On distribution of energy and vorticity for
solutions of 2D Navier-Stokes equations with
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Sergei B. Kuksin

Abstract

We study distributions of some functionals of space-periodic so-
lutions for the randomly perturbed 2D Navier-Stokes equation, and
of their limits when the viscosity goes to zero. The results obtained
give explicit information on distribution of the velocity field of space-
periodic turbulent 2D flows.

0 Introduction

We consider the 2D Navier-Stokes equation (NSE) under periodic boundary
conditions, perturbed by a random force:

vl —eAv+ (v-V)o+ Vp =eq(r, x),
. 2 = = 2 2 o, (0.1)

divo =0, v=o(r,z) eR* p=p(r,z), xe€T°=R"/(2nZ").
Here 0 < ¢ < 1 and the scaling exponent a is a real number. We assume
that a < % since a > % corresponds to non-interesting equations with small
solutions (see %&Kuk%a], Section 10.3). It is also assumed that [vdz =
[ 71dz = 0 and that the force 7] is a divergence-free Gaussian random field,
white in time andS mooth in x. Under mild non-degeneracy assumption on
7 (see in Section ) the Markov process which the equation defines in the
function space H,

H = {u(z) € L*(T%* R?) | divu = 0, / udr =0},
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has a unique stationary measure. We are interested in asymptotic (as € — 0)
properties of this measure and of the corresponding stationary solution. The
substitution

v=eu, T=¢", v=¢£¥*",

00
where b = a — 1/2, reduces eq. (b‘l) to

i —vAu+ (u-V)u+Vp=+vntz), divu=0, (0.2)
where i = u; and 7)(t) = eb/25
(see FKuk06a]) Below we study eq. NS
Let p, be the unique stationary measure for (b‘%} and u,(t) € H be
the corresponding stationary solution, i.e., Du,(t) = u, (here and below D
signiﬁeigglthe distribution %F_Z random variable). Comparing to other equa-
tions (0.1), the equation ( % has the special advantage: when v — 0 along
a subsequence {v;}, stationary solution u,, converges in distribution to a
stationary process U (t) € H, formed by solutions of the Euler equation

g% new random field, distributed as n

w(t, )+ (u-V)u+Vp=0, divu=0. (0.3)

Accordingly, pi,; — pq, where o = DU(0) is an invariant measure for (%3)
(see below Theorem [I.1). The solution U is called the Fulerian limit. This is
a random process of order one since E|V,U(t,-)|3, equals to an explicit non-
zero constant. The goal of this paper is to study properties of the measure
since they are responsible for asymptotical properties of solutions for equation
)

The first main difficulty in this study is to rule out the possibility that
with a positive probability the energy F(u,) of the process u,, equal to
3 J lun(t,2)]* dz, becomes very small with v (and that the energy of the
Eulerian limit vanishes with a positive probability). In Section 2 we show
that this is not the case and that

P{E(u,) <6} <C§Y*, V4§ >0, (0.4)

%Ch v. To prove the estimate we develop further some ideas, exploited in
6] in a similar situation. Namely, we construct a new process i, € H,
coupled to the process u,, such that E(a,(7)) = E(u,(rv™!)) and Uy sptisties
an Ito equation, independent from v. Next we use Krylov’s regglct ry87] on
distribution of Tto integrals to estimate Du, (7) and recover (0.

NSE
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. E§ B%’E . .
In Section B we use (0.4) to prove that the distribution of energy of the
Eulerian limit U has a density against the Lebesgue measure, i.e.

DE(U) =e(x)dx, ec Li(Ry).

The functionals ®¢(u(-)) = [ f(rot u(z)) dz are integrals of motion for the
Euler equation. An analogy Wi%?%%he averaging theory for finite-dimensional
stochastic equations (e.g., see 03]) suggests_hat their distributions be-
have well when v — 0. Accordingly, in Section ¥ we study the distributions
of vector-valued random variables

Ds(u, (1) = (B, (w (1), ..., Oy, (u,(1)) € R,

and of ®¢(U(t)). Assuming that the functions f; are analytic, linearly inde-
pendent and satisfy certain restriction on growth, we show that the distribu-
tion of ®¢(U(t)) has a density against the Lebesgue measure:

D(PeU(t)) = pe(z) da’, pe € Li(R™).

To prove this result we show that the measures D®gu, (t) are absolutely
continuous Wit%%rfspect to the Lebesgue aspre, uniformly in v. The proof
crucially uses (0.4) as well as obtained in [Kuk06b] uniform in v bounds on
exponential moments of the random variables rot(u, (¢, z)).

