HARDY AND RELLICH INEQUALITIES WITH
REMAINDERS

W. D. EVANS AND ROGER T. LEWIS

ABSTRACT. In this paper our primary concern is with the estab-
lishment of weighted Hardy inequalities in LP(2) and Rellich in-
equalities in L2(£2) depending upon the distance to the boundary of
domains Q C R™ with a finite diameter D(2). Improved constants
are presented in most cases.

1. INTRODUCTION

Recently, considerable attention has been given to extensions of the
multi-dimensional Hardy inequality of the form

/Q]Vu(x)\zdxzM(Q)/ﬁ%d}(—l—)\(ﬁ)/gm(x)]zdx, u € H (),
(1.1)

where () is an open connected subset of R" and
d(x) := dist(x, 00Q).

It is known that for ;(€2) =  there are smooth domains for which
A(Q2) < 0, and for A(2) = 0, there are smooth domains for which
() < § - see M. Marcus, V.J. Mizel, and Y. Pinchover [8] and
T. Matskewich and P.E. Sobolevskii [9]. In [2], H. Brezis and M. Mar-
cus showed that for domains of class C? inequality (1.1) holds for

pu(Q2) = }1 and some \(Q2) € (—o0,00)

and when €2 is convex

A(Q) > (1.2)

4D(Q2)?
in which D(Q2) is the diameter of (2.

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [6]
answered a question posed by H. Brezis and M. Markus in [2] by estab-
lishing the improvement to (1.2) that (1.1) holds for a convex domain
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Q, with
1 K(n) Sn—1 2/n
Q)=-, MNQ)>—F%, and K(n ::n[ ] 1.3
W)= 3 N2 [ ) =a[Z7 )
in which s,,_; := |S"7!| and || is the volume of 2.

For a convex domain © and p(€2) = 1/4, a lower bound for A(2) in
(1.1) in terms of || was also obtained by S. Filippas, V. Maz’ya, and
A. Tertikas in [5] as a special case of results on LP Hardy inequalities.
They prove that A(2) > 3D, (Q)72, where D;(Q) = 2sup,cq d(2),
the internal diameter of Q. Since 3D;n ()% > 2K (n)/|Q|*", their
result is an improvement of (1.3) for n = 2,3, but the estimates don’t
compare for n > 3.

In this paper we show that (1.1) holds for (1.3) replaced by

3K (n)

2|

as well as proving weighted versions of the Hardy inequality in LP(2)
for p > 1.

In the case p = 2, the following are special cases of our results. If Q
is convex and o € (0, 1], then

2 2°n(1 — 0)? B(n,2 — o) Sp—1\ %2 w(x) 2dx
vl S | S G ™ Hecors
fi

w() = - and  A(Q) >

(1.4)

or .
+

r(est

If o € [352,0] and (2 is convex, then

(1.5)

=] g

B(n,p) :=

/Q(S(X)"}Vu(x)’2dx > uB(n,Q—o)/Q(S(X)”2|u(x)]2dx
Cu(n,0) )1 (x) [2dx
’mmn_(,)/gam [u(s0) .

for Cy(n,o) given in (3.4). Similar results for weighted forms of the
Hardy inequality in L”(Q2) are given in section 4.

Finally, we show that our one-dimensional inequalities in §2 lead to
improved constants for the Rellich inequality obtained by G. Barbatis
in [1] for n > 4.

