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Abstract

This article proposes the construction of Wigner measures in the infinite dimensional bosonic
quantum field theory, with applications to the derivation of the mean field dynamics. Once these
asymptotic objects are well defined, it is shown how they can be used to make connections between
different kinds of results or to prove new ones.
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1 Introduction

The bosonic quantum field theory relies on two different bases : On one side the quantization of a
symplectic space, the approach followed for example by Berezin in [Ber], Kree-Raczka in [KrRa]; on
the other side the gaussian stochastic processes presentation also known as the integral functional point
of view followed for example by Glimm-Jaffe in [GlJa] and Simon in [Sim]. Both approaches have
to be handled in order to tackle on the most basic problems in constructive quantum field theory (see
[BSZ][DeGe]). The interaction of constructive quantum field theory with other fields of mathematics
like pseudodifferential calculus (see [BeSh] or [Las]) or stochastic processes (see [Mey][AtPa]) is often
instructive.
In the recent years the mean field limit of N-body quantum dynamics has been reconsidered by various
authors via a BBGKY-hierarchy approach (see [ESY1][ESY2][FGS][FKP][BGGM][Spo] and [Ger] for
a short presentation) mainly motivated by the study of Bose-Einstein condensates (see [Cas]). Although
this was present in earlier works around the so-called Hepp method (see [Hep] and [GiVe]), the relation-
ship with the microlocal or semiclassical analysis in infinite dimension has been neglected. Difficulties
are known in this direction : 1) The gap between the inductive and projective construction of quan-
tized observable in infinite dimension; 2) the difficulties to built algebras of pseudodifferential operators
which contain the usual hamiltonians and preserve some properties of the finite dimensional calculus
like a Calderon-Vaillancourt theorem, a good notion of ellipticity or the asymptotic positivity with a
Garding inequality; 3) even when step 2) is possible, no satisfactory Egorov theorem is available.
Recall the example of an N-body Schrédinger hamiltonian
1 dN
Hy A+N1Si;§NV(x, xj) on R™Y

and consider the time-evolved wave function
Py(r)=e Ny N yeP(RY).

The 1-particle marginal state, the quantum analogous of the one particle empirical distribution in the
classical N-body problem, is given by

Tr[Apl(t)]:<‘PN(t),]1[ il@---l@l@{l/@@m@l lI'N(t)>
i=1 .

1

The mean field limit says that in the limit N — oo, the marginal state evolves according to a non-linear
Hartree equation

pl(t) =z z(t)| +o(1) ,  asN—eo,
. idz=—Az+ (V|22 onR, xR?
with { (=0)=y.
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By setting N = ¢ and in the Fock space framework with ¢-dependent CCR (i.e: [a(g),a"(f)] = € (g, ).
the problem becomes
: 1
Hy = — [ Va*(x)Va(x) dx+/ V(- y)a () 0)a(aly) dudy| = Lae
S R4 R2 ;
e—itHN _ e_i[EHs :

Tr[Ap'(1)] = (®n(1),dT(A)Pn (1)) = (PN (1), pa(2)V " P (1)),

where p, is the polynomial ps(z) = (z,Az) . Higher order marginals, taking into accounts correlations,
can be defined after using the polynomials p4(z) = (z¥, Az®*) with A € .Z(L*(RK)).

On this example, the scaling of the hamiltonian, of the time scale and of the observables as Wick
operators enters formally in the €-dependent semiclassical analysis. The Hepp method concerns the
evolution of squeezed coherent states ([Hep][GiVe][Cas]), which amounts in the finite dimensional case
to the phase-space evolution of a gaussian state according to the time dependent quadratic approximation
of the non linear hamiltonian, centered on the solution to the classical hamiltonian equation. We refer
the reader to [CRR] for accurate developments of such an approach in the finite dimensional case.

In the nineties and as a byproduct of the development of microlocal analysis, alternative and more
flexible methods were introduced in order to study the semiclassical limit with the help of Wigner (or
semiclassical) measures (see [Bur][Ger][HMR][LiPa][Tar]). Such objects are defined by duality and
rely on the asymptotic positivity of the e-dependent quantizations. It gives a weak but more flexible
form of the principal term of the semiclassical (here mean-field) approximation. Via the introduction
of probability measures on the symplectic phase-space, it provides an interesting way to analyze the
relationship between the two basic approaches to quantum field theory. Further in finite dimension, the
Wick, anti-Wick and Weyl quantizations are asymptotically equivalent in the limit € — 0. This is not so
obvious in infinite dimension.

Several attempts have been tried to develop an infinite dimensional Weyl pseudodifferential calculus
with an inductive approach. Lascar in [Las] introduced an algebra and a notion of ellipticity in this
direction, making more effective the general presentation of [KrRa]. The works of Helffer-Sjostrand
in [Hel2][HeSj] and Amour-Kerdelhué-Nourrigat in [AKN] about the pseudodifferential calculus in
large dimension motivated by the analysis of the thermodynamical limit enter in this category. With
such an approach, it is not clear that the infinite dimensional phase-space is well explored and that
no information is lost in the limit € — 0. Meanwhile this inductive approach is limited by Hilbert-
Schmidt type restriction like in Shale’s theorem about the quasi-equivalence of gaussian measures. It is
known after [Gro] that the nonlinear transformations which preserve the quasi-equivalence with a given
gaussian measure within the Schrodinger representation are very restricted and do not cover realistic
models. Hence no Egorov theorem can be expected with Weyl observables.

Simple remarks suggests alternative point of views. The Wick calculus with polynomial symbols present
encouraging specificities: It contains the standard hamiltonians, it makes an algebra under more general
assumptions (the Hilbert-Schmidt condition can be relaxed) and allows some propagation results when
tested on appropriate states (see [FGS][FKP]). Meanwhile the Wigner measures in the limit € — O can
be defined very easily via the separation of variables as weak distribution, in a projective way which fits
with the stochastic processes point of view.

After reviewing and sometimes simplifying or improving known results and techniques about the mean
field limit, our aim is to show the interests of the extension to the infinite dimensional case of Wigner
measures:

e After the introduction of the small parameter € — 0 and the definition of Weyl operator W(z),
z € Z the phase-space, choosing between the quantization of symplectic space and the stochastic
processes point of view is no more a question of general principles nor of mathematical taste.
It is a matter of scaling. The symplectic geometry arises when considering macroscopic phase-
space translation W (£), while the operator W(z) is used with this scaling in the introduction of



Wigner measures via their characteristic function. Corrections to the mean field limit considered
for example in [CCD] with a stochastic processes point of view can be interpreted within this
picture: They attempt to give a better information on the shape of the state in a small phase-space
scale.

e Once the Wigner measures are well defined as Radon measures, it is possible to make explicit the
relationship between different kinds of results and to extend them in a flexible way. It accounts
for the propagation of chaos (result obtained via the BBGKY approach) according to the classical
hamiltonian dynamics in the phase-space. Actually we shall prove in a very general framework
that the propagation of squeezed coherent states as derived via the Hepp method implies a weak
version of the mean field limit for product states. Further propagation results can be obtained for
some non standard mixed states without reconsidering a rather heavy analysis process.

e The comparison between the Wick, Weyl and anti-Wick quantization can be analyzed accurately
in the infinite dimensional case. With the Wick calculus, complete asymptotic expansions can be
proved after testing with some specific states. The relationship of such results with the propagation
of Wigner measures works in a rather general setting but has to be handled with care.

e The gap between the projective and inductive approaches can be formulated accurately in the limit
€ — 0. We shall explain in the examples the possibility of a dimensional defect of compactness.

This work is presented and illustrated with examples simpler than more realistic models considered in
other works like [GiVe][Hep][ESY1][ESY2][BGGM] with more singular interaction potentials. That
was our choice in order to make the correspondence between various approaches more straightforward
and to pave the way for further improvements. We hope that this information will be valuable for other
colleagues and useful for further developments.

The outline of this articles is the following. In Section 2, standard notions about the symmetric Fock
space are recalled and Wick calculus is specified. In Section 3 the Weyl and Anti-Wick calculus are
introduced in a projective way after recalling accurately (most of all the scaling) of finite dimensional
semiclassical calculus. The Section 4 recalls the distinction between coherent states and product or Her-
mite states, and their properties when measured with different kinds of observables. The two methods
used to derive the mean field dynamics, the Hepp method and the analysis through truncated Dyson
expansions, are reviewed within our formalism and with some variations in Section 5. The Wigner
measures are introduced in Section 6 with the extension of some finite dimensional properties and spe-
cific infinite dimensional phenomena. Finally examples and applications are detailed in Section 7, in
particular: 1) reconsidering a simple presentation of the Bose-Einstein condensation shows an interest-
ing example of what we call the dimensional defect of compactness; 2) a general result says that the
propagation of squeezed coherent states, which can be attacked via the Hepp method, implies a slightly
weaker form of the propagation of chaos (formulated with product states and Wick observables); 3) the
mean field dynamics can be easily derived for some states which present some asymptotically vanishing
correlations.

Acknowledgements: The authors would like to thank V. Bach, Y. Coudeéne, J. Frohlich, V. Georgescu,
C. Gérard, P. Gérard, S. Graffi, T. Jecko, S. Keraani and A. Pizzo for profitable discussions related with
this work. This was partly completed while the first author had a sabbatical semester in CNRS in spring
2007.

2 Fock space and Wick quantization

After introducing the symmetric Fock space with e-dependent CCR’s, an algebra of observables result-
ing from the Wick quantization process is presented.



2.1 Fock space

Consider a separable Hilbert space 2 endowed with a scalar product (.,.) which is anti-linear in the
left argument and linear in the right one and with the associated norm |z| = \/(z,z). Let 6 = Im(.,.)
and S = Re(.,.) respectively denote the canonical symplectic and the real scalar product over 2. The
symmetric Fock space on Z is the Hilbert space

=P\ Z=T(2).
n=0

where \/" & is the n-fold symmetric tensor product. Almost all the direct sums and tensor products are
completed within the Hilbert framework. This is omitted in the notation. On the contrary, a specific ¥
superscript will be used for the algebraic direct sums or tensor products.

For any n € N, the orthogonal projection of &" 2 onto the closed subspace \/" 2 will be denoted
by #,. Forany (&1,&,...,&,) € Z", the vector §; V& V-V &, € \/" 2 will be

1
= Y &oy®és0) @ &)

' o€x,

&LvEY-vE =806 -®E,)

The family of vectors (1 V---V &,)g.c o is a generating family of \/"%8 % and a total family of \/" & .
Thanks to the polarization identity

1 n
SVEV-VE =5 ), aE () €8)7 (1)
N e=1 j=1

the same property holds for the family (z"), oy e # -
For two operators Ay : \/* 2 — \/* &, k = 1,2, the notation A; \/ A, stands for

i1+iz Jit+j2

A1VA2:,5ﬂjl+jzo(A1®A2)O i1+i2€$(\/ %, \/ g)

Any z € % is identified with the operator from \/° 2 =C 3 A +— Az € 2 = \/! 2 while (z| denotes the
linear form 2 5 & — (z, &) € C. The creation and annihilation operators a*(z) and a(z), parameterized
by € > 0, are then defined by :

a@)\ny = Ven (@ @Ln1 4

Each of (a(z)).,e# and (a*(z)),c# are commuting families of operators and they satisfy the canonical
commutation relations (CCR):

la(z1),a" (22)] = €(z1,22)1. (2)
We also consider the canonical quantization of the real variables ®(z) = \%(a*(z) +a(z)) and I1(z) =
®(iz) = 1= (a(z) —a*(z)). They are self-adjoint operators on .7 and satisfy the identities:

iv2
[P(z1), P(z2)] =i€0(z1,22)],  [P(z1),1(z2)] = ieS(z1,22)I-

The representation of the Weyl commutation relations in the Fock space

W(@)W(z) = e 3°@2W(z 42,) 3)
_ e*iSG(Zl’ZZ)W(Zz)W(Zl),



is obtained by setting W(z) = ¢®@). The generating functional associated with this representation is
given by

(QW(2)Q) = e 5FF,

where Q is the vacuum vector (1,0,---) € . The total family of vectors E(z) = W (@) Q=

etld(2)-a(2)] Q, z € Z, have the explicit form

E(z) = e*%iia*(z)nﬂ

=& nl
2 & 2 Z®n
= e 2 ) gr——. 4
Lo @
The number operator is also parametrized by € > 0,
N|\/ngf = Snl‘vn .
It is convenient to introduce the subspace
alg n
A= DV 2
neN

of 7, which is a set of analytic vectors for N.
For any contraction S € Z(Z), |S] ¢ < 1, T(S) is the contraction in # defined by

L(S)yry =S®S---®S.

More generally I'(B) can be defined by the same formula as an operator on .%};, for any B € £ (%).
Meanwhile, for any self-adjoint operator A : 2 O Z(A) — 2, the operator dI'(A) is the self-adjoint
operator given by

e%dF(A) _ F(eitA)

n
= k

For example N = dI'(I) .

2.2  Wick operators

In this subsection we consider the Wick symbolic calculus on (homogenous) polynomials. We will show
some product and commutation formulas useful later for the application. For example time evolved
Wick observables can be expressed as e-asymptotic expansion of quantized Wick symbols. For a de-
tailed exposition on more general Wick polynomials we refer the reader to [DeGe].

A (p,q)-homogeneous polynomial function of z € 2 is defined as Py(z) = ¢(z%7,z%P), where ( is
a sesquilinear form on (Q?8 %) x (QP4'¢ %), with Py(Az) = A9APP,(z). Owing to the polarization
formula (1) and the identity

) 1 rl . . . . .
g(n&@q’é@p) :/0 /0 e([eZm:On_|_621n(p§]®q,[eZmGn_i_eZm(pé]@p) e2l7t(q97p(p) de(p



the correspondence £ — Py is a bijection when the set of forms is restricted to the sesquilinear forms
n (V448 ) x (\JP%8 %), Any of the continuity properties of P, are thus encoded by the continuity
properties of the sesquilinear form ¢ with the following hierarchy (from the weakest to the strongest)

|€(771\/-~\/77q7‘§1\/'--\/€p)’ Scfmllff‘”‘nq 5 | 1Spl nezéeZ

p q
0O <Cldlyop lWlpy, WweEVZ0eNZ (5

Z C,] (Pl?ll/j ‘<CK

1<i,j<K

Z cij (9| @ y;

1<i,j<K

s K e N,Cl‘j eC,
VI Z)y e\ Z)

q p
([5{6\/%,1[06\/%.

For example, when p = g = 1 the two first ones define . ( %), while the third one defines the space of
Hilbert-Schmidt operators. By Taylor expansion any (p,q)-homogenous polynomial P admits Gateaux
differentials and we set

k K 3 3
afaz P(Z)[”l;‘ Uk, VT, ,Vk/] == aul o ‘aukavl o 'avk/P(Z)
where éu, 0, are the complex directional derivatives relative to u,v € Z.

Definition 2.1 For p,q € N, the set of (p,q)-homogeneous polynomial functions on % which satisfy
the continuity condition (5) is denoted by &), ,(Z):

= 8”3‘1 p q
(b(z) € @p,q(g))@{ " Nz q<'z®q,:z(®l)j>e'$(\/ X N1Z),

The subspace of 2, ,(Z) made of polynomials b such that b is a compact operator b € £ (%) (resp.
be L7 (%)) is denoted by 7, (Z) (resp. P}, ,(Z)).

