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Abstract. We study the motion of the infinitesimal mass in the planandar restricted three-body problem. The infinitesimal
mass can undergo regular or chaotic motions. It can be @ptoy one of the primaries, it can make transfers from one
primary to another, or it can even escape those captures.ndfgza through statistical methods the time-series giwen b
the time intervals between successive crossings made bipfihdesimal particle to a given Poincaré section. We apply
Takens/Yorke embedding theory to reconstruct the phasedpam these time series, and we use the correlation dimensi
of the reconstructed phase space as a tool to distinguiglebetvarious types of motions.

Keywords: Three-body problem, phase space reconstruction, caarldimension.
PACS: 45.50.Pk, 05.45.Pq, 05.45.Tp,95.10.Ce, 95.10.Fh.

INTRODUCTION

In this paper we propose the application of a phase spaca&seaction method to analyze the dynamics in the
restricted three-body problem. We use the time series diyehe intervals between successive crossings of a given
plane of section. We reconstruct the phase space using-detaginate vectors formed from this series. We estimate
the embedding dimension of the reconstructed phase spaite aimension at which the correlation dimension
saturates, as we increase the number of components in thg debrdinate vectors. We use the corresponding
correlation dimension of the embedded phase space to degedar and chaotic trajectories. We also explore, through
this method, quasi-periodic, resonant, and resonancsiti@nmotions. It is well know that chaotic trajectoriesdze
trapped around a resonance for a long time; this type of behaas observed in the motion of asteroids and comets
(see [1, 15, 20)).

As a first model, we consider the planar circular restrickede-body problem with equal masses. A motivation for
this model is the study of binary star systems (see, for el@rh 5, 6]). The optical observation of such systems is
very difficult (see [9]).

To study resonance transitions, we consider a second meqlelsented by the Sun-Jupiter system.

The main advantage of our approach is that it requires litflermation about the motion of an observable object,
namely the successive times when the object assumes anaantailar coordinate with respect to the observer. There
is no need of a large number of observations; in our expetisnéme series of the order of 4@ata points provided
satisfactory results. Also, this method is computatignelieap and relatively robust. We speculate that due to these
advantages, our method could be of use in dynamical astrpnehere information on the motion of celestial bodies
is sometimes insufficient. On the other hand, the accuratiyeoiethod can suffer as a consequence of the scarcity
of the data; estimates of correlation dimensions are nat &ecurate if data is not abundant. Error analysis of the
numerical computation of the correlation dimension is @ésed by Sprottin [18]. Quoting from Sprott: “the literagur
is devoid of credible calculations of the correlation dirsien for most model chaotic systems”. However, in our
experiments we do not need an exact computation of the atineldimension, but we need to verify whether the
estimated correlation dimension falls within a certaingaof values.

We are not aware of pervious attempts of applying phase sg@oastruction based on the crossing times of a
Poincaré section to the study of the three-body problemrélhave been other ways in which time series analysis has
been applied to celestial mechanics. Here we will only noerdi few of them for comparison. The classical method for
detecting chaotic behavior in a dynamical system is thab®liyapunov exponents. This may take a large amount of
computations, particularly if the chaos is weak, and maypnovtide additional qualitative information, for example,
if a regular trajectory is quasi-periodic or resonant. Aplagation of this method to the study of the dynamics of
outer-belt asteroids can be found in [14]. The same familgsdéroids is studied with the autocorrelation function of



the time series of the osculating elements in [20]. A fastet more sensitive method is the method of twist angles
proposed in [2]; this relies on computing the angles betwdmnations of the orbit and a fixed direction. Tested on
the standard map, the method of twist angles was able tadiffiate between quasi-periodic and resonant trajestorie
(see [3]). In [21], a method of time-frequency analysis blaz@wavelets was applied to the Sun-Jupiter-comet system
for values of the Jacobi constant close to Oterma’s. Thidhatetonstructs a frequency map numerically, assigning
to each initial condition the computed time-varying freqogw(t) of the corresponding trajectory integrated over a
fixed time interval. A trajectory with regular motion has aduencyw(t) that is constant in time, while a frequency
that varies in time suggests a chaotic orbit. Another metbodetecting quasi-periodic and chaotic motions, based
on the computation of the energy spectrum, is presentedin [1

In contrast with the approach proposed in this paper, albti@/e methods require a detailed knowledge of the
motion over a long period of time. As it is often the case in eudcal simulations, it is perhaps better to use the phase-
space reconstruction method described in this paper in matibn with some other method from the ones mentioned
above (if there is sufficient data available), rather thasitiethod alone.