2. ONE-DIMENSIONAL INEQUALITIES

As is the case in [6], our proofs are based on one-dimensional Hardy-
type inequalities coupled with the use of the mean-distance function
introduced by Davies to extend to higher dimensions; see [4]. The basic
one-dimensional inequality is as follows:



HARDY AND RELLICH INEQUALITIES 3

Lemma 1. Let u € C}(0,2b), p(t) := min{t,2b—t} and let f € C1[0, ]
be monotonic on [0,b]. Then forp > 1

[ itewplatopa <y [TEEDLO g pa. 21y

Proof. First let u := vy, ,, the restriction to (0, b] of some v € C5(0, 2b).
For any constant ¢

~ JU1) e ute)Pdr = ~[£() - cu ol
+ [yLF () = B llu() 21 Ju() ) dt.
By choosing ¢ = f(b), we have that

= Jo F@Olu(lrdt = p [/ ()] () [P~ 2Re[u(t)u’ (t)]dt.
(2.2)

Similarly, for u = vy, , v € C5(0,2b), we have

—J, f’( b—s)luls )|pd8 -
fb F(2b—s) — f(b)]|u(s)|P~*Re[u(s)u/(s)]ds.

Therefore, since f is monotonic, for any u € C;(0, 2b)

S ||u<>|pdt
—pfo If F(0) [ut) =2 Reult)u (1) dt
<p f 1S (DT ()= DOy 1) g
\f’( ) i
<p[ Sy 170 ||u<>|pdt} T |y SO (et

on applying Hoélder’s inequality. Inequality (2.1) now follows.
Il

The next lemma provides the one-dimensional result needed to im-
prove (1.3), which was proved in [6].

Lemma 2. Let 0 < 1 and define u(t) := 2b—p(t). For allu € C§(0,2b)

/ Yy wopa > (50 / " oty [1k(0) (22 o
(2.3)

for

,_ 1-2-"177  s<0,
ko) = { [ 1, } o e<[0, 1].

Proof. On setting f(t) =t°~! in (2.1) we get

ol [t o < [ ot - (AN
(2.4)
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With u € C}(0,2b), let p = 2 and substitute v(t) = [1 — (@)l_g]u(t)
n (2.4). We claim that this gives

/0 " a2 (1 B Ak / O = (@)“’] o) Pt

for any real number o. The substitution gives

070 (1) =~ plt) /2! (pu(t)+p(2) 2 [1 (A) ),
Consequently,

PO OF = (1 =) p(t) 7 u(t)]” + pl
—(L= o) ()[1 = (42) ] ul?)
which implies that

2ol )Pdt = [P p)7 L — (BD) ) () Pt

|
+f02b(1 _ 0)262‘7*2p(t)7‘7|u(t)|2dt 1
H1 =0 o [ — ()] Jupde

= 2 p(t)[1 — (42) ) (1)t

(2.6)
since p'(t) = 1 in (0,b) and —1 in (b, 2b). Therefore, (2.5) follows from
(2.4).

Since 2b = pu(t) + p(t)

o — Y 2
[1- (@)1 ] ‘= [1 - bl—g(i);(t)l—f’}
t

for
1

ky(x) = ,

)= T — @y
For o <1, k,(x) > 01in (0,1), k,(0) =1 and k,(z) > 00 asx — 1~.

By examining the derivative of k,(x)

—(1=0)((14+x)7 —217927°)

z €[0,1), o # 1.

K, (z) =
) = T — P
we see that
—(1-0), 0o<0,
lim k) (z) = 1, o=0,
z—0% 00, 0<o<l1

For o0 < 0, k, () is minimized at
2, =1/(2"7 — 1) < 1.
Calculations show that
ko(2,) = [1 = 257177 = k(o).
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For o € [0,1), k! (x) is never zero in (0,1) indicating that k,(z) is
minimized at = 0 for o € [0,1) and = € [0,1). The inequality (2.3)
now follows. U

In order to treat the case in which p # 2, we make use of the methods
of Tidblom [11] and prove a weighted version of Theorem 1.1 in [11].