It will be sometimes convenient to consider b as an operator from ®” % into ®? % with the obvious
convention for symmetric operators b = .#,b.#,. Owing to the condition b € £ (\/? Z,\/? %) for
be P, ,(Z), this definition implies that any differential 0/ 9%b(z) at the point z € 2 equals

! ! k J
2J0kb P L (PN 1y )BT N ) €L\ ZN2Z). 6
&= =0 iy by Vv
We will mainly work with fixed homogeneity degrees p, g but the key statement of this section (Propo-
sition 2.6) says that EB;]’%IGN P, 4(Z) is an algebra of symbols with the same explicit product formula as

in the finite dimensional case.

With any “symbol” b € 2, ,(Z), a Wick monomial 5" can be associated according to:

bWiCk . jﬁ“iﬂ - jﬁ‘iﬂy

ic n+q—p)! g5t T
T (AV/ 7 I AR VA S R

with b= (p!)~1(q!)19F db(z) .
Here are the basic symbol-operator correspondence:

(z,6) «— a*(&) V25(6,2) — (&) (z,Az) «— dI'(A)
(,2) «— a(&) V20(€,2) «— TI(&) 2> «—— N.

Other examples can be derived from the next propositions. The first one is a direct consequence of the
definition (7).



Proposition 2.2 The following identities hold true on %, for every b € 2, ,(Z):
(i) (bWick)* — pWick

(ii) (C(2)b(z )A(z))W‘C" — CWickpWickgAWick it A € Py (%), C € Pop(Z).

(iii) e eI (A) pWickg=igdl(A) — (b(ef"’Az))ka, if A is a self-adjoint operator on Z .

p q
Proposition 2.3 (i) The Wick operator associated with b(z H Z,Mi) X H (&j,2), mi,&j € Z, equals
1 =1

i= J
PV =at(m)---a*(np)a(&r)---a(&y).
(ii) Forb e ), (%) and z € Z the equality

<Z®j bWickZ®k> S+ k!j!

e k=pti—q
- €7 |z b(z (8)
i\l (k= p)!(j - q)! & )

holds for any k, j € N. The symbol 5; 8 denotes 64 1)) 1) (Q) where 8y g is the standard Kronecker
symbol.

Proof. (i) is a direct consequence of Proposition 2.2 with ({z, &))"k = q*(&) and ((&,z))Vik = a(€).
(i1) This comes directly from the definition (7) of pWick . U

The next result specifies the boundedness properties of b"ick,

Lemma 2.4 Forbec &, (%), the estimate

Wick N Lz L
DY i ) S O g (8)2 (k€)X 1B] yr pa ) > Wit B = g '811’8;19 )
holds for any k, j € N.
This implies
—4 1 Wick a0\ —5 7
‘(N) U PPy (10)

Proof. A consequence of (8) is b"Vik(\/* %) c \// % with j=k—p+q. Fory e \/* % and j =k—p+q,
write

Wick VK pra
‘b ic W‘\//:'Z = (k—p)!£2 ,fﬂj(b®1®k*ﬁ’@f’)wng
q P J! k! ’
< 2(ke)? b » .
= U )\/(1 q)!j* \/(k o PO 2] gy gy Wi
Il

An important property of our class of Wick polynomials is that a composition of b}k o plVick with
by,by € 69?,17% P q(Z) is a Wick polynomial with symbol in o 25 2,4(2Z). In the following we prove
this result and specifies the Wick symbol of the product.

For b € &, ,(Z), specific cases with j = 0 or k = 0 of (6) imply

9%b(2) \/QP and 8’19 e\/ff

for any fixed z € 2. For two symbols b; € 2, ,,(Z),i=1,2, and any k € N, the new symbol 0%b,.95b,
is now defined by
0¥by . 9ba(2) = (95b1(2), 9202 (2)) (e et - (11



We also use the following notation for multiple Poisson brackets:

{1,630 = 0*by.0%by — Iby.0kby,
{b1,by} = {b1,by}V.

These operations with polynomials are easier to handle than there corresponding versions for the op-
erators b; € £ (\/P' 2,\J¥ Z). Nevertheless their explicit operator expressions as contracted products
allow to check that &5% P, 4(Z) is stable w.r.t these operations .

Lemma 2.5 Fix pi,p2,q1 and q» in N. For two polynomials b; € 2, ,(Z), i =1,2, set b= (pilg;")™!

0Y92'b; and for any k € {0,...,min{p;,q>}}

- k. 1 _ —
P1ob = (Prﬂ’?z—k)!(éh+612—k)!azplﬂj2 kazqﬁqz ' [811‘1)1.82’%2] )
Then
ke pi! ¢! P $p1+pz kQP q1+tq2— kg )
2 = (Pl_k)! (qz_k), q1+g2— k(bl® Q2 k,@(’)(1®171 k®b2 G \/ \/ (1 )

with the estimate

pi! !z
= (P1—k)! (g2 —k)! il 2.y 2

~ k- ~
bl ®b2 ’bZ‘g(vlaz Z N2 Z) (13)

PPk g\ )

Proof. For v € \/’' % and ¢ € \/** &, introduce the vector

Rqr—k Rqr— ( k
(0%, 9) = (29 @ gy )¢_7q2. by (2 e\/ff

with by (z) = (z%2, ¢) and the form

k

(2 ::Waqu/(z)e(v?)*, with by (z) = (y.2").

The identity

(v 2775, (25075 9) ) = (Y@ = 2R ) it (14)

(V) Wz

is obviously true when y = £¥P! and ¢ = % with §, € 2. Since (§")gc» is a total space of
\/" % with the polarization identity (1), the identity (14) holds for all ¢ € \/*> % and all y € \/*' &
After noticing the relations

! !
Ahbi(2) = LTy, dby(n) = P (PR ),

(p1—k)! (g2 —k)!
with y = b1z%9 and ¢ = byz®P2, the identity (14) leads to
akb a—kb (Z) _ PI! CI2! <Z®q1+q2—k ([; @1 ) (I ®l~7 )Z®p2+p1—k>
ST T =) (g2 — k! D1 @lgn-tz) gty @02 '
Therefore 0Xb;.0%b; is a continuous homogenous polynomial in 2, 1,k 4,+4,—k(Z) with the associ-
ated operator given by (12). The estimate (13) follows immediately by (12). O



Proposition 2.6 The formulas

min{pi,q2} ek

Wick
. . Wick
(i) b‘]/Vtck b‘Z/Vzck _ ( Z F akbl akb2> — (e€<9:73(b>b1 (Z)bz(w) ‘z:w) ,  (15)

k=0

max{min{p1go} ,min{p2.1}} gk Wik
{bl ) bZ} ) (16)

@ - (

k=1
hold for any b; € &), ,(Z), i =1,2 as identities on HFip.

Remark 2.7 This result has exactly the form of the finite dimensional formula. Lemma 2.5 gives the
relation with the writing which can be found in [FKP].

Proof. The second statement (ii) is a straightforward consequence of the first one (i). Let us focus on
(i) which will be proved in several steps.

Step 0: Before proving the identity, first notice that both sides are well defined. Actually, for any
be P,,(Z), the operator b sends 7, into itself. Hence, the product b o pYick js well defined
as an operator #;, — #4;,. Finally we know from Lemma 2.5 that ¢€(%%) b (z)bs (o) ‘Z: , belongs to
EpaPpa(Z).

Step 1: Consider b;(z) = (1, z) and by(z) = (z, §)?, g € N. The formula

a(n)a* (€)= a’*(€)%a(n) +eq(n, &)a" (&)
is exactl
Y bWtckazck (b b )Wick+8(azb] .asz)WiCk.

Step 2: Consider b;(z) = B,(z) = (n,2)" and by(z) = (z, €)%, p,q € N. The induction is already
initialized for p = 1 according to Step 1. Assume that the formula is true for p — 1 and all ¢ € N and
compute

min{p—1.g} ok

' . i Wick
ﬁ;l/tckbgftck — Wtck [BWtckazck] BlWle [ Z <akl’)>p 1, o b2> ]

k=0
mi“{P—lJI} | 1\
_ a k q (p 1) a q—ka p_l_k
min{p—1.g} o '
S AR Z)ffp_f_ - [a*(éﬂ*ka(n)p*k

+elg—k)(n, §)a*(§) Fa(n)r ¢+

min{p.q} _k ’ kot(p— 1)1 k . B -
B kZO kf(ﬂ f)>z(z;(—pl—1)c)z {l[o,pu(kH@_k)lu,p](k)} a*(§)" a(m)"*
min{p.q} ok Wick
= kB, , b
l;) < : By, 9 2>

We used several times the relation

n!

TR )" (n |

azj[jn (2) =

10



and its dual version for QZJ b, .
Step 3: From Step 2, the statement (ii) of Proposition 2.2 leads to

min{py,q2} ek

a'(EYa(n' )y @ (@)= Y (e )" ()" (2™

= K

Wick

forany E!,E2 n',n? € & and any p1,q1,p2,9> € N. Again the polarization formula (1) in the form

1

lﬂlah(ii)zyn, Y e--s [ah(iejfj)] ;
i1 gt =1

yields the result for any

@) =]T(. &H ]}, £=12,
i=1 j=1
that is for any by in the form
be=|Efv..vE Ynfv...vn |, (=1.2. (17)

Step 4: We want to check the identity
" " min{pi.q2} ¢p -
<%, , plVick o pWic Wn> -y 5 <1,/ (0Pby 37 by)Vie w,,>
p=0 ’

for any y, € \/" 2 and any y,y € \/" %, n,n’ € N.
From the definition of b, the left-hand side equals

<‘l/n’ ) b‘lwdC Obg/wk‘l/n> = Cawpirgire <Wn’ ) (El \/I|\/'l+qzﬂfzﬂ71 Q”) (52 \/I|\/"*F1 EZ’) W”>

= Cnvnl:Pl.Z:ql,2s£<<ET\/I V- g) V' (EZ \/1 \/P g) Wn> .

Similarly and owing to Lemma 2.5, every term of the right-hand side satisfies

<Wn’ , (8;’b13§’b2)w"c"u/n>

= Cotpmzanse (W | (01 @ lger 2 ) (Ignr 2 @52) Ve | w0

= Cl;,n/,[),pl_z,m‘z,ﬁ‘ < (NT ®I®n’—p1 @) Yy, (1®P|*PQ€ & 52 ®I\/ﬂ*P1*P2+P g) lI’n> .
Hence for fixed y,, W,y € %i,, both side are sesquilinear continuous expression of (by,b>) when the first
factor is considered with the *-strong topology of operators and the second one with the strong topology.
The operators (17) for which the equality is true, form a total family for these topologies: In two steps,

approximate first any finite rank operators and then bounded operators by finite rank operators. Thus
the equality holds for any by € 2, 4, (%), {=1,2. O

Remark 2.8 The formulas (15) and (16) make sense with €-dependent symbols. One can work with
polynomials in €

b(Z,S) = Z eaba(Z), ba € e@p7q(g)
a=0

11



or with asymptotic sums

b(Z,E) ~ Z Eaba(Z) ba S e@p7q(g) .
a=0

The expression (15) and (16) take then the form

Wick
N o 1
b‘lfVlLkb‘z}VlLk ~ Zogf ( Z k'(azkbl,(xazkblﬁ))
J=

at+Prk=j "

Wick
- = 1
B |~ Ze’( Y k’(8Zkb1,a.8zkb2ﬁ—8Z"b2,,3.8zf‘b17a)> ,
=1

a+B+k=j""

forby ~ Y €%1.q € Py 4, (Z) and by ~ Y5 Sﬁbzﬁ € Py, o(Z). Here (p1,q1) (resp. (p2,q2)) does
not depend on o (resp. f3).

We have the following useful result.

Propqsition 2.9 Foranyb € @;{ieN@P»q( Z) we have:
(i) BVick is closable with
7 = vect{W (2)9,0 € HFin,z € Z'}
a core of the closure.
(ii) By setting E(z) = W(%)Q according to (4), the identity

b(z) = <E(z) ,bWickE(z)> (18)
holds for every z € Z .
(iii) For any zo € Z the identity
ﬁ * ici \/i ici
W(=220) BV W (= =20) = (b(e+20))""

holds on 7% where b(- +z9) € @;17ieN@p,q(g)-

Proof. (i) b is closable by Proposition 2.2 (i). It is enough to consider b € P, q4(Z) when we prove
that .74 is a core for the closure of 6", The last statement is deduced from the estimate

y L

‘ pVick @ (7) (P(k)
n=0

S By 2y [99 X

n! H

[e(n+k+q)]) = |z <o (19)

i (v2e) [(n+k)!
= n! k!

for any o) € VK% and z€ 2. In order to prove (19), use Lemma 2.4 and estimate the action of b"* on
®(z)"e® by max |bWiCk|$(Vr o r-r+s) and bound the norm of ®(z) o™ by [@W] || W

p<r<k+n

(ii) One writes forb € &, ,(Z) andz € &

lz2

R I ey ~ v

= e_g Z 5+

ny,np €N Ry \/(nl —q)!\/(l’lz—p>!8 2

12

<Z®n| , bWickZ®n2>

g"2" |g|m—ptm—a




(iii) The fact that b(. +z0) remains in the class ®)° ) 4(Z) come from the Taylor expansion and

(6). In order to prove the equality, differentiate A [ tzg)b(z +tzO)WiCkW(%IZO)* in a weak
sense on 7). Proposition 2.6 implies
2 2 . . 2
idA(t) = W(\igtz()) —[(I)(\iCZ()), b(z+120)"V ] 4 i0,b(z + t29) " W(\iftz())*
2 i 2
= W(\l,ftzo) [(iz0, dzb(z+120)) — (I:b(z+20) , iz0) + iatb(z+tz0)]W“kW(\iCtzO)* =0.
Il

Remark 2.10 The relation (18) allows to define easily the Wick symbol of an operator which is defined
as a series, when it makes sense, instead of a Wick polynomial. For example the Wick symbol of the Weyl
operator W (&) equals

(EQ), WEER) = (@, e e EEW(£)Q) = V(60,5 20)

A variation of Proposition 2.9 ensures that b(Az+ zo) can be Wick quantized for any bounded complex
affine transformation in 2 when b € &, ,(Z). Actually real symplectic affine transformations of sym-
bols in &, ,(Z) may also be Wick quantized but only under a Hilbert-Schmidt condition on A which
agrees with Shale’s theorem or the presentation of general Bogoliubov transformations (see [Ber]). The
following result will be useful in Subsection 5.1.