Since m is arbitrary, then this result implies that the measure i is gen-
uinely infinite dimensional in the sense that any compact set of finite Haus-
dorff dimension has zero pp-measure.

Other equations. The results and the methods of this work apply to other
PDE of the form

(Hamiltonian equation) + v({dissipation) = /v (random force),  (0.5)

provided that the corresponding Hamiltonian PDE has at least two ‘good’
integrals of motion. In particular, they apply to the randomly forced complex
Ginzburg-Landau equation

u— (v +i)Au+ilul®u=vnt,r), dimz <4, (0.6)

supplemented with the odd periodic boundary conditions. The correspond-
ing Hamiltonian PDE is the NLS equation, having two ‘good’ integrals: the
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Hamiltonian H an & total number of particles ' = 3 L [|ul?dz. Eq. ( b_(%

was considered i 8 ], where it was proved that for stationary in time
solutions u, of ( an 1nv1s01d limit V(¢) (as v — 0 along a subsgquence)
exists and possesses properties, similar to those, stated in Theorem T.1. The

metho%s%of this work allow to prove that the random variable E(u,(t)) sat-
isfies (0.4) uniformly in v > 0, that H(u,(f)) meets similar estimates and
that V' is distributed in such a way that D(H(V(t))) and D(E(V(t))) are
absolutely continuous with respect to the Lebesgue measure.

If dim x = 1, then the NLS equation is integrable and the i \éiscid limit V'
may be analysed further, using the methods, developed in 6] to study
the dﬁxlmped/ driven KdV equation (which is another example of the system

Certainly ourD%rlethods as well apply to some finite-dimensional systems
of the form (}Oé%f;fn particular — to Galerkin approximations for the 3D NSE
Pder periodic boundary conditions, perturbed by a random force, similar tq
]J'IZ_ZTIt is easy to establish for that system anal 1esD0f results in Sections h_
. More interesting example is given by system &@Fg;;whe 1the Hamiltonian
equation is the Euler equation for a rotating solid body [Arn89]. %B:s Sys-
tem can be cautiously regarded as a finite-dimensional model for (0.1); see
Appendix.!

1 Preliminaries

NS
Using the Leray projector IT : L*(T?; R?) — H we rewrite eq. (b_ZE) as the
equation for u(t) = u(t,-) € H:

w+ vA(u) + B(u) = Vun(t). (1.1)

Here A(u) = —IIAwu and B(u) = II(u - V)u. We denote by || - || and by (-,-)
the Lo-norm and scalar product in H. Let (es, s € Z?\ {0}) be the standard
trigonometric basis of this space:

o)== ] o et = 2 [

'We are thankful to V. V. Kozlov and members of his seminar in MSU for drawing our
attention to this equation.



depending whether s; + 5205, 0 > 0 or 81+ 5205, 0 < 0. The force 7 is assumed
to be a Gaussian random field, white in time and smooth in x:

d
n=—Cta), C= 3 bf(es(), (12)
s€Z2\{0}

where {b,} is a set of real constants, satisfying
bo=b_y#0 Vs, > |52 < o0,

and {0,(t)} are standard independent Wiener processes.

This equation is known to have a unique stationary measure p,.2 This
is a probability Borel measure in the space ‘H which attracts distributions
of all solutions for (T.1). Let u,(t,x) be a corresponding stationary solution,
le.

Du,(t) = p.

Apart from being stationary in ¢, this solution is known to be stationary
(=homogeneous) in z.

For any [ > 0 we denote by H!,1 > 0, the Sobolev space H N H'(T?; R?),
given the norm

l|lul|; = </((—A)l/2u<l’))2 dg;)l/z (1.3)

(so |lullo = ||ul]). A straightforward application of Ito’s formula to |ju,(t)||*

and |Ju, ()| implies that

1
By, Eluw@)|3==B, (1.4)

E [lu, (1)} = ;

DN | —

where for | € R wg denote B; = > |s|*b? (note that By, B; < oo by assump-
tion); e.g. see invﬁ%uk%a].

The theorem below describes what happe 5o the stationary solutions
u,(t, ) as v — 0. For the theorem’s proof see R%Kuk%a .

]
2D %1%160 : o
ue to results of the recent work 6], the stationary me S|re iy E%quue ifbs £ 0
for |s| < N, where N is a v-independent constant. Theorems . below remain
true under this weaker assumption, but our arguments in Sections I3, ¥ use essentially that
all coefficients b, are non-zero.