Lemma 3. Let u € C}(0,20), p € (1,00), and 0 <p— 1. Then

S ()l ()Pt > [ [ Lot P 4 (p— 1P} ut) Pt

Proof. We may assume that ¢ # p — 1 since otherwise the conclusion
is trivial. According to (2.2) for a monotonic function f and a positive
function g,

APl < ol - SOl
<p [ aneopa] ™ | g (20500) " e

1-1/p

Consequently,

(o1 @t la)”
pp/ (t)[Pdt >

1/(p-1) Pt
b (1f)—f)|P
( I (| 1) ) |u(t)|pdt>

Now, as in [11], using a corollary to Young’s inequality, namely

AP/BP > pA —(p—1)B,

1/p—1
with A = [*|f/()|lut)Pdt, B = [ (%) u(t)[Pdt, it fol-
lows that

P sl op 1/p-1)
zfo {p|ft - - 1) ()" g,

Choose f(t) =t and g(t) = (p — o — 1)~ P~V Then

_1
<|f(t)—f(b)|1”>1/(p1) _ (p o 1) |:|t0—p+1_ba—p+1‘p:| p—1

g(t) 124
1

= (p—o—1)t7"? [(1 _ (@p—aﬂ)ﬂﬁ |
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Consequently, for t € (0,0)

plf't)]—(p—-1) (W) 1/(p-1)
= (p — 0 — 1) {pt"—l’ - (p - 1)t‘7_P [(1 _ (i)p—a—1>l)] =T

o= {ie - (1-[1- ()
> (p—o =D {1+ (-1 ;)
> (-0 = {7+ (- 1) (5))

and the inequality follows. In the inequality above we have used the

fact that . L . )
p—o—17 25 p—o—
-Gy e

The proof is completed by following the last part of the proof of Lemma
1. O

For a certain range of values taken by o, o € [—¢,, 1) with ¢, > 0,
the inequality in L?*(Q) given by Lemma 2 gives a better bound than
Lemma 3 with p = 2. In fact for 0 < 1

2OV _ e, 2RO) | 2 Vko)?
A [tk Cy) ] =0 s s

p(t)

with
2270']{; 22720]C 2
((17—)0 + o (02220 (28)
p(t)u(t) p(t)7p(t)
b2, oe€0,1),

[2— 0+ bk(0)p(t)] k(o)b° 72, o <O0.
Since k(o) decreases to 0 for o < 0 as |o| — 0o and k(—3) ~ 0.22, then
the left-hand side of (2.8) is greater than b°~2 for o € [—3,1).

>

3. A HARDY INEQUALITY IN L?*(QQ)
V\lfe need the following notation (c.f.[6]). For each x € Q and v €
o 7,(x) :=min{s > 0: x+ sv &€ Q};
D,(x) := 7,(x) + 7_,(x);
pv(x) = min{7,(x), 7, (x)};
pr (%) 1= max{7,(x), 7 (x) } = Dy (x) = pu(x);
D)= sup  Dyfx)

x€eQ, veSn—1
Qe ={yeQ:x+t(y—x)€Q, Vte0,1]}.

Note that D(£2) is the diameter of Q and €y is the part of 2 which can
be “seen” from the point x € 2. The volume of €2 is denoted by [€2].
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Let dw(v) denote the normalized measure on S"~! (so that 1 =
Jon-1 dw(v)) and define

p(x:5) 1= /S () (3.1)

Hence p~'/%(x;—2) = p(x) the "mean-distance” function introduced
by Davies in [4] For

B(n,p) == /Sn1 | cos(e, v)[Pdw(v) = Fé_?;(f_é%)), ecR" (3.2)
it is known that
) 1 o> Bp)
i) = [ () > S 3.3

for convex domains 2 — see Exercise 5.7 in [4], [3], and [11]. Note that
B(n,2) = n~'. This fact can be applied to most of the results below
when (2 is convex.

For a Hardy inequality in L?(2) with weights we will need to define

2(1—0o)

Cu(n, o) = n(S’H) " k(0)[29 + 227k (0)](1 — 0)2 (3.4)
n
for o € [35%,0] and n > 2 where as given in Lemma 2
_J[1—-2-7177, o<o,
ko) = { 1, s €0,1).