Proposition 2.11 Let B € £ (%) and let B, € (%) be an Hilbert-Schmidt operator on % and let
J: Z 3z Jz=:7€ Z be any anti-unitary operator on . Then for any b € &), ,(Z) the polynomial
b(Bz+ BoZ) belongs to ® g —p+q Py o (Z) with the estimate

p+q
2\ 2N Z) =Crq ('B’ﬂf) + ‘Bz,fz(f)) ‘b‘i”(vpff»\/"»@‘) '

97 97 b(Bz + By7) ‘
Proof. For b € 2, ,(%) write, after recalling b = .7,b.7, in Z(Q 2,1 %),
b(Bz+Byz) = ((Bz+B2)®,b(Bz+By2)*")
a r . L _
= Y Y e (B e (B22) BB @ (B )
J=0k=0
q

= ) i CICH k(0T 5Py,
=0k=0 '
The sesquilinear form ¢; is defined on (®7 7 2 @41 RF %) x (Q % @8 QP %) by
(9126 v @) = (B 191 @ (B '¥3), B(BS 32) @ (B *)wi )

It satisfies for & = Z’X,:l 01,0020 and ¥ = Zg’:l Vig®@Yp

M=

(@) = Y ((Bap), ColB )yig)

=
ﬂ‘

I
M=

(Vg (BY)“ICo(B" )y )

T
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with
N ) B p—k J
Co = Z ((B21 I ¢y ®1g)i )b (\Bgﬁk%_’a) ®1®p,kg) € .i”(@ ff,@&”).

a=1

Since B? 7 is a Hilbert-Schmidt operator the estimate
' —k
|4 (D, )| < [Balyo ) Bl ) [Col @t o ) ) ¥l @rtvi )

holds for any ¥ € ®’ 2 @8 "% % . In order to estimate |Cop| 2@ 7.® %) take any U € Q' 2
and any V € Q” &% and compute

M=

(U,CoV)| = <B®q7j¢1,a®U, 5(3?k¢2,a®V)>|
o=1
N .
- <¢17a, (B*)®q7’CUVB§)k¢2,a>
o=1

k q—J
with Cov = (g1 » @ (UNb(gr » @ |V)) € Z(Q 2, Q Z).

Again the Hilbert-Schmidt condition implies
(U, CoV)| < ’32’/.,{?2(52”) ‘B’?s;({@f) ’U‘@fg’ V;lg(\/l’ FNIZ) ‘V‘(g)l’*" z ‘@@LI*W‘Q" :
We have proved an estimate for |Cg| which implies that the estimate
|£(@, )] < ‘32@2]((2’) ’B@&;)kij {E}z(vl’@f’,v‘f Z) [Plgivk o [Flgo-ses »

extends continuously to any @ € Q77 % and any ¥ € ®P ¥/ %. 1t holds in particular when ® €
47tk % and W € \/P7FJ % Hence Ui(2) € Ppitjg—j+k(Z) holds for any (j,k), j < gand k < p,
with a norm estimate which yields the final result. O

3 Weyl and Anti-Wick quantization

Our extension of the Weyl and Anti-Wick pseudodifferential calculus to the infinite dimensional case is
based on a separation of variables approach within a projective setting. This is slightly different than the
one developed by B. Lascar in [Las] where the inductive approach leads to a natural Hilbert-Schmidt
condition and restricts the exploration of the infinite dimensional phase-space Z .

3.1 Cylindrical functions and Weyl quantization

Let P denote the set of all finite rank orthogonal projections on 2 and for a given p € P let L,(dz)
denote the Lebesgue measure on the finite dimensional subspace pZ. A function f : & — C is said
cylindrical if there exists p € IP and a function g on pZ such that f(z) = g(pz), for all z € 2. In this
case we say that f is based on the subspace p 2. We set .%,,;(Z’) to be the cylindrical Schwartz space:

(f€Sq(Z)) = FpeP,Ige S (pZ), [f(z)=¢g(p2)).

It is well known that the Fourier-Wigner transform defined by the expression

2= V[0.¥](2) = (v.W(V212)9),

14



for any ¢,y € , belongs to L*(p %, L,(dz)) NCo(pZ’) for every p € P. Introduce the Fourier trans-
form of a function f € .7;(Z") based on the subspace pZ as

FUIE) = [ £E) 256 Ly (ag)

pZ

and its inverse Fourier transform is
1@ = [ FUA) S8 Ly(da).
P

Therefore the so-called Wigner transform can be written as % [¢, y] = .% ~[#[¢, w]]. With any symbol
b e Sy(Z) based on pZ, a Weyl observable can be associated according to

per — / Fbl(z) W(V2rz) Ly(dz). 1)
pZ
It can be expressed as a quadratic form in the following way
(y,b"¢) , = . Zb)(z) 719, v](z) Ly(dz)
= [ 5@ #10.¥) Ly(d2).
pZ

Note that 5" is a well defined bounded operator on J# for all b € %, (%) since ¥ [9,y](z) is a
bounded function and .Z [b](z) isin L' (pZ’, L, (dz)). Remember also that this quantization of cylindrical
symbols depends on the parameter € like the Weyl operators W(ﬂﬂ:z) .

The next estimate will be useful. A similar inequality can be found in [DeGe].

Lemma 3.1 Forany 6 € [0, 1] there exists a constant Cg > 0 such that the estimate
‘[W(Z]) —W(z)](N+ 1)75/2‘ < Cs |21 —22|° [min(e|z1], €|z2])® + max(1,€)9],
holds forall € >0, and all z,,720 € Z .

Proof. We have by Weyl’s relation

‘[W(Zl) _W(Z2)](N+ 1)*5/2‘ < ‘[W(Zl —Zz) —I](N—l— 1)78/2‘ +

eieo(m 22) ]‘ . (22)

The estimate | — 1| < Cg|s|%, leads to

e

pi€o(ann) _ 1‘ _

ieola—nn) _ 1‘ = |efeo(an—a) _ 1‘ < Cs5€% |21 —2|° min(|z1],]z2])°.

The first part of the r.h.s. in (22) is estimated via a complex interpolation argument. Indeed, for 6 =0
notice that [W(z; —z2) —I| <2 and for 8 = 1 the estimate ‘e"s — 1} < C}|s| combined with the spectral
theorem yields

W (21 —22) ~ [N+ 1)~ 2y

IN

C || 0(z1 — ) |(V+ 1) 2y]

A

G "3(21 —22)(N+ 1)_1/2111’ .
Now by the number estimate (10) we obtain

’[W(Zl_zz)—l](N+l)7l/2‘ < C max(1,¢€) |z1 — 2] -
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3.2 Finite dimensional Weyl quantization

The finite dimensional Weyl calculus provides us a collection of results on the Weyl quantization. We
specify here the relation between the Weyl quantization defined on 2 via (21) and the usual semiclas-
sical Weyl quantization within the Schrodinger representation on R¢,

For p € P the orthogonal projector I — p is denoted by p*. Let I's(p.2’) denotes the symmetric Fock
space over pZ. The separation of variables in finite dimensions extends to general symmetric Fock
spaces owing to the canonical isomorphism of Fock spaces

T, H =Ty(Z)—-T(pZ)T(p*2), (23)

for any finite dimensional projector p € P, with 7,Q = Qr? @0 % when QPZ and Q7 7 are the
vacuum vectors of the corresponding Fock spaces. We will omit the notation 7}, and identify directly
the tensor products.

Fix p € P. The tensor decomposition of the Weyl quantization comes from the Weyl relation which
implies

W(E+E) =W(EW(E) =W,(E) @W,. (&)

for any (£,&') € pZ x p+Z. The symbols W, stands for the Weyl operator defined on the Fock space
['s(pZ) and the Weyl quantization of b € .%(F), for any finite dimensional complex subspace F of 2,
is denoted by b?vey ! Hence the Weyl quantization of b € .7.,;(Z’) based on pZ equals
Weyl
pWerl — /p | FIIQW(V2r2) L, (d2) = Y5 Ol 1 2.

In order to apply directly the finite dimensional results on Weyl quantization, we need to specify the
correspondence of representations.
On R the Weyl quantization is often introduced as

d&dy
(2zwh)d”

BV (x, hD, Ju(x) — / ¢ pEEY
Rd 2

.8 )u(y)

By a simple conjugation with a dilatation, it becomes aweyl(\/flx, \/EDX) where the position (x) and
frequency (&) variables play the same role. An equivalent definition can be given with the help of the
phase translations :

To ) = pi(Gox—xoDx) _ ( ei(§0x7x05)>wey1 C [ty gul(x) = i€ (2x—x0) u(x — x0).

It reads

PV VDY) = [ Flb)m) V) ayan

= [ TN sayinaniy N

The symplectic form [, ] and the scalar product (, ) on T*R? are defined according to

[, ), M) =Sy —xn = —Im{x+i§, y+in) = —o(x+i§,y+in)

((,8),(»m)) =xy+&n=Relx+i§,y+in)=Sx+i§,y+in).
After noting

Vhx+Vhoy, Vhx — \/E8x] =2h,

16



the correspondence with the definition (21) is summarized in the next table
p% ~C? T*R?
Li(pZ) ~T(CY), L*(RY)
(z1,22) =S(z1,22) +i0(z1,22) z=€®(x+i&) ((x1,81), (x2,8)) = &1.&a+x1.00 = S(21,22)
[(x1,81), (x2,86)] = E1.x2a —x1.62 = —0(21,22)

d d
a Z) :a(zi Otjej) Cl(Z) = ZWJ-(\/E&X].—I—\/E)CJ-)
j= Jj=1
:a*(i aje;) i \faxj—l—\/ﬁxj)
= =
la(z1),a"(z2)] = € (21, 22) e=2h [a(z1),a"(22)] =2h(z1, 22)
D(z9) = \2(61(20) +a*(z0)) z0=x0+i& V2h(xo.x+&.Dy)
W(ZO) = eiCIZ'(zO) 6=0 T(—\/ﬁéo,\/ﬁxo)
E(z0) = W(\fZ())Q ZTO =&y —ixo ’L'( Y & )(thd“e*%)
V' Vh
25" |20l =1 Hermite function
(1)~ V2 [z0.(— Oy + X)) (e )
kQND“Np”?})k)’ ngD“prf)k)* jﬂ(Rd)’ y,(Rd)

Once this is fixed, the general results on the semiclassical Weyl-Hormander pseudodifferential cal-
culus ([BoLe][BoCh][HeNi][Hor][Mar][NaNi][Rob]) can be applied for any fixed p € P. The notion
of slow and temperate metric and weight depend only on the symplectic structure which is given by
0(z1,22) = Im(z; , z2). With such a metric the gain function A is given on p.Z by

2 2
with g2(T)= sup 17, ST = sup 7|6(T’S)|.

sepr [0y 8(S) sepz\f0y  &(S)

o T)
22 7) = inf &
) repz\{0} &-(T)

With a slow and temperate metric g and a slow and temperate weight m, is associated a symbol class
usually denoted S(m, g).
After writing X = (x,&) € T*R¢ for the complete phase-space variable, the differential operator Dy is
(Dx,Dg) = (i~ 0x,i""'9¢). In the composition formula of symbols, the differential operator 2 h(Dx,,Dx,]
appears. After recalling

1 . 1 .
0- = E(Vﬁ—zvé) and d; = E(Vx—’vé)

it equals

ih £

DXl 7DX2]] = aZl '&Zz - &Zl 'azz) .

We refer to [NaNi] for an explicit semiclassical writing of the Weyl-Hormander calculus within the
Bony-Lerner presentation ([BoLe]) and with a general version of the Beals criterion following Bony-
Chemin ([BoCh]).

Proposition 3.2 Let g be a slow and temperate metric on p%, dim¢(p %) =d and let my and my be two
slow and temperate weights for g. For by € S, (my,8),{ = 1,2, the operator b g acts continuously
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on ﬁkEND(<1V > ) and on UkeND(<Npg)>k)*,
The symbol bi#/°b; of bwey[ Obgvilf satisfies

b1#£/2b2(2) = ¢5(94:95-00, )bl(zl)bQ(ZZ)
21=2=2
1 re J
= ¥ 5 (G0tn-200) b eRbibae)
0<j<v JPA2 R

where Ry (bi1,ba; €) is uniformly bounded w.r.t € in the Fréchet space S,z (™v*,g). The Calderon-
Vaillancourt theorem

< Cpkd(b)

‘bWe)l
Li(pZ))

and the Garding inequality
(b>0)= (b3 = ~C'p,(b)e)

respectively for b € S, (1,8) and b € S, (A,g). The index ky for the seminorms py, and p;Cd ) recalls
the dimension dependent number of derivatives required in the estimates.

The typical example Hérmander metrics, which will be used here, are |dz|> = dx*> +d&% (A(z) = 1)

and % = <(j§)>2 <(j§2)>2 (A(z) = 1+z*). Both of them split up in the (x,&) coordinates and the

Beals criterion of Bony-Chemin [BoCh] translated in the semiclassical case in [NaNi]-Appendix-A can
be applied. Following the method recalled in [HeNi]-Chapter-4, this allows to check that functions of
fully elliptic self-adjoint pseudodifferential operators are pseudodifferential operators, with an explicit

knowledge of their principal symbol. In particular, this can be applied with 1+ gdlm” +Ny» = (1+
| | )Weyl 2 ‘dZ|
" ()

8d1mp

while noticing that 1+ + N, is a fully elliptic operator in S((z)”, =% ) (such a result

with € = 1 can be found also in [Hell]).

Proposition 3.3 Fix p € P, fix the exponent s € R and let N,y = dI'(1,4) be the number operator on
Ty(pZ). Foranys€R, (14" 4 N,,)5/2 can be written (b(s,e))lvfgl with € 1(b(z;5,€) — (2)")

uniformly bounded in S (<z>s—2 , %) .

3.3 Weyl quantization and Laguerre connection

In this paragraph, the relationship between the Wick and Weyl calculus is checked in the infinite dimen-
sional setting. It specifies the relation between the representation of the Weyl algebra, generated by the
W (&), and the number representation which puts the stress on Wick symbols or Hermite states zX. This
relies on the introduction of Hermite and Laguerre polynomials, recalled below.

Let h,(x) denote, for any n € N, the n-th Hermite polynomial in C:

o) = (1" ey - B (cry p @)
x)=(—1)"e e = 1) —(2x .
" dx" = ri(n—2r)!
Those classical polynomials are also given by the generating function
= 1" = (—10y)"
Z *‘hn(x) _ ex2 Z ( 'x) e—xz _ exze—tax[e—xz] _ e21x—tz. (25)
n—0 " n=0 n:

Lemma 3.4
(i) For any & € Z, the following identity holds in 5iy:

= |veer  (iasEa "
2l "\ TVeE )
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(ii) For any n, j, k € N the estimate
Wick
\msm ha (iV25(8.2)) ol{ke}w)\ gy S T2V DE LB
LN 2N 7
holds for any & € & .

Proof. Using the generating function (25) with ¢t = \/Ezlél and x = l\[\}z ‘Z) implies the equality of the
Wick symbols
R R i S 1V (ix/iS(é,z)>
= 2'n! fin € '

Nevertheless the equality of the the series of Wick quantized operators has to be checked.
Recall that elements of .77%;, are analytic vectors with infinite radius of convergence for the field opera-
tors. Hence the sum

i
WEw =3 —5)"V, VEHn,
is absolutely convergent for all & € 2. Therefore to prove (i) it is enough to compute the Wick symbol
of ®(&)" for all n. Indeed using the Wick ordering rules, we have
[n/2] n! |§|2r n—2r
1) no_ : n—2r—s
(é) ';) \/277”'(}’1 21" ! Z n—2r 4 (é)

Wick
|§ |n /2 n! m ndr n—2r—s “
TAn 2r <, é Z>

2 &= r!(n—2r) |E |2 Z

g (M AV )
21 (Zr!(n—Zr)!g( HE '

r=0

To prove the second statement (ii), take y; € VK % and Y€ \// % and write

[n/2] Wick

o (V3S(6.2) W= Y o (s (@v3s(€2)" ™) .

= (n—2r)!r!