Theorem 1.1. Any sequence v; — 0 contains a subsequence v; — 0 such

that

Du,,(-) = DU(:) in P(C(0,00;H")). (1.5)
The limiting process U(t) € H', U(t) = U(t,x), is stationary in t and in z.
Moreover,

1)a) every its trajectory U(t,x) is such that
U() € Latoe(0,00;H?), U(-) € Line(000;H').
E
b) It satisfies %6 free Euler equation (b.B), so po = D(U(0)) is an invari-

ant measure for (

c) |Ut)||o and ||U(t)||1 are time-independent quantities. If g is a bounded
continuous function, then [, g(rot U(t,x))dx also is a time-independent
quantity.

2) For each t > 0 we have E||U(t)||} = 3Bo, E[|U®)|3 < 1By and
Eexp (o|U(t)|]2) < C for some o > 0,C > 1.

Amplification. If By < 0o, then the convergence (Cl 5 Vi holds in the space
P(C(0,00; H*)), for any s < 2.

See Hsl%uk%a], Remark 10.4.

Due to 1b), the measure py = DU(0) is invariant for the Euler equation.
By 2) it is supported by the space H? and is not a d-measure at the origin.

e process U is called the Fulerian limit for the stationary solutions u, of
(T.1). Note that apriori the process U and the measure py depend on the
sequence ;. o

Since [[ull? < [Jullolluls and B Jul} < (Ellul3)/2(Blju])2, then (1)
implies that | .

S BB < Ellu (0]} < 5B (L6)
for all v. That is, the characteristic size of the solution u, remains ~ 1 when
v — 0. Since the charaeterlstlc space-scale also is ~ 1, then the Reynolc}
number of u, grows as v~! when v decays to zero. Hence Theorem
describes a transition to bulence for space-pe 1(§)d1(: 2D flows, stationary
in time. Recall th is the only 2D NSE (%_1), having a limit of order
oneas v — 0 ( aHEKukO&au Section 10.3). Thus the various Eulerian limits
as in Theorem with different coefficients {bs} (corresponding to different
spectra of the apphed random forces) describe all possible 2D space-periodic
stationary turbulent flows.

Our goal is to study further properties of the Eulerian limit.
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2 Estimate for energy of solutions

2.1 The result

The energy E,(t) = 3llu,(¢)]|§ of a stationary solution u, is a stationary

process. It satisfies the relations
| P 1
ZBoBl <EE,(t) = ZLBO’ Eexp(cE,(t)) < C, (2.1)

. es 3 .
where o, C' > 0 are independent from v (see (h_6) and HSKukOGa], Section 4.3).
Let us arrange the numbers |b,| in the decreasing order: |bs, | > |bs,| > .. ..

Theorem 2.1. There exists a constant C > 0, depending only on By, and
|bs, |, such that
P{E,(t) < 6} < O, (2.2)

uniformly in v € (0,1].

1

Due to the Conv%%%nce (CI 5 Vi, the energy Eo(t) = £ ||U(t)]|? of the Eulerian

limit also satisfies (2
Introducing the fast time 7 = tv~1 we get for u(7) = u(7, z) the equation

du(t) = (—Au — v 'B(u))dr + Z bses dfBs(T) , (2.3)

where {3,(7) = /v Bs(v7), s € Z*\0}, are new standard independent Wiener
processes.

2.2 Beginning of proof

The proof goes in five steps. We start with a geometrical lemma which is
used below in the heart of the construction.

Let us denote by S the sphere {u € H | ||u|lo = 1}. Let {e;,j > 1}, be
the basis {e,, s € Z?\ {0}}, re-parameterised by the natural numbers in such
a way that e; = ey(j), where |s(j)| > [s(7)] if j > 1.

Lemma 2.2. There exists 6 > 0 with the following property. Let vy, Uy be
any two points in S. Then for (v,0) € S x S such that

HU—’U()“O < (5, Hﬁ-’&o”g <0 (24)



(vo,%0)

there exists an unitary operator U, 5 = U(vj) of the space H, satisfying

i) U is an operator-valued Lipschitz function of v and © with a Lipschitz
constant < 2;

”) U(v,f}) <6> =y

iii) there exists a unitary vector n = n(v,0) in the plane span{ey,es} such
that the vector U5 (n) makes with this plane an angle < m/4. Accordingly,

Uw,s)€is €5)| = Cx, 2.5
Jmax |(Uaese;)| 2 e (2:5)

where ¢, > 0 s an absolute constant.

Proof. Let us start with the following observation:

There exists § > 0 such that for any vo € S and vy € {v € 5| |jv—
vollo < 0} there exists an unitary transformation W, ., of the space H with
the following property: Wy, v, =id, Wy, 4,(v0) = vi and W is a Lipschitz
function of v and vy with a Lipschitz constant < 2.

