt by 0, and the complete angular gradient
(0p, Oy) by O for short. Substituting (1.6) into the equations of motion

0(¢.0) = (I, A) = (¢°sin §,0) + A Of (6, ),
we get for X := (®, ¥) the equation
(w- O +7€70.)2 X (e, wt) = [(¢*sin ®,0) + A If (X + (0,0))](e”, wt),

where 6 stands for the canonical projection [—oo, oo] x T¢ — T¢.
Notice that the partial differential operator

L:=w-0y+ 20,
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satisfies the characteristic identity
LF(ze™ 0+ wt) = 0,F (2,0 + wt) (1.7)

for a differentiable map (z,0) — F(z,6). Equation (1.7) simply reflects the time deriv-
ative nature of L. In fact, if T' is the “time-reversal map”

T(z,0) = (21, -0), (1.8)
then, by the chain rule,
L(FoT)=—(LF)oT. (1.9)
Let us abbreviate
Q(X) 1= (*sin®,0) + AQ(X) with Q(X) :=df(X + (0,0)). (1.10)
As a consequence, we have reduced the equations of motion to the PDE
L2X =Q(X) (1.11)

for the map (z,0) — X (z,0) in a suitable Banach space of analytic functions, albeit its
restriction to the set (“characteristic”)

{(2,0) = (", wt) | t e R} (1.12)

is what one is physically interested in. Our preference of working directly with the in-
variant manifolds, as opposed to individual trajectories traversing along them, motivates
us encoding the time derivative in the operator £. Nevertheless, it will be harmless—
and indeed quite informative—for the reader to keep in mind that the objects we deal
with originate from (1.12) and therefore have a direct physical interpretation.

The action variables trivially follow from the knowledge of X (z,0):

(I(t),A®)) = (0,w)+Y (e, wt), Y :=LX.
The solutions X will provide a parametrization of the deformed tori and their stable
and unstable manifolds. As hinted below (1.6), we find two kinds of solutions, X*(z, 6)
defined for z € [—zg, z9] =: I* and X*(z,0) defined for z € [—o00, —2; '] U [z}, 00] =: I°.
Here, zp > 1. The tori will have the three parametrizations

T = {(6.0.1,4) = ((0.0) + X"(0,6), (0,w) + Y"(0,6)) |0 € T}
= {(6,0.1,4) = (0,0) + X*(00,0), (0,0) + Y*(00,0)) | 0 € T},
whereas the parametrizations of their stable and unstable manifolds then read

Wit ={(6,0,1,4) = ((0,6) + X*(2,60), (0,w) + Y**(2,))

z e I%Y, 9er}.

In order to enable solving (1.11), we need to deal with quantities of the form (w-¢q)™?,
q € Z4\ {0}, stemming from the Fourier representation of the operator £. Here the
Diophantine property of the vector w € R? stated in (1.4) steps in. Since w = A|,_, =
0l y—o» Dy rescaling time (and the actions, correspondingly) in the equations of motion
(1.2), the constant a can be absorbed into g? and A in the equations of motion, leaving
the ratio Ag~2 unchanged: (g, \) — (g/a, A\/a?) !. Thus, we may as well take a to be 1
below, transforming the condition on w into

lw-q| > |q|™ for qeZ\ {0} (1.13)

!This scaling is responsible for the usual requirement A = O(a?) for KAM tori.
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We will moreover consider A small in a g-dependent fashion, taking
€:=\g 2 (1.14)

small. This should be seen as an outreach towards the experimenter, albeit there is
a technical wherefore: such a choice is needed for studying the limit g — oo, which
corresponds to rapid forcing; see Remark 1.1. The domain we restrict ourselves to is

D:={(c,9) eCxR||e| <€, 0<g<go}, (1.15)

for some positive values of ¢y and gq.
Finally, note that if X = (®, ¥) solves (1.11) on some domain D’ C [—o0, o] x T¢,
then so does

Xog(2,0) = X(az,0+ 8) + (0, 3), (1.16)

as long as (az,0+( (mod 27)) € D'. The aforementioned invariance is a manifestation
of the freedom of choosing initial conditions for (¢,1))—we may choose the origin of
time and the configuration of the physical system there.

For € = 0, the solutions are obtained from

X%(2,0) := (9°(2),0) (1.17)

using (1.16). In particular, X°(1,0) = (,0). This will provide us with a natural way
of fixing o and (3 below.

We are now ready to state the first of the two main theorems of this article. It is
a version of a classical result, and by no means new; earlier treatments include for
instance [Mel63, Mos67, Gra74, E1i94, Gal94b, Gen95a, Gen95b]. However, the interest
here lies in the new techniques used in the proof.

Theorem 1 (Tori and their whiskers). Let f be real-analytic and even, i.e.,

f(o,0) = f(=¢,—¢).

Also, suppose w satisfies the Diophantine condition (1.13), and fix go > 0. Then there
exist a positive number ey and a function (e, g) on D, analytic in € with |y —g| < Cgle|,
such that equation (1.11) has a solution X™ which is analytic in € as well as in (z,0) in
a neighbourhood of [—1,1] x T and which satisfies

X“(1,0) = (m,0), X“(z,0) = X"2)+ Ofe). (1.18)

Corresponding to the same v, there exists a solution X*(z,0) = X°(2) + O(¢) which is
an analytic function of (271, —0) in a neighbourhood of [—1,1] x T¢. The maps

W2, 0) = (X5 Y% (2,0) + ((0,6), (0,w)), Y™ := LX, (1.19)

provide analytic parametrizations of the stable and unstable manifolds W™ of the torus
7,.

Remark 1.3. The number ¢, above depends on the Diophantine exponent v and on f.
The perturbation (¢, 1) — f(¢,1) is analytic on the compact set St x T?. By Abel’s
Lemma (multivariate power series converge on polydisks), it extends to an analytic map
on a “strip” |Sma¢|, [Smey| < n (n > 0) around S* x T¢. By Theorem 1, there exists
some 0 < ¢ < 7 such that each 6 — X*%(-,0) is analytic on |[Smé| < o.
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An important part of Theorem 1 is that the domains of X" and X overlap. Namely, if
(2,0) — X(z,0) solves equation (1.11), then so does (z, ) — (2m,0)—(XoT)(z,0). This
is due to (1.9) and the parity of f. Consequently, by a simple time-reversal consideration
(set t — —t in (1.12)), the stable and unstable manifolds are related through

X*=(2m0)—X"oT. (1.20)
In particular, as T'(1,0) = (1,0),
X4(1,0) = X*(1,0).
Moreover, the actions Y*" = LX*" satisfy
Y =Y"oT, (1.21)
yielding
Y*(1,0) = Y*(1,0).
In other words, a homoclinic intersection of the stable and the unstable manifolds Wy™*
occurs at (z,0) = (1,0), as their parametrizations (1.19) coincide at this homoclinic

point. Since the manifolds Wy* are invariant, there in fact exists a homoclinic trajectory
on which the parametrizations agree:

We (e wt) = W (e, wt). (1.22)

Remark 1.4. Equation (1.20) is what remains of the symmetry X° = (27,0) — X%o T,
which is just another way of writing (1.3), after the onset of even perturbation. This is
an instance of spontaneous symmetry breaking: The equations of motion, (1.11), remain

unchanged under the transformation X — (27,0) — X o T, but the individual solutions
do not respect this symmetry; X" # X° = (27,0) — X" o T, if A # 0.

Coming to the second one of our main results, let us expand

XU — Z EZXU’Z.
=0
In Section 5, we will show that the common analyticity domain of each X% in the
z-variable is in fact much larger than the (small) neighbourhood of [—1,1]—the cor-
responding analyticity domain of X* according to Theorem 1; namely it includes the
wedgelike region

Urg:={lzl <7} |J{argz € [0, 9]U[r -9, 7+ 9]} CC
(with some positive 7 and 9):

Theorem 2 (Analytic continuation). Each order X%* of the solution extends ana-
lytically to a common region U,y x {|Smb| < o}. Moreover, if ¢ — f(-,%) is a
trigonometric polynomial of degree N, i.e., N is the minimal nonnegative integer such
that f(-,q) = 0 whenever |q| > N, then 0 — X™“*(-,0) is a trigonometric polynomial
of degree (N, at most.

Remark 1.5. With n and ¢ as in Remark 1.3, the numbers 7 and ¢ are specified by
the following observation: ®°(z) = 4arctanz implies that |[Sm®°(z)] < 7 in U,y
with 7 and o sufficiently small. By Remark 1.3, (z,60) — f(®%(2),6) is analytic on
U,y x {|Smé| < o}, which we will use as the basis of the proof.
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In spite of Theorem 2, (a straightforward upper bound on) X*“* grows without a limit
as |Re z| — oo, such that there is no reason whatsoever to expect absolute convergence of
the series > ;2 € X in an unbounded z-domain with a fixed e. In fact, it is known that
the behavior of the unstable manifold gets extremely complicated for large values of z
even with innocent looking Hamiltonian systems. Still, it seems to us that the possibility
of a uniform analytic extension of the coefficients X™* has not been appreciated in the
literature.

Due to (1.20), an analog of Theorem 2 and the subsequent discussion are seen to hold
for the solution X¢, with z replaced by z71.

Theorem 2 is interesting, because it allows one (at each order in €) to track trajectories
t — W*¥(e, 0 + wt) on the invariant manifolds Wy* for arbitrarily long times in a
uniform complex neighbourhood |Smt| < ¢g~'9 of the real line, for arbitrary 6 € T
The motivation for doing this stems from studying the splitting of the manifolds Wy™*
in the vicinity of the homoclinic trajectory (1.22), and is the topic of another article.
The general ideology that, being able to extend “splitting related functions” to a large
complex domain yields good estimates, is due to Lazutkin [Laz03], as is emphasized
in [LMSO03].

1.4. Strategy. Let us briefly explain how Theorem 1 will be proved in three steps. Due
to (1.20), we may concentrate on studying the unstable manifold. Thus, we write

X(2,0) == X"(2,0) = Xo(0) + 2X1(0) + 02X (2, 0).

From (1.11) we first get an equation for X, := X*“(0, -) alone. Second, given Xy, an
equation for X; := 0,X*(0, -) and 7 alone is obtained. Third, given Xy, X1, and 7, an
equation for the remainder 65X is obtained.

It turns out that solving for Xy and X (together with ), i.e., the invariant torus and
the linearization of the unstable manifold around it, is difficult. Namely, these problems
involve the small denominators of KAM theory. In contrast, solving for 6, X amounts
to a simple Contraction Mapping argument.

We deduce the existence of X from [BGK99]. The existence proof of X is reminiscent
of the RG argument in the latter paper, except that the Lyapunov exponent v has to
be fine-tuned to a proper value such that the renormalization flow converges.

At this point we would like to draw the readers attention to the interesting refer-
ence [Gen95b], where the author takes a different approach. Gentile fixes the perturbed
Lyapunov exponent v in advance and replaces g by g(e,~y) in the Hamiltonian, which
is analogous to introducing counterterms in quantum field theory, and finds the cor-
responding manifolds. One could then solve the implicit equation g(e,y) = ¢ and to
obtain 7 as a function of g and e.

Acknowledgements. I am indebted to Antti Kupiainen for his help during the course
of this work. Guido Gentile, Kari Astala, and Jean Bricmont provided sharp remarks
and critical comments on the manuscript that made it more comprehensible and math-
ematically accurate. I wish to express my gratitude to all of them. I thank Giovanni
Gallavotti and Emiliano De Simone for discussions at Rutgers University and University
of Helsinki, respectively.
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2. PERTURBED TORI

The perturbed tori will be found by looking for solutions having the general form
P(t) = Po(wt), Y(t) = wt + Yo(wt),
with @ : T? — R and ¥, : T¢ — R? satisfying the “¢ — —oo asymptotics”
D*®y(0) = g*sin ®o(0) + A0y f(Po(0), 0 + Vo(6)) (2.1)
D*Wo(0) = A0y f(Po(6), 0 + To(0)) (2.2)

obtained from equation (1.11) by putting z = 0 and D = w - Jyp. Note that if Xy, =
(g, Uy) is a solution to equations (2.1) and (2.2), then so is

05X0(0) = (Po(0 + 3), Vo(6 + ) + ) (2.3)
for 3 € T¢. We point out that together (2.1) and (2.2) are equivalent to

2.1. Spaces of analytic functions. Let us define the spaces we shall be working in.
As linear subspaces of ¢!, the Banach spaces

B = {@: T = C|[@], = Y |9(g)e < oo},

q€eZ4

BY = {\1/ . T4 — ¢ ) 1), =S [ (g)eh < oo},
A

for any o > 0, have the advantage that Fourier analysis on their elements is convenient.
Furthermore, we are trying to find a solution X = (®, ¥) analytic on the torus, and, for
a suitably small o, such a function belongs to B x BY because of the exponential decay
of its Fourier coefficients; | X (q)| < Ce 74! with some positive constant C. Indeed, if
o > 0, the spaces above comprise precisely those functions on the torus that admit
an analytic extension to the “strip” |Sm#| < 0. We will occasionally write 5, when
referring to either one of B and BY.

Of course, as our analysis proceeds, the perturbation f will appear all over the place.
This, in turn, dictates the analyticity properties of a plethora of maps, in practice
introducing the constraint o < n for the spaces B,; see Remark 1.3.