Using Lemma 2.4 one obtains

Wick /2]
v (252.0) " | < (Wil il T oo (VAR RIS
< ‘WJ’V!QF|W/<|\/"Q"Z |, 2\/ k+] |§| ]
<

\wj\v.fg!wklvkg<1+2¢Ww

The Laguerre polynomials are defined by the formula

. k ;
L,E”(z)zz(—nm(k m()kgj—z'm)'m’ M reC.

m=0

The following proposition gives the Laguerre connection (see [Fol],[Rip]).
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Proposition 3.5 For z,& € % with |z| = 1, the next equalities hold according to the ordering of j and
keN,

DPIE e P2 i k>
D)z, &) e P2 if >k

k=i
V[, ) (—= : )= 0 (<§

(26)
my/2€ i)/ k'L (1

Proof. Let us establish the expression of ¥ [z% z%/] in the case k > j. The case j < k is similar. Using
Lemma 3.4 one obtains

V) = 2o

my/2e
Wick
- iL'n (7, h \fé ky .
= /2! o 4

Now let use the explicit form of /, and Proposition 2.3. We obtain for |z| = 1,

o [n/2]n—2r i 2r ic
TN = XY gy €8 (1608

TC\/E rl n 2’,)1 n—2r
2 n— p .
- Z ’%. nf,r "I (E,2)]> (& Z>k*1ﬂ 5+ _
n=0 r=0 s=0 2rr!(k—j—i—s)!s! ’ > (j—s)! k—n+2r+s,j—s
— i i ‘§|2r (_l)sk‘ ‘<§ Z>‘2S <§ Z>k—j ]
s 0r=0 2rr| (k ]+S> ( S)' ’ ’
The last term gives the claimed identity. 0

3.4 Anti-Wick Operators

The Anti-Wick quantization is introduced by a separation of variables process like the Weyl quantiza-
tion. For a given p € P, set p= = 1 — p, and use the tensor decomposition (23). The Weyl operators
on pZ and p* % are denoted by W, (&;) and W, (&) with W (& otE) = W, (&) ®@W,. (&) . For any

¢ € pZ, the coherent state E,(§) is defined by E,(&) =W, (fg )QPZ . Introduce the projector Pg on
A after tensorization with Ip (1 4y

pZ 38— P =(IEp(E))(Ep(E)) ®Ir,(p ) -

The Anti-Wick operator associated with a symbol b € .7,;(Z") based on p % is then defined by

~Wie Ly(ds) Wi
A—Wick __ D AWk
b _,/pfb(é) Pg W—bpg ®Irs(pi”f)

The above formula can be first considered in a weak sense or as a Bochner integral when b € . (p%)
and the bounded projector Pg is continuous w.r.t. £. The finite dimensional identification of the Weyl

symbol of [W,(Y25) QP ) (W, (25 )r?

, can be deduced after completing the table of correspon-
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dences in Subsection 3.2:

pZ ~C! z=x+i& TRY
L(pZ) ~Ts(CY, €=2h L*(RY)

V2 . o,
EP(ZO):WP(QZO)QPJ D=8 —ixg T 50)(7T d/4¢ 7)

g 2 2 )’2
@) (@07 | = el (m) P55 = " (Vi VD)
2 2.2
Y(z) = 2o = with g(x,&) =2%¢~ i

From the conjugation

Ty & )aWeyl(\/EL \/EDX)T(*X =a(. —xo,. — &)V (Vhx, VhDy)

(ﬁﬂﬁ

=}
'y

=

~—

)

S

the above correspondence gives

. 2
£y

EfENENE)] =7 with y(2) =2l

Hence the usual finite dimensional relation between the Weyl and Anti-Wick quantization now reads
(after tensorization with I (,1 5))

- \z\% » Weyl
A—Wick e &2
’ 2 (e 2/ ? i
= F[b)(E) W(V2mé) o~ F Ly L,(dé&), (28)

pZ

for any b € ./ (pZ) by setting
b x y(z) = / b(2)y(z—2) Lp(dd).
pZ
From (27), the Anti-Wick quantization can be extended to symbols in S(1,|dz|*) with the next properties
(see [HMRY]).

Proposition 3.6 Fix p € P. Let b € S, (1,|dz|?), the following statements hold true:
(i) If b > 0 then bA~Vick > 0,

(i) ‘bA*WICk‘z((;f) < [blr=(per)-

(iii) The comparison with the Weyl quantization is given by (27) with the estimate

A= Wick _ pWet | ) < Capr, ()€

where the constant Cy > 0 and the seminorm py, depend essentially on the dimension d = dimp Z .

A variation of it holds when b € F ! (,(pZ)), when .4,(p2Z’) denotes the set of bounded (Radon)
measures on p.% and comes directly from (28).

Proposition 3.7 For any p € P and any b € .F ' (M,(pZ)), the Anti-Wick and Weyl observables are
asymptotically the same:

. A—Wick Weyl _
él_r,%|b =T Lzﬂ(;zﬂ)—o'
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Proof. Recall that 5" can be defined for any b € .’(p%’) as a continuous operator from Ngey D(N; )
~ S (R?) to UrenD(Ny )" ~ 7'(R?), with d = dimp 2 and (28) is still valid for such a symbol.
Assume .#b = v € M,(p%). The identity

CAGEETATE /M<w W(v278)9) <1 —e‘sgz52> dv(&)

holds for any @, ¥ € Mien D(N;Qp). This implies

_er g2 —0
s = [, (1= T ) avi© =,

‘ bWeyl _ bA—Wick

3.5 Weyl quantization and specific Wick observables

In finite dimension, that is for any fixed p € P, polynomially bounded symbols can be introduced af-
2

ter considering the class of symbols Uscr S, ((z)*,8,) Where g, is either the metric |dz|* or % on
p%. According to Proposition 3.2 it is an algebra with the Moyal product, #¢/2, associated with the
composition of Weyl quantized observable with a complete asymptotic expansion of b #5/2b,. For any
m,q € N, the finite dimensional space %, ,(pZ) of (m,q)-homogeneous polynomials on 2 is con-
tained in .%), # ((z)"*4,g,). The comparison between the Weyl and Wick quantizations is symmetric to
(27) (see[BeSh)):

‘Z‘zg Wick
e

1 Weyl
Vb€ &y Png(pZ), b,y = b (mej2)imn

For polynomials the deconvolution is possible and we get for any m,q € N and any b € &, ,(pZ)
- ic Weyl
e (b5 — b5 = cpr ()"
where the symbol ¢(€) equals

o
. e €2
£)=¢ b* ——— | —b
C( ) pz" (ng/z)dlmpf

and is uniformly bounded in S, ((z)" 972, g,) w.r.t € € (0,€).
The space P 4(pZ) is identified with a subspace of &, ,(2") and even of any &, () for any
r € [1,+eo] with

Vbe Ppy(pZ), Vz€ Z, b(z) = b(pz+ ptz) = b(pz)
b= p®q OI;OP®m = Fs(p)érs(p) :

After tensoring the finite dimensional comparison with I (1 4, we have proved

Proposition 3.8 Forany p € P, any m,q € N, the class of symbols &, ,(pZ) is contained in ,@nﬂg(ﬂ‘” )

Weyl

pYick — pWerl) can be written cg " with ce uniformly

NS,z ((z)™*9,g,). Moreover the operator €~ '(

bounded in S, ({z)""172,g,) w.r.t € € (0,€). ( The metric g, can be either |dz|* or % onp%.)
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4 Coherent and product states

We distinguish the coherent states E(z) = W(gz)ﬂ (resp. the projector |E(z))(E(z)|) from the prod-
uct or Hermite state z°% (resp. the projector |z%%)(z®¥|). Although they are intimately related, the
asymptotics of coherent state E(z) tested on Wick, Weyl or Anti-Wick observables encoded exactly the
geometry of the phase-space 2, while the asymptotics of the product states z2¥, ke — 0 keeps track of

the gauge invariance _
6 € [0,27], [(e%2)7)((e®2) | = 2%) (=]

with variations according to the quantization.

Proposition 4.1 Fixz,& € 2 with |z| = 1.
(i) The convergence

1 2 _— .
; ®k @k—m _ 27iS(z%,8) ,~im8
lim V25, 25(E) 7271:/0 e e de,

ke —1
holds for any fixed m € N by setting z% = ¢'9z.
(ii) The coherent state E(z) = W(\i—fz)ﬂ satisfies

€ 2 .
P [E(2),E@)] (&) = 275(E ) =5 0 pmiste)

Proof. i) Set j = k —m and compute ¥ [z%%, z27](€) with & = accordlng to Proposition 3.5 :
Vi, ®f}<ﬁ )= <z'>'"\/ELY")@|<¢',z>|2><§>m/2<é’,z>me-85"2/4
=0 % i 00 )V g —@N () A e

The bounds (k) < Cand Y2, co imply

s! s+m)

J 5/ _ -moo (_1)S / s(EN \m
1{% V2, ®](ﬂn)_(l) E)m\@azﬂz (&a)",

ke — 1

. . . . w itk . .
owing to Lebesgue’s theorem. A simple series expansion ¢’ =Yy % for r = iv/2S (z9,&") gives

1 /2” iV28(:0 &) —imb RS (=1 Io\(2s /g
eyl M =le™™de = (i)" ) s ——— (67§ 9"
27 Jo Sgazzé si(s+m)!

i) is a straightforward consequence of (20). U

The next result specifies the similarity and the differences between the product states and the coherent
states in the mean-field or semiclassical limit.

Theorem 4.2 Let z € 2 and m € N be fixed with |z| = 1 and set z° = ¢z for 6 € [0,27]. The next
limits exist as € — 0, ke — 1.

(i) For b € Sy (Z),
, 1 27 .
lim <Z®k7m’bWe)lZ®k> — lim <Z®k m bA Wick Z®k> E b(ze)eﬂmede'
£—0 £—0

ke — 1 ke —1

23



Meanwhile the coherent state E(z) satisfies

lim(E(z), 0" E(2)) = im(E 2) , b"""“E(2)) = b(2).

=0 £—0
(ii) For b € P o(Z), with p,q € N fixed,
~ ®k—m pWick @k L[ o ime
lim (", 6™ 2) = 8pgm b(2) = 27 Jo b(z")e ""do .

ke — 1
Meanwhile the coherent state E(z) satisfies
Ve>0, (E(z),V'*E(z)) =b(z).
Proof. Set j = k—m, with m € N fixed.
For (i), fix b € .,,y(Z). The definition of 5" in (21), says
1) = [ FIBIE) W (V2rE) ) Ly (d)
P4
= [, FBE VELNE) Lylas).
P

Since Z[b] € .7 (p2Z) and ¥ [z%F,z%7] (&) converges pointwise according to Proposition 4.1, Lebesgue’s
theorem yields

, 1 2T o )
i @) pWerl @k _ / Zlb / 27S(°.8) ,-im 39\ I (d
lim (@, ) = L [b](E) T e p(dE)

ke — 1

— I/Zﬂb< e)efimede
2t )y ¢ '

The limit with Anti-Wick observables is a consequence of the formula (28):
. . . 87[2
LA = [ (&) @ W(aRE)EH) o TR Ly ag).
pZ

The statement about the coherent state E(z) is even simpler by referring to Proposition 4.1 (ii).
Let us prove (ii). The statement (ii) of Proposition 2.3 gives

k! j! pie

<Z®j,bWiCkz®k> _ + ez <Z®q7 bz®p>

— k! j! p+q |, ®q ®p
i 5’"’”\/<k—p>!kf’ \/w—q)!kq(gk) e

We conclude again with \/(kilz)!k,, \/(jf;)!kq — lask — oo, O

5 An example of a dynamical mean-field limit

In order to illustrate the general presentation, the standard example of the mean field derivation of the
Hartree equation from the non relativistic Hamiltonian of bosons with a quartic interaction is considered.
Two standard methods are considered: The coherent state method (see [Hep][GiVe] or [Cas] for a rapid

24



presentation) also known as Hepp method and the propagation of chaos approach with a truncated Dyson
expansion according [FGS][FKP][ESY1][ESY2][Spo].

Consider 2 = L2(R¢,dx) and take V € L3(RY,dx) such that V(—x) = V(x). The polynomial
0(z) = (z%2, 0z?) is associated with the operator Q € .Z(®?* %) defined by

0: R*F - ®2£€,
u(x))w(xz) — %V(xl —x2)u(x))w(xz).
The Hamiltonian is defined as
He = d['(—A) + Q"

where —A is the Laplacian of R?, while H? denotes the free Hamiltonian dI'(—A). It is well known
that H, is a self-adjoint operator on 7Z (see [GiVe]) and the quantum time-evolution group is denoted
by Ue(t) = e 'cHe while U(t) = e ~"¢"o = ['(¢"2) stands for the free dynamics. Although the Wick
quantization of non continuous polynomials has not been introduced here, this Hamiltonian appears as
the Wick quantization of the energy functional

= [ IveP ax+ 0. 29)
It is also well known that the mean field limit is the nonlinear dynamics issued from the Hartree equation
latZz —Az;+V |Z1| = &h(Zz) (30)

with initial condition z0 =z € <.
An important property of the dynamical groups Up () and U2 (¢) is that they preserve the number

Ue(t)*NU:(t) =N, [He,N]=[H?,N] = [Q"* N]=0.

Remark 5.1 All the results of this section can be easily adapted with a self-adjoint operator A on &
and a polynomial Q(z) € :legNQZ n(Z). Nevertheless it is better to stick to this concrete presentation
which fits better with a widely studied problem.

5.1 Propagation of squeezed coherent states (Hepp method)

In finite dimension it is nothing but checking the propagation of gaussian wave packets. Although it
works only for some specific states it is a direct and very flexible method. Moreover it agrees very well
with the phase-space geometric intuition. Extensions with more singular potentials or about the long
time behaviour have been carried out in [Hep][GiVe].