To prove the assertion let us denote by A the linear space of bounded
anti self-adjoint operators in H (given the operator norm), and consider the
map

AxS =S, (A0v)—elv.

Note that the differential of this map in A, evaluated at A = 0, v = vy, is the
map A’ — A’vg, which sends A to the space T,,S = {v € H | (v,v9) = 0} and
admits a right inverse operator of unit norm. So the assertion with W = e4,
where A satisfies the equation e?vy = vy, follows from the implicit function
theorem.

To prove the lemma we choose unit vectors 7,79 € span{ej,es} such
that (vg,n9) = 0 and (2, 79) = 0. Next we choose an unitary transform%t%n
U, such that U(?) = vo and U(7jg) = no. For vectors v, 0, satisfying ( 2)
denote U(0) = €. Then ||€ — vyllo < J. Let W, ¢ be the operator from the
assertion above. We set U, 3 = W, ¢ o U. This operator obviously satisfies 1)
and ii). Since ||U,5(70) — mollo < 0(5, then choosing § < C~'27/2 we achieve
iii) with 5 = . 0

Remark. Let j; and js be any two different natural numbers. The same
arguments as above prove existence of an unitary operator U, satisfying i),
ii) and such that maxie(1y, jegijo} |(Ues, ej)‘ > Cy .

For any (vg,79) € S >< S let Os(vg, §o) C S x S be the open domain,
formed by all pairs (v, ), satisfying ( % Let O',0?,... be a countable
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system of domains Oss(v;,0;) =: O7, j > 1, which cover S x S. We call
(v;,0;) the centre of the domain O7.
Consider the mapping

SxS—N, (v,0)n(v,0) =min{j| (v,0) € O}. (2.6) [map

It is measurable with respect to the Borel sigma-algebras. Finally, for j =
1,2,... and (v,7) € O’ we define the operators

7 7r(v5,55)
Uvi) - Uv,f) .

2.3 Step 1: equation for u(t)
-332.3

2
Till the end of Section E_for any u € 'H we will denote

v=u/||ullo fu#0andv=e ifu=0. (2.7)

Let us fix any 7y > 0. We start to construct a process @(7), 0 < 7 <
To, with continuous trajectories, satisfying ||@(7)[|o = [|u(7)||o. The process
will be constructed as a solution of a stochastic equation, in terms of some
stopping times 0 =70 <7y < < ....

We set 7p = 0 and define a random variable ng = n(v(0),v(0)) € N
(see (2.6)). Let us consider the following stochastic equation for u(r) =

(u(r), a(r)) € H x H:

du(t) = (—Au — v~ 'B(u))dr + Z bses dfBs(T), (2.8)
du(r) = —UjAudr + Z Usbses dfBs(T). (2.9)
Here Uy is the adjoigt to the unitary operator U, = UZ%(“’) (where v = v(u)
and 0 = (), see (2.7)). Let us fix any v € (0, 1] and define the stopping
times

T, =inf{r € [0,To] | lu(7)llo A la(7)llo < or [Ju(r)ll2 > 7"},

7 = inf{r € [0, To] | u(7) & Os(Vng, Uny) } A T, .

Here and in similar situations below inf ) = Tj, and (v,,, 0, ) is the centre
of the domain O™.



For 0 < 7 < 7 the operator U, is a Lipschitz function of u since ||u|lo > v
and ||allo = 7, 7259 7)|l2 < 4! for 7 < T, then it is not hard to see that
the system ( }‘2_8 ), supplemented with the initial condition

u(0) = (u(0),u(0)) (2.10)
has a unique strong solution u(7), 0 < 7 < 7y, satisfying

E sup |la(7)[g < C(To, v, 7). (2.11)

0<T<m)

N2ext we set ny = n(v(m),0(m)) and for 7 > 71 re-define the operator U,
e

in (b‘Q) as UZ%(‘”) (as before, v = v(u(7)) and v = v(a(7))). We set
= inf{7 € [r, To] | u(7) & Os(vy,, U, )} AT

where (v,,, 0y, ) is the centre of O™ and consider the system (5718), (529) for
71 < 7 < 75 with the initial condition a%j%, obtained by continuity. The
system has a unique strong solution and (2.11) holds with replaced by To.
[terating this construction we obtain stopping times 70 < 74 < 75 < ..., the
operator Uy(T), piecewise consta%n T, agld discontinuous at points 7 = 7;, as
well as a strong solyfign u(r) of (2.3) (}‘ZT()) defined for 0 < 7 < lim;_,o 7; <
T,, and satisfying (2.T1) with 7, replaced by any 7;. Clearly 7; < 741, unless
Tj = Tj+1 = TW‘

2.4 Step 2: growth of stopping times 7;

For any 7 > 0 let us write a(7 A T}) as
TAT, TAT,
a(r AT,) = u(0) — / U*A(u) d + / > b Ure, dB =: (i + diz)(7) .
0 0 .