Notice the natural embeddings

Boia C By,
for a > 0, due to the inequality

Ml < M- Nlota (2.5)

Consider the linear operator 73 : B,1, — B, defined through setting 7%}( (q) =
€8 X (q), with § € C%. Whenever |Sm ] < a, 1751l 25, .5,y < 1. The realization of
75 in terms of the variable 6 is just the translation ¥(0) — W(0 + 3). 75 will serve as
a useful device in encoding the real-analyticity of f as an algebraic property into the
Fourier series of certain other functions. This is due to the the fact that exponential
smallness of |X(g)| in ¢ implies real-analyticity of a function X on the torus, and vice
Versa.
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We shall encounter n-linear maps from C%*! into C. Endowed with the norm
Al £ a1y = inf {M >0 } |A(z1, .o oz0)| < Ml2i|. . |om] Y2z € <cd+1}
they form the Banach space £("(C%1);C); see [Cha85].

2.2. Past and future asymptotics of the solution in the perturbed case. This
subsection discusses the t — +oo asymptotics of the solution X. In these limits the mo-
tion settles onto the “distorted version” 7, of the invariant torus 7, with the pendulum
seizing to swing, but wiggling quasiperiodically about its unstable equilibrium.

Theorem 2.1. Under the assumptions of Theorem 1, there exist positive numbers r
and € such that, for (e,g) € D, equations (2.1) and (2.2) have a unique solution X, =
(Po, W) in the class of those real-analytic functions of @ € T? that satisfy || Vol < r
and (Vo) = 0 (zero average). The function Xy, defined on {|Smb| < o} x D for some
o > 0, is analytic and uniformly bounded by (C|e|, Cg?|e|). Moreover, it is R x R?-valued
on T¢ for € real. Thus, any real-analytic solution X} = (D}, ¥y) with (V) = § € R?
and ||¥y — B, < r must be the one given by

Xo(0) = Xo(6 + 5) + (0, 5),
i.e., X\, = 03Xo, using the notation of (2.3).

Remark 2.2. Remark 1.3 below Theorem 1 holds true. Recall that we have defined
€ := Ag~?in (1.14) and the domain D in (1.15). This is a version of the KAM Theorem.
Notice that Xy € B x BY.

Proof. The proof is a reduction to the one given in [BGK99]. Here we systematically
omit the subindex 0 of &y, ¥y, and X,. Let us concentrate on the pendulum part,
equation (2.1), first. We expect ® to be close to its unperturbed value, zero, and it pays
to cancel the leading term of ¢g?sin ®(6) on the right-hand side by subtracting ¢>®(6)
from both sides. We then have

(D?* — )@ = U(®, V) =: U(X) (2.6)

with
U(X)(0) := g*(sin®(0) — ®(0)) + X f(P(0), 0 + ¥ (H)). (2.7)
Pay attention to the fact that U(X)(0) depends locally on X—only through X (6),
that is. Abusing notation, we shall use U(X)(0), U(X,0), U(X(0),0), etc., in the
same meaning, whichever is the most convenient form. Now, U(x,#) is analytic in the
vector argument X = (X4, Xy) in the region |x4|, |xy| < 1, where n > 0 depends on the

analyticity domain of f; see Remark 1.3 on page 6.
Let us now write down the Fourier—Taylor expansion

UX0),0) =% %D"U(O,@) (X(0),.... X(0))

=Y Y T D06 (K@) K@) (29
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where D"U(0,0) € L("(C%!);C) is the nth Fréchet derivative of the map U(-,0) :
CHl - C:x—Ul(y,9).

The map 0 — U,(#) := 5D"U(0,6) is analytic in the same domain as 6 — U(0,0) =
A0y f(0,0), i.e., |[SmO| < 7. Its Fourier representation Uy, (0) = > 7 e%u,(q) has

coefficients
1 o1
o —iq-0 n
un(q) = 2y /’]Td e _n!D U(0,0)deo (2.9)

in £("(C%*1); C). Using this notation, we translate (2.8) into the Fourier language;

Z > unq—Zqz (X(q1), - X(qn))- (2.10)

n=0 ge(z4)"

The right-hand side of equation (2.10) is a power series in X, converging whenever
X is sufficiently close to zero. Namely, we have

Lemma 2.3. The multilinear maps u,(q) obey the bound
lun @)l goneariyey < CoP(rg + lel)(rofe) e, (2.11)

where p and rg is any pair of posztwe numbers satisfying p + ro = n, n > 0 being the
width of the analyticity domain of f as explained in Remark 1.5.

The proof of Lemma 2.3 is straightforward, but, for the sake of continuity, is given in
Subsection 2.3 below. -
Considering the closed origin-centered balls of radius 7 < 7¢/2 in BY and B} —Bg, and

BY ., respectively—we next study Us : By, X By, — B2 : (®,¥) — 75U (150, 7_5P).

o,r) a,r

By equation (2.7),
Us(®(9),¥(8),0) =U(D(0),0 + 5+ V(6)), (2.12)

when 3 € R%. The right-hand side is analytic in 3, and extends to |Sm 3|+ o +7 <7
through the same expression, leaving U analytic with respect to X.
More quantitatively, one checks using the bound (2.11) that the power series

S Y PTG (R, K@), (213)

n=0 qg(Z4)"

converges uniformly with respect to X and (3, even if the latter has a small imaginary
part. In fact, ||Ug(X)||, obeys the upper bound

>y s en

n=0qe(z)" g€z

= Z (Z (SmA+al ||, (g )c(n(cdﬂ);@) > H|X )|e?1%!

qez qc(z4)"

eiﬂ(q—Zi ai) un(q — Z Qi) (X((h), cee ,X(Qn))‘

< O+ 1e)) S N elldmalta=allal (ry re)=m | x |2 < Co?(rd + e]),

n=0 gczd
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if we choose |Smf|+ o0 < p=n—ryand r < ro/2e, since || X||, < 2r. Thus, fixing
r = ro/6, say, we obtain

sup [[Us(X)], < Cg*(r® + e) (2.14)

XeB2, xBY,
whenever
ISm G| + o+ 6r <. (2.15)
Lemma 2.4. Suppose (2.15) holds, and ¥V € B;I:r. Then, for r and ey small enough,
(D? — ¢*)® = Up(®, V)

has a solution ®g(V) € Bff,r, real-valued provided (3, €, and ¥ are, and there are no

other solutions in the (*-ball B, D By.. In fact, ®5(V) = 75Po(7_s¥). The map
U — Og(V) is analytic on B(‘,I’,T,. Qs(V) also depends analytically on B as well as on
(€,9) € D (see (1.15)), and obeys the bound

[25(P)], < Cle| (2.16)
uniformly in U, 3, and g.

Remark 2.5. The smallness condition is C'(7® + ¢y) < r, where C is the same constant
as in (2.14) and contains the norm of the perturbation f.

The standard but lengthy proof of Lemma 2.4 may be found in Subsection 2.3.
Let us come back to equation (2.2), whose right-hand side may now be written solely
in terms of ¥ € BY , amounting to

o,r?

DU = V() (2.17)

with V(U)(0) = X0y f(P(V)(),0 + ¥(#)). Consider then Vi(¥) := 73V (r_3V¥). By
Lemma 2.4, it reads

Vs(0)(0) = VI(T-p0)(0 + B) = A0y f (Pp(V)(0),0 + 5 + U (0))
and is analytic in the domain
By, x D x{|Smb| <o} x {3 |SmB|+0+6r <n} (2.18)
with the uniform bound

Va(®)ll, < sup  [AOuf(9, )] < Cy’lel,

[Sme|,|[Smep|<n

provided Cle| <7 (see (2.16)).
Equation (2.17) is the variational equation corresponding to the action functional

o,r

S:BY HR:\IJHS(\P):/ s(W,0)df
Td

given by the integrand
s(V,0) = L(@D*® + ¥ - D*V) + g*cos ® — Af(®,0 + V),
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where ® = ®(¥). S is invariant under the T¢action ¥(0) — U4(0) := (0 + 3) + 3,

B € R4, Hence, 955(¥p)| 30 = 0 yields the Ward identity

/w ;ﬁf;; dHZAd@(9>~aeiii<(‘g; a9 (i=1,...,d) (2.19)

of the symmetry in the functional derivative notation. In fact,

5S(Y)
So@ ~ P V)0,

Integrating by parts three times one sees that
/ U(0) - 0, D2U(0) df — — / B(0) - 9, D2U(0) db = 0.
Td Td
The general identity (2.19) therefore reduces to the identity

/V"(\If,e)dez/ U(h) - 0V (V,0)do (2.20)

Td

for the map V.

In conclusion, we have the KAM-type small denominator problem (2.17) with V3(, 6)
analytic in the domain (2.18) and bounded there by C|\|, together with the Ward
identity (2.20) stemming from a translation symmetry of the action that generates
the equation. Furthermore, V3(V,0) is real-valued whenever 3, ¢, and ¥ are. For
0 < 0 < n— 6r—so that we may choose Sm /3 # 0—this is precisely the setup in
[BGK99], where the authors devise a method for dealing with such problems using a
Renormalization approach.

The subtle analysis in [BGK99] yields a unique solution ¥ € By, to (2.17) with zero
average and analytic in (¢,¢) € D. The inevitable loss of analyticity takes place in
the domain of 3. The map 6 — W(#) is R%valued on the torus for real € and satisfies
], < CIAl = Cg?lel. ] )

Denote by W,,, n € Z, the unique solution to (2.17) in the ball B}, . Since By, C
BY

o U has to coincide with ¥,,. Hence, ¥ is the unique solution in

o/n,r

U B}, D {\If : T¢ — R* | ¥ real-analytic and || ¥, < 7’} .
n=1

Indeed, assuming the map 6 — () is real-analytic, [|¥||,,, < oo for some n, and we
have that [|V[,,, \ Y[, = [¥|lx as n — oo. Thus, if [|[¥[|, < r, we gather that
W[, , <r for sufficiently large values of n.

This concludes the proof of Theorem 2.1. O

2.3. Proofs of Lemmata 2.3 and 2.4.
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Proof of Lemma 2.5. Write || - || = || - || ;(n(ca+1),cy for short. From (2.9) and the Cauchy
Integral Theorem,

1 - g 1

Jun(a)l| = | gz [ e 5 000,6 + 15) a
(2m)? Jra n!
1
< et L aup|D"U(0,0+ i),
n: gerd

for 3 € R? and |3 <. Take 0 < p < n and choose 3 = —pq/|q|. We compute the
standard norm of n-homogeneous polynomials,

ID"U(0,0+ iB)lpucasney = Sup | D"U(0, 0 +i6) (5. ... )]

|z1<1

which, using the Cauchy Integral Formula, turns into

! 0+1i6)d

sup n—}I{ Ulcs, ni_lw) C‘ <nlry"sup sup |U(Cz, 6 +if)|.
121<1! 270 Jap(0,r0) ¢ |2]<1 ¢€8D(0,r0)

Here ID(0,7p) is the origin-centered circle of radius ry in the complex plane, with the

constraint ro + p < 7. For |z| <7y and |Sm6| < p we estimate

|U(2,0)] < Cg*(rg + le]);

see equation (2.7). Here we have singled out A\g™ = ¢, and C is independent of g.
We stress that U(z, ) simply stands for the expression obtained from the expression of
U(X,0) in (2.7) by replacing X (0) by z € C**1.

Symmetric multilinear maps are fully determined by their diagonal—the correspond-
ing homogeneous polynomial, that is—which is explicitly confirmed by the Polarization
Formula [Cha85,Din99]. Hence, in order to obtain the estimate in (2.11), we multiply
the corresponding polynomial estimate by the factor n"/n! ~ e /+/2mn. 0

Proof of Lemma 2.4. The proof is a simple application of the Banach Fixed Point The-
orem. We fix ¥ € By, and study the operator F(®) := (D* — g*)"'Us(®, V).
First, (D? — ¢g?)~! is a linear operator bounded in norm by ¢—2. From (2.14),

IF(@)], < g7 Us(@, V)], < C(r* + le]) <7

for sufficiently small r and €, which means that F (Bﬁ,) C Bj’,r. Proving contractiveness
resembles estimating the norm of Ug in the proof of Theorem 2.1, and is omitted. The
existence and uniqueness of the solution ®(¥, 3) € BY, now follow.

For 3, €, and ¥ real, F' maps the closed subset of real-valued functions ® € Bff, , into
itself and is a contraction there, so ®(W, 3) is real-valued by uniqueness.