Note that Cg(n,0) = 2K (n) for K(n) defined in (1.3).

2

Theorem 1. If 35 < ¢ < 0, then for any u € C}(Q)

/Q )7 | Vu(x |dx > MlTw/gzp(x;a—Q)|u(x)|2dx
o
+ Culn,o) / )T uPdx.  (35)
@ [Qy[ "
If0 <o <1, then
Jo [ () e > 20 (3.6)

T fo {pt o —2) +3(5) 7 Hlux) Pax.

If Q is convez, then for any u € C3(Q)
2
/ (5(X)U|VU(X)’2dX > WBM 2—0) / §(x)7 2 u(x) [P dx
Q

CH”“/a el (x) | 2dx.

2(1—0)
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when o € [%2,0] and
Jo }Vu(x)fdx >
T2 [ { B2 = 0)3(x)7 2 +3(25) 7 Hu(x)Pax
when o € (0, 1].

Proof. Let d,u, v € S*~!, denote the derivative of u in the direction of
v, e, Ou=v-(Vu). It follows from Lemma 2 that for o € (—o0, 1]

Joy 05 (30)|Bu] “dx

e’ o ()71 (1= 2 (3.7)
> (5%)" Ja ()72 (14 k(o) 2255 ]77) Ju(x)Px.
Expanding the integrand in (3.7), we have
o— (%) (1—0)\ 2
pu(X) 2(1 + k(o )[2,) ((x))} 2 - (3.8)
= )7+ 2T R e + 20 k(o)
Ifo<0
o— 2pu (x 2
pl/() 2[1+k (;f((x) ]
o - 5(x)lo1 — 5(x)ll
Z py(X) 2 + 22 ( (}E) ) 5())) + 22(1 )k(U)QTy(x)g(l_o-)(Jr)T_u(X)Q(l—o')
(3.9)

since p,(x)~7 > 6(x)!°! in this case. As in [6], we note that since

fSnﬂ (7 (%) 7 (%)) 7 dw(v) < fswl (1,(x))2 = dw(v) )

< | fon 7_,/()2((1)”)610)(”)}2(71)
= [35Id]

for o > 2_7", then

-1

fS”*l Wd@(y) > [fS"*l TV X T_V(X))liodw(y)]
2(1 o)
> [5510d]

For the third term in inequality (3.9)
fS" (7, (x)2079) 4 7 (%)2 =N dw(v) = ZfSn,l 7,(x)20 =) dw(v)

implying that for o > 277"

_2(1-0)

Jonoa (7 ()27 4+ 7 (x)207)) T dw(v) > %[

Consequently, for 27 < 0 < 0 we have that

Joner po(x) 72 [1 4 k(o )(2;5)5(3))(10)}261@((1@) (3.10)
> p(x;0 — 2) + Cr(n,0)5(x)/ [n]Qy] J.
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Upon combining this fact with (3.7) we have
1—a 2f { g — 9) 4 Culno) ""}| )[2d
3 Q p(x; o n|Q ‘2(1 N X

<foSn1pV Iau )|*dw(v) (3.11)
= Jo 3(x)° Jyuon | cos(v, V()] 2dw (v)|Vu(x)[*dx

for o < 0. Since

(3.12)

S|

/Sn—l | cos(v, @) Pdw(v) =

for any fixed « € S"! (see Tidblom [11], p.2270), inequality (3.5)
follows.
For 0 < ¢ < 1, we consider first the third term on the right-hand

side of (3.8). We have

Jnes 20(3)7 11, ()20~ o (v)
< Jonmr 27( (%) + 74 (%)) (7, (%) + 7, (%)) 20 dw (v)
= 27||7 (%) + 70 (¥) 1127 gn 1)
< 277 [||7(%) || 2o (gn1) + ||T—V< x) || z2-a(sn-1)
= 2050 L e rdt)
< 207 Joums ()" ()] ™
= 22(1—0)[5:1@ H