Since ||ullz < y71, then the process @;(7) € H is Lipschitz in 7. A straight-
forward application of the Kolmogorov criterion implies that the process
U(7) € H a.s. satisfies the Hélder condition with the exponent 1/3. So the
process u(7 AT,) is a.s. Holder. The process u(7 A T,) is Holder as well, so

lu((r; + A) A Tysw) = u(rjw)llo < K (w)AY2.

Since |[u(7j11) —u(r;)|jo > £ unless 7541 = T, then |74, — 75 > (6/2K (w))?
or 741 = Tfy. As T S T’Y S To, then

o =T, for j>j(rw), (2.12)

10
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where j(v) < 00 a.s. o1
, gVe have constructed a process u(r), 7 € [0,7;], which satisfies (b‘S)—
(}‘ZTO), where the operator U, is a piecewise constant function of 7.

2.5 Step 3: [[u(7)]lo = [Ju(7)[lo for 7 < T,

For j =0,1,... we will prove the following assertion:
if |a(T)]lo = || u(j)llo a;s., then (2.13)
[a(T)llo = [l u(7)llo for 7j <7 < 7544, aus.
2.10 2.11
Since (1) = u(7p), then (2:12) and (b [3) would imply that
[a(m)llo =l u(m)lo VO<7T<T5, (2.14)

for any v > 0.

To prove (E_l%) we consider (following Lemma 7.1 in %G]) the quan-
tities E(7) = 3 [Ju(7)[]2 and E(T) = Lla(r)|3. Due to Ito’s formula we
have

dE = (u, —Au)dr + = BodT+ Zb es dB(T

and
[ ~ * 1 2 * 2
dE =(u, —U Au)dr+§st|U e ?dr + (@ Zb *e,) dBs(T))
i 1
Nl gy dr + 1 > Bodr st LB (T
~ullo || ||
Therefore,
d(E — FE)? =2(E — E)W( ,—Au) dr
0
[ullo = [lallo\2 x— 2 2
—_— b; (u, es)"dr + M, ,
(S ) 2t

where M, stands for the corresponding stochastic integral.
For 0 < 7 < T, let us denote J(7) = (E — E)*((r V73) A Ti1). Then
d

—EJ(r) 2E<(E E)

[[ello = lallo

[[ullo
+E(<||u||0 - ||U||O> sz u, es T<T<Tl+1> )

[[ullo

(U - AU)ITiSTSTiH)

11
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. ~ E-E — ~
Since Jullo — l[allo = 222 and |(u, —Au)| < 772, [ullo. ||allo > 7. then

2.1
LEJ(r) < CCT 5172(7) As J(0) =0, then EJ(7) = 0 and (b_l'g) is established.
Accordingly (2.14) also is proved.

2.6 Step 4: limit v — 0
Since By < 00, then u(7) satisfies the y-independent estimate

E sup u(7)ll < C(To,v)

0<7<Th

3
(see %Kuk06a], Section 4.3). Accordingly

P{ sup [lu(r)|.<~+'} =1 as y—0. (2.15)
0<r<Tp

Let us denote by a(7) the 4-vector (ui(7),...,us(7)), where u(r) =
Y- u;(T)e; (we recall that e, eq, ... are the basis vectors ey, re-parameterised
by natural numbers). Then

ﬁj(T)zuj<0)+/ Fids +b;8;(s), j=1,...,4,
0

where F} is the j-th component of the drift in (E‘Sé) Since 4 is a stationary
process, then P{u(0) = 0} = 0 (this follows, say, from Krylov’s result, used
in the next subsection). Setting F = F; A R, we denote by @%() € R* the
process

ﬂf(T)Zuj(O)Jr/O Ffds+b;0;(s), j=1,...,4.

By the Girsanov theorem, distribution of the process 4%(7),0 < 7 < Ty,
is absolutely continuous with respect to the process (b1, ..,bs04) + u(0).
Therefore

P{ min |af(7)|=0}=0, (2.16)

0<7<Tp

for any R. Since maXo<,<7y |@R(T) —U7) —>.O as R — 59,in prnob‘abili‘ty,
then the process u(7) also satisfies (b [6). Jointly with (b [5) this implies
that

P{T, =T} -1 as v—0,

2.12
and we derive from (b_l?[) the relation

[a(7)llo = llu(m)lo YO <7 <Tp, as.