The operator F' depends analytically on the parameter ¥ in Bc‘,lfr. Consider the
sequence (F%(0)), oy of successive substitutions. Each element F¥(0) is analytic in
v e B(‘,Ifr. Furthermore, the Banach Fixed Point Theorem guarantees that such a
sequence converges to the fixed point (¥, 3) in geometric progression;

W
1F5(0) = (. B)], < 1 ; 1 O)ll, < 1= o
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Consequently, (WU, 3) is the uniform limit of a sequence of analytic functions, and, as
such, analytic itself. The same argument goes for (¢,g) € D (see (1.15)), as well as for
# in the domain specified by (2.15).
Because (2.5) implies ¥ € By, C By,, in fact ®(, 3) is the unique solution in Bf,.
Let us denote ®(¥) = &(¥,0). If ¥ € B} and [Smp| < 0/2, then 730 €
Bg’/m, such that ® = ®(7_3¥) is the unique element in BS/ZT solving & = (D? —
g>)7'U(®, 7_5V). The diagonality of 75 and D yields

®5(0) = (D* — g*) " Us(®5(P), V),

where ®3(¥) = 73®(7_5¥) € Bf,. But ®(¥, 3) was the unique solution in Bf,, such

that ®g(¥) = ®(¥,§) € Be,. For larger |Sm 3] one obtains an analytic continuation.
A priori, we know that ||®z(V)| = ||F(®s(¥))|l, < 7. On the other hand, we know

that ®3(V)|._, = 0 by uniqueness, whence the estimate (2.16) follows. O

3. LYAPUNOV EXPONENT—LINEARIZING THE UNSTABLE MANIFOLD

In this section we study the motion in the immediate vicinity of the torus 7, cor-
responding to the solution Xy(#) of Theorem 2.1. To that end, suppose X(z,0) is an
analytic solution to equation (1.11) with X (0,6) = X¢(f). Then X,(0) := 0,X(0,0)
should satisfy the equation

(D +7)* X1 = DAXo) Xy, (3.1)

as Q(X)(z,0) depends on z only through X evaluated at (z,6).
Note that (3.1) is a problem of “eigenvalue type”; recalling v|_, = g, we will strive
to choose v = 7(¢, g) in a g-dependent neighbourhood, say

v =9l <g/2, (3.2)

of its unperturbed value g, such that (3.1) has a nontrivial solution. That we succeed is
the content of Theorem 3.3. Consequently, our v will depend analytically on €, nicely
controlled by |y — g| < Cygle|.

The subtlety of proving Theorem 3.3 lies in solving a small denominator problem. We
go about dealing with it using a Renormalization Group method, treating such small
denominators scale by scale. Here we show that the framework of [BGK99] is applicable.
The proof, though, is self-contained.

First, view the map X +— €(X) as the map that takes the pair (®,¥) to
(Qp(P, V), Qg (P, ¥)) with the components Qg (P, V) = g*sin® + X9, f (P, 0 + ¥) and
Qu (P, V) =0y f(P,0+ V). Then the component form of (3.1) reads

(D +7)? (%) _ (g cosf;w; Mow ij{zz) (31) , (3.3)

In each entry, f,, stands for the matrix (9,0, f)(®Po, 0 + Vo).
From (3.3) we get for ¥, the equation

Uy = [(D+7)? = Mow] (Muo®i) = JOi, (3.4)
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Here J is a well-defined bounded linear operator from B? to BY, provided that ¢, is
small. Checking this is straightforward implementation of Neumann series and the fact
that the operator (D + v)~2 has the diagonal Fourier kernel

(D+7)2(p,q) = 6pqliv-q+7)2, p,qe€Z (3.5)
Using (3.2), one obtains the bound
||J||L(B§’;B§’) < Clel. (3.6)

Remark 3.1. The definition of .J is an instance where demanding smallness of € := \g~2
is natural, indeed necessary.

Consequently, using (3.4), we get for ®; the equation
[(D + ’}/)2 — 92](1)1 = gz(COS @0 — 1)@1 + )‘fqb,qbq)l + Af(f’ﬂl"]q)l = H(I)l (37)

Recall that ®g|._, = 0 by Lemma 2.4. Therefore H|__, = 0, and ®1|_, = 4 (due
to ®°(z) = 4arctan z) is a physically motivated nontrivial solution to (3.7). In other
words, the differential operator (D + ¢)? — ¢? is singular. On the other hand, when
e # 0 is small, we know that ®; remains close to zero, making the whole right-hand
side in (3.7) small. We then hope to find a Lyapunov exponent ~, close to g, such that
(D +7)%— ¢g> — H stays singular and the equation still admits a nontrivial solution close
to the constant function 4.

It follows from (3.6) that the operator H appearing in (3.7), which lies in £(B?) =
L(B2;B2?), has the useful properties below. The proof comprises Subsection 3.1.

Lemma 3.2. Denote the kernel of H € L(BY) by H(p,q), (p,q) € Z* x Z*. For
ISm k| < g/3, there exists an operator H(r) € L(BL) related to H by

(tsH)(p,q) :=H(p+s,q+s)=H(w-s;p,q), s€Z’
Let 0 < 0’ < 0. The kernel H(k;p,q) is analytic on
{(k,6,9,7) | ISmK| < g/3, (e,9) € D, |y — gl < g/2}
and it satisfies the bound
|H (r;p,q)| < Cg’le| e P
with C' = C(d'). As for the k-derivatives,
[H® (5p,9)] < Ck!(g/3 — [Smr|) T gPlef? e IPmel k> 1,

Moreover,
1
1=2y—gl/g

0
— H (0; < Cle?
‘% @ﬂﬂﬂ_CMg
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3.1. Proof of Lemma 3.2.

Proof. To simplify notations, we decompose
H = Hl + Hg with H2 = Af(bﬂﬁj'
Let ® and ¥ be arbitrary functions in the spaces B® and BY, respectively.
H; acts as ordinary multiplication: H ®(6) = H,(6)®(0) with H(f) € C. We write
H; for the Fourier transform of the map 6 — H;(#). Denoting a kernel element of the
operator Hy by Hi(p,q), we have Hi(p,q) = H1(p — q). We gather that

tsHy = Hy (3.8)
holds, and that the kernel of H; satisfies
[Hi(p.q)| < C|AleP4 p,g e 2.

Here o > 0 is the width of the analyticity strip around the real T¢ of the map 6 — H,(0),
i.e., of Xy. Since, by Theorem 2.1, X is analytic with respect to (e,g) € D, so is

Hi(p, q).
Observe that the expression defining J in (3.4) may be cast as

JO = [1— (D +7)2(Muw)] (D+7)2(Mue®) = BAOD,

where B, A, and O stand for [1 — (D + 7)_2()\f¢,¢)]_1, (D++)~2, and A fy 4, respectively.
Assuming each index a and b in f,; stands either for ¢ or 1, the reader should bear
in mind that f,; refers to the multiplication operator corresponding to the Jacobian
matrix (0,0, f)(Po, 0 + Uy). Its Fourier kernel reads f,,(p,q) = fa,b(p — q), whence the
translation invariance

tsfap = fapb- (3.9)
Denoting A(q) = A(g,q) = (iw - ¢ + )2, we are interested in the kernel
J(p,q) = > Bp,r)A(r)O(r,q), p,q€Z’, (3.10)
rezd
of J. We shall also need the “shifted version” of A(g),
A(k;q) = (iw-q+ir+v)? keC. (3.11)
It is related to A(q) by the property
tsA(q) = AMw - s1q). (3.12)
Further, A(k;q) is analytic on {k | [Sm&| < g/3} x {7 | |y — 9| < g/2} and satisfies
[A(k; )] < 36972 (3.13)

Equation (3.13) also means that the operator A(k) corresponding to the kernel in
(3.11) belongs to L(B,) with [[A(k)| 5,y < 36¢~2. Interpreting f,; as a multiplication
operator, || fobllzs,) < || fasll, shows that B, O € L(B,).

As in the case of Hy, O acts as multiplication by a real-analytic function whose
modulus is bounded by C|A|. Thus, we estimate

0(p,q)| < C|A[e?P=4 and  |A(p)O(p,q)| < Cle|e P, (3.14)
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Bounding the kernel of B calls for the Neumann series

B=Y) By, with By:=(AAfy,)". (3.15)

k=0
Clearly || Billz5,) < (Cle|)* and |Bi(p, q)| < (C|e|)* such that, by Fubini’s Theorem,

BU(p) =Y B¥(p)=>_ > Bilp.a)¥(q). (3.16)
k=0

q€Z4 k=0

The expression of By, contains k—1 products of the operator A A f,;, ,, with itself, which
appear as convolutions in terms of Fourier transforms. Explicitly,

Bi(p,q) = XY AD) fuwlp— 1) -+ AMger) fow(gn — q). (3.17)
;€LY
Using the bound |A(p) fy.4(q)| < Cg~2 el we see that, for 0 < ¢’ < o,
|Bi(p, q)| < (Cg—2|>\‘)’f€—cr’\p—ql Z e~ (=N lp—ail+Har—a) < (Oe)F e~ lP—1,
q; €722
Thus, choosing e appropriately small we make the geometric series arising in (3.16)
convergent and obtain
[B(p: )|, |7(p, )| < C e

with the aid of (3.14) in (3.10). Finally,

|H(p, q)] < CgPle*e™ P, (3.18)
Exploiting (3.9), we compute
tsHy = Mts(fond) = A foptsd = X fop (tsB)(tsA)O. (3.19)

With the aid of (3.15) and (3.12), t, By = \* [A(w - S)fw’zp]k. Thus, (tsB)(p,q) depends
on s only through w-s. Moreover, the dependence on w- s is analytic in a neighbourhood
of the real line: Consider the shifted quantity

Bi(kip.q) == N> Alkip) fos(p — a1) -+ As; G Fos(qer — q),
;€28

which for kK = w - s becomes (t;By)(p, q). The summand above is analytic on

Dy :={e|le] <eo} x{r|[Smr| <g/3} x{v]|v—gl <g/2},

and the sum converges uniformly, as is readily observed after recalling the bound (3.13)
on A(k;q) and looking at the estimation of |By(p,q)|. Thus, Bi(k;p,q) is analytic.
But the Neumann series >, Bi(k;p, q) also converges uniformly, making the limit
B(k;p, q) analytic on D,. Evidently, (t,B)(p,q) = B(w - s;p,q). The kernel By (x;p,q)
defines an operator B(k). Motivated by equation (3.19), we extend the definition of Hy
and set Ho(k) := Afy 4 B(k)A(k)O. Using (3.13), a straightforward computation shows
that also Hy(k;p,q) obeys (3.18) and is analytic on D,. Furthermore,

(tsH2)(p, q) = Ha(w - 55, q).
Recalling the translation invariance (3.8) of Hy, we simply take H (k) := H; + Ha(k).
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The bound on the derivative H*)(x;p, q) is achieved by a Cauchy estimate. To that
end, one observes H'(k) = Hj(k) and uses the bound (3.18) on D,. Similarly, because
Xy is independent of v, 0H /0y = 0H,/07, and we get the bound on 0H (0;0,0)/07.

The constants above are independent of g, as long as 0 < g < go. That is to say,
the estimates hold on (Jy_,, Dy = {(k,€e,9.7) | ISm&| < g/3, (e,9) € D, |y —g| <

9/2}. O

3.2. Linearized invariant manifolds: rudiments of renormalization. We now
proceed to stating the main theorem of this section, discussing the linearization Xj.
Our proof is based on a Renormalization Group (RG) technique we present below.

Theorem 3.3. Under the assumptions of Theorem 1, there exist a number ¢y and a
map v = (€, g) on D, analytic in €, with |y — g| < Cgle|, such that equation (3.1) has
a nontrivial solution X, which is

(1) analytic in |e| < ey and

(2) analytic in 0 in a complex neighbourhood U of T,

and satisfies the physical constraint
(I)l‘e:() =4= <(I)1>
Furthermore, it is real-valued if € and 6 are real, and

sup [U1(6)] < Clel and  sup |1(6) — 4] < Cgle].
ocu oeu

The map =y is independent of (Vo). If Xy and X| correspond to Xo and X/, of Theo-
rem 2.1, respectively, with (Vo) =0 and (V) = 8 € R%, then

X1(0) = X1(6 + B).

Remark 3.4. We chose the normalization 4, because X°(z,60) = (4arctan z,0) is the
unperturbed solution (separatrix) and arctan z = z + O(z3).

Remark 3.5. The pair (v, X;) of Theorem 3.3 is unique in the sense that it is the only
one making our construction work, which is manifested by Lemma 3.11 below. We do
not prove the uniqueness of X;. However, for a given solution X; the value of v is
unique: If 4/ is another one, (3.1) yields (D + 7)?*X; = (D +v')2X; because DQ(X) is
independent of . This shows that 7/ = 7, because ®1(0) = 4 # 0.

Let us commence sketching the backbone of Theorem 3.3 by recalling equation (3.7).
We expand the square on the left-hand side and obtain

(D* +29D)®, = (H + g° — 7*)®;. (3.20)

For a small € # 0, ®; should remain close to the unperturbed value 4 = 9,9°(0). Due
to the linearity of (3.20) such a solution may be normalized as (®;) = 4. Thus, we set

O, (0) =4+€(9), (3.21)

where we demand the function € : T — R to vanish on the average, i.e.,

~

£(0) = 0. (3.22)
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Plugging (3.21) into (3.20) results in
(D? +29D)€ = mo(€ +4), where mo:= H + g% —+°.

After switching into Fourier representation, this reads

£(a) = G(@)[ Y mola. ) + hola)] if € 27\ {0}, (3.23)
0="> 70(0,p)(p) + fo(0), (3.24)

where pq is a function defined through its Fourier transform by setting

polq) = 4mo(gq,0). (3.25)

The symbol G(q) stands for the diagonal element G(q, ¢) of the operator G whose Fourier
kernel is given by

._ 2iyw-q— (w-q)) " if g €27\ {0},
G(p, Q) -= 5p7q {0 if ¢ = 0. (3-26)

The matter of the fact is that, in terms of our new notations, any solution £ of

§ = G(mo§ + po) (3.27)

also solves (3.23); only the zero mode constraint (3.22) has been included here. After
finding such a &, we go on to show that it is a solution to (3.24), as well.