]2—0

for n > 2 by the Minkowski and Holder inequalities. Therefore, the
term

2—0o

fos B > 9200 (3

3

2

X

N—
d

Similarly, in the second term of (3.8)

fgn Lo (X) (%) =7 dw (v)
< 5 Jornr (10 (0) + 70 (X)) (70 (%) + 7 (%)) 7w (v)
<2 [mjed]

Sn—1

as before implying that

2—0o

fgn ) dw(v) > 20—1(Sn—1 )T

X (x) 177 = n[Qx|

For 0 < o0 < 1 we now have that

fos 7214 (o) Gt )
> p(x;0 —2) +3(5h) ”

since k(o) = 1 in this case. Consequently,

fQ fgn 1 ,01/ )7 cos(v, Vu(x))|2dw(v ’ u( x)fdx

2—0

> (5) fulotoxio -2 +3(\ 1) 7 u(x)Pdx.
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According to (3.12) it follows that

/Snl py(x)7| cos(v, Vu(x))|Pdw(v) <

Therefore, (3.6) holds.

The inequalities in the statement of the theorem for the case of a
convex domain € follow from (3.3) and the fact that |Qx| = || for all
x € (). O

D(§2)

2on

4. AN LP(Q)) INEQUALITY

With the guidance of Tidblom’s analysis for the Hardy inequality
n [11], L? versions of the weighted Hardy theorem in the last section
can be proved by similar techniques. When ¢ = 0, the next theorem
reduces to Theorem 2.1 of [11].

Theorem 2. Let u € C}(Q) and p € (1,00). If o <0, then for B(n,p)
defined in (3.2)

Jo 0x)7IVu(x)Pdx > - "
[lp—o— 1|/P]pfﬂ{ + (p _ 1) [Z,gxll} n }|U(X)‘pdx .
and if o € [0,p — 1], then
Jo [Vu)[Pdx > )
T Jol poc o —p )+(p—1)[2]}{:]n}|u(x)|pdx& |
4.2

If Q is converx, p(x,0 — p) can be replaced in (4.1) and (4.2) by the
term B(n,p — 0)/d(x)P~7 (in view of (3.3)) and || by |€2].

Proof. From Lemma 3 we have that for 0 < p — 1, any v € S* !, and
u € Cj(Q)
Jo pv(x)7 0, u(x)|Pdx >
[|p . ll} Ja {pv )7+ Du(lx)2§ :}|u )[Pdx.
If o < 0 we bound p, (x)° for any v € S"~! by §(x)° in the first integral

above. If o > 0, we bound it by D(£2)7/27. As in [11] we may use the
fact that

(4.3)

|Oyu(x)[Pdw(v) = B(n, p)[Vu(x)[". (4.4)
S§n—1
After bounding p,(x)° as described above, integrate in (4.3) over S"~!
with respect to dw(v). In order to evaluate the integral of (2/D, (x))?~7,
we proceed as in [11]. Since 0 < p — 1, then f(t) = t°~P is convex for
t > 0 and we have that

L Gg) = ([ P aem) ™ = (02)
(4.5)
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by Jensen’s inequality and Lemma 2.1 of [11]. The conclusion follows.
]

5. RELLICH’S INEQUALITY

The methods described above with Proposition 1 below can be used
to prove a weighted Rellich inequality which, for n > 4 and without
weights, improves the constant given in a Rellich inequality proved
recently by Barbatis ([1], Theorem 1.2). A comparison is made below.
The methods used by Barbatis depends upon the identity (5.2) first
proved by M.P. Owen ([10], see the proof of Theorem 2.3). In order
to incorporate weights, our proof requires the point-wise identity (5.1)
which does not follow from the proof of Owen.