12
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2.7 Step 5: end of proof

The advantage of the pro%e%s 4 compare to u is that it satisfies the v-
independent Ito equation (2.9). Let us consider the first two components
of the process:

di; = —(Uy o(r) A(w)) ; dr + Z ) b i), (2.17)
gre j = 1,2. Denoting a;j(1) = > (U* ) 2 (Uljbl) and using
(b_S) we find that a.s.

C>a(1)+ax(r) >c>0 Vr, (2.18)

where C' = 2y/By and ¢ depends only on [b;| A |bs]. Due to (H%f) for each
7 20 yye have E|U*A(u(1))[; < \/B1/3, This bound and the first estimate
i : ) imply that Lemma 5.1 from [KTry87] applies to the Ito equation
(%_l"?) uniformly in v if we choose the lemma’s parameters as follows:

d=1, v=1, A;=s, rs=1, cs=1, yy=1t, @, =1t. (2.19)

Taking in the lemma for f(¢,z) the characteristic function of the segment
[—9, 8], we get

TR
E/o e~ (7) L, i<y dT < OV, j =12,

where v < 1 is the first exit time < 1 of the process %; from the segment
[—R, R]. Sending R to oo we get that

1
E/ CL]‘(T)I/QIH,&J.(T)‘S(S} dr S Ol\/g, ] = 1, 2, (2.20)
0
uniformly in v.
For c as in (}’ZTS) let us consider the event QT = {a:(7) > 3¢} and denote
by @7 its complement. Then

1 1
ar (1) > geon Q7 and ay(T) > jcon Q5. (2.21)

Let us set

= {laa(7)] + lua(7)] < 6}
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Then
P(Q") = E(lg-lor + IorIg;) < E(lga, ) <sylor + junr)<sylas)-
.26

By (b‘ZT) the r.h.s. is bounded by

2

~E(lja i< Var + L)< V/a2)-

2.25
Jointly with (E_ZU) the obtained inequality shows that
1
/ P(Q7) dr < CyV/o.
0
Since

P{llu(r)lo < 3} = P{ja(rllo < 3} < P(@"),

where the 1L.h.s. is independent from 7, then
)
P{[Ju(r)[lo < 5} < CyV5

for any 6 > 0. This rela%g; implies (E‘%)

The constant C' in (2.2), as well as all other constants in this, section,
depend only on B; and |b;] A |by|. Using the Remark in Section 2.2 we may
replace |by|A|be| by |b;,| A|bj,|, where j; and js correspond to sy and sp. This
completes the theorem’s proof.

3 Distribution of energy

N 2.3
Again, let u,(7) be a stationary solution of (h.l), written in the form ()‘2‘3),
let E,(7) be its energy and Ey(7) = 3 ||U(7)||3 be the energy of the Eulerian
limit.

Theorem 3.1. For any R > 0 let Q C [—R, R] be a Borel set. Then

P{E,(r) € Q} < pr(IQ) (3.1)

uniformly in v € (0, 1], where pr(t) — 0 ast — 0

14



In particular, the measures D(F, (7)) are absolutely continuous with re-
spect %{uhe Lebesgue measure. Since D(FE,,;) — D(Ey(7)), then Ey(7) sat-
isfies (3.1) for any open set Q C [—R, R]. Accordingly, P{Ey(7) € Q} =0 if
|@Q] = 0 since the Lebesgue measure is regular. We got

Corollary 3.2. The measure D(Ey(T)) is absolutely continuous with respect
to the Lebesque measure.

Proof of the theorem. For any § > 0 let us consider the set
0 =0(0) = {u e H?| |lulls < 577, [|ullo > 5}

Writing u = u,, asu = Y uses, we set ul = > jsj<n Us€s and u'l = u—u!. For
any u € O we have [|[ul?[|2 < N~4|u!T||2 < 672 N2 So ||u!||2 > 62—5 "2 N4
Choosing N = N(§) = [2/167%/8] we achieve

w2 > =6 YueO.

— N

The stationary process F(u, (7)) satisfies the Ito equation

4B = (~ Ju(r)|} + 5 Bo) dr + 3 baws(r) dB.(r)
(see in Section (E% The diffusion coefficient a(7) satisfies
a(r) =Y Blus(r)[* = biyllu’ (75,
where by = minjg <y |bs| > 0. So,
a(t) > %Q?V(SQ if wu(r) €O. (3.2)

Besides,

s b
Ela(r)| < T2

1

Let @ C [—R, R] be a Borel set and f be its indicator fulqct%ogiz.9 Applying
the Krylov lemma with the same choigg;ﬁf parameters as in (2.19), passing
to the limit as R — oo as in Section 2.7 and taking into account that F(r)
is a stationary process, we get that

E(a(r)"?f(E(1)) < C|Q|'?, (3.3)
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uniformly in v > 0. Due to (H%f) and (E‘%),
1
P{u(r) ¢ 0} < §Bl¢5 + V.