Proposition 5.2 For any zo € %, the estimate

e i E(z9) — ¢ é’)W(fz,)Uz(t,o)g < € V=@ (l+1) g1/2
l

H
holds with
iz = Az +(V*aHz , z—0=20 31
- [ o) as (32)
i£d,Us(1,0) = [dT(—A) + Qa(1 )W""]Uz(r 0) , Ux(0,0)=1, (33)
0:(1,9) = 5 [(920(a) <) + (22, 20(a) +2 2, 2:2:0(z)2)] G4

<82Q( ) ®2 _2<QZ® ,Z®2>E<@20(g)
< 7858 Q(Zt) > <Z\/Z[,QZ\/Z;> Egll(g)

25



Proof. This proposition says that the evolution of a coherent state is well described after applying a time
dependent (real) affine Bogoliubov transformation like the ones considered in Proposition 2.11.
It is sufficient that

eiéHE ;o) \/§ () Qe—iZA

T W (=) Ua(1,0)Q = et T (e")e e W (= Ze "5 (e” ") (1,0)Q

remains close enough to Q. The quantities Ug(0,7) = e'eeT(e), U1 (t,0) = I'(e "2)Us(t,0) and
Z = eiimz; solve the differential equations

i£d,U¢(0,1) = —Uc(0,1)T(e ™) QWI* () = — Uy (1,0)0(r)Vick (35)
i£d,Us(t,0) = T(e ") Q2 ()T (") Ua(1,0) = 02 (1)""“Vn(1,0), (36)
108 = e AV x| )™ s, = :0(1,%) , fo=10, (37)

after setting

O(t,z) = 0(e™z) and Qs(t,2) = Oa(t,e™7). (38)

The main properties of U (t,0) are derived in [GiVe, Proposition 4.1] and in particular we know that
U>(t,0)Q belongs to the domain of the closure of any b"* with b € @;lieN Py o(Z).
The differentiation of the Weyl relation (3) on .%%;, says

2 2
is&tW(\liﬁ,) - [—Re@, i9,5) + ﬂqa(ia,z,)] W(‘l&,)

= [-Re(%,0:0(t,2)) +a*(9:0:(%)) +a(9:0:(2))] W(fft)

= [Re(2.2:00.2)) + Relz. 2:0,(20)" w( Y22,

The translation property (iii) of Proposition 2.9 then leads to

L ot 2 s ick 5
W () Us0,02-0 o= [[00.9¢ WL ) (5) 405,02

after testing both sides on .%%;, and setting

%(S,Z) = _Q(S7Z+2s)_w/(s)+Re<2sv ZQ(3725)>+R6<Z’&ZQAs(zs»—'_QZ(st)
= _QA(S7Z+2S)+QA(2S)+<Z7&ZQS( s))+<azQs(2s)7Z>+Q2(saZ)'

The last equality is given by our choice of @(z) in (32). It suffices to find a uniform estimate w.r.t
s € [0,7] of the squared norm

&'/ (5) V0 (5,000, = 72 <Q, 02(0,s);zf(s)WiCk’*,ﬂzf(s)WiCkﬁz(s,O)Q> . (39)

The important point is that the symbol <7 (s) vanishes at the second order at z = 0. More precisely it can
be written

A (s) = A (s) + 1 (s) + ()
with G g(s) € Ppy(Z)

and  [(s)

4 p_
§ ‘g(\/ﬂf,vqf)gcp,ﬂvhw |20 P71
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Owing to Proposition 2.6 and Lemma 2.5 the operator o7 (s)"ik* o7Wick (5) takes the form
. . 2 .
%(S)Wle’*M(S)Wle — Z gk Z ggk,p,q (S)chk
k=0  6-2k<p+q<8

with [ Bipa(9)] gyr s ) < Cropa VL= (20)° -
The estimate of every term
k2 <Q : Uz(o,s)@k,p,q(s)Wickﬁz(s,O)@ . prg>6-2k
is given by the Lemma 5.3 below and yields the result. O

Lemma 5.3 Consider the time dependent Wick operator Q> defined by (34) (38) and parametrized by
20 € Z. Consider the associated unitary operator U, (s,0) defined by (36). For any p,q € N, there exists
a constant Cp, ; such that the estimate

‘<Q, ﬁz(O,s)bWiCkﬁz(s,O)Q>‘ < Cp g CralVle= e (51+1) | PO F N )

holds for any b € &), ,(Z) and any s € R.

Proof. By introducing an anti-unitary operator Jz = z. The R-linear operator -0, () can be written
0:0:(t)z=R(t)z+ R2(1)Z.

The definitions (34)(38) ensure that R(7) is a bounded operator strongly continuous with respect toz € R
and that R,(¢) is a Hilbert-Schmidt operator which depends continuously on ¢z € R in the Hilbert-Schmidt
norm. Moreover the following uniform estimates hold

2 2
R(1)| 22y <2V l20l" 5 [Re()| 22y < 2|V |20]” -

Hence the equation
10,y = ;05 (1) P2 = R(t) P2 + R (1) J P2

defines a dynamical system of bounded R-linear operators with the estimate

[ D2(12,11)| g 2) < Hn=nllVi=lol”

More precisely the Duhamel formula

Lt 5] Ll
D, (1p,1)) = Te M Rl ds _ i/ Te 7 RS) dSR) (1), (1,11) dt

4]

implies that the R-linear operator ®,(#,,¢;) can be written

q)z(l‘z,h) = B(lg,ll)—i-Bz(lz,l‘] )J

2
with ’B(tz,t1)|$(g/) + |Bz(t2,t1)‘$2(g)) <C|V|- ’ZO’Z (I —t1] + l)eC|t2—t1||V|L°°|Z0\ .

According to Proposition 2.11, for any ¢ € ®p4g—mPp¢(Z) and any t € R, the polynomial ¢(t,z) =
c(P,(0,1)z) belongs to &1 g—mPp 4(Z) with

1 CLIV| e (z0)?(Jt|+1 q
Z |8§8Z"c(t,z)\j(vp AV < Cne Vol D Z ‘az 3fc(z)‘$(\/ﬂ EAVESE
pt+g=m p+g=m
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Applying the characteristic method, that is differentiating c(z) = (¢, ®2(#,0)z), shows that ¢(z,) solves
the equation

i&tc(t,z) + 8ZC(I7Z>'5%Q2(I7Z) - 8ZQA2(I7Z)&ZC(I7Z) =0.

Thanks to the Wick calculus in Proposition 2.6 and the fact that Us(¢,0)Q € NMienZ(N¥) (see [GiVe,
Proposition 4.1]), this leads to

i9,02(0,0)c()" 01,000 = 02(0,1) (&7 V1), 0a(0)" ] +i9,e(1)"" ) 01, 0)2

A Fot ~ 2 Wick N
= 0005 (e0.0:0}) " Bae.0)2.
Take b € ®ptg—myPp.q(Z) and apply this result with ¢ defined by c(s,z) = b(z), which means
c(®2(0,5)2) = ¢(s,2) = b(2)
or  ¢(z) =b(P2(s,0)2) € Bprg=my P p.q(Z)

with y ‘azqafc(z)}g(vpg(vqg)SCrlnoedm|V|LM<ZO>2(‘SH1) Y |9907b(z)
pH+q=my ' pH+q=my

This leads to
(2, 0,057 0(5,00) = (@) + /S<Q,8, (02(0.0)¢(1)"*0(1,0)) @) ar
- ’28 <Q 02(0,1) ({c(t), 0 }2))WiCk02(z,0)Q> dr.

By noticing that the symbol {c(t),0»(¢)} vanishes when mg < 2 or belongs t0 @4 gmmy—2Ppq(Z)
with

Lsf (VP 2N Z)

A 2 q
- c(t),0(t ‘ <C|V|;= |20 d1dPc(t >\ /4 ae
L [0}y SOVl T (0]
<CV|,- \Zo\zcl Conp IV [12= (20)* (2[s]+1) Z ‘aqa b‘g N
p+a=mo ’
the result is proved by induction on mg and by using x* < nle* for x > 0. U

5.2 Truncated Dyson expansion

We focus now on the propagation of chaos point of view which has been considered by several authors
in [ESY1][ESY2][BGGM][FGS]. In the bosonic setting Hermite states tested on some Wick observable
is exactly the BBGKY hierarchy. For example the reduced one particle density matrix can be defined
as Tr[p1A] = Tr[pdT'(A)] = Tr[p.o7"i] with &7 (z) = (z, Az) . While reproducing the Dyson expansion
analysis of [FGS], we check here that a full asymptotic expansion can be written, when Wick observ-
ables are tested after the suitable number truncation.

The strategy of the proof in [FGS] relies on an analysis of the Schwinger-Dyson expansion of a time
evolved observable Ug(t)*0 Ug(t) is given by

Ue(1)" 6 Ug(1) @+Z / dn - / di, [ OV .. [V g]..] (40)

where 0, = UQ(t)* 0 U2(t), QVick = U (5)* QWi UQ(s). The commutation relation in Proposition 2.2
(iii) yields

Wick

QSWick — (<(ezxA )82,Q( isA ) >) ’
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or shortly Qs(z) = Q(e™*2z) and we shall set more generally for b € &, ,(Z) and s € R
by € Py (Z):  Vz€Z, by(z) = b(*7).

Although the convergence of the series can be proved as an operator acting on \/* 2, with k € N fixed,
the €-asymptotic analysis is done with its truncated version

Ue(t)* € Uelt 6}+Z /dn / d,[O)' .- [0, 6] -]

lz 1 . .
Ly /O i [ dig Ue(t) U@ [0+ [0, 01 JU(1) Uelr). - 41)
The Poisson brackets analogue of the multicommutators will be necessary.

Definition 5.4 Forn,r € N, r <nand any fixed b € &), ,(Z), the polynomial c (t1,...,ty) is defined

by
n 1
C5 )(tn"" 7t17t):7r Z {le'" a{Qtl’bl}(EI)"'}(gn) € @p7r+n7q7r+n(g)v (42)
#{is g=2}=r m

and Cﬁn) (t1,...,tn,1,2) denotes its values at z € Z while Cﬁ”) (t1,... ty,t) or simply CS")

associated operator according to Definition 2.1 .

denotes the

We shall prove.
Theorem 5.5 Fix p,q € N and assume b € &, ,(Z). Then the asymptotic expansion
> Wick
Ue (t)* bV kU (1 Ze Z /dn / dt,, Nty 11,1) +&'Ry(e,1)
holds for any ¢ € N and any 8 > 0 in L (\/* 2,\/* 774 %) with the uniform estimate
[Re(&,0)| gy o \pirva ) < Cog when ke <146/2 and  4(1+26)t| V]~ <1.
A particular case takes a more explicit form.

Theorem 5.6 Take b € ), ,(Z). Let z € Z be such that |z| = 1 and call z; the solution to (30) with
0 =2
(i) Then the expansion

; (43)

-1
(2 U (1) BV U (1) 2%%) = 8p—ym [Z e B (t,z2,k,€)+0,(e")
r=0

holds as € — 0, ke — 1 by setting

ﬁ(O)(t7Z7k78) = b(Zt)
k—p+r \/k' k— m 1Sp+q+2n r)

(r) —
R

/dn / dtnC, (tny-++,t1,852),  (44)

and as soon as 4[t| |V |~ < 1.
(ii) More generally the limit

}LH(} (T Ue () 0V UL (1) ) = 8 gm b(z1)
k£~>i

holds for all times t € R.
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Corollary 5.7 In the specific case m =0, g = p, the expansion (43) takes the form

) (=1 e ! In—1
@, Ue(0) BV U (1)) = Y et Y i / dty - dt,
— 0 0
[;)ajﬂ’"(kac@j(tn, o 11,12)] + O(eD),

where the coefficients Ocjr.’"(K) are polynomials in K given by

Y k) = (k- e)(x—2€)- - (k— (phn—r— 1)e).
j=0

and the convention that OCJr-’” =O0when j> (p+n—r) orr>n.

Proof. We are considering the particular case p = g, m = 0. Setting x = ke = (k —m)e gives:

klgpt(n=r) ) .
=k(k—¢€)(k—2¢)---(k— —r—1)¢).
B Gty = K €)(c=26) (k= (ptn—r = 1)e)
Putting together the terms of order €°, s less than £ — 1 in Thm. 5.5(ii), yields the result. g

Before proving Theorem 5.5 and Theorem 5.6, let us collect some technical preliminaries.
Lemma 5.8 Forb e &, (%) the identity

) Wick
[QWuk ’[Q;Vuk’b}/Vuk ZS (Cr tn» <t )) 5

holds with the symbols c (t1,-++ ,tn,t) defined according to (42) in Definition 5.4.

Proof. Proposition 2.6 provides the induction formula
— 1 _
={0,.c" "} +3(0,.¢ )P, (45)

with CEI) =0if [/ <rorr<0. In particular, we get

- {Qtna e 7{Qt1 7bl‘}}-
A simple iteration of (45) yields the result. U

Lemma 5.9 Let b belong to ), ,(Z).
(i) The estimate

—
(]

—1

2P 7\ ) < (p+q) [Vl ‘b’iﬂ(\/pfg’quZ))’

holds by setting’Evl (p+1) (q+1) ap“aqH{Qs’bt} eg(vpﬂgj\/qﬂg).

(ii) Similarly, the inequality

=2 v 2 v 2)

holds with Ey = 1 1.9793{ 0, b, }?

rlq!

< [p(p—1)+q(g— D] V= |blopyr 2 v 2) -

(iii) Foranyn € Nand r € {0,1,...,n}, the operator Cﬁn) associated with the symbol an) (tny... t1,1) €
P pin—rgin—r(Z) according to Definition 5.4 satisfies

<2y (pn—r) LD i ).

Z(VPJrn—r gzyqurn—r Qp) ( - 1) .

c”

when p > q with a similar expression when q > p (replace (p+n—r,p—1) with (g+n—r,g—1)).
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Proof. The statements (i) and (ii) are particular cases of Lemma 2.5. The estimate in (iii) is a conse-
quence of (i)(ii) and the definition (42). O
Proof of Theorem 5.5. Set j =k — p+gq. Since Ug(t) and U?(¢) preserve the number like Qi the
equality

Ug(t)*bWiCkUg(l‘) — % <i>n/tdt1“./0t" dln[ chk’_ [Qchk bchk] ]
( ) /dl] / dt[ U£ tg) Uo(lg>[QWle,- [Qchk bchk] ]Ug(lg)*Ug<lg),

derived from (41) holds in £ (\/* 2¢,\// %). Then Lemma 5.8 implies

()leCkU Z 1 /dt] /t” dln ZS |: tn; : 7t17t)
0

] Wick

] Wick (46)

+if/0 dtl.../o dty Ug (1) UL (1, €' [CE(J(%,..JI,,) U1 Ue (1) “n

t fo-1 ©
+l//0 dty - /O dty Us(té)*Ug(tf) Z e’ [Cﬁf)(tf,' " 7t17t)

r=0

Wick 0
} U1 Us(ty).  (48)

Keep untouched the part (46)-(47) and iterate the Dyson series on the third term (48). While doing so,
use the formula

Wick ¢—1 Wle -1 Wick
Qtn+| Zs |:C£ )(tna 1Y ] e |C |: ’H”l tl’Hrla“' 7t17t)] (49)
€ r=0 r=0
¢ .
& Wick
+? |:{Qtn+1acén)(tn+17"' 7t17t)}(2)] )
inductively forn =£,£+1,...,M — 1. After M — ¢ steps, collecting the factors of &’ yields
. min( f 1,n) Wick
Ue(t) BV Uy (1) = Z / dty - / dty e [cﬁ”) (tay -+ 111 ,z)} (50)
M . t Th—1 0 (2) Wick 0 "
+Y ln/o dty--- | dt, Ue(t,) Ug (t,,) [{Q,n, Dty 1, 11,0)} } U2(t,)Ue(t,)  (51)
n={
t IM—1 (=1 Wick
M [ [T du Uelnn) U2 L& [0 (1)) U 0w) Uelow). (52
r=0
Assume that for § > 0 there exists a constant Cs such that
o ot f1 )
Z(1+5)”Z/dn~--/ dty |G (tn, -+ ,11,1) <Cs. (53)
n=_ =070 0 LT T )
According to Lemma 2.4, the first term (50) of (50)(51)(52) provides in U (¢)*b" U, (¢) ‘Vk . the partial

sum of a convergent series in .Z(\/* 2, \/* P19 %) when ke < 1 + %. With the same argument the
remainder term (52) vanishes as M — o and ke < 1+ g. By referring to Lemma 5.9 (ii) and again to
Lemma 2.4 the factor of €’ in (51) is associated with a series which converges in . (\/k z \rta gy
as M — oo uniformly w.r.t. (k,€) when ke <1+ %. The sum of the series is simply denoted by Ry(z, €).