Proposition 1. Let Q be a domain in R™. Then, for all u € C*(R")

/Snllafu(xﬂ?dw(y) - )[mu 1%22‘8%%“, (5.1)

and for all u € C3(Q)

/Q /S 1O3u(x)Pdw(v)dx = ﬁ /Q | Au(x0) P, (52)

Proof. For v = (11,...,1v,) we have
2, _ 2, _ Ny
Oou=(v-V)u= Z&mzl VgV Ut
n o
ZZ:I Vilee + 2 Z VeV Upm
1<b<m<n
. . 9%
in which u,,(x) := 92, 833 . Consequently,

Jsnor 102u]Pdw(v) = Ze,m:nl Uil Jn1(V0)? (V) 2dw (v )
+4Zm:1 > Re(Unmmlpg) fgn 1 ’/p’/qdw( )

1<p<q<n

+4 > > Re(upglis) fon 1 vplatividw(v).

1<j<k<n 1<p<g<n
(5.3)

Let 6, € [0,7] for j = 1,...,n — 2, and 6,1 € [0,27|. Using the
convention that H?Zq =1 for p < ¢ and 6,, = 0, we have
Vj:Hi_isinekcosej, j=1...,n,

dw(v) = @Hg 2(sin 0)" 1 *d0)db,, 1, (5.4)

forn!l:=n-(n—2)-(n—4)---1 and

_J 2(2m)=V/2 for n odd,
= (2m)"/? for n even.

Calculations show that

/ (Vi) prgdw(v) = 0, m=1,....,n, 1<p<qg<n
Sn—l
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implying that the second term on the right-hand side of (5.3) vanishes.
A similar consideration for the third term on the right-hand side of
(5.3) shows that

/ VpVgV;vpdw (V) # 0, 1<p<qg<n, 1<j<k<n,
n—1

only if 7 = p and k = ¢q. Therefore, (5.3) reduces to

fS"71 |02u(x)|2dw(v) = szzl uamfsn,l(yg)Q(ym)de(y)
437 fupl? fsnfl(’/p)2(yq)2dw(’/)- (5.5)

1<p<gq<n
However, further calculations show that
1
—— 1<p<q<n,
/ vvido(v) = § D =P (5.6)
sn—1 m p:q:17an
implying that
Jors 100uP A ) = 55 Doy [t B

+m > [4lupg|” + 2Re(upplieg)] (5.7)

1<p<q<n )
= ik [lAuP + 25, |

which is (5.1). Equality (5.2) now follows since

Z/ ‘8@8% = /Q | Au(x)[*dx.

&u(x)
8:(: 10z

O
Define
) i(x)?, o<0,
dx;0) = { (%)“, o€ [0,1;
and
Cr(n,o) = 2"k(o — 2) [ST} ' (1 + 22 k(o — 2)) (5.8)

for 0 <1 and k(o) defined in Lemma 2.
Theorem 3. For o <1 and u € CZ(1),

Jodix; o) [|Au(x) + 2307, | 548 ]dx
> B(n, o) {prxa— 1) |u(x )|2dx (5.9)
+217 k(o — 2) [ =2 ] a fQ _(, dx}

holds when n > 4 — o and
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oo 0) || M)+ 257, | 2
>ﬁna{f9pxa )|u( )|2dx
+24 k(o — [Sn 15 f, Luegl ‘S']“r‘ dx
+226-9) k(0 — 2)2 [ 2= ]

+tdf }
+to’
Q|ﬂ|

(5.10)

holds whenn >4+t—oc andt > 2 —o.