Jointly with b‘%) and ( this estimate implies that

53)
P(E,(1) € Q) = Ef(E(7)) < C(IQ"?b5'67") + C1Vs V0 <d<1,

3.1
where N = N(J). Now (b_f) follows.

4 Distributions of functionals of vorticity

In his section we assume that Bg < oo. The vorticity ¢ = rotu(t, z) of a
solution u for (IT.1), written in the fast time 7 = vt, satisfies the equation

= AC+v Hu- V)= E(r ). (4.1)
Here &= > sez\joy Ps(T)es(x) and
E _ s

COSS - T

Ps = \/§7T ) Pos = — \/571’

4.1
for any s such that s; + s305, , > 0. We will study eq. (h_[) in Sobolev spaces

sins -,

le{geH’(Tm/gdx:O}, 1>0,

()9

given the norms || - ||;, defined as in (H

Let us fix m € N and choose any m analytic functions f1(¢),..., fm(C),
linear independent modulo constant functions.> We assume that the func-
tions f;(¢), ..., f{"(¢) have at most a polynomial growth as |[(| — oo and
that

Q)= -C Vi, ¥ (4.2)

(for example, each f;(¢) is a trigonometric polynomial, or a polynomial of
an even degree with a positive leading coefficient). Consider the map

F:H —R" (= (F(Q),. - Ful),

/f]

3Le., O1f1(¢) + -+ + Cpy fn () # const, unless Cy = --- = C,,, = 0.

16
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where 0 < [ < 1. Since for any P < oo we have H' C Lp(T?) if [ is sufficiently
close to 1, then choosing a suitable [ = [(F') we achieve that the map F' is
C?-smooth. Let us fix this [. We have

— ([ s ds.. .. [ £t da).

Lemma 4.1. If ( #0, then the rank of dF(() is m.

Proof. Assume that the rank is < m. Then there exists number C1, ..., C,,,
not all equal to zero, such that

[+ 4 Cufeigds =0 vee R (4.3)
Denote P(¢ —|— Cinf!.(¢). This is a non-constant analytic
function. Due to h‘% = const. Denote this constant C,. Then the
connected set ¢(T?) lies in the d1screte set P71(C,). So ¢(T?) is a point, i.e.
((x) =const. Since [ (dz =0, then ((z) = 0. O

N
Now let ((t) = rot u,(t), where u, is a stationary solution of (hl) Ap-
plying Ito’s formula to the process F(((7)) € R™ and using that F} is an
integral of motion for the Euler equation, we get that

= ([ 5¢tm opactr ayde+ 538 [ 176 2w de) ) ar
# 30 ( [ 1 2o do) (e
Since b, = ;_s and @2 + 2 . = |s|?/272, then
aFyr) = ([ 1OVl + By da)ar
- st( / 7,(Cr, 2))pa) dx) 45 (7)
) dr + Z his(C(7)) dBs(T) .

Ito’s formula applies since under our assumptiops all moments of the random
variables ((7, x) and |V ,((7, x)| are finite (see FKukOGa], Section 4.3). Using
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that F;(7) is a stationary process, we get from the last relation that EH; = 0,
Le.

s/ﬂﬂﬁwmvxmmﬁmzfiE/fxaﬂ@wm (4.4)

Since Bg < 00 then all morgents of random Varlable%%]( (1,2)| are bounded

piformly in v € ( see [Kuk06b] and (10.11) uk06al. Jointly with
]LFK 1%7[ and the equahty

1
E [ 1V.¢(ra)fde = Blu ()] = 5 B
this implies that
BIH,(G(r)] < G5 < o0 (45)

uniformly in v (and for all 7).
Let us consider the diffusion matrix a({(7)), a;i(¢) = >_, h;s(¢)his(C),
and denote D(¢) = |det aj(¢)|. Clearly

Etr(a;)(¢(r)) <C, (4.6)
12
uniformly in v. Noting that h;s(¢) = bs(dF(C));s, we obtain from Lemma o

Lemma 4.2. The function D is continuous on H' and D > 0 outside the
oTigin.
4.1
Now we regard (h_f) as an equation in H' and set
Os={¢eH ¢l <o, liclh = o}

Since H' € H' o then D> ¢(5) > 0 everywhere in O.