As is apparent from the definition of G, this problem involves arbitrarily small de-
nominators w - q. Our strategy is to recursively decompose G into parts, each of which
corresponds to denominators up to a given order of magnitude. We then end up solving
“partial problems” of (3.27) scale by scale, and show that these solutions converge to a
true solution of (3.27) as the recursion proceeds and smaller and smaller denominators
become dealt with.

Leaving the all-important scaling parameter X € ]0, 1] to be decided later?, we shall
need the entire functions

e TR ifn e 7,

n:C—C:y,k)=
X i €= Cxalr) {1 if =0,

Their importance lies in the fact that the sequence (x, — Xni+1)nen of functions is an

analytic partition of unity on R\ {0}; on this set 0 < 1 — xy " 1 pointwise, as

N — o0o. Some of the first members of the sequence appear plotted in Figure 3. The

number 6 in the exponent is a choice of convenience; it is the one used in [BGK99].
Let us now introduce the diagonal operators GG,, and I',,, n € N, defined by

Gn(q) == xn(w-q)G(q) and T, :=G, — Gy,

respectively. Observe that Gy = G and G,,(0) = 0. The point here is that in I',(q) the
functions x,(w-q) — xnt1(w- q) act as cutoffs for the values of w-¢. Each T, deals with

2Aleph, R, is the first letter in the Hebrew alphabet.
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FiGure 3. Graphs of x,, — xne1 with n = 0,1,2,3, and N = % The
maxima are located roughly at N".
the denominators w - ¢ that are roughly of order X" and, intuitively,
n—1
Topi=)» In=G-G, (3.28)
k=0

gets closer and closer to G as n tends to infinity. Instead of the full equation (3.27),
consider the easier, approximate problem

Ty = F<n(7T0$L’n + p(]), (329)

obtained by replacing G with I',,. It is easier since I',, discards the most dangerous
ones of the small denominators. However, its solution should become a better and better
approximation of the solution of (3.27) with increasing n.

Having Go = G + Iy, we decompose £ = & + 19 and assume that 1y = 1y(&;) solves
the “large denominator problem”

1o = Lo(m0(&1 + 10) + po)- (3.30)
Then, solving the original problem (3.27) for £ amounts to solving
&1 = Gi(mo(&1 +10) + po) (3.31)
for 51.
Assuming 1 — Tgmrg is invertible®, we can extract 7y out of (3.30) and get
o = (1 — Tomo) ™' To(mo&s + po)- (3.32)

Therefore, (3.31) transforms into
& = Gi(1 — mL'o) ™ (mo&1 + po)
with the aid of the identities
mo(1 — Tomo) ™' = (1 — mely) 'my and (1 — moly) 'Ly = (1 — mely) ™ — 1.
Thus, defining the new objects
7= (1 — L)ty and  pp = (1 — 7o) po,

3Think of I'y as comprising only large denominators and 7y being proportional to e.
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we obtain
no = Lo(m1&1 + p1)
and
&1 = Gi(mé& + p1). (3.33)
Indeed, equation (3.33) has precisely the same form as the original problem (3.27).
Now, relaxing the assumption that 1y be a priori known, suppose we are able to solve

(3.33), and take (3.32) as the definition of 7, instead. Then the solution of the full
problem is recovered using the simple relation

E=& +n=(1—Tomo) (& + Topo).

Owing to the aforementioned formal covariance between equations (3.27) and (3.33),
we may iterate the construction above. Thus, in general, solving

§nt1 = Gna(Tng1&nin + poy1) (3.34)
for &,41 with the definitions
Top1 = (1 —m,0) o, (3.35)
P = (1—m00)  on, (3.36)
N = Dn(Tns1&ns1 + Pnt1), (3.37)

produces &, = &,41 + N, OF

for the solution of &, = G,,(m,&, + pn)-
Equations (3.38) and (3.36) reveal through

71-né-n + Pn = T [(]l - Fnﬂ-n>_1£n+1 + ann+1:| + <]l - 71-nrn>pn—|—1
the recursion invariance

o+ po=m&+pi = =16+ pp=""" (3.39)

in our construction.
Let us tidy up the notation by giving the definitions

v(y) =my+p, and f,:=1+T_,v, with T'.4=0. (3.40)
In particular, (3.39) takes the form v, (&,) = vo(&n). We also set
En(y) = (1 = Tomn) ™' (Y + Topn) 4 (3.41)
such that (3.38) reads &, = Z,(£,11), and (3.39) reduces to
Upi1l = Up O Zp. (3.42)

The latter is a convenient way of writing v, = (1 — 7,I',) "'v,. Notice also that =,, is
formally invertible.
One easily verifies
=1+ T vuy. (3.43)
As a consequence,
Foor = froE,. (3.44)
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Since fp = 1, we have the cumulative formula
fn="E00E10- 05, 1. (3.45)
Hence, a similar expansion of (3.42) implies
Up = Vg © fr.
Inserting here the definition of f,,, we get
Uy =g o (L+Topvp). (3.46)

Proposition 3.6. Let gn = En(gn—l—l) If gn—l—l SatiSﬁES gn—l—l = Gn—l—l(ﬂ-n—l—lgn—l—l + pn—l—l);
then &, satisfies &, = Gp(mn&n + pn), and vice versa.

Proof. Suppose &,11 = Gpi1Vny1(&ns1). By G, = Gy + Iy, and (3.42),
G, 02, =Gy — 1+ 14+ Thvpag.
But, with the aid of (3.43), this transforms into
(Gpv, —1) 0 Z, = Gpi1vp1 — 1.
As =, is invertible with &, = =,,(£,41), the identity above proves the formal equivalence
of the small denominator problems (3.34), or G,v,,(&,) = &,, with differing n. O
Recalling (3.45), we immediately arrive at

Corollary 3.7. If &, = G, (7.8, + pn), then

50 = fn(gn) = gn + F<nvn(€n)
solves the complete problem: & = Go(moo + po)-

Remark 3.8. The solution &, above comprises two terms having clear interpretations.
The first term, &, solves the small denominator problem, namely &, = G, (7,&, + pn),
at the nth step. The second term, I'_,v,,(&,), on the other hand, consists of the sum

n—1

Nen(&n) = Y (&) with  &epr = Erpr o+ 0Z,) (&),

k=0
where 7y = np(&kr1) solves the large denominator problem 7, = T'pvg (k1 + nx) in
analogy with (3.30). Indeed, I'vvg(§ps1 + M) = Thvr(§r) = Thvrs1 (Epg1) = Mk
Finally, we make a crucial observation. If we operate on (3.46) by I'_,, and set
zy 1= fn(0) = I'c,,0,(0), (3.47)
we solve the approximate problem (3.29):
Ty =T p(moz, + po)-

We shall demonstrate that the approximate solutions x,, form a Cauchy sequence in a
simple Banach space, and that their limit

¢:= lim z, (3.48)

n—oo

solves the original equation (3.27).
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Just to motivate the above discussion, think of an abstract map R, that takes
(T Pr, Gn) t0 (i1, Prst1, Gua1). The recursion scheme

£ = G(mot +po) B &1 = Ci(miby + p1) B - 5" 6 = G(mnbn + ) B3 -
is called renormalization of the problem, and R,, is the corresponding renormalization
transformation. Then, in view of Proposition 3.6, it remains for one to demonstrate that
this process “converges”, in order to be able to solve the original equation £ = G(m€ +
po)- That is to say, one wishes that the renormalization flow of the triplet (o, po, Go),
(s Py G) = (ITiZ8 Ri) (70, po, Go), in a sense tends to a fixed point (7%, p*, G*) of
some limiting operator “R., = limy_.o, Rt as n — oo, and that the equation

& =G (m"E 4 pY) (3.49)

is well-defined and solvable.

In our case G*p* = 0, such that the equation is linear and possesses the trivial solution
£* = 0. Corollary 3.7 then throws light on why (3.48) should solve (3.27); f,(&,) solves
it, and &, approaches zero with increasing n. Therefore, it is fair to expect that also
lim,, . f,(0) is a solution.

3.3. Banach spaces. Technically speaking, we need to control the renormalization flow
(3.35)—(3.37) by estimating the kernel elements of I',, and m,, for the operators 1 —m,[",,
and 1 —1I",m, had better be invertible between suitable spaces. Such Banach spaces will
be defined in this subsection.

We begin by analyzing the properties of the operators I',. A priori, one expects the
most significant contribution to arise from such ¢’s that w-¢ = O(R"), due to the cutoff
Xn — Xn+1 in the definition of these operators. Therefore, (3.26) implies

Ca(@)] = O(g~R™"). (3.50)

More accurately, it is fairly easy to obtain

lfn(i .
X7 ifn>1,

n T2
X (K) = Xns1(K)] < CPRT"%[* {e . (3.51)
1 ifn=0,

for ¢ =0,1,...,6, in a strip |Smk| < R"b. C only depends on the parameter b. Pay
attention to the fact that G(q), which was defined in (3.26), only depends on ¢ through
w - q. Therefore, it is handy to introduce the analytic function

1:C\ {0,2i7} — C: (k) = (2iys — k*) 1.
In particular, ((w - q) = G(q) for ¢ # 0. This motivates the further definition

Xn(W-q+K) = Xnt1(w-q+R)|(lw-q+k) fw-qg+rKF#0,
Falrip: ) := 5”"’{0 ' fw-g+r=0

The importance of the resulting operator I',,(k) is based on the possibility of viewing
w - q as a complex “variable”:

La(q,q) = T'n(05¢,q) = Ln(w - ¢;0,0).
We shall often write I',,(k; q) instead of the complete I, (k; g, q).
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Imposing the condition b < ¢g/2 on b we get within |Im x| < R"b that

IXn(w:q+K) = Xnt1(w- ¢+ K)|

I (k;q)=R"T"
ol o) N g+ )

(W g+ k) 1w g+ k)

l —n(,,. 6 .
e BN @RS e s

3.52
1 if n =0, (3:52)

< Crg™'n™ min(1, |R"(w-q+ n)|5) {

making use of (3.51). In particular, we have confirmed the heuristic estimate (3.50).
Now to the spaces promised. Ultimately the solution of (3.27), namely ¢ (and there-

fore ®;) will live in the space BE. C (1(Z%; C) for a sufficiently small width a* of the

analyticity strip—see Subsection 2.1. The following weights will come in handy:

eRMwd i > 1
(@) = =z 3.53
wn(q) {1 ifn =0 (3.53)

We extend these to negative indices by setting w_,(q) = w,(q)'.

Definition 3.9 (Spaces h,). For n € Z, let
€l i= S @luna).
qezd
These norms induce the Banach spaces h,,. Observe that hg is the space ¢1(Z%; C).
Notice that our weights satisfy
Wt ()N = wa(q) and wn(g) >1  (n>1). (3.54)
The spaces at hand thus realize the embedding hierarchy
hps1 C hy, (nez)
due to the trivial inequalities
<l (ne2). (3.55)

Operator norms || - || (5, ..., Petween such spaces h,, and hy,, will be denoted by || - |[,..,,
for short. We actually have,

1Ll = sUD D 1L, ) Jwm(p)w_n(q)  (m,n € Z). (3.56)

qEdeezd

Either from this or from (3.55) by the Schwarz inequality one infers

I Dosrin < 1l < 1 s (mom € 2)
such that the operator spaces satisfy

L(hp; hma1) C L(Rp; han) C LAy hin) (m,n € 7).

Moreover, the Schwarz inequality implies the useful bounds

1L Lol < WLl Eoll,y (Lo € Z). (3.57)

From now on, n will always assume nonnegative values. Define the domain
D, :={k € C| || < X"}, (3.58)
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recalling that b < g/2. Then (3.52) easily validates the bounds
ITa (Rl < Crg™'RT™ (3.59)

for k € D,,, where the (new) constant Cr is independent of xk and g as long as g < go.
This shows, in particular, that

Ly(k) € L(h_p; hy) C L(ho; ho)-

Remark 3.10. The weights w,,(q) arise as follows. The diagonal kernel of I, is strongly
concentrated around small denominators w - ¢ of order R"; for large w - ¢ the value of
r, (g)\ is very close to zero, but not quite equal to zero. Therefore, in an expression such
as [',£(q) = Fn(q)é(q) we cannot let |§(q)| be arbitrarily large for large values of w - q.
This “tail” can be of the order of w,(g) = ¥ ", say, which amounts to £ € h_,.

It has to be emphasized that having the same power of R~ and |w - ¢| in w,(q) is
crucial, which can be read off from (3.52). This way w- ¢ “scales” as X" in all estimates
in the nth step of the iteration.

The motivation for introducing the spaces h,,, on the other hand, comes from the fact
that in the recursion (3.35) the domain of 7, will shrink. So, in the norms || - ||, we
incorporate a weight that increases as n grows. It is a matter of convenience to use the

inverse of the weight w,(q)~! appearing in ||-|_, .