31



Let us prove (53) to finish the proof of (ii). Lemma 2.4 and Lemma 5.9 say

oo [ ta1
Z(1+6)”Z/ dzl---/ dty
n={ r=0"0 0

Cign)(tna ,t17t)

g(\/ernfr Qp’vq+n7r g)

oo 4 |tn|
< 1+5n 21 max C(n)t7--‘,l‘,f
_n);e( ) gg) P P AU )z(\/”"**f,vq*"*’f)
oo / n—r|sn
2mr|n| (p+n—r—1)! =
< Zg(l +6)”Z:,) — GilpAn=n)(ptn—r =) = Vi bley 2. ve2)
n= r=
oo L ~Hn—r 5 _1 ~
S Y 8" Y, = (p ) C oy V= Blaye 2y 2)
n=>{ r=0 "°

oo

<27 Y (1+8)" 4"t (n+ p)** |V Bl oy 20 ) -
n={
The last r.h.s. is finite whenever 4[¢||V |7~ < (1+8)~!. The condition (1+428)4[t||V |z~ < 1 is sufficient
and provides the uniform bound Cg in (53) . O
Proof of Theorem 5.6: Set j = k —m. By Theorem 5.5, the right-hand side of (43) vanishes when
m # p — g and the convergence of the series in .Z (\/k % ,\J*"P4 %) combined with Proposition 2.3-ii)
implies

<Z®j7 U£ (t)*bWickUE (l) Z®k>

(-1 o0 . _
N o\ k! jleptat2(n=r) N
“Le L \/<k—<p+n—r>>!<j—<q+n—r))!‘sk-@ﬂ—r%f—wﬂ—r)

t Th—1
X/dtl dtncﬁn)(l’,“,[1,[,Z)+05(8€),
0 0
when ke <1+ %, for any 6 > 0. By considering the limit € — 0, k¢ — 1 every factor

\/ k! j1 epta+2(n—r)
(k= (p+n—r)(j—(g+n—r))!

converges to 1. Therefore this proves (ii) for small times ¢ such that 4|¢||v|;~ < 1 up to the identification
of the first term as b(z;). From our definitions we know

s=t "

b(z) = <zt®q, l;z,®p> = b (e "0z,)|
By setting w; = e~ Az, the quantity b(z;) equals

' S
b(z) = bi(wo) +/0 Os[bi(wy)] ds = by (wo) +/O Osws-0zby (ws) + 9:by (ws).Oswy ds

Moreover the equation (30) has the equivalent form with the vector wy = ez, and w;

iasws = e_iSA&zQ(Zs) = &zQs(Ws) - laSWs = 8zQs(Ws) .

Hence we get

b(Zt) = b(Wo) —i—i/ot {Q,] ,bt} (th) dt .
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An induction with wy = z and the convergence of the series already checked yields

oo t
b(z) — /d
(ZI) ’;) 0 1 0

Now let us prove the limit (i) for all times by following the argument in [FGS], [Spo]. Assume that
the result is true for |¢| < ﬁ. Let s be such that |s| < 1/4|V|.~. The convergence of the series given
in Theorem 5.5 and the fact that U (¢) preserves the number gives

Th—1
n
dt, C(() )(tn,...,tl,t;z).

(%7, Ue(t + ) BVKUg (1 + 5) 27%)

oo

1 s Sn—1 . .
= i Z gr/ dsy - / dsn <Z®J7 Us (l‘)*[Cﬁn) (Sm o8 ,S)]WleUg(t) Z®k>
0 r=0 Y0 0

n=

=Y [ s [T s LU (e st () +0Ue) (59
n=0

with an absolutely and uniformly convergent series in the (54) when k¢ is close to 1. Hence the limit
€ — 0, ek — 1 and the sum Y, in (54) can be interchanged when 4|s||V|.~ < 1. An induction on
K=0,1,2... finishes the proof. Il
5.3 Coherent states and Wick observables

We show here that information on the propagation of coherent states can be directly deduced from the
results about Hermite states.

Proposition 5.10 For any zo € Z and any b € &), ,(Z), the limit

lim <U8 (1E(z0) , BV, (t)E(zO)> — b(z)

E—

holds for any t € R when z; denotes the solution to the Hartree equation (30).

ol & g2
Proof. By symmetry, one can assume m = p — g > 0. Recall that E(zp) = e e N ZSQ " and start
n=0 n:
first with |zo| = 1. Since Ug(r) preserves the number, one gets
Wick L -1
(VeEG0) 0" UeE ) = Y e 'S (e7)

n=m

with  a, (&) =& \/n(n— 1) (n—m+ 1) (25" Uelt) U (1)25")

By Lemma 2.4 the quantity a, (¢') satisfies

.
2oy z) S OBl gy gy g -

1

Hence Lemma A.1 applied here with A = €~ and u = p reduces the problem to the proof of

$2
. e 2

The uniform estimate s
s

P
‘amw (z)‘ <C, <1 + \/I> < s)”
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and the pointwise convergence induced by Theorem 5.6 with z = 79, k = [\/7Ls +A] and € = A 7! yields
the result.
For a general |z9| > 0, write

— —% . (8/)7n/2 / \®n e
E(zo) = e 2 i (z0)™" = E'(z0)
n=0 :
with zj, = 2 and €’ = —£; . By replacing the e-quantization by the €’-quantization, with

ol jol”
bWick,g’ — ‘ZO‘*P*Q pVick  tor b c L@nq(g)
H, = \Zo\zng/(—A) + |ZO|4QWick,g’
and  (iedu = Heu) < <i8’8,u =dly(—A)u+|zo) QWick,s’u) .

Hence the previous result applied with E’(z[), |z,| = 1 and the &’-quantization implies

lim <U8(I)E(zo) , bWiCkUg(t)E(ZO)> = |z0|" " b(2)

£—0

where z, solves
. 2
iz = —Az + |z0]* (V A G=0=%=7 1

Since this mean field equation preserves the norm |z, | like (30) does for |z

, this implies
=1zl 2 =lz| "z and |z b(z)) = b(z).
g

Remark 5.11 Another proof can be obtained directly from Proposition 5.2 after checking uniform num-
ber estimates for U,(t,0)Q. But working in this direction is more efficient with the help of Wigner
measures.

6 Wigner measures: Definition and first properties

The notion of Wigner (or semiclassical) measures is well established in the finite dimensional case. We
refer the reader to [Bur][Gerl][GMMP][HMR][LiPa][Tar] for details. The extension that we propose
here to the infinite dimensional case follows a projective approach.

6.1 Wigner measure of a normal state

Consider the algebra of cylindrical sets By (2) = {X(p,E)=p '(E),p€P,E € B(pZ)} where
PB(pZ) denotes for any p € P the set of Borel subsets of pZ. A cylindrical measure y is a mapping
defined on %, (Z’) such that:

o u(Z)=1,
e Forany peP, u,(A)=u(p~'(A)) forA € B(p2Z) defines a probability measure (1, on B(pZ).

The family of measures {1, } ,cp is often called a weak distribution.

This notion is often introduced within the framework of real Hilbert spaces (or more generally real
topological vector spaces). This makes no difference at this level. The real structure on 2, namely the
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real scalar product S, is useful for the application of Bochner’s theorem. For any & € 2 the function
2 e 2i8@E) i g cylindrical measurable function and the Fourier transform of u is well defined by

Fl(E) = [ e ap.
7

Bochner’s theorem characterizes the Fourier transform of a weak distribution. It says (see for example

[BSZ]) that a function G is the Fourier transform of a weak distribution if and only if

e G isnormalized: G(0) =1,

N —
e G is of positive type: Z AidiG(E—&;) >0,
ij=1

e For any p € P, the restricted function G|, # is continuous.

An important point is that 2 is a separable Hilbert space. Hence the o-algebra generated by the cylin-
drical sets, that is containing %.,;(Z), is nothing but the Borel c-algebra, %(Z), associated with the
norm topology on 2. A probability measure well defined on (%) will be shortly called a probability
measure on 2. The tightness Prokhorov’s criterion (see [Sch]) has within this setting the next simple
form.

Lemma 6.1 (See [Sko]) A cylindrical measure |1 on % extends to a probability measure on % if and
only if for any 1 > 0 there exists Ry > 0 such that

VpelP, u({zeZ, |pzl <Ry})>1-1.

By recalling that for any R > 0 the ball {z € 2 : |z] < R} is weakly compact, this can be reinterpreted by
saying that a weak distribution u extends as a Borel probability measure if and only if its outer extension
is a Radon measure on 2 endowed with the weak topology (see [Sch]).

Consider a family (p®)¢c(0,z) of non negative trace class operators on 7 such that Tr[p®] = 1, or
equivalently normal states & — Tr[p® ] on the space of all bounded operators .2’ (7). An additional
number estimate assumption allows to associate with such a family, Wigner probability measures on Z.

Theorem 6.2 Let (pS)SE(O@ be a family of normal states on L () parametrized by €. Assume

Tt[N%p?] < Cs uniformly w.r.t. € € (0,€) for some fixed § > 0 and Cs € (0,+oc0). Then for every
sequence (&p)nen With lim,_... &, = 0 the exists a subsequence (&, )ken and a Borel probability measure
W on Z such that

lim Tr[p&m pVo| = lim Tr(p & b~ Wick] = / b(z) du(z),
—00 — 00 2

forallb € Uycp F 1 (M(pZ)).
Moreover this probability measure [ satisfies / 121?22 du(z) < oo.
z

Remark 6.3 a) By introducing the reduced density matrix p; € £ WTy(pZ)) defined for p € P as
a partially traced operator Tr[p;A] = Tr[p*(A ® I, (,1 #))], one could consider the Husimi function
u; of p; which is its finite dimensional Wick symbol. It is known that this makes a weak probability
distribution which admits weak limits after extracting subsequences €, — oo. The number estimate
implies in finite dimension that such a limit is a probability measure. Our results say essentially two
things: First after a proper extraction of subsequences, the family (U,) ,cp makes a weak distribution,
i.e. the convergence can hold simultaneously for all the non countable family p € P. Secondly the weak

35



distribution is a Borel probability measure.
b) The estimate [, 12® dpu(z) < +o0 will be proved in the more precise form

2 6 s £ 4] /
/J (1—|—|z| ) du(z) < liminf 7r [p (14 N) } < Cf < +oo.

Snk —00

Contrary to the finite dimensional case, the first inequality is not an equality even when the right-hand
side converges. Examples are given in Section 7.4.

Proof. i) The Proposition 3.7 implies
‘Tr [piseyl} —Tr [pebA—Wick} ‘ < ’bWeyl N bA_Wick s:>0 0

for fixed b € Upep F ' (M),(pZ)). Hence the result is true when it is proved after considering simply
the Anti-Wick observables.
ii) Consider for € > 0 the function

en? . .
Ge(g) = Tr [PSW(\oné )} e*TK ‘2 — Ty |:p£(6217rs(§,‘))A7chk} )
The positive type property and the normalization come from

Ge(0) =Tr[p] =1
N 2 A—Wick
22 (G

k=1

>0.

N
Z liTst(é —&)="Tr|p®

ij=1

The continuity when & is restricted to any fixed finite dimensional pZ can be written with uniform
estimates w.r.t € € (0,&). Consider the estimate Tr [p®(1 —|—N)51] < Cs, with 8; € (0,min(1,29)). Write
forany {,n € &

e N-+1 61/2 N-+1 01/2

Geln) ~Ge(&)] = [T [p m[wmnn)—wmnénm]
4o ZomP _ -l
< |W(Vamn) - W(VaREIWN + 1) T (V1))

L(H)

2,2 222
+ g‘%“ﬂ _e_%lél .

We have found by Lemma 3.1 two constants &; € (0,1) and C5 > 0 such that

VEMEZ, |Ge(n)—Ge(§)l < CsIn—&I% [(In*+1E1)2/2 +1], (55)

holds uniformly w.r.t. € € (0,€) and we recall the uniform estimate |G¢(&)| < 1. Hence for any € €
(0,€), G¢ is the Fourier transform of a weak distribution u? such that

Tr |:p£bA—Wick:| :/ b(Z) d‘ue(z)
z
holds for all b € U,ep Z ! (M, (pZ)).

iii) Actually the uniform estimate (55) allows to apply an Ascoli type argument after considering se-
quence (&,)nen such that lim,, .. &, = 0:
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e Since % is separable, it admits a countable dense set .4 = {&;, £ € N}. For any ¢ € N the
sequence Gg, (&) remains in {o € C,|o| < 1}. Hence by a diagonal extraction process there
exists a subsequence (& )ren such that for all £ € N, Ge, (&) converges in {o € C,[c| <1} as
k — oo. Set

G(&) = Jim G, (&)
forall / € N.

e The uniform estimate (55) implies that the limit G is uniformly continuous on any set .4 N
{z€ Z : |zl <R}. Hence it admits a continuous extension still denoted G in (Z,]|4). An
“epsilon/3”-argument shows that for any & € 2 limy_.. Ge, (§) exists and equals G(&).

e Finally G is a normalized function of positive type as a limit of such functions.

Finally the uniform estimates |G¢(&)| < 1 and |G(§)| < 1 allow to test the convergence again any
v € M,(pZ) and to apply the Parseval identity with » = .% ~!(v). From any sequence (&,),cn such
that lim,, ... &, = 0, one can extract a subsequence (&, ) and find a weak distribution such that the
limit

k—soo

lim Tr [pfnk bWeﬂ} — lim Tr [p% bA*Wick} - /gb(z) du(z)

ng—o0 ng—o0

holds for any b € F (L'(pZ,L,(dz))) and therefore for any b € .7, (Z).

iv) The Prokhorov’s criterion for pt in the form stated in Lemma 6.1 is again a consequence of the
uniform number estimate Tr [N°p¢] < Cs. Fix any p € P and set d = dimp. The operators N, =
Nz ®Ir (i ) = (dr(lpga) YA 1)) — dT(p), N, = (I, @dT(I,. »)) = dT(p*) and N = dT(I)
make a commuting family of non negative operators such that N = N;, + N,.. Thus the inequality

de de
(14— +N)" 2 (14— +Np)’
holds for any s > 0. Hence the estimate Tr [psN 5} < Cs implies
de de
ﬂ%m+2+Mﬁkﬂﬁfﬁ+2+Mﬂ§ﬂF@+Mﬂ§%y

with C§; > 0 independent of € and p as soon as & < é.
Let y € €*(pZ) be a non negative function on pZ, such that y = 0 in a neighborhood of {|z| < 1}.
For any R > 1 the estimates
(1+R)°
(1+1z[*)?
dz?
2

holds with uniform estimates of the left-hand side in S, (1, =5 ). The pseudodifferential calculus in

(@)
pZ with the metric %, provides the inequality of bounded operators on I's(p.2)

x(R'z) <1

(14 R e
(1+R2)6AOBROA—C£§ W%(R71Z) S 1+C8
. _ Weyl _ /
with A= ()22 Be= (xR and [Brl pqr,pa) <C.

with a constant C > 0 independent of € € (0, %) and R > 1. By Proposition 3.3, there exists a constant
C’ > 0 independent of € € (0, é) (and R > 1) such that

de
A20(1+2+Npg)6—lrx(pg)’ SCIS.