THE RESTRICTED THREE-BODY PROBLEM

The restricted three-body problem refers to the dynamits@bodies of masseas; < mp (referred to as the primaries)
that move along circles about their common center of maskpaa third body, of infinitesimal mass, that is subject
to the gravitational attraction of the primaries. The motaf the primaries is not affected by the motion of the
infinitesimal mass.

Equations of motion

We will recall the general equations for the planar circudestricted three-body problem. The relative masses of the
primaries arqu = my /(M +mp) and 1— y = mp/(my + my). We can choose the units of mass, distance and time so
that the gravitational constant is 1, and the period of theur orbits is 2r. We can study the dynamics relative to a
co-rotating system of coordinatésy), for which the positions of the primaries relative to thistgm arg —p, 0) and
(1— u,0) respectively. The motiofx(t), y(t)) of the infinitesimal particle relative to the co-rotatingine is described
by the second order differential equations:
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whereV (the effective potential) is given by
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Vi) = S0P+ =—E L, (4)
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with ry = ((x+ )2 +y?)¥2 andrp = ((x— 1+ p)? +y?))¥? representing the distances from the infinitesimal mass
to the primaries. See [17]. The phase space of the systerdilednsional. The energy function

HOGY%Y) = 5 (047) ~V(xy). ©

is a first integral of the system. An equivalent first integsathe Jacobi integraC(x,y,x,y) = —2H(X,y,X,y). The
energy manifold

{(xy.X,y)[H(x,y,X,y) = constan} (6)
is 3-dimensional, and its projection onto the configuratipace(x,y) is called a Hill's region. Its boundary is a zero

velocity surface. The topology of Hill's regions dependstioa energy level. Each trajectory is confined to the Hill's
region for the corresponding energy level. See Figure 1.



FIGURE 1. Hill's region corresponding to an energy level slightly delthat ofL,, for uy =1/2.

There are five equilibrium points for this problem. Threetsdm are collinear with the primaries, and each of the
other two forms an equilateral triangles with them. In théger, we are only interested in the equilibrium pdint
between the primaries. The distance frtmto the less massive primary is given by the only positive tsmtuto
Euler’s quintic equation (see [17]):

V= B—)Y +B—21)y’ — pyP+2uy—pu =0,

For the case when the primaries have equal masses, werhave.5, hencey = 0.5, soL, is atx_, = 0. For the
Sun-Jupiter system, we haue= 0.0009573, hencg = 0.0667583, sd.; is atx_, = 0.0658010.

To study chaotic transfers, we will consider an energy lsirghtly below that olL;. The corresponding Hill region
consists of two lobes, one lying in< 0 and the other one x> 0, which are connected through a narrow dynamical
channel. The dynamics nelas is of saddle-center type. There exist periodic orbits (lyagy orbits) neat.1, located
inside the dynamical channel. These Lyapunov orbits pagabse and unstable manifolds that intersect each other at
points away froml_;. The infinitesimal particle will typically move inside onelle or another of the Hill region, and
transfer betweer < 0 andx > 0, through the dynamical channel, in a chaotic fashion.

Poincaré sections

One way to investigate the dynamics in the circular restddhree-body problem is by discretizing the system
through the Poincaré first return map associated to some&@éirsection. For example, we can define a Poincaré
sectionz; = {(X,y,X,y) [ Xx=1—p,y>0,x> 0} or Zp = {(X,¥,X,y) | X=X_,, y> 0, x> 0}. In the planar circular case
the total energy is preserved along the motion, so eaclctaaje(x(t), y(t),x(t),y(t)) lies on a fixed energy manifold.
The intersection of a trajectory with the Poincaré seclipor X, yields a fixed value for the-coordinate, and from the
energy condition we can solve famith respect toy andy. Thus, the intersections of a trajectamyt), y(t), x(t),y(t))
with a Poincaré section as above is given by the coordir(gtgs corresponding to the intersection point; each such
(y,y) uniquely determines the whole orbit.