Proof. For 0 < 1, it follows that

2b 2b
/O p(t)0|u"(t)|2dt > /0 p(t)a[l_(?)l0}2|u//(t)|2dt
N2 [
> (59) [ o ora

by (2.4). Therefore, for 0 < 1 and u € C3(0, 20),

J5 ot o
> (LB [ p()7 =4 [1+ k(o — 2) (348) "] [u(t)2dt
(5.11)
by (2.3).
From (5.11) we have for u € CZ(Q)

oy oo 02 P o
> (L= [ o1+ (o = 2)(228) 7} ju) P

for 0 < 1. As in (3.8) we write

3—0 2
pu(x)7 {1 + k(o —2) (2/)”((x))> }
= ()7 + 2 h{o — 2) 2 + 220k — 2)2 L
(5.13)
Since p, (x)p, (x) = 7,(x)7_,(x), in the second term on the right-hand
side of (5.13) we may write

P 1 i),

p (X277 [ ()T ()] (%)277
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Thus
Jonar Hvix)dw(v) = [ 50 (X)) 70 (%) o (v)
+ [ o< o0 T-v(X) T (X) 7 (%) THdw(v)
> Jo oz ()7 () dw (V)

+ fTV(x)ST_,,(x) 7—*1’(}()0_4 (X)dw(V)

and

-1
{ / X))} < / 7, (%)~ dw(v)
7 (%) 27— (%) 7 (%) 27— (%)
(4—0)/n
< { /Snﬁf(")d”@}
n (4—0)/n
= ( |QX|)
Sp—1

for n > 4 — 0. Therefore for the second term on the right-hand side of
(5.13), for 0 <1 and n > 4 — o, it follows that

//s Sl )| (x)[? dX> el 1 /||u dx. (5.14)

For any ¢ € (—oo, 00), we may write the third term in (5.13) as

p, (%) I
m = (%)L (7 (X) 7y (%)) 27 L pu(x) B30 =2 p, (x)1 (1, %),
ft>2—-o0
S T3 (v) 2 [z, 7))
+ [ zr oo T (0T dw(v).
As before

1
{/ R )} < f 7 (%) Hdo(v)
Ty (%) 27—1 (%) T (%) >7_ 0 (x)

< { /S Tf(x)dw(y)}(4_a+t)/ "

n (4—o+t)/n
= (51
n—1

if n >4 —o0+t. Associated with the third term on the right-hand side
of (5.13), we have for 0 < 1,t>2—-0>0,andn>4 -0+t

//S" 1 0:2 a()y)| (x)[?dx > (521)4+30[2de

(5.15)
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From (5.12) — (5.15) we obtain

JoJons 0 )7 1020 () P () > S=REE L ploc 0 — (o) P
124 (o — [sn 1] fQ \U(X_
+226-0)(g — 2)2 2= ] : fQ sy '1&">de}

provided 0 <1,t>2— o0, andn24+t—a.
Note, that we may simply choose zero as a lower bound for the third
term on the right-hand side of (5.13) and conclude that

—o)2(3—g)2
i fons 07 020(x) o) = U= f oo s — u(x) P
4—0oc 2
+249k (0 — 2) [—S"n*l} n fQ —4—|“( )_lo dx}

forc<landn>4-—o.
Now, it follows from Proposition 1 that

Jo Jon- 1p,, (x)7|02u(x) |*dw(v)dx ,
< iy o dOx o) [| AU + 2507, |50
Thus, (5.9) and (5.10) are proved. O

[ ax

It follows from Theorem 1.2 of Barbatis [1] that for a convex bounded
domain Q and all u € C§°(2)

A ’“ |2d bl 2) 5"1 d
\u 16 + n(n+ \Q\ \u )|Pdx.

(5.16)
As in Theorem 2, for a convex domain §2 C R", we may replace p(x o—
4) in Theorem 3 by B(n,4 — 0)/d(x)*™° and 2] by |©2] to conclude
from (5.9) that for n > 4

9 [ |u(x)]? Sp— 1
Au(x)Pdx > — dx—l—cnn—l—Q /ux dx
st 5 | S emn 2 S ] ™ | '517

for all u € C§°(R2) in which ¢4 = 3k(—2) ~ 1.25. Therefore (5 17)
improves the bound given by (5.16) for all n > 4.
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