Estimates &I 57, h 0) allow to apply Krylov’s lemma with p = d = m to
the stationary process F/((,(7)) € R™, uniformly in v. Choosing there for f
the characteristic function of a Borel set @ C {|z| < R}, we find that

P{F(G,(7)) € Q} S P{G(7) ¢ Os} +c(0) /" TICRIQIVI™ ) (47)
(cf. the arguments in Secti %% Singe J|C|l1 = |lull2 and ||C|l; > I<llo > ||p
Ej E_% 1 2 ! 0 gt_%

for ( =rotwu, then due to (T.4) and (2.2) the first term in the r.h.s. of (4.
goes to zero with 0 uniformly in v, and we get that

P{F(¢,(7)) € Q} < pr(IQ), pr(t) =0 as t =0, (4.8)

uniformly in v. Evoking Amplification to Theorem h_l derive from h‘é)
that the vorticity (p of the Eulerian limit U satisfies ( 2) if @) is an open
subset of Br. We have got

18
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Theorem 4.3. If Bs < oo, then the dz’stm‘butfﬁ of the statiﬂn ry solution
for the 2D NSE, written in terms of vorticity (4.1), satisfies (h‘g uniformly
in v. The vorticity (o of the Eulerian limit U is distributed in such a way
that the law of F((o(7)) is absolutely continuous with respect to the Lebesgue
measure in R™.

Corollary 4.4. Let X € HNCY(T? R?) be a compact set of finite Hausdorff
dimension. Then py(X) = 0.

Proof. Denote the Hausdorff dimension of X by d and choose any m > d.
Then (F orot)(X) is a subset of R™ of positive codimension. So its measure
with respect to D(f((y(t)) equals zero. Since D(f((o(t)) = (F o rot) o pyo,
then uo(X) = 0.

[

5 Appendix: rotation of solid body

The Euler equation for a freely rotating solid body, written in terms of its
momentum M € R3, is

M+ [M,A"*M] =0, (5.1)

where A is the operator of inertia and 'D'll is the vector product. The corre-
sponding damped /driven equation (0.5) 1s

M+ [M, A" M) + vM = /un(t), (5.2)
where the random force is n(t) = 4 2321 b;B;(t)e; with non-zero b;’s, and
{e1,eq,e3} is the eigenbasis of the operator A. Eq. (5.2) has a unique sta-
tionary measure pu,. Let M, (t) be a corr 1§Ponding stationary solution. An
inviscid limit, similar to that in Theorem [I1, holds:

DM,,(-) = DMy(-) as v; —0, (5.3)

where My(t) € R3 is a stationary process, formed by solutions of (%_ull') The
Euler equation has two quadratic integrals of motion: H;(M) = 1 |[M|* and
Hy(M) = 3 (A™*M, M). Distributions of the random variables Hy(M,(t))
and Hg(%é)), 0 < v < 1, satisfy direct analogies of the assertions in

Sections 2, 3.
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To analyse further the processes M, with ¥ < 1 and the inviscid limit

My, we note that a.e. level set of the vector-integral H = (Hy, Hy) is formed
. . . . 18 :l:

by two periodic trajectories of (h (see %rnSQ]). Denote them S 4.

It is easy to see that the conditional probabilities for M, (t) to be@rg to

S(J;JLHQ) or to S(_HhHQ) are equal. Since the dynamics, defined by (5.1) on

each set .S, (iHl ) obviously is ergodic W‘thFlr(l) gesgl%:éc to a corresponding measure
* ),4 then the methods of : , KP06] apply to the process

VH 1,Ha

Iz(T(Ml,j (1)) € R?, 7 = yj;t, and allow to prove that a limiting process Ho(7)
exists and satisfies a SDE, obtained from the equation for H(M (7)) by the
usual stochastic averaging with respect to the ergodic measures V(i 1) O
the curves S(j;{h Ha)' It is very plausible that the averaged equation has a

unique stationary measure 6. If so, then
D(H(Mo)) =0

and

D(M,) = Z / TaV{i, 1,y O(dHy dHy),
ac{+,—} R
 [KPO6 '

where m; = m_ =1/2. Cf. Theorem 6.6 in HSK'PU(S] In particular, the con-
vergence (}53) holds as v — 0 (i.e., the limit does not depend on a sequence
v; — 0).

The representation above for the measure D(M,) is called its disintegra-

. . . 3 2 . .

tion with respect to the map H : R®> — R* and may; @;Aronbtalned inde-
pendently from the arguments above (see references in [Kuk07]). The role
of the arguments is to represent the measure 6 in terms of the averaged
equation. [The measure pi9 = DU (0), corresponding t Bl?ErI]?ulerian limit U
(Theorem [T-1) also admits a similar disintegration, see [Kuk07]. In that work
we conjecture an averaging procedure to find the measures, involved in the
disintegration of py.
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