The dynamics of the Poincaré map shows two basic types obmmtregular motions confined to elliptic islands,
and chaotic motions scattered around these islands. SeeeFlgin the center of each elliptic island there is a point
corresponding to exactly one periodic, stable, resondiit. &k trajectory that is initialized on one the closed cwsve
that is a part of an elliptic island will remain on the sameveyiprovided the center of the island is a fixed point for
the Poincaré map, or it will jump from one closed curve, padroelliptic island, to another curve, part of of another
elliptic island, in a periodic fashion, provided that thentag of the island is a periodic point for the Poincaré map.
In the 3-dimensional energy manifold, these closed curee®spond to invariant 2-dimensional tori. The motion on
such a torus can be quasi-periodic, in which case it will fillauregion dense in the surface of the torus, or resonant,
in which case it will lie on a 1-dimensional torus.df = (wy, wy) is the frequency vector of the motion on the torus,
then a quasi-periodic motion is characterized by a condkiou, + koa, # O for all integersks, ko, while a resonant
motion is characterized by a conditi&nw, + kow, = 0 for some integerky, k.

The existence of chaotic motions has been one of the key angtisrm proving the non-integrability of the three-
body problem. One way to argue rigorously the existence abtib motion is by showing the existence of transverse
homoclinic connections to Lyapunov orbits néar This has been proved analytically in the case- 0 (see, for
example [12]), and numerically (see, for example [7]). TBékhoff-Smale Homoclinic Orbit Theorem implies the



FIGURE 2. Poincaré sections in the planar circular restricted thi@ay problem corresponding to a Jacobi cons@aat 3.95,
for u = 0.5. Left —in (y,y)-coordinates, corresponding xe= 0.5; right — in (x,X)-coordinates, corresponding ye= 0. The small
elliptic islands in the plot surround a periodic orbit of jper 12 for the Poincaré map.

existence of a subsystem that possesses symbolic dynanoegver, this argument identifies only a measure zero
set of chaotic trajectories. Nevertheless, numericalistusliggest that the phase space contains a full measurfe set o
chaotic trajectories.

PHASE SPACE RECONSTRUCTION AND CORRELATION DIMENSION

In this section we review briefly the method of phase spacen&cuction based on delay coordinate vectors. Precise
formulations of the statements presented below have bemsided by Takens [19], and Sauer, Yorke and Casdagli
[16]; a good introduction to the subject is given by Huke [10]

Suppose thaf : M — M is a discrete dynamical system, whéfeis a compactm-dimensionalC'-differentiable
manifold > 2), andf is aC'-diffeomorphism. Leh: M — R be aC'-differentiable function, which plays the role of
a measurement of some physical quantity for the orbits b each finite orbi{x, f (x),..., fN(x)} of a pointx € M,
whereN > 0 is fixed, we can associate the time sefief'(x))}i—1,_n. Let® : M — RN be the mapping given by

®(x) = (h(x), h(F(X)),...,h(FN(x)).

Takens'’s Theorem states that f@-generic maps andh, the mappingd is an embedding o1 in RN provided
N > 2m+ 1. Moreover, there is a natural dynamics®(M), induced by the left shift map : (M) — ®(M) given

by: _
f(h(x),h(f(x)),...,h(fN(x)) = (h(f(x)),...,h(fV*1(x)).

The map®d is a conjugacy between the dynamicsMrand the dynamics ofP(M); that is,®o f = f o ®, with ®
continuous and surjective. In summary, the ndapot only provides us with a copy ® in RN, but also with a copy
of the dynamics oM induced byf. In particular, the periodic orbits df are mapped into periodic orbits éf and
dense orbits fof are mapped into dense orbits frThe same method can be used to reconstruct an attractavl
for f from a time series associated to an orbit densA.ift is sufficient to chose a dimensidh of the embedding
space bigger thand2+ 1, whered is the box-counting dimension (fractal dimension)pof

In practice, this method is applied as follows. We have a dyoal systemf : M — M that we would like to
analyze. Beginning with some initial state, the evolutibthe system results in a succession of states described by a
finite orbit {x, f(x),..., f"(x)} of a pointx € M. Usually we cannot obtain complete information on the stafethe
system, but we can measure some quantity associated totasgthsis is performed through a measurement function



the orbit{x, f(x),..., f"(x)} is dense in some invariant s8bf f, we want to reconstruct the sBtand the dynamics
of f onSfrom this time series. We consider the delay coordinateorsct