3.4. Renormalization made rigorous: estimates and the Lyapunov exponent.

The rest of this section is devoted to demonstrating that the renormalization flow of 7,

in (3.35) is controlled in the norms || - ||, _, such that the products ||m,||,,._,[[Ta |l _,., are

small, so as to make the recursion formulae (3.35)—(3.37) well-defined through Neumann

series. Recalling (3.59), the task roughly amounts to making sure that ||m,]|,._, decays

at least as rapidly as X" with increasing n. 7
According to Lemma 3.2, mp = H + g? — 7% € L(B?) can be written as

70(p, q) = po(w - q)0p,q + To(p, q),

where 7y vanishes on the diagonal, and in the first term

po(k) 1= do + Po(k), Po(0) =0,
depends analytically on &, as long as |Sm x| < ¢/3; explicitly 6y = H(0;0,0) + ¢g> — 2
and po(k) = H(k;0,0) — H(0;0,0).

Similarly, we split 7, into its diagonal and off-diagonal parts:
(D, @) = Pu(w - Q)0pq + Tulp, ), Tnlg:q) =0,

with

pn(’i) = 5n +]§n(’i)7 ﬁn(()) = 0.
The possibility of doing this follows from the computation

tsmo=tsH+g* -7 = H(w-s)+¢>—7* = mo(w - s)

and its recursive consequence

g1 = (1 — Tp(w - 8) Tp(w - 8)) " mplw - 8) = My (w - 5).
Motivated by the computation above, let us inductively define the maps

7Tn+1ﬂ('%) = (:H- - 71-nﬁ(’%) Fn("{))_l Wnﬁ('%)’ K€ Dm |%mﬁ| < Qp, (360)
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starting at
mop(k) = Po(K) + Tog(K), Kk € Dy, |Smp| < ap,
by setting b < g/3 in (3.58). Here

Po(k;p,q) := po(k +w - q)0pg,
77'05(/‘6;]9, C]) = eiﬁ-(p—q)H(/{;p’ q)(l - 517711)’
and, with ¢’ coming from Lemma 3.2,

4
Apt1 = (1 — m) (677 g < 0',. (361)

In particular, Eric Weisstein’s World of Mathematics [Wei] tells us that
= 4 (%))
an\ao-H 1-—=|]=—>0 as n — 00. (3.62)

As far as notation is concerned, we may omit (3 if it equals zero: m, (k) = m,0(k), and
so forth. By a straightforward induction argument,

Tns(K;p, q) i= PP, (15D, q),

such that 3 does not enter the diagonal of 7,3. Of course,

Mg (K5, q)| = e 3™ =D (k:p, q)]. (3.63)

For clarity, set
Po(k) == 6,1+ B,(k) with  P,(k;p,q) = pn(k +w-q)d,,,
so that we may express the operator m,5(k) itself, without reference to its kernel, as
Tng(K) = Po(k) + Fng(K) = 6 + Po(k) + Fnp(), Op = 0,1,
for short. This decomposition satisfies

175 () s < 100] + [ Pra(r)

ni—n < + (|7 () (3.64)

||n;—n ||n;—n'

It will turn out that the sum in (3.64) is finite if & € D,, and |Sm | < ay,—indeed very
small, as we are trying to prove—meaning that m,3(k) € L(hy; h_y,).

The crux of analyzing the renormalization flow is the following lemma, for which we
provide an inductive proof later on in this section. The reader is advised to take the
result as granted for now.

Lemma 3.11 (Modified Lyapunov exponent controls the flow). Set b = ¢g/3 and X =
min(é, b?). There exist constants ¢, >0, C' >0, ¢ >0, p > 1, and a unique Lyapunov
exponent vy satisfying

17— g] < ¢ lelg (3.65)
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such that, for any n € N, the bounds

- g if n=0,
< .
75 (K) |l < Clelg {Nne_cun > 1, (3.66)
D g an = 07
B, < .
[ Pn(K)]l ;- < Clelg {N” - (3.67)
g ifn=0,
10, < Clelg {N% >l (3.68)

hold true for (e,g9) € D, k € D, and |Sm 3| < a,. Moreover, ¢ is bounded away from
zero and p — oo in the limit g — 0.

Remark 3.12. The sole purpose of introducing the complex variable x is to go about
proving the bound (3.67) on the diagonal part of 7,. We use analyticity in x and restrict
the latter to a domain of ever decreasing size.

The possibility of including the complex parameter (3 in the analysis, on the other
hand, facilitates proving exponential decay of m,(k;p,q) in the quantity |p — ¢|. This
is sufficiently rapid for obtaining the bound (3.66) on the off-diagonal part of m,. Also
the analyticity strip of § around R is taken narrower and narrower upon iteration, but
no narrower than a certain limit (ag/6).

Corollary 3.13. The bounds of Lemma 3.11 imply

g ifn=0
n -, <C
[ (M < rerg{w A

The caveat to get around in the proof of Lemma 3.11 is that 9,, is reluctant to go
to zero along the recursion. To change the state of affairs, we fine-tune the Lyapunov
exponent  such that also 6, — 0 as n — oo. As stated in the lemma, there turns
out to exist precisely one such value of . This is what ultimately enables us to prove
the convergence of our renormalization scheme, consequently validating Theorem 3.3
discussing the linearized solution X;. For the sake of continuity, we first give the simple
proof of Theorem 3.3 and only then prove Lemma 3.11.

3.5. Proof of Theorem 3.3. With z,, as in (3.47), the task is to show that the limiting
function {&—see (3.48)—is an analytic solution to (3.27).
Given the formal definition yg := 75y, (3.47) implies

Znp = fns(0).
Recalling (3.44) and (3.45), one clearly has
fn—l—l,ﬁ = fnﬁ o Eng and fnﬁ = EOB @) Elg O0---0 En—l,ﬁ-
Hence, the recursion relation
Tnt1,6 = Tng + (fus(Ens(0)) = fu5(0))
follows. Here (3.41) extends to

Z05(y) = (1~ Tomus) (4 + Tupus). (3.69)
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Notice that the flows of p,5 and 47,5(-,0) * are identical. Furthermore, the initial

conditions agree according to (3.25), such that
ﬁnﬁ(q> = 477'”5((], 0)
Because DZ,5(y) = (1 — Tymap) Y, the chain rule reveals
Dfns(y) = (1 = Tomos) (1 = Timig) ™ - (L= Tpoamp1) "
Recursive implementation of Corollary 3.13 in the form
(L = Taup) ™ oy < N = D)~y < 2
implies that Dfu5(y) € L(hn-1;ho) with supyep, [[Dfus(¥)l,_1,0 < 2" By the Mean-
Value Theorem we go on to estimate
@i = 2aslly < 2[00, (3.70)

with the aid of the inequality || -||,_; < || -1l,.-

Lemma 3.14. For parameters as in Lemma 3.11 and €y small, we may perceive =,5 as
an analytic map from h, to h, C h,_1 with

= g
[Z45(0)]], < Cle {
e

Proof. Since I';, annihilates the zero mode (I',(0) = 0), I',,pns = 4(F'y7np) (-, 0), which is
super-exponentially small in the norm | - [|,, by [|7ng( -, 0)[|_, < [|Tnsll,._,, and Lemma
3.11. According to (3.69), Lemma 3.14 clearly holds if we take € small enough so as to
validate || T || .., [[7nsll,,. ., < 1, say, for each n. For the bounds on 7,5 and I, we refer
the reader to Corollary 3.13 and (3.59), respectively. O

ifn=0,
if n > 1.

By Lemma 3.14, f,3 maps h,_; to hgy, confirming that z,3 € hg for each n. Coming
back to (3.70) and taking |Sm | < o := ap/6 (see (3.62)), the sequence (Z,5)nen is
Cauchy in the Banach space hg. Moreover, zoz = 0 gives us

o0
1€60l0 <D Tns1,8 — Znslly < Clelg,

n=0
where the factor g is due to the last statement in Lemma 3.11. It is implied that

£(q)| < Clelge 1l (g € Z).

We infer that ¢ is real-analytic on T¢.
Recalling that lim,, .o, I'<,,(¢) = G(q) for each ¢ € Z%, let us take the pointwise limit

n — oo of (3.27) in the Fourier representation: £(q) equals
lim Ty (q) (Mown () + po(q) = Glg) lim (Toxn(q) + po(q)) = G(g () (o€ + o) (),

because 7y is a continuous operator on hg. Indeed, & solves (3.27)!
Out of curiosity, we conclude by the recursion invariance (3.39) that

47,5(+,0) is shorthand for the function 6 > e¥m,5(q,0).
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converges to £ = 0, pointwise in terms of the Fourier representation. Hence, equation
(3.34) really trivializes in the large-n-limit. Another way of seeing this is the pointwise

bound |@(q)| < ClG(@)|I7nll,,_,,» which tends to zero and paraphrases G*p* = 0

below (3.49).
We still need to demonstrate that the solution £ of (3.23) also solves (3.24), i.e., that

(M€ + f0) (0) = mo(0, - )& + po(0) = Y m0(0, p)E(p) + po(0) = 0.

pEZd

From (3.71), G,.(q) := xa(w - 9)G(q), G(0) = 0, and (3.27),
|70&a(0)] < 3 17 (0,0) [Xn(w - 0) | G(g) (o + o) (q))]

q€eZ

< €1y sup |74 (0, @) [ Xn(w - q)
qEeZ4

< &llo 1Tnllpp sup wi(@)xn(w - q)
g€\ {0}

< CHgHo H7~Tan;_n E— 0 as n— 00,
Thus,
(o€ + 40) (0) = lim (7,8, + ) (0) = lim 4, (0).

n—oo

But
lim p,(0) =4 hm 7rn(0 0) =4 lim 6, =0,

n—~o0 n—oo

and we are done with the construction of (v, X;) under the assumption (Vy) = 0.
The case (V) # 0. If X; solves (3.1), it is a matter of applying the translation 73 on
both sides of the equation to get (D + v)2X] = DQ(X{)X], where X} = 75X, + (0, 3)
and X] = 73X;. In other words, the translation property in the formulation of the
theorem holds, and the value of v does not change under such translations. 0

3.6. Proof of Lemma 3.11. We begin by deriving several identities that are easy to
refer to below. To this end, let us look at the flow (3.60) more closely, observing that
we may formally split

(1= mg(R)T(k) " = (1= Pa(R)T(k) ™" + rs(s).
The remainder r,5(x) reads explicitly
rnp(R) 1= (1= g (8)Da (k)" Fng(#)Ta (k) (L= Polw)Ta(%))

In fact, this quantity is asymptotically very small in L(h_,;h_,) due to the explicit
factor ,5; given the bounds (3.66)—(3.68) for some particular value of n,

s ()l iy < Clele™". (3.72)
Continuing abstractly, (3.60) becomes
Tnt1,6(K) = (1 — Pn("’f)rn('%))_l Po(K) + sn(k) + Sng(k),
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where s, (k) is the diagonal and §,5(x) the off-diagonal part of the small remainder term
Tng(K)Tng(K), respectively. Therefore, the diagonal P, (x)—containing the problematic
d,—and the off-diagonal 7,5(k) iterate according to the rules

Poyi(r) = (1 - Pn(’{)rn(’{))_l P(k) + sn(k),
Tnt1,6(K) = 8np(K).
Notice that s, (k) is indeed free of 3, because each P, (k) is.
By construction, 9,, = m,3(0;0,0) = P,(0;0) for each n, such that the diagonality
of (1 — P,(0)T,(0))~! with T',,(0;0) = 0 implies that changes in §, upon iteration only
arise from the small term s,, in (3.73):

(3.73)

Ssr = 0n +dny  dy 1= 5,(0;0). (3.74)
But 7,5(0;0,0) = 0, again because I',,(0;0) = 0, such that
d, = $,(0;0) = (r,m,) (0;0,0) = (r,7,)(0;0,0). (3.75)

We remind the reader of our convention of dropping one of the kernel indices of diagonal
operators. For instance, s,(k;q) = s,(k;q, q).
It is convenient to spell out a consequence of (3.73):
Proii(k) = Py(k) + Py(5)Th(k) (1 — Po(8)Dy(8) T Po(k) + (sp(k) — dy). (3.76)

Proof of Lemma 3.11. Here we finally prove that the bounds (3.66)—(3.68), such that
(3.73)—and indeed everything above—becomes not only formally justified. To this end,
we proceed by induction. As iterating (3.66) and (3.67) is rather easy, the proof boils
down to choosing the value of our free parameter, the Lyapunov exponent 7, so as to
guarantee that ¢, satisfies (3.68) at each step.