37



Hence the inequality
(1+R*)° (R~ pz)"®! < (142Ce)A~°

after tensorization with Ir- (1 & and testing on the normal state p© yields
(1+R)°Te [pex (R~ po)™'| < ¢}

with a uniform constant Cg with respect to € € (0, 5) and R > 1. After taking the limit ny — oo, g, — O,
we get

/ |, Lidzr) (2) du(2) < /gx(R“pz) dp(z) = lim Tr | p (R p2) "™ | < 51+ R0,
g np—oo

This inequality is valid for any p € [P and the Prokhorov’s criterion of Lemma 6.1 is satisfied. The weak
distribution y is a probability measure on 2.

v) First the function (z)?? is Borel measurable in 2. Take p € P and R > 1 and take now jo € €y (pZ),
such that 0 < o < 1 and yp = 1 in a neighborhood of 0. Consider the estimates

(1+N)° > (14+N,)° > (14N,)% xR p2)" (14 N,)%/% —C,e(1 +N,)°

[((1 + \pz!z))sx()(Rlpz)] " —Ce(l +N)°

Y

where the two last inequalities are again derived from the finite dimensional Weyl calculus (with a
uniform control w.r.t. R > 1). After taking the limit n; — oo, £,, — 0, this implies

/3 (1+‘pz|2>6X0(R71PZ) du(z) = lim Tr [penk [<(1 +|p2|2>)6Xo(R1pz)} Weﬂ]

nj—>00

IN

liminfTr [p% (1 +N)5} <.

Nj—00

Taking the supremum w.r.t R > 1 and then w.r.t a countable increasing sequence (py)uenN, pu € P, such
that sup,, .y pn = I #, yields

[, QP duz) < €5 <+

g
6.2 Complex Wigner measures, pure sequences
More general families of trace class operators can be considered by linear decomposition
P® = AR Pis — Ag_Pi— +iAf P —idi-pj (56)
with Af >0, p& >0, Tr[pf] = 1 and
M A AL 4 A <4Tr[|pf)].
Proposition 6.4 Let (p%) ec(0,¢) be a family of trace class operators such that
(1+N)5/2p8(1+1v)5/2( <Cs (57)

L)

uniformly for some 8 > 0 and some Cs < +oo. Then for any sequence (&,)nen such that lim,_... &, =0,
one can extract a subsequence (&), and find a (complex) Borel measure y on 2 such that

lim PR ACHES lim Tr{p &b ~Wick] = / b(z) du(z), (58)
—00 —00 z

forallb € Upep F 1 (M,(pZ)).
Moreover this measure satisfies [ (2)%% d|u| (2) < +oo.
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Proof. The decomposition (56) implies
(1 +N )a/zps( +N)5/2 xR+”R+ e~ Ar_TR 5+ MIE+”;+,5 - MI—”IS—,E
with 785 = (14+N)°pf(1+N)°** >0

and { 1+ N) } Tr [ria] < ‘(1+N)6/2p£(1+N)5/2 .

Hence the symmetric writing with (1 +N)3/2p€(1 4 N)3/2 of the uniform weighted estimate ensures
that every term p, in fulfills the assumptions of Theorem 6.2. It suffices to extract a subsequence which
provides the convergence for all the four terms. O

Definition 6.5 For a family (p®) £c(0,5) sansfymg (57), the set of Borel measures L which satisfy (58)
is denoted . (p¢,€ € (0,€)) or simply A (p%).

Such a family (p%)ec(0¢) (resp. a sequence (p),en) is said pure if 4 (p€, € € (0,€)) (resp. A (p*,n €
N)) has a single element .

When the family (p%) ec(0,¢) is pure the limit in (58) can be written with limg_o instead of limy, —c.
This provides a characterization of .# (p®) = { }. For simplicity, we shall often assume that the family
(P¥)ec(0,¢) 1s pure, when the reduction to such a case can be done after extracting a suitable sequence.

6.3 Countably separating sets of observables

In order to identify a Wigner measure of u € .Z (p¢?) it is sufficient to test on a “dense set” of observ-
ables. The good notion is given by the Stone-Weierstrass theorem for L' spaces. It can be recovered
from the standard Stone-Weierstrass theorem for continuous functions in our case.

Lemma 6.6 (c¢f [Cou]) Let v be a Borel probability measure on a separable Banach space X and let
{fu,n € N} be a countable set of bounded v-measurable functions which separates the points

an)’GX,E'nGN fn(x)#fn(y)
Then for any p € [0,0), the algebra generated by { f,,n € N} is dense in LP (X,dV).

Since “the” Wigner measure is not known a priori, the good notion of “dense set” that we shall use is
the following.

Definition 6.7 A subset 9 C U,cp 7 Yy (pZ)) is said countably separating whenever it contains
a countable subset, 9 O Py ~ N, which separates the point of % :

Vx,y € Z,3f € Do, f(x)#f().

Proposition 6.8 Let 11| be a bounded Borel measure on 2 and let (p€)¢c(0.¢) be a family of operators
which fulfills the assumptions of Definition 6.5. The two next statements are equivalent:

1A (pF) = {m}.

2. There exists a countably separating subset 9 C Upep F 1 (My(pZ)) such that
Vbe P, limTr [prWeﬂ} — lim Tr [prA—W“"“} = / b(z) du (z).
£—0 £—0 @

Remark 6.9 A similar equivalence is obtained for |y € .# (p¥) after a subsequence extraction.
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Proof. Assume u € .#(p¥). There exists a sequence (&, )reny and a Borel measure u such that (58)
holds for any b € Upep# ' #,(pZ). In particular this holds for any b € 2:

/gb(Z) du(z) = ]}EEIOTr [psnkaeyz} _ /Qpb(z) i (z).

The set 2 is dense in L!'(2,d|u;|) and in L' (2, d|p|) so that the above equality of the extreme sides
extend to any bounded Borel function. This implies 4 = ;. U

The next examples will be useful in the application and allow to reconsider an inductive point of
view.

Proposition 6.10 Ler (p¢)ien be an increasing sequence of projectors in P such that sup,py = Iy
and let the family of operators (p¥) ec(0,5) satisfy the assumptions of Definition 6.5. Then the identity
A (pE) = {1} is equivalent to any of the next statement

1. Forallb € Uien 7 (pi %), the quantity Tr[p€b"Vo"] converges to [, b(z) du(z) as € — 0.

2. Forallb € Sy(Z), the quantity Tr[pEb"®!] converges to [, b(z) du(z) as € — 0.
Proof. It suffices to notice that Useny . (prZ), and therefore ..., (), is countably separating because
the weak topology separates the points. O
6.4 Orthogonality argument

Complex Wigner measures are especially interesting while considering the joint measure associated
with two families of vectors (4%)¢c(0z) and (v¥)ee(o,). Introduce the notation

Puy = [u5) (V.

Proposition 6.11 Assume that the family of vectors (uf)ee (o) and (v)ee (o) satisfy the uniform esti-
mates
‘(1 +N)O/2yE

(14 Ny
P

%SC o U =1 e =1

for some fixed § >0 and C > 0. Assume further that any u € .# (pf,) and any v € 4 (pg,) are mutually
orthogonal. Then the family (P, )ee(0,¢) is pure with

M (P € € (0,€)) = {0}
ie. lim <u£ , bWeylv8> — 1im <u£ , bA*W"C"v8> —0

e—0 e—0
forany b e F Y My(pZ)) and any p € P.

Proof. Assume .Z(p,,) = {u} and # (pf,) = {v} with u L v. Take 7 > 0. There exist two bounded
closed subset K| and K> such that

ukK)>1-n , v(iKp)>1-n , KiNk,=0.

Since K; and K, are compact in the weak topology, K; C CK>, K> open in the weak topology, there
exists a finite covering of K; of the form

K K
K< UdlpGz—z)l<nt o Udlp(z—z)l <2 Nk =0

with py € P, zx € 2 and r, > O forall k € {1,...,K}. By choosing for any k a function y; € €;°(prZ)
such that Y (pk(z)) = 1 when |pr(z — zx)| < rx and xx(prz) = 0 when | pr(z — zx)| > 2ry the sum x(z) =
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f{V: 1 % defines a cylindrical function y € .#,;(Z) such that y = 1 on K; and y =0 on K.

Take now any b € .%,;(Z’) and write

‘<ue’bWeylve> — ’<us’(bx)Weylve> _‘_‘<us,(b(1_x))Weylve>

< }(5(1 _x))Weylus‘jf + ‘(b% Weyl e‘
From the Weyl pseudodifferential calcul we get

(B 2)" e[, < T [p, (1= 20%16P) "] +Ci

where the right-hand side converges to [, |b|>(1 — x)*(z) di(z) as € — 0. The property x = 1 on K;
with u(K;) > 1 —n implies

limsup| (B(1— )" |’ <7 |b[3-

£—0

<n ]b|ix,. Hence we get

and with the symmetric argument limsup,._, ’ by )"V 8’

vVn >0, limsup <u8,bweylv8> <2|bl;- /1M
e—0
for any b € .%,,;(Z). This implies .# (pf,,€ € (0,€)) = {0} . O

A straightforward consequence is the next proposition.

Proposition 6.12 Make the same assumptions as in Proposition 6.11 with the additional condition
M (pg,) = {t}y and A (py,) = {ly}. Then the family of trace class operators (Py, ,1v)ec(0s) Sal-
isfies

%(ptf+v,u+v) - {nuu + an} .

Proof. Write simply
<M8+V8 ’ bWeyl(ue +V£)> — <u8 ’ bWeylus> + <V£ ’ bWeylve>
+ <u8 bWeylv£> + <v£ bWeylu£>

and take the limit of every term as € — 0. g

6.5 Wigner measure and Wick observables

Up to some additional assumption on the state and by restricting the class of Wick observables, we
check in this subsection that testing with Weyl, (or Anti-Wick) and Wick observables provides the same
asymptotic information as € — 0.

Fix once and for all p € P, the choice of the metric g, = |dz|? or & = ‘zg‘ From Proposition 3.8 we

know that the class of symbols U,cp scr Sp 2 ((2)°, g,) and @queN@mg(&‘” ) both contain all the classes

Pmg(pZ), with a good comparison of Weyl and Wick quantizations on these smaller sets. In the limit

€ — 0, this comparison can be carried out to any b € EBfigqu@“’ (2).

Theorem 6.13 Assume that the family of operators (p*)ec (o) satisfies
(1+N)%2p¢(1+N)%/? P
uniformly w.r.t € € (0,€) for any § > 0.
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1. For any fixed B € Upep ser Spz((2)°,8p), the families (BY'p)ec(oe) and (B *p®)ec (o)
satisfy the assumptions of Definition 6.5 and

M (B %) = .t (B %) = {Bu, n € 4 (p°)} (59)

2. For any fixed 3 € Qe Pa the family (BV*p#) . 0. satisfies the assumptions of Defi-
m,geN €(0,8)
nition 6.5 and

M (B p®) = {Bu, e #(p*)}. (60)
A particular case holds when the measure is tested with b = 1.

Corollary 6.14 Assume the uniform estimate |(1+N)%?p¢(1+N)°/?| ,, . < Cs for all § >0 and

further A (p%) ={u}.

()

1. The equality
. Weyl ~e| 15 A—Wick ~e| __
fin 6"t = iy [+ = [, B0 anc

holds when B € U,cp scr Spfz”(<Z>Sagp)

2. The limit
lim 77 B pe | = /@ﬁ(z) du(z)

£—0

holds for any B € @2%161\](@‘” (Z2).

Proof of Theorem 6.13: 1) The relation (27) extends to any b € S,#((z)*,g,) and implies e ! (B! —
pA=Wick) = c(g)"e! with c(€) uniformly bounded in S, ((z)*"2,g,). The result for fA~"i can be
deduced from the one for B".

Take p € P, s > 0 (this contains the case s < 0) and 8 € S,#((2)*,8p). Let Ny = Ny @I, (1 ) and
N,. = I (,2)@N,1 5. Our assumption on (p¢)¢¢(0,¢) and the commutations [N, ., Ny] = [N, el =
0 imply for any 6 > 0

(14+N)2BY1pe (14 N)?/2 = ABA'RC

A= (14N (14N,)PP(14N,.) 702
B=(1+N,)%2B"!(1 4+ N,) /2

A = (N N1
R=(1+N)*"p*(14+N)*" and C=(1+N)"*.

with

The factors A, A’ and C are uniformly bounded operators when 8 > 0 (and s) is fixed. The trace class
norm of the factor R is uniformly bounded by Cs.,. Finally the Weyl pseudodifferential calculus on
pZ implies that B = y"®! with y(¢) uniformly bounded in S,#(1,g,) and therefore |B| ) < Csg
uniformly w.r.t € € (0,€).

Hence the family (8% p#) ee(0;¢) satisfies the assumptions of Def. 6.5. Let t; belong to .# (BYVep#).
After extracting the proper sequence (&,),en such that lim,_... €, = 0, one can assume

lim Tr {bW@’lﬁW@lp&l} = / b(z) duy (z)
2

n—oo

and  lim Tr [bweylpg”} :/ b(z) du(z)

n—oo
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for any b € .7;(Z). But the finite dimensional pseudodifferential calculus implies pWert ﬁweyl =
(bB)Y! + 0 () (&) with bB € Sy Z). This implies

/gb(z) duy(z) = /gb(z)[}(z) du(z)

for all b € #,,;(Z). According to Proposition 6.10 this implies t; = Bu.
2) Since the U,cp scr Sp#((2)%,8p) contains U,c » <@2gq€N93qu(p£‘”)), the result is proved for any

polynomial symbol b € &7 (Z’) such that b=T(p)bI'(p) for some finite dimensional projector p € P.
Consider now a general b € &7 (Z) with m,q € N. By Lemma 2.4, the operator

(1 +N)3/2bWick(1+N)75/27m/27q/2
is uniformly bounded for any & > 0. Since the trace class norm of (1+ N) 5+’2"+qp£(1 +N) P s

uniformly bounded w.r.t € € (0,€), the family (8"p#) satisfies the assumptions of Definition 6.5.
Introduce now an increasing sequence (p;)sen of P such that sup,. p¢ = I and consider for £ € N

Bé(z) :ﬁ(PZZ) s BE Zp?qol;op?m.

Since ﬁ is a compact operator, the finite rank operator Bg converges to B in the norm topology in
L™ Z,\1Z). The uniform estimates

’(ﬁ _Bé)WiCk(l +N)*m/2*q/2‘$(jf) <C E_g‘f(\/'"ff,\/‘lf) s
(1417)" " (p@I+ B <€ with 1im i) = BE).

and the convergence
Wbe Son(Z).  limTe "B o5 ] = [ b)) dua(2)

after extracting a sequence (&, ) e, lim, e & = 0, with [, (14 [2|2)™/**4/2 du(z) < +oo, lead to

—00

Wbe So(2). lmTe [ Yo = [ b)) du).

U
The previous results provide the behaviour of limg_,o Tr ["*p¢] for B € @figqu P (Z) when
A (p?) = {u}. The next result checks the other way.

Proposition 6.15 Assume that the family (p®)¢c(0¢) satisfies (57) and that for any C > O there exist
Kc > 0 such that

o ¢ Tr[N*pf] < K,

holds uniformly w.rt € € (0,€). Assume that there exists a Borel measure |1 such that

tim 77 [p¥iep¢ | = | /@Pb(z) du(2)

e—0
holds for any b € @%,gq P (Z). This implies

A (pF) ={u}.
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Proof. It is enough to prove the following statement:
lim Tr[W (§)p?] :/ V2862 gy
£—0 4

It is done when the right-hand side of

. Wick

is proved to be an absolutely convergent series, uniformly w.r.t. € € (0,€). With

W) - 3k

TW(§)p®] = lim Te[W(S) 141 (N) p°]
. Wick
- B e (B) |
and
L (ivaseE o\ . o (V2sED\T .
Tr | hy (Meé\) Loag(N) pE | | < My |(N+ 1), (Meé!) (N+1)™? ,

L L)
with M, = Tr[(1 + N)"p?], Lemma 3.4 implies

B ivaseE )\ B 1422+ j)e)  n!
n/2 n/2 su
(V) h"( Ve ) V) = i (ke + )2 (je+1)"2 n)2)!