Vi = (X5 X1, -+ X (d—1))

whered (the dimension of the phase space) is a positive integei, artd We denote this set of vectors EyOn Swe
consider the map given by

FOG X1, Xigd—1) = (K41, Xi415 -5 Xivd)-

The set of vector$ together with the mag constitutes a model for the dynamicsfobn S. In order for this model
to be accurate, we need the dimengiaof the reconstructed phase space to be sufficiently larperwise the model
may exhibit some tangles or self-crossings that are noepteés the original systerss. Although we do not have an
a priori knowledge of the box-counting dimension®fwe can still find the correct embedding dimension through
the following procedure. We gradually increase the dinmmdiof the delay coordinate vectors and compute the box
dimension of the reconstructed set for edcln general, the computed box-counting dimension will bénaneasing
function of d. Beginning with some valud = de, the box-counting dimension will stabilize; this valdg is the
smallest dimension for which we obtain an embedding infthe reconstructed phase sp&% At this point we also
have that the dynamics dfon Sis reproduced accurately by the dynamicd afn the reconstructed phase sp&ce
The box-counting dimension of a set is quite expensive toprdmnumerically. An empirical alternative to it is the
correlation dimension. The correlation dimension of the se

S= {Vo,Vl, v ,an(dil)}
can be computed as follows. We first compute the correlatiantfonC(r) which measures the proportion of pairs of
points fromSthat are withirr units from one another:

#{ (w1, Wo) |wi, Wz € Sand|lwy —ws|| <r}

C(r) = #{ (w1, Wo) | Wi, Wp € S}

3

wherer > 0. It turns out thaC(r) is proportional tar® for some fixedd > 0 and all sufficiently smalt, whered is
exactly the correlation dimension of the &et
Then the correlation dimension 8fis defined as
InC(r)
Inr

corrdim’S) = erg) , @)
provided that the limit exits. In practice, since the datais&is only finite, one cannot compute the above limit as
r — 0. Moreover, ifr is made smaller than the shortest distance between any stindipoints inS, thenC(r) = 0.
On the other hand, if is made larger than the diameter of the SethenC(r) = 1. A practical way to estimate the
correlation dimension is to plot {&(r) versus Ir and to estimate the slope of the median portion of the ploé Th
graph will usually flatten out for all sufficiently small vads ofr, and also for all sufficiently large values nfThe
remainder of the graph will contain a part that is almostdin&he least square method is applied to this linear part
of the graph. The slope of the resulting linear approxinratioves the correlation dimension 8f In general, the
correlation dimension is smaller than the box counting disnen, but they are usually very close. For details, see [8].
The correlation dimension computed this way is reasonatdyrate when the data set is rather big. If there is
insufficient data, the correlation dimension can only balwsean indicator of whether or not the invariant set is likely
to fill up a region of positive measure Bf, for some prescribed > 0.

EXPERIMENTS

We generate numerically trajectories of the three-bodblera and we record the timég }i at which the trajectories
cross some fixed Poicaré sectibnFrom this data we generate the time sefi&}; consisting of the time intervals
At =t 1 —tj between successive crossing. We are interested in twogmshIThe first problem is to use this time
series to distinguish between regular and chaotic orbite.SEcond problem is that, in the case when the infinitesimal
mass undergoes transfers between one primary and anotheramt to detect whether or not these transfers occur
chaotically.



For the first problem we consider trajectories that are émglwithin one of the lobes of the Hill region, say
about the primary ak = 1 — u, and we record the times at which these trajectories crassPthincaré section
%) ={x=1-u}.Itis possible that at some point these trajectories ttamshe other lobe; in this case, we continue
to record the times of crossing with only after they go back to the original lobe.

For the second problem we consider trajectories that eeéxarisitions from one lobe of the Hill region to the other,
and we record the times at which these trajectories crosBdearé sectiol, = {x = 0}.

In each case, we reconstruct the phase space from the tifes &% };. We compute the correlation dimensions
for the phase spaces reconstructed in dimengioad,, 2, ..., and we find a dimensiod from which the correlation
dimension stabilizes. We will not seek the minimal embeddiimensionde, but some dimensiod for which the
embedding inRY is guaranteed. We use the correlation dimension correspgnal the dimension to distinguish
the type of trajectory that we have. To test the validity of ptedictions, we compare the results of the time series
analysis with the plot of the intersections between thettajry and the corresponding Poincaré section.