(i) Case n = 0. Consider  restricted to Dy with b < ¢/3. Lemma 3.2 and Py(k; q) =
H(k;q,q) — H(0;0,0) readily imply

1Po (%) g0 < Col Al
Furthermore, increasing Cy and employing (3.63) with |Sm 3| < ag < o,

1705(#)llo,0 < ColAl-
The leading Taylor coefficient pj(0) = H'(0;0,0) and the corresponding remainder of
the function po = H(-;0,0) — H(0;0,0) satisfy

5o(0)] < 3Colelg and  [po(k) — Fo(0)k] < 5C0o|el?|[?,
taking C large enough.
Assume that ~ lies in the open g-centered disk of radius c|e|g:
v € I :=D(g, cylelg). (3.77)
Recall that §y = eg®u(e, g,v)+9?—~?2, where eg?u(e, g,7v) = H(0;0,0). If 5o(71) = do(72)
and we denote v; = g(1 + x;), the Mean-Value Theorem yields
71 = el < g (J21 + 22| + [elgllyull ) v — el

By Lemma 3.2, ||0,ul| < Clelg™ /(1 —2¢,e]), and |21 + 22| < 2¢,|e|. For a sufficiently
small |e|, we gather y; = 72, such that v +— 4y is one-to-one on I,. Moreover, the image
of the disk I, contains the disk D(0, (2¢, — Alel - lull.)|€lg?). Thus, for a sufficiently
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large value of c, and small value of ¢, there exists a closed set Jy C I, which v — g
maps analytically and bijectively onto the closed disk

Iy :=D(0, Colelg?).
We are about to prove below that a correct choice of v leads to
6n € I, := (0, Cole|g N*™)

for each and every n € Z, .
(ii) Induction step: hypotheses. Fix n € N. Suppose

if n =0,

) g
- < C,lelgR™ no.
||7T ,B(K)Hn,—n — |€‘g {e_cﬂ ifn Z 17

for some constants ¢ > 0 and g > 1—to be fixed later—and

_ g ifn=0,
P, < C,lelgR"
1225 < Cullg {1 -

hold true for || < €,, |[SmfB| < a,, and k € D,. Suppose there exists a closed set
J, C I, and a bijective analytic map A, : J, — I, : 7+ 0y,.

Further, let the kernel elements of these operators be analytic in D,, and continuous
in the closure D,,. Also the estimates

_ 1\ 1 [e[* ifn=0
o< (1- 2 )Le : 3.78
177 )|_< n+2)2 9{|€\3/2 itn>1, 7%)

and
le|>  ifn=0,

e¥? ifn>1," (3.79)

/ 1 -n
(k) = Pr(0)s] < SCuR W{

which facilitate dealing with the Taylor expansion of p,, are supposed to be satisfied.
In particular, it follows from (3.64), b < g/3, and the inductive hypotheses that

. ble| + ¢ ifn=0,
n < B,C, nN" th B, := 3.80
Ipn(K)] < le|g R™  wi {b|€|1/2 w e (3.80)
and

1705 (K) | < AnChlelg X", (3.81)

where
A, =47 , fn=0, (3.82)

14+ N+ ifn>1.

The strategy is to iterate the above hypotheses and prove that, in the bitter end, C),
and €, can be chosen in an n-independent fashion, uniformly in g.
(ii a) The off-diagonal 7, (k). If 3 € C¢, then

g1 5k 2 @) e 2™ =D, () " ()71 < [T, 6(8) i
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But with a modification of (3.72),

g ifn =0,

n 3.83
e~ ifn > 1, ( )

Irns(R)] e < 4CrCyle| B, where B, := {

such that )
st s < ()R (W)l < 2Calelg ¥ B,

n;—n —

both provided € meets the condition

(A.CCr) 7). (3.84)

le] < €nq1 1= max (en, %

Hence, if |Sm G| < a,,
|7~Tn+175(/-€;p, q)| <2C,lelg Nnén (1= dpq) e%m(ﬁ_é).(p_q)wn(p)wn(Q)'
Now assume |Sm 3 | < auy1 and, fixing p and ¢, take
5 p—q
/6 = /6 + Z(an - O‘n-i—l)i'
lp— 4
Obviously |Sm (| < a,,. What we get this way is
‘ﬁ'm—l,ﬁ(’ﬁpa q)| < 2C,|elg Nan (1= dp4) 6_(%_%“)‘p_q|wn(p)wn(Q)
for each pair (p,q) € Z¢ x Z. Thus, from the expression (3.56) for the norm,

||7~rn+1,ﬁ(’l{’) ||n+1;—(n+1)
wy (p)wn(q)
Wny1(P)Wn11(q)

< 2C,|elg R"B,, sup Z g4 +3)anlp—d
9€5° pezd\{q)
< 2C,|elgR" B, Z e ) Panlplyy ()70, (3.85)
peZo\{0}
After (3.54), the second inequality follows from shifting p to p+¢. We control the above

bound by treating the cases |w - p| < R®F/2 and |w - p| > R™+D/2 geparately. In fact,
if |w-p| < ROFV/2 then |p| > R=FD/2 follows from (1.13), and

—4(n+3)"2an —2n" 2, —2(n+1) "2, R~ (n+1)/2v —(1-X
A3 2alpl _ bl . p=2nt1) C wna(p) 0V < 1,

whereas

1-R) 6-(1-&)&*@“)/2

jw-p| > REFDZ =, ()Y <
Since @, > ag/6 by (3.62) and, for a > 1 and m > 0, m~2a™ > < (Ina)?, we have

6_2(n+1)72an2\{7(n+1)/2u < 6_11_262a0 1n(N71/4“) R—(n+1)/4v

The remaining d-dimensional geometric series satisfies

$° e ol < o) (M)d

peZ\ {0} ao

Hence, we infer that if |Sm | < a1 and k € D,,, then

~ _ +1
||7Tn+1ﬂ("f)||n+1;—(n+1) < Crpa]elg R e
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where we finally pin down the values of the previously free parameters
¢ :=1min (Le’ag In(R=V4) 1 — N) >0 and p:= N1/ max (412) -

2 12
and take

Crosr > 2C(d) N—le—w”*an((" ;U ) C.. (3.86)

(ii b.1) The non-constant part P, (k) of the diagonal. If x € D, ; and
lw - gl < V(1 —=N)b, then kK +w - q € D,. So, by (3.54),

||pn+1(l€)||n+l;—(n+l) = sup [Py 1 (5 q)[wni1(q) 7
qeZ4

< max{ sup w, sup |Pn+1(H;Q)|wn(Q)_2/N}
|w-q|<R™(1—R)b wn11(q) |w-q| >R™(1-R)b
cmac{ sup POl g ),
|w-q| <R™(1—R)b wn+1(q) '
But we know that the relations ||Pn+1(/<)||n;_n < |[Pas1(B)],.py + [0n41] and [6p4a| =
| Ps1(0;0)] < [[Pya(0)]],,,_,, hold. Moreover, (3.81) and (3.60) yield
HPTH'l('%)Hn;—n S ||7Tn+1,ﬁ(’%)”n;—n S 2H7T”5(H)||n,—n S 2AnCn‘€|gNn7

assuming (3.84) and k € D, D D,;; hold. Observe that, for positive = and p,
x~le=* P/(er) < 1. Consequently, if we demand that
R < min (3,%), (3.87)
say, and
Croir > A, Ch, (3.88)
it remains to be proven that
[Pr1(s +w - q)|
sup

2
KE€EDn 11 wn-i-l(Q)
|w-q|<R™(1-R)b

< Chyrlelg N (3.89)

Notice that the rather arbitrary (3.87) imposes an interrelation between X and g, which
is needed in the limit b < g/3 — 0; since we cannot take b large, we have to take
N = o(b) in order to guarantee e=2® 1R < R /4 above.

In order to verify (3.89), we use the recursion formula

Prnt1 = Dn = DPnYn nPn + Sn(+;0) — 5,(0;0) (3.90)
subject to

an = (1= pyy,)™' and 7,(k) :=T,(k;0),
which is an advocate of (3.76). The bound (3.52) yields

|n ()] < Crg ' R™"IR"g|? (k € Dy). (3.91)
By virtue of |s,(k;0)| < ||rn(k)m. (k) (3.83) gives

Hn;—n’

3 ifn =0
|Sn(/<a;0)\§4CfLCp\e|2{g mn=5 (3.92)

A, gRme=" if p > 1,
in D,,.
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(ii b.2) The Taylor expansion of p,.1(k) = P,;1(k;0). Let us abbreviate
on (k) = Pn(k) — P (0)s,

for each natural number n. The objective is to show that the estimates

_ L\ Canilelg
/ < N n+1 .
P 1(0)] < (1 - +3) 5 (3.93)
i.e., the iterate of (3.78), and
sup | (041 — 0) (K)] < Coa[e] g R*H (3.94)

HEDTL

hold. Indeed, with the aid of such bounds together with (3.79), (3.89) follows from

kK
sup (z + |k|)Fe " = (—) eclnl =k (a > 0)
x>0 «

for £k = 1,2 and € suitably small. Moreover, the Cauchy estimate

—2n

R Sup|(ons —0u)(Q) (8 € Dut),

on 1 (£)] < lon(w)] + 07|k ] 7
— 8 ¢ep,

implies that also (3.79) gets successfully iterated.
The bound in (3.91) implies

m(0) = 7,,(0) =0,
such that p;,_,(0) = p,(0) + s,,(0; 0) according to (3.90), and hence

1 20
P -0 = o= § 50

Thus, resorting to (3.92),

C1n-i-1|€|3/2g
(n+2)(n+3)’

[Pr42(0) = PL(0)] < RT'DF sup [0 (s, 0)] < 5
KED,

if the constant C),,; satisfies
Chrsr > 8(n+2)(n + 3)Crb A, B, |e|/2C?. (3.95)

The bound (3.93) now follows, assuming also C,, < C),41.
We still need to demonstrate (3.94). This will be provided by (3.90), since then

!
K
Tns1(K) = 0u(K) = (Pn Yo G Pa) (K) + 50(1510) = > (0 0) 7
1=0,1 ’
such that (3.80), (3.91) and (3.92) yield (3.94) if
Cpi1 > ACPRTH (B2 + 6A,B,)|e|/*C2. (3.96)

Intuition behind (ii b.1-2). Due to the super-exponential decay of s,(k;0) in
(3.92) and the strong induction hypothesis |4,| < Cp|e|g R?™ on the constant part of p,,,
the flow of the remainder p,, = p,, — d,, reads roughly

]jn-i-l ~ (1 - pn’}/n)_lpm (397)
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by (3.73). Hence, the a priori bound |(1—p,v,) | < 14+Cle| yields a sequence diverging
in n, with very little hope of proving bounds such as (3.67)—see (3.89). However, the
support of v, is highly concentrated on the annulus ®¥+1 < |x| < RFb. Tterating for
n > k steps, with x on the latter interval,

Pos1 (k) = (1= pi(k) (%)) " P1 (k) = (1+ O(€)) P (k).
That is, p,, remains close to p;, which enables proving (3.67) through (3.89).

In fact, our argument is different still: since x,(N&) = x,-1(k) and G(Xk;0) =~
N~1G(k;0), we have 7,(Rk) ~ N71v, (k) for n > 2. Inserting this into (3.97), we
notice that the approrimate scaling invariance

ﬁn—l—l(N Ii) ~ an(’KO
is consistent with the flow. This is what the bounds (3.78)—(3.79) reflect.

(ii ¢c) The constant part ¢, of the diagonal. Recall that v may be viewed as a

function of ¢,, by the induction hypotheses; the identity d, = A, () is bijective on J,.

The flow produces a near-identity analytic function 8,1 = 6, +d,(,) of d,, on the disk
I,,, such that, for € small enough,

Ons1(lpn) D Log1. (3.98)
The analyticity of the map d,, — d,, can be read off (3.75) and the expression of r,. As

far as estimates are concerned,

2 . .
|d,,| < ||rn(0)7,(0) < CC,%C'F |€|2g {g if n =0,

lhs-n < Nre=2h" if > 1,

in the complex neighbourhood 21, of I,, of radius 1|1,|, where |I,,| is the diameter of
the disk I,,. Consequently, a Cauchy estimate yields the bound

su dn
sup |0d,, /96, < IJ%LW
on€ln 1 |[n|

<1 (3.99)

on the Lipschitz constant of d,, on I,,, provided |e| < €,,1 with

if n=20

1 >acstocicr Y X ’ 1

6n+1 - C10 COnCF {N—n€—2c,u" if n Z 1. (3 00)
In this case also

dn] < 51l = 51Tt (3.101)
holds, which validates (3.98), considering how the boundary of I,, is transformed under
Ont1-
Notice that (3.99) implies

}5n+1(x) - 5n+1(y)‘ > %|:L’ - y| (x,y € In)> (3'102)
meaning that d, +— 0,1 is one-to-one. By continuity and (3.98), there exists a closed
set J, .1 C I, that is bijectively and analytically mapped onto I, 1: Jopq = Ot (Tnsn).-
We can backtrack with the aid of the map A, obtaining a closed subset J,.1 C I,
(see (3.77)) that is bijectively and analytically mapped onto I, by the map A, :=
Opi1 0 Ay

Jni1 = An 4 (Tnga).



CONSTRUCTION OF WHISKERS FOR THE QUASIPERIODICALLY FORCED PENDULUM 37

It follows immediately that
Jn+1 C J,.
(iii) Large values of n and the limit ¢ — 0. Suppose C, is independent of g,
which is the case for Cy. The recursive conditions (3.86), (3.88), (3.95), and (3.96) can
be summarized in bounds of the form

Cht1 > Kn(9)Cn and Chyq > Ln(g)|€|1/4 Cr2r

Choosing b := g/3 (due to (3.95)) and X := min (3,5?) (due to (3.96); see also (3.87)),
which is allowed, we may bound K,(g) and L,(g9) wuniformly in g:
SUPg< g<go Kn(9) < K, and supy. ., Ln(9) < L,. This follows from the fact that
N~le=* — (0 as N — 0. Moreover, L, < L for each n, such that we may choose

Chry1 = max (K, L|e|1/4C'n) C,.

The numbers K,, > 1 converge to unity so fast that the number K := [[*7 K, > 1
is finite. Now choose € so small that Lle|'/*KCy < 1. In particular, C; = K,Cj, and
inductively C,, = Ky - -+ K,,_1Cy < KCy. We conclude that the sequences (C,,) and (e,)
(see (3.84) and (3.100)) converge to positive numbers.