L)

!
a N

< 8o

This leads to

i (4velg))”

= [n/2]!

gk

M, <o (63)

Wick
n (lfs(é )) l[O,M} (N) ps] <

[Veg]

uniformly w.r.t. € € (0,€) and M > 0. Hence we can take the limit M — oo inside in all the terms of
(62). This leads to (61) with a uniformly absolutely convergent series in the right-hand side according
to (63) and our initial assumption.

Thus the sum and the limit as € — 0 can be interchanged in (61):

. Wick
) = £ e (4557

= Y. [ avasEara

_ / VS(ED) g
z

The last equality follows owing to the dominated convergence theorem and

k
/g 81,22 du—hmz Trp dT(1,2)"] < e

for any 6 > 0 and any p € . This completes the proof. g
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7 Examples and applications of Wigner measures

7.1 Finite dimensional cases
The first examples are given by Theorem 4.2
1. For any z € 2 the family of operators p¢ = |E(z)) (E(z)| has a unique Wigner measure
M (|E(2))(E(2)], €€ (0,€)={6}.
2. For any z € 2 and any m € 2 the family of operators p& = [¢%ke=) (z¥¢| with |z| = 1 and
limg_,g €ke = 1 has a unique Wigner measure

1 2r
A |, e (0,8) =5 / 05,0 do.
0

3. In case 1) and 2) the convergence can be tested with Weyl, Anti-Wick of Wick observables ac-
cording to Proposition 6.4 and Theorem 6.13.

Beside the explicit calculation of Theorem 4.2 these results can be considered through an inductive
approach since E(z) or z2" lie in I'y(Cz). The natural extension comes from Proposition 6.10-1) with a
proper choice of the first term in the increasing sequence (py)en.

Proposition 7.1 Assume that the family (p¥) ec(0.¢) satisfies the assumptions of Definition 6.5. Assume
further that there exists a finite dimensional space py € P such that

P =T(po)pL(po) = py, @ Q)|

for all € € (0,€) with p; € LY Ts(poZ)). Then the Wigner measures of (P%)ee(0,e) are given by
A (p°) = {#1 @8tz M1E «///(Pﬁo)} :

7.2 Superpositions

Two kinds of superpositions can be considered : 1) convex or linear combination of trace class operators;
2) convex or linear combination of wave functions. The first one is the simplest.

Proposition 7.2 1. Let (M, ) be a probability space. Les (p®(m)) . (0.8),mem be a family of opera-
tors such that
(14 N)22p% (m) (14N

<
P10 = Cs(m)

for m-almost every m € M with Cs € L' (M, dr) for some & > 0. Assume further 4 (p€(m), € €
(0,€)) = {u(m)} for w-almost every m € M, then the family ( [y, p€(m) dT(m))ece (o) satisfies
the assumptions of Definition 6.5 and

([ pom amtm). e 0.2)) ={ [ utn) axon}.

2. Any bounded Borel measure on % can be achieved as a Wigner measure.
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Proof. 1) Set p¢ = [,, p®(m) dm(m) and write
)(1+N)5/2p8(1+N 5/2 /C5 ) dm(m
Then apply Lebesgue’s convergence theorem to
Tr [bweylpg] = /MTr [bweylpg(m)] dn(m).
2) After reducing the problem to the case when u is a Borel probability measure on 2, apply 1) with
M=%2,t=u,m=zand p(z) = |[E(z))(E(z)|. O

The second type of superposition requires an orthogonality property. It is given by Proposition 6.12.
Here are a few examples

1. Take uj = E(z¢) for £ =1,...,L, with L € N fixed, and set u® = L*1/2Z§:1 uj. When the zy are
distinct, the family (|u®) (u®[)zc o ¢) has a unique Wigner measure

av-forge)

2. Take forany ¢ € {1,...,L}, uf = Z?kf with |z| = 1 and liII(l)Sks = 1. The family (|u®)(u*|)ec (o)
£ ’

has a unique Wigner measure:
2
() wf)) = 4 (2nL) 12/ S0, dO

e _ E@+|%) _ : _ : e
3. Forze Z andu 7, with |z[ =1 and limg_o €ke = 1, the family ([u®)(u®|) oo ) has a

unique Wigner measure:
2
///(]u£>(u£]):{ 5+4 / ,ezd()}

4. All this examples can be tested with Weyl, Anti-Wick or Wick observables according to Proposi-
tion 6.4 and Theorem 6.13.

7.3 Propagation of chaos and propagation of (squeezed) coherent states

Let us go back to the example of Section 5 where U (1) = e e/ with Hy = dT'(—A) + QVick, 0 =
IV (x1 —x2) and z solution to idz; = —Az+ (V * |z:*)z Theorem 5.6, Proposition 5.10 and Proposi-
tion 6.15 imply:

1. For any zg € 2 with |zo| = 1, the family (|Ug(?)z ®k€><Ug( 1)zg |)£E(07§) with limg_o€ke = 1 is
pure with

M (Ue(0)25) Uelr)25™]) = {;ﬂ [ b, de} G

2. For any zo € 2, the family (|Ue(¢)E(20))(Ue(t)E(20)|)ec(0,¢) is pure with

A (|Ue(1)E(20)) (Ue (1) E(20)[) = {8, } = A (|E(2)(E(z:)]) -
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These results are derived from the results for product states after testing with Wick observable (any
be @ﬂ%’q Pnqg(Z)). Actually it is possible to recover the second one directly from the Hepp method.
For any b € .%,,,(%’), Proposition 5.2 implies

V2 V2

lim Tr [bwey’ (\Ue(I)E(Zo)>(Ue(f)E(Zo)l - W(isZz)Uz(taO)QﬂW(isZr)Uz(%O)Q!) =0.

By the finite dimensional Weyl quantization, the second term equals
<U2([7 O)Q ) b( - Zl)WeleZ(t70)Q> :

And it suffices to check that the family (|Ua(z,0)Q) (U2 (t,0)L|)¢c(0.5) admits the unique Wigner mea-

sure 8. This is a consequence of Lemma 5.3 which first says |[N*U,(t,0)Q| »» < Cy for any k > 0 and
then limg o (U (¢,0)Q, 5V U,(£,0)Q) = 0 when 5(0) = 0.

7.4 Dimensional defect of compactness

In the last example the mean field propagation of Wigner measure attached with U, (t)E(zo) can be
proved directly without using the result on Wick observables. As a corollary, this provides the result for
Wick observables b"i when b € EB,aﬁféq P (Z) according to Theorem 6.13. The result for a general

be @%f”q Prnqg(Z) is still true but comes from a direct proof or from Proposition 5.10.

A natural question is whether the result of Theorem 6.13 can be extended to any observable "% with
be @3,17%1 Pnqg(Z). The answer is no, because in the infinite dimensional case there can be some defect
of compactness w.r.t to the dimension variable.

Here is a typical example. Consider a family (z¢)ec(o¢) such that z; converges weakly to 0. There
exists a constant C > 0 such that |z¢| < C for all € € (0,€) and the family (E(z¢))ec(0s) Satisfies the
assumptions of Proposition 6.15. The Wigner measures it € .# (|E(z¢)(E(z¢)|)) are determined by
testing on any b € & (). But Theorem 4.2 says

(E(ze) BYE(ze) ) = blze) = (25 bzs™)

When m + g > 1 the operator b is compact, the right-hand side converges to 0 as € — 0. According to
Proposition 6.15 this implies

A (|E(ze))(E(ze)]) = {0} -
Meanwhile testing with N = dT'(I) = (!zlz)WiCk implies

(E(ze) ,NE(z¢)) = ’Zs|2

where the right-hand side can reach any possible limit in [0, C].

7.5 Bose-Einstein condensates

The thermodynamic limit of the ideal Bose Gas presented within a local algebra presentation in [BrRo]
can be reconsidered by introducing a small parameter € — 0. Namely, the large domain limit where
bosonic particles are moving freely in a domain A, with volume |A| — oo, can be formulated with
|A| = 1 and € — 0. For a fixed particle density the total number of particle is O(1) coherent with a
mean field approach. Before considering any dynamical problem, Wigner measures of €-dependent
Gibbs states bring some interesting presentation of the Bose-Einstein condensation.

Consider the Laplace operator Hy = —A, on the &-dependent torus R¢/(e~/4Z)? with spectrum

o(Hy) = {82/d|27m\,n € Z}. The one particle space is 2 = L*(R¢/(g="/47)?) and the bosonic
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Fock space is 7% = I';(Z°¢). For the inverse temperature 3 = kfr > 0 and a chemical potential u, the

Gibbs grand canonical equilibrium state is associated with the operator e~ A4l (Ho—1I) — F(e*'B(HO*”’ )),
which is trace class if and only if 4 < 0 (see [BrRo, Proposition 5.2.27]). This Gibbs state on .Z(.7°¢)
is given by

1

(e BHo—1) <0.
Tr [T(ePHo—1))] (e ) H

It is convenient to introduce the parameter z = ¢P* and this Gibbs state restricted to the CCR-algebra
(the C*-algebra generated by the Weyl operators Wy (f), f € Z°¢) is the gauge-invariant quasi-free state
given by the two-point function: @¢(aj(f)ai(g)) = (g,ze PHo(1 —ze PHo)=1 f) . The index | means
that the CCR are written at this level in their initial form: [a;(g),aj(f)] = (g, f). This is proved in
[BrRo, Proposition 5.2.28] with the straightforward rewritting

0 (Wi(f) = exp | —(f , (1+2¢ PH) (1 — e PH)~1 1) /4]
The mean field analysis consists here in introducing a(f) = €'/2a,(f) and W (f) = W (e'/2f):

we(a*(f)a(g)) = (g, ze PHo(1 —ze PHoy =1 f)
e (W(f)) = exp | —e(f, (1 +2¢7PH)(1—zePHo)~1 1) /4]

Further a rescaling motivated by the observation of the phenomena on a large scale, is implemented
with f(x) = £'/2¢(e'/?x) = D @. After conjugating with the unitary transform I'(Dg) : 7 =T'y(%) —
HE =T(2°¢), with Z = L>(R?/Z%) we are led to consider the asymptotic behaviour as € — 0 of the
normal state |

—B(—€¥"5—p)
Tr [[(eB-£"A-1))] I )

pE =T(De)"pel'(De) =

which satisfies

Tl W()] = exp |~ (. (142 Y (12 )
— il exp [_§<f’ zeﬁsz/dA(l —zeﬁsz/m)_lﬁff}
Tripta*(fa(s)] = &(g,zeP 31 —zP"2)71f)

The above expressions are explicit after the decomposition in the Fourier basis f =), 74 fre? ™z of
any element f € 2. For a given z < 1 and 8 > 0 the rescaled particle density is given by

—[382/‘1|27z:n|2
’ £ Z ze €
1-z J— V ’Z .
! neZ4\{0} (1 Ze*BsZ/d|27m\2) 1 —z g(ﬁ ) (64)

One checks easily for&’ > eand7 <z< 1

e~ Bl

ve(B.2) < vel(B.2) = vo(B.2) = |
and  Vee[0,1), Vve(B,z)>ve(B,7).

t T— g0 Bioma

Here comes the discussion about the Bose-Einstein condensation. In dimension d > 3 (this restriction
may change with an alternative Hamiltonian Hy = A (D)), the quantity

e7ﬁ|2nu‘2
W(B, 1) = /]R" [— o Bamp DSt
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is well defined.
We focus on the case d > 3.
The previous discussion imply

Ve >0,Yz € (0,1), ve(B,2) < vo(B,1)

while any total density can be achieved by (64). The Bose-Einstein condensation occurs while consid-
ering the limit € — 0 with the constraint 1Zf§€ + Ve(ze,B) = v with B > 0 and v > 0 fixed. There are
two possible cases:

ov < Vvo(B,1): Then limg_.gze =z < 1 and limg_ % =0

ov > Vo(B,1): The inequality v —vp(B,1) < & < vleadstoze =1 — v T0(€) . The propor-
tion 1 — vo(B,1)/v of the gas lies in the ground state n = 0 of the one-body Hamiltonian. This is
the Bose-Einstein condensation phenomenon.

It is interesting to reconsider this limit € — 0 with § > 0 and v > 0 fixed (d > 3) within the Wigner
measure point of view. This is possible owing to the explicit formula

(1 — zge—Be/!2anl?) ©5)

Tr [psW(\/in'f)} = 878”2|f\?2" exp [—87’52 Z ‘fn‘z

de—[isz/“’\Zﬂn\z
M
nezd

where f =Y, 74 f,*™* Remember that the charactistic function of Wigner measures are determined
after considering the limit € — 0 of the above expression for any fixed f € Z. Hence the problem is
reduced to the application of Lebesgue’s theorem in the argument of the exponential.

) 2o~ BEH 2l
For any n # 0 the quantity m converges to 0 as € — 0 because d/2 < 1 and z, < 1. Hence

we get

_ : EM’Ze ,
lim Tr [pEW(\@ﬂf)} = limexp [ | fol ] .
£—0 e—0 1 —Zg

With the constraint

ff;s < V < 4o, there are two possibilities

o First limg_ =& = 0 implies v < vo(B,1) and .#Z (p€) = {&}.
Tz, p p

e The second case limg_ {5 = v — vo(f8, 1) > 0 implies

lim Tr [ pW (V2 )| = ¢ R0 0BOIT = om0 B DIEDE
£—0

Hence the Wigner measure of the family (p%).~o equals %, x & on 2 = C1 x {1}L where 7, is
the gaussian measure

2

21

e_ v=vo(B.1)

YV(ZI):(ﬂ(V—VO(ﬁ,l))d/Z , z1€C.

Our scaled observables can measure asymptotically only the Bose-Einstein phase in a non trivial way.
The rest of the state provides the factor &. While testing with the observable (|z|>)Vi%* = N, the dimen-
sional defect of compactness phenomenon already illustrated in Subsection 7.4 occurs again: only the
density of the condensate remains.

Remark 7.3 i) It is possible to consider various dispersion relations Hy = A(D,) and the discussion
about the dimension may change. Other boundary conditions (here periodic boundary conditions
are considered) and the discussion about the convergence of limg_oze = 1 may change a little
bit. We refer the reader to [BrRo] for the case of Dirichlet boundary conditions.
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ii) From (65) it is possible to consider the limit for any fixed f € Z as € — 0 with various behaviours
of ze. This provides asymptotically a weak distribution. But the uniform tightness assumption
Tr [pg(l +N )5] < C is not satisfied. The scaling has to be adapted differently to the dimension
d =2 ord =1 by taking care of the singularity at the momentum 0, in order to allow a non trivial
Wigner measure in the thermodynamic and mean field limit.

7.6 Application 1: From the propagation of coherent states to the propagation of chaos
via Wigner measures

In the previous sections we showed how the propagation of (squeezed) coherent states can be derived
from the propagation of Hermite states or directly via the Hepp method. The Hepp method is very
flexible (see [GiVe] for example) and therefore it is interesting to know whether a result for coherent
states provides an information for product states or more general states. Here is a simple and abstract
result which relies on some gauge invariance argument.

Theorem 7.4 Let U, be a unitary operator on F¢ possibly depending on € € (0,€) which commutes
with the number operator [N,Ug| = 0. Assume that for a given z € % such that |z| = 1, there exists
2y € Z such that