Periodic motions

In our experiments, we found that periodic motions are attarzed by correlation dimensions close to 0, within
a margin of error of @. This agrees with the theory, since a periodic orbit cqwess to a finite set of points in the
Poincaré section, whose dimension is 0.

As an example, we consider a symmetric periodic orbit ofah¢tonditionx = 0,y = 0,x = 0.35,y = 0, correspond-
ing to a Jacobi constant approximately equalte 3.8775, as shown in Figure 3. The winding number of this orbit is
5. This equals the number of points in the Poincaré section.

We will discuss the numerical experiments for this periaatigit in full details, to illustrate the implementation of
the method, and also to serve us as a guide in the sequel. \Wegbaerated the time serigat; }; of 1280 data points,
where{t; }; are the intersection times with the plane of secignFor this data set, the Jacobi constant is preserved
up to the 4-th decimal place during integration. We disrddhae first 100 data points, to avoid errors due to temporal
correlation. Hence, only 1180 terms are used. We first usen2fisional coordinate vectors of the typ@ti, Ati_1) }i
to reconstruct the phase sp&@) in 2-dimensions. The reconstructed phase-space con§staints; the number
of points matches the winding number of the orbit. See Figure

Using the formula (7), we evaluate the correlation inte@l) for successive values of=271,... 2710 and we
compute directly the corresponding values of the ratig@jg))/log(r). We obtain

| r | 27 |22 |2 |2 ] 2® | 20 [ 2" | 2% | 20 | 2700 |
| log(C(r))/log(r) | 1.8379| .9189| .7747 | .5810| .4648 | .3873| .4326| .4570| .4523| .4240|

It is not reliable to estimate lim,o(log(C(r))/log(r)) as the tail value of the above sequence. As described in the
previous section, a better method is to plot the datéd60g) versus logr) and to apply the linear regression to the
middle portion of this plot.

| x | -.6931 | -1.3862| -2.0794| -2.7725| -3.4657 | -4.1588| -4.8520| -5.5451| -6.2383| -6.9314|
|y | -1.2739] -1.2739| -1.6111] -1.6111] -1.6111| -1.6111| -2.0990| -2.5345| -2.8222| -2.9390|

We identify in the plot the regions at the ends of plot wheeedhaph starts to approach horizontal asymptotes, and
we apply linear regression to the remainder of the plot. Vémtifly the linear part of the middle section of the plot
by successive trials, enlarging or diminishing the middlege and applying the least square method until the linear
approximation stabilizes. See Figure 3. The equation ofitlear approximation that we foundys= —1.6111. The
slope of this line gives us the correlation dimension of #monstructed phase space, i.e., co{in= 0.

If we repeat the experiment for 1-dimensional delay coatdinvectors{At;};, the linear regressions comes out
y = —1.5936+ 0.005, so cordiniS(1)) = 0.005. Although this is quite close to 0, we have a small erncesithe 1-
dimensional phase space reconstruction does not guathetetmination of all possible self-crossings. On the othe
hand, when we repeat the experiment for 3-dimensional deleydinate vector§(At;, Ati_1,At_)}i we find out that
y=—1.6111and so cordi(®(3)) = 0. Higher dimensional phase space reconstructions corfancordin{S(d)) =0,
for d > 2. Thus, we conclude that the correlation dimension for @e@nstructed phase space is cor@m= 0. This
remarkably coincides with the theoretical value.



Left — periodic orbit in the co-rotating frame; right — patio orbit in the inertial frame.
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Plot of the{At; }; time-series.

Correlation dimension and least square approximation.

FIGURE 3. Periodic orbit.




These experiments emphasize the effectiveness of usiegrliregression to estimate Jiny(log(C(r))/log(r))
as opposed to successive approximations. Also, we learmhtagheoretically lowest possible embedding dimension
does not guarantee a good numerical estimate on the cavredtnension of the reconstructed phase space. However,
finding the optimal embedding dimension is beyond the scépg©paper.