(iv) Fine-tuning the Lyapunov exponent 7. The maps §, are relatively expan-
sive; (3.102) holds, while the target I, contracts by a factor of X? < L at each step.

2
Thus, demanding A,,(J,,) = I,, at each step for the map A, = d,, 0 -+ 0§y amounts to

[z —y| <2°|An(z) — An(y)| S Cg (28" (z,y € Jn),

or lim,, . |J,| = 0. Because the J,,’s form an ever decreasing chain of closed disks, their
intersection consists of precisely one point:

{(v}=() L.
n=0

The value of 7 is an analytic function of €, because the sequence A;1(0) converges
uniformly to v with respect to e. For real values of €, A, sends real numbers to real
numbers, making v real. 0J

4. PROOF OF THEOREM 1

Let us summarize what we have learned thus far. The solution X°(z) to the equations
of motion in the uncoupled case was found. In the coupled case we resolved KAM-type
small denominator issues, which contributed the ¢ — —oo (z = 0) asymptotic X(6) of
the general solution X (z,0), as well as the linearization X;(0) = 0,X(0,0).

We can now solve (1.11), and thus find the unstable manifold WY also “far away”
from the torus 7, by a Contraction Mapping argument.

To begin with, we single out the uncoupled part X° of the complete solution X

X=X"+X with X|_,=0.

As £2X° = (42sin ®°,0), (1.11) now becomes £2X = —(42sin @°,0) + Q(X° + X). In
other words, the map X has to satisfy

KX = W(X), (4.1)
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where we define the linear operator

K:= (é EOQ) with L := L* —~*cos ®° (4.2)

and the nonlinear operator W through the expression

W(X) := (—?sin ®° — +2(cos °)®, 0) + Q(X° + X). (4.3)
Throughout the rest of the work, we shall refer to different parts of the Taylor ex-
pansion of a suitable function h(z, ) around z = 0 using the notation

k
. he(2,0) =) 2Fh(0) and  Sphi=h—he.

=0

_ 020(0,6)

Observe that X, = X, and X, = (4,0) + X, exist. Setting
X(2,0) = X<1(2,0) — (4,0)z + Z(2,0), (4.4)
we may transform equation (4.1) into the equation
KZ =W(Z) (4.5)

for Z = 6, X , where we define W through
— - 2 0\
W(Z) = 6, {W(X) n (7 (cos )‘I)Sl)] , (4.6)

taking now (4.4) as the definition of X.
Let us consider the complex Banach space A of (bounded) analytic functions Z on
the compact set

M= {(2,0) | Re(2,6) € [-1 = 7,1 +7] x T, Sm (2,6) € [-,7]*! ],
7 > 0, equipped with the supremum norm, and its closed subspace
Ay :={Z e A|Z,4 =0}. (4.7)
For future use, let us also define the closed origin-centered balls
BR):={Zec A||Z||, <R} and B;(R):=B(R)NA,.

Any element of A extends analytically to I1,. for some 7/ > 7, allowing uniform estimates
on its derivatives on II,.

Remark 4.1. Whereas equation (4.1) is plagued by small denominators, equation (4.5)
is not. This is so due to the decomposition (4.4) which separates the previously solved
“KAM-asymptotics” X<; from X and enables reducing (4.1) to (4.5) on the space Aj,
which one could well call the small-denominator-free subspace of A.
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4.1. Existence and uniqueness of 7. Postponing the proofs until the end of this
section, we make two observations, important in demonstrating that (4.5) is solvable.

Lemma 4.2. With sufficiently small R, T, and € (depending on the analyticity region
of f), the operator W : A — Ay maps the ball B(R) in A into a ball B;(R') in Ay
with R = Cg*(R* + |e|), and W |4, is Lipschitz continuous on By(R) with a Lipschitz
constant proportional to g*(R+ |e|). If the restriction of Z € A to a real neighbourhood
of [-1,1] x T¢ has the real range R x R? and e is real, then the same is true of W (Z).

Lemma 4.3. If 0 < 7 < 1, the linear operator K : Ay — Ay has a bounded inverse
K= € L(A;) obeying ||K~ 1||£(A1 < Cy2771(1 — 72)72. It preserves analyticity in e.
If the restriction of Z € A to a real neighbourhood of [—1,1] x T has the real range
R x R?, the same is true of K1 Z.

We have developed enough machinery to extract a solution from (4.5):

Theorem 4.4. For sufficiently small R, eg < R/2, and T (depending on the analyticity
regions of f and X<1), equation (4.5) has a unique solution Z € By(R). It is continuous
on D, analytic in €, and bounded uniformly by Cle|. The restriction Z|_y yjx1a takes
values in R x R?, provided € is real.

Proof. We know by Lemmata 4.2 and 4.3 that ='W maps B;(R) into itself. We may
furthermore choose ¢y and R such that the operator ='W becomes contractive on
Bi(R). The Banach Fixed Point Theorem implies that ' has a unique fixed point
Z in the ball B;(R).

The theorem also implies that Z is analytic in €. Namely, Lemma 4.3 says that
K~1 preserves such a property. Furthermore, the e-dependence of W comes solely
from 7, Xy, X1, and 2, making it analytic. Hence, the uniformly convergent sequence
((K~'W)*¥(0)),y reveals the analyticity of the limit Z. The latter is also R x R%valued

n [—1,1] x T? if € is real. Finally,

1Z]| < IETW)(Z) = (KTIW)(0) |0 + 1K™ W) (0)]l o < LIl Zl, + Cle]

yields ||Z]|, < Cle]/(1 — L). Here (K~*W)(0) was bounded using R’ of Lemma 4.2 at
R=0. U

4.2. Putting it all together. To reach the statement of Theorem 1 about X", we
glue together the pieces provided by Theorems 2.1, 3.3, and 4.4.
Assuming (Vy) = 0, we have constructed analytic maps v and

X(Z, 9) = Xo(e) + ZXl(e) + 52X(Z, 9) with 52X =7 + 52X0

that solve (1.11) in a complex neighbourhood of [—1,1] x T? and satisfy the physical
constraint ®1|_, = 4. Recall now (1.16). Since (1.18) is not automatically satisfied, we
are required to pinpoint specific values of a and g so as to fulfill X, 3(1,0) = (7,0). To
this end, we utilize the Implicit Function Theorem.

Con&der the implicit equation X(e, g; , 5) := ( B) +(0,5) — (7,0) = 0. Both X
and —ﬁ) are continuous, and we get from X = (®° 0) + O(e ) that

0X (e 97 ,3)
X(0,9;1,0) =0 and det ( ) T a2 O(e)
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for (e,g) € D and for whichever values of o and 3 the map X is well-defined. Hence,
if we choose ¢, small enough, there exist unique continuous functions a and 3 on D,
analytic with respect to €, such that a(0,g) = 1, 5(0,g) = 0, and

X(e,g;a(e, g), B(e, g)) = 0.

Moreover, a(e,g) € R and (e, g) € R? for € real, as X is then real-valued. A good
reference here is [Chi96].

4.3. Proofs of Lemmata 4.2 and 4.3. We conclude the section by presenting the
proofs of Lemmata 4.2 and 4.3 used in the proof of Theorem 4.4.

Proof of Lemma 4.2. Given Z € A with ||Z]|_, < R, we study W (Z)—defined in (4.6),

and clearly an element of A;. Notice that in the relation (4.4), expressing X in terms
of Z, the maps Xy and X; were previously determined and are independent of Z.
Furthermore, taking advantage of (4.4) and Theorems 2.1 and 3.3, we deduce

Xl < C(lel + R). (4.8)
With the aid of (1.10), cast equation (4.3) as
W(X) := (¢°sin(®° + ®) — 42 sin ®° — 4 cos(9°) D, 0) + A Q(X° + X).
Recall that f is analytic on the strip [Sm¢|, [Smy[ < 5. Also, Sm PO(2) = O(1) on
II,, when 7 < 1. Hence, owing to (4.8), our function Q(X° + X) is well-defined for A

and R sufficiently small and the strip Il about [—1,1] x T¢ narrow enough.
Since sin(®Y + @) = sin ®° + cos(P?)P + O(®?), in a neighbourhood of II,

W (X)lle < 19° = 7] llsin @° + cos(@)@ |, + Cg?[[@]1%, + A (X" + X)

The factor g2 — »2 is the reason we chose to subtract 42 cos(®°)® from both sides in
equation (4.1). Namely, |g*> —~*| = [29+ v — g|g — 7| < Cg®|e|. Terms proportional to
® are dominated by (4.8). Thus, for € and R small (independently of g and each other),

IW(Z)llo, < Cg*(R* +e]).

oo
In order to obtain the Lipschitz continuity of W1|y,, it suffices to show that Z i
X — W(X) is Lipschitz, as neither (W (X))<; nor X<; depend on Z =: 6 X. To
that end, we use the Mean Value Theorem, see [Cha85|, and conclude that for some
Z =: 62X on the line segment between two points Z’ =: 5, X' and Z” =: §,.X"

[W(X) = WX < IDWEZ = 27| -

The derivative is bounded by C'g*(R + |€|) given (4.8), in particular when [|Z|| < R.
From its explicit expression, one immediately recognizes that W preserves the class
of functions whose restriction to [—1, 1] x T¢ has the real range R x RY, if € is real. [

loo

Proof of Lemma 4.3. £ maps A; into itself, and C in (4.2) inherits this feature.
Let us start with the “pendulum part” of K, and solve

Lf=g
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resorting to the method of characteristics; we write (z,60) = ({e,9 + wt) in order to
obtain an ordinary differential equation (ODE). Recalling the identity (1.7), we see that

(87 — 7% cos @°(Ce™)) F(CE™, 0+ wt) = g(Ce™, 0 + wi), (4.9)

and our task reduces to studying L; := 02 —~2 cos ®°(¢e). Since a translation in ¢ and
9 eliminates (, we can just as well set ( = 1.

We proceed in the Fourier language. The function f solves equation (4.9) if and only
if for all ¢ € Z? the functions u(t) := ¢t f (7, ¢) and v(t) := €7t §(e, q) satisfy

Ltu = .
Noticing that cos ®°(e™) = 2tanh®yt — 1, we see that L, has got the zero mode
uy(t) := (coshyt) ™,

i.e., Lyuy = 0. Since L;u = 0 is a linear second order ODE, there exists precisely one
other zero mode uy of L; that is linearly independent of u;. Because u;(t) # 0 for any
t € R, us may be found by a standard procedure:

dt t sinh vt
t) = uq(t = + ,
ua{t) = )/u%(t) 2 cosh yt 2y
omitting any additive constant emerging from the integral. Let us express the linear
homogeneous equation L;u = 0 as the first order system U = AU with U := (u,u)T
and A(t) := (12 cos go(ew) o). Then w := (! 3?) is a fundamental matrix solution of the
system (i.e., w = Aw) with detw = 1 and thus

wl — ( U2 —u2> and  w(t)yw ' (s) = (* uz(t)ui(s) _Ul(t)u2(3)> ‘

—’[1,1 (75} * *

In terms of a first order system, the complete equation Lyu = v reads U = AU + V,
V := (0,v)T. Varying constants,

00 = wlt) (™ @0 + [ W V)ds).

to

Next, we take tg — —oo. In that limit u(tg) = O(e?"%), such that

u(t) = / [ug(t)ui(s) — ui(t)ua(s)| v(s)ds.

— 00

Equivalently,
fieta) = [ Ralse) gl g eras (4.10)
in terms of the kernel -
Ko(5;2) 1= Wan(2)Wa1 (2€7%) = War(2)Waa (2€7),
defined (by analytic continuation) on {(s,z) € R x C|z ¢ {%i, £ie ?*}}, where

1
Wa1 :=2P and Wegy =~ 'P 1H+17_1Q7

and
P(z):=(Z2+1)7'2 and Q(z):=2"'(z*—1). (4.11)
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This is so, because Wa; () = u;(t).
In a complex strip |Sm z| < 7 < 1, the inequality |22 + 1] > 1 — 72 yields

|Ko(s;2)] < C(1—72)"2y7 1kl s<o. (4.12)

Since £(0,¢) = §(0,q) = 0, we find that (4.10) remains true if 0 replaces 7. Inserting
all this into the Fourier series of f(z,#) leads to

0 ~
f(z,0)= / Ky(s;2) g(ze,0 +ws)ds, (2,0) € [—1,1] x T% (4.13)
Here Fubini’s Theorem was used, taking advantage of the bound (4.12). Indeed, we

may express g(z,60) = 22h(z,0), where h is analytic in the same region as g. Since
|h (2, q)| < supy,|h(z, 0)|e~"ld < Ce=7'lal for some 7' > 7, we have on II, that

Z/ Kq; s;2) g(ze7%,q) e igq-(0+ws) ds<C(1—7' 2\2]2 Ze =l ~ 5.

qezd qezZ4

Following the line of reasoning above, solving the “rotator part”
L2f =
amounts to integrating & = v and results in an expression like (4.13) with the kernel
Ky (s:2) = Waa(2)Wa1 (267°) — W (2)Waa(27°) = —s,
introducing
Wyi:i=1 and Wyy =~ 'In.