Quasi-periodic motions

In our experiments, we found that quasi-periodic orbitschi@acterized by a correlation dimension close to 1. This
is in agreement with the theory: a quasi-periodic orbit Wifllup a 2-dimensional torus, whose intersection with a
Poincaré section will be a 1-dimensional curve. We toleaatnge of values of0.2 about 1.

As an example, we consider a quasi-periodic orbit of ing@lditionsx = 0.5,y = —0.28,x = 0.955401796 ly= 0,
corresponding to the Jacobi const@nt 3.95. We have generated the time sefiAg }; of 700 data points, wherg; };
are the intersection times with the plane of seclignFor this data set, the Jacobi constant is preserved up e
decimal place during integration. The orbit and the comesiing time series are shown in Figure 4. The Poincaré plot
and reconstructed phase space in 2- and 3-dimensions arghalen in Figure 4. When we compute the correlations
dimension, we find that cordiff) ~ 1.08 and it stabilizes beginning a dimensibe- 3; see Figure 4.

There are some technical problems when too many data poetsimerically generated for a quasi-periodic orbit.
Such an orbit is usually unstable, and the accumulationrof eluring integration will result in many points leaving
the corresponding torus and ending up in the chaotic seaathen elliptic islands. The reconstructed phase space will
show a closed curve and scattered points around it. These @oints will affect the computation of the correlation
dimension. To fix the problem, the time series should beiogstf to its quasi-periodic regime.

Resonant motions

In our experiments, we found that resonant orbits are chkeniaed by a correlation dimension greater than but close
to 0. This is in agreement with the theory: a resonant orHitfiliup a 1-dimensional torus (closed curve) lying on
the surface of some 2-dimensional torus. The 1-dimenstonas will cut the Poincaré section in a finite set of points.
However, resonant orbits are quite unstable; in practioe,will usually see only orbits close to resonance. In this
case, the Poincaré plot will consists in clusters of poiotauieulated around a finite number of locations. The farther
the motion is from a resonance, the more spread out thosexdware, and the closer to 1 the correlation dimension
is. We will not provide a range of values for the correlatiomensions that is associated to resonant motions; such
a range would unavoidably be artificial. In our experiments,found trajectories that follow a resonant regime for
about 1000 revolutions about the mass and whose correlitisension is between® and 05.

As an example, we consider a resonant orbit of initial caoadéx = 0.3,y = 0,u= 0,v= —0.08, corresponding to
the Jacobi constaf = 6.3336. This orbit is in a resonance of 22 : 1 with respect to théan of the nearby primary.
We have generated the time ser{és; }; of 2000 data points, wherg; }; are the intersection times with the plane of
sectionX;. For this data set, the Jacobi constant is preserved up tbithdecimal place during integration. The orbit,
the corresponding time series, the Poincaré plot and réwmtsd phase space in 2-and 3-dimensions are shown in
Figure 5. For the correlations dimension, we found thatioof8l) ~ 0.3 and it stabilizes beginning a dimensibe- 4;
see Figure 4.

Chaotic motions

In our experiments, we found that chaotic orbits are charaxd by a correlation dimension less than but close
to 2. This is in agreement with the theory: a resonant orhitfilliup a 2-dimensional region corresponding to the
chaotic sea in the Poincaré section. Empirically, we wiktate a range of values &f0.2 about 2.

As an example, we consider a chaotic orbit corresponding ¥03.95. We have generated tfig y)-coordinate
Poincaré plots corresponding to the sectinas0.5 andx = 0; they are shown in Figure 6. The plot corresponding to
x = 0.5 reveals a reacher structure than the one corresponding b We are interested to classify the transfers of the
infinitesimal mass betweet> 0 andx < 0; therefore, we use the time series correspondixgt® to reconstruct the
phase space. We have generated a time sghigl of 1400 data points; the Jacobi constant is preserved ugté-th



Quasi-periodic orbit around a primary, in a co-rotatingriea
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Plot of the{At; }; time-series for a quasi-periodic motion.
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Left — Poincaré plot at = 1 — u; middle — reconstructed phase spac&f right — reconstructed phase spac&ih

Correlation dimension and least square approximation.

FIGURE 4. Quasi-periodic orbit



Resonant orbit about a primary, in a co-rotating frame.
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Plot of the{At;}; time-series.
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FIGURE 5. Resonant orbit, of 22 : 1 resonance.
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Left — Poincaré plot at = 0.5; middle — Poincaré plot at= 0; right — reconstructed phase spac®&m
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Correlation dimension and least square approximation.

FIGURE 6. Chaotic transfers between primaries.

decimal place during integration. The reconstructed phpaee irR? is shown in Figure 6; it looks like a scattered set
of points. For the correlations dimension, we found thatzofS) = 2.0 and it stabilizes beginning dimensidr= 4;

see Figure 6. This agrees with our expected range of valu¢isd@orrelation dimension, which characterizes chaotic
motions.

Resonance trapping

An example of resonance trapping is provided by the dynawfickipiter's comet Oterma. We model Oterma’s
dynamics as a planar circular restricted three-body proplehere the primaries correspond to Jupiter and the Sun,
and the mass ratio ig = 0.0009537. This comet makes rapid transitions back and fativden heliocentric orbits
outside the orbit of Jupiter and heliocentric orbits indige orbit of Jupiter. The interior heliocentric orbit is stoto a
3:2resonance, while the exterior heliocentric orbit iselto a 2 : 3 resonance. In the Poincaré section corresponding
to x = 1— u, these orbits correspond to resonance islands (see Figuid& trajectory is temporarily trapped by
one resonant island, where the dynamics is almost reghlam, is released and is eventually captured by the other
resonant island, while it can visit some other resonantisia between, such as a 1 : 2 resonance. The Jacobi constant
corresponding to the orbit of Oterma is approximateh: 3.03.

As an example of possible dynamics for Oterma, we starteld thi¢ initial conditionsg = 0.88 yg = 0,%g =
0.092 yp=0.14163. For the time series, we use the Poincaré seksica {(x,y,X,y) |y=0, x< —u, y > 0}. However,
in Figure 7 we show the Poincaré section corresponding; fasince it seems to provide a better evidence of the
resonant islands: they look like the wings and the body ofnlesquito. We have generated a time series of 1000
points. We estimated the correlation dimension of the retanted phase space being cortlin= 1.8, saturating in
dimension 4. See Figure 7. This agrees with our expectatii@isn orbit that is successively captured by resonances



Left — orbit in an inertial frame; right — orbit in a co-rotag frame.
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Plot of the{At; }; time-series.
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FIGURE 7. Resonance trapping.



and wander chaotically from one resonance to another witk laecorrelation dimension larger than 1 — corresponding
to the resonances — and less than 2 — corresponding to chraotfers.

FINAL REMARKS AND CONCLUSIONS

We performed the numerical computation of the trajectowéh the program Dynamic Solver (author Juan M.
Aguirregabiria). We used the integrator Dormand-Prince,B(with variable step-size. This is not a symplectic
integrator; the energy is not conserved during integrafilencompensate for this, we restricted the size of the data
collected so that the variations in the energy are kept redsp small. Since the accuracy in computing the correfatio
dimension is low anyway, we opted for a margin of error in theabi constarAC < 104, It is worth noting that the
variation of the Jacobi constant during numerical intagratiepends on type of the orbit that are generated: stable
orbits result in smalleAC in the long run when compared to irregular or chaotic orfJitee code for computing the
correlation dimension was written in Maple.

The correlation dimension is just one way to measure theédrdimension of a reconstructed set. It is perhaps the
simplest way to formulate theoretically, but it is somewsalbjective and does not indicate the penalty paid for too
low an embedding dimension. A more accurate and less commady intensive procedure is the method of ‘false
nearest neighbors’, which identifies the number of poirdsdippear to be the nearest neighbors because the dimension
of the reconstructed phase space is too small. When the muohfadse nearest neighbors drops to zero, it means that
self-crossings were eliminated and the proper embeddmegrion has been reached. See [11].

The conclusion of these investigations is that, given a-s@ges consisting in the crossing times of some Poincaré
sections, by using phase space reconstruction technigeesamw distinguish reasonably well between regular and
chaotic motions, and between regular and chaotic transfeen though the observed data is neither very large nor
very accurate. The shortcomings of the method are that tlielation dimension estimator is not very precise, and it
leaves ‘gray’ ranges of values for which the type of trajeéetocannot be properly determined. In the future, we hope
to be able to improve the methods outlined in this paper bygusther estimators such as the ‘false nearest neighbors
method described above.
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