For each index n € NU {oo} define now

0 -~ ~
L= [ Ko zeeorwas wn k= (B2,

where (z,0) € I, and Z € A; are arbitrary. Also denote
KZ = I

Since the integrand here is an analytic function of (z, ) on the compact region Il and
continuous in s € [—n,0], it follows from an exercise in function theory that I, with
n < oo is analytic on II;; see p. 123 of [Ahl66]. As an element of Ay, Z(z,6) has the

representation 227 (z,0), where 7 is analytic on II,. Accordingly, (4.12) implies

—n Z
KZ(z,0) — I,(z, 9)’ < 07_1/ e N Z (27,0 +ws)|ds < C’|z|212 e|3|“72’ (4.14)

— 00

showing that I, — Kz uniformly on II. as n — oo. Hence, also KZ is analytic on the

latter region. Moreover, I,,(z,6) = O(2?) as z — 0, which by virtue of (4.14) yields
K: Al — .Al. N

We showed above that if Z € A; and KZ = Z' (thus Z’ € A;), then Z = KZ' holds

n [—1,1] x T¢ C II,. But each side of the latter equation is analytic on II, and hence
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agree there, meaning that K is the left inverse of K: KK = 1 A, A direct computation
shows that it is also the right inverse. In other words,

K=K "'on A

K(s;2) € R, provided z € R. Thus, should the restriction Z|;_; 1jxra be real-valued,
50 is (K71 Z)[(_1 17e-

The integrals I,, also depend analytically on «. Thus, according to Theorem 3.3,
they are analytic functions on the domain |e| < €. Since |y — g| < Cgle|, the trivia
v > % g > 0 and (4.14) guarantee that the convergence I,, — K17 takes place uniformly
on compact subsets of D defined in (1.15) (g bounded away from zero).

It remains to be checked that K~' is bounded. For Z € Ay, Z(z,0) = Y77, w Zi(0) 2F

converges in the disk D(0,7) := {z eC ‘ |z| < 7‘}. Using the Cauchy inequalities
1Z(0)] < k! 77% || Z]|, we deduce the bound

2(2,0)| < 2(|2l/7)1 2]l if =€D(0,7/2)

In I, |2| < R for a certain R = 1+ O(7), such that z¢?* € D(0,7/2) whenever s <
S := —y7'In(2R/7)). The bound (4.12) for K¢ applies to Ky as well. Summarizing,

i clzl. ([ S o clz|
7l < 0 / s (] / ds | < —Z1% oo
Al = Sa e\ 0t L pae 2 ®) S pra— oy

which finishes the proof. U

5. ANALYTIC CONTINUATION OF THE SOLUTION

Here we present the proof of Theorem 2. In the notation of Section 4, the ezisting
map Z = 02X solves (4.5) and, by virtue of W’s analyticity, admits the representation

~ 2 0
5o X = K716, l(v C(O)S(I) ) X<1 + Zw X<1 }—l—

(5.1)
K Z[ (Kt +6:X) % — 0 (Xy) ™|
on the set 1L, taking ¢ small enough, and denoting
wh® = ED'CW(O) (5.2)
and a repeated argument of such a symmetric k-linear operator by
()% = (x,...,2),

k times
for the sake of brevity. Observe that we have omitted a d, in front of the square brackets
on the second line of (5.1) as redundant.
Equation (5.1) may be viewed as a recursion relation for d,.X. It is crucial that

w®, wh = O(eg?), (5.3)
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when (€, g) € D; see (1.15). Namely, any given order 8, X" in the convergent expansion
52)? = Z Ee 52)26
=1

is then completely determined by )?Sl and the lower orders §,X' 1<I1<?-1)
through the right-hand side of (5.1). Moreover, since )?Sl = O(e), only finitely many
terms in the sum over the index k are involved. Together these facts imply that only
finitely many recursive steps using (5.1) are needed to completely describe any given
order 6, X’ in terms of X <1 alone and that, at each such step, only finitely many terms
from the k-sum contribute. B

It is important to understand that X-; is a predetermined function. As we shall
see, the recursion procedure will then provide the analytic continuation of each X ut —
XE + 0, X% (£ > 1) to the large region U,y x {|Sm6| < o} of Theorem 2.

5.1. Tree expansion. We next give a pictorial representation of the above recursion.
It involves tree diagrams similar to those of Gallavotti, et al. (see, e.g., [Gal94b,CG94)),
with one difference: there will be no resummations nor cancellations, as the expansion
in (5.1) contains no resonances and is instead well converging. This so-called tree
expansion is needed for bookkeeping and pedagogical purposes; we simply choose to
draw a tree instead of spelling out a formula.

Let us first define the auxiliary functions

D L (G R R D e
: w(k)()zgl)m ifhk=23,...,

and make the identifications
——® =K7"'5h" and ——) =K716, Y K" (5.4)
k=0

Furthermore, let

—O = 52X, —_—e = X§1>

In the diagram representing the k-linear w®), the k “free” lines to the right of the node
stand for the arguments. We say that these lines enter the internal node, whereas the
single line to the left of the node leaves it. For instance,

and, for £ > 1,

= K 'w® (X, 6,X, K10,0W).
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Notice that, as w® is symmetric, permuting the lines entering a node does not change
the resulting function. We emphasize that all of the functions introduced above are
analytic on II; and || < €.

In terms of such tree diagrams, or simply trees, equation (5.1) reads

O = QO+ ——QO + +

(5.5)
+<}+{2 o

using multilinearity to split the sums X<; + 02X into pieces. Above, the sum after
the first tree consists of all trees having one internal node and an arbitrary number
of end nodes, at least one of which, however, is a white circle. This rule encodes the
fact that on the second line of (5.1) the summation starts from & = 1 and that the
contributions with only )Z'Sl in the argument (i.e., trees with only black dots as end
nodes) are cancelled.

Using (5.1) recursively now amounts to replacing each of the lines with a white-circled
end node by the complete expansion of such a tree above. This is to be understood
additively, so that replacing one end node, together with the line leaving it, by a sum
of two trees results in a sum of two new trees. For example, such a replacement in the
third tree on the right-hand side of (5.5) by the first two trees gives the sum

e

Before proceeding, we introduce a little bit of terminology. The leftmost line in a tree
is called the root line, whereas the node it leaves (i.e., the uniquely defined leftmost
node) is called the root. A line leaving a node v and entering a node v’ can always be
interpreted as the root line of a subtree, the maximal tree consisting of lines and nodes
in the original tree with v as its root. We call v a (not necessarily unique) successor of
v’, whereas v’ is the unique predecessor of v.

The recursion (5.5) can be repeated on a given tree if it has at least one white circle
left. Otherwise, the tree in question must satisfy

(R1’) The tree has only filled circles (¢)) and black dots (s) as its end nodes,
together with

(R2') Any internal node has an entering (line that is the root line of a) subtree con-
taining at least one filled circle as an end node.

After all, the recursion can only stop by replacing an existing white circle with a filled
one. Continuing ad infinitum yields the expansion

—0O = Z (Trees satisfying (R1’) and (R2')) = Z, T, (5.6)

trees T
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where the prime restricts the summation to trees 7" satisfying (R1") and (R2’). We point
out that each admissible tree appears precisely once in this sum, considering different
two trees that can be superposed by a (nontrivial) permutation of subtrees that enter
the same node. _

The earlier discussion concerning the description of 5 X" in terms of a finite sum
involving only X<, translates to the language of trees in a straightforward fashion.

First, the second part of (5.3) and X<, = O(e) amount pictorially to
= 0O(e) and = O(e).
Second, w®) = O(g?) and the first part of (5.3) yield

—@) =0() (k=1,2,...)

% —o(1)  (k=23,...).

Expanding the filled end nodes

—) :i—@ (5.7)

according to (5.4), on the right-hand side of (5.6), we get a new version of the latter by
replacing the rules (R1’) and (R2'), respectively, with

(R1) The tree has only numbered circles ((k) with arbitrary values of k) and black
dots (e) as its end nodes,

and

and

(R2) Any internal node has an entering (line that is the root line of a) subtree con-
taining at least one numbered circle as an end node.

Let us define the degree of a tree as the positive integer

)+ Y k#(—®) (5.8)

for any tree T satistying (R1) and (R2). By #(G) we mean the number of occurrences
of the graph G in the tree T'. That is, the degree of a tree is the number of its end
nodes with suitable weights plus the number of nodes with precisely one entering line.
Since a tree has finitely many nodes, its degree is well-defined. Then a rearrangement
of the sum arising from (5.7) being inserted into (5.6) yields formally

—0 = i ST (5.9)

=1 trees T'
deg T=l

deg T := #( ) + #(

where the asterisk reminds us that the rules (R1) and (R2) are being respected.
According to the analysis above, the particular graphs appearing in the definition of
deg T are the only possible single-node subgraphs of T" proportional to a positive power
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of €. Since each tree is an analytic function of €, writing again (- )* for the kth coefficient
of the power series in €, we have

o o
Z Ek Tk _ EdogT Z Ek Tk—l—dogT.
k=degT k=0
Hence, only trees with degree at most equal to ¢ can contribute to 5, X "

5o Xt = zé: Srt= ( S T) (5.10)

=1 deg T=I deg T<C

or, alternatively,

STTHOE) (€ 0) (5.11)
deg T</t
for each and every ¢ =1,2,.... The expansion in (5.9) is in fact just a compact way of

writing (5.11). We emphasize that the latter can be derived completely rigorously, for
each value of ¢ separately, but resorting to the use of formal series allowed us to treat
all orders of 6, X at once. We call the series (5.9) an asymptotic expansion of 8,X; the
partial sums ZdengT need not converge to 52X for any fixed € as £ — oo, but for

a fixed ¢ the error is bounded by an (-dependent constant times |e|**! on the mutual
domain of analyticity, |e| < €.

Example 5.1. The beginning of the asymptotic expansion (5.11) reads

X = —O+0E) = —O+—0 +——0+

5.2. Analyticity domain of trees. As already pointed out, all trees T above are
analytic functions of (z,0,€) on I1. X {|¢| < €9}. Due to the projections d; appearing in
(5.4), they also satisfy T'|,—g = 0,T|,—0 = 0, i.e., are elements of the space A; defined
in (4.7). On this space, the inverse of K = (& %) (see (4.2)) constructed in the proof
of Lemma 4.3 satisfies

0 ~
K~h(z,0) = / R(s:2) h(ze, 0+ ws) ds. (5.12)

Consequently, we will now show that the analyticity domain of a tree in the z-variable
is in fact much larger than the neighbourhood of [—1, 1] that is included in II,; namely
it includes the wedgelike region

Urg = {|z| < 7} U{argz €0, ulr—d,m+9]} cC

(with a new 7 and “small” 9).
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Lemma 5.2 (Analytic continuation of trees). Without affecting the analyticity domain
with respect to €, there exist numbers 0 < 7 < 1,0 < ¥ < 7/2, and 0 < o < n such
that each tree in the sums (5.9) and (5.11) extends to an analytic function of (z,0) on
U,y x {|Smb| < o}.

Proof. Observe that, as a polynomial, Xsl is an entire function of z. On the other
hand, ®°(z) = 4 arctan z = 2i(log(1 — iz) — log(1 + iz)), implying that |[Sm ®°(z)| <
in U, with 7 and ¥ sufficiently small. By Remark 1.3, f(®°(z),6) is analytic, making
the maps h®) and X, analytic on U,y x {|Sm6| < o} for some 0 < o < 7, where 7 is
determined by f and o by )Zgl (ultimately by f and w).

Suppose h = d2h is a map analytic on U,y x {|Sm6| < o}. Then the integrand in
(5.12) is analytic in a neighbourhood of the latter set. By virtue of Fubini’s theorem,

0
K h(¢,0)d¢ = K(s;0) h(Ce™, 0 dCds =
7{ (.0) d¢ /oojf (5: Q) B(CE™, 0+ ws) dC ds = 0

for any closed contour I' inside a sufficiently small neighbourhood of U,y and enclosing
2. Hence, Morera’s theorem yields analyticity of X~'h with respect to 2. As always, an-
alyticity with respect to 6 follows from an exponentially decaying bound on the Fourier
coefficients. Applying this argument at each node of a tree proves the claim. O

Proof of Theorem 2. Since the number of terms in the sum in (5.10) is finite and the
functions X<1 and X% in X = X°+ X<1 + 5, X are analytic on U,y x {|Smé| < o},
the analyticity of X* follows from Lemma 5.2.

From the equations of motion, (1.11), a Taylor expansion yields

L£2X = —L2X°+ Q(X°) +Z DmQ(XO)(X) ,
m= 1

where the trigonometric degree of D™(X?) is N for € # 0 but vanishes at ¢ = 0 because
X0 does not depend on 6. For each k > 1, let ny stand for the trigonometric degree
of X*. Equating like powers of € in the expansion above, we infer two things. First,
n1 = N. Second, we must have, for each ¢ > 2,

< Mg, + -0+ + Ny, where k1 + -+ k,, = £,
£= N+ng, +---+mnyg, whereki+---+k,=0—-1

because the trigonometric degree of a product is at most the sum of the trigonometric
degrees of the factors; e'4%i? = 240 and e4fe=100 = 1,

Next, assume that ng < kN holds for each 1 < k < ¢ — 1, recalling that this is the
case if k = 1. Subsequently, the estimate for n, above becomes n, < ¢/N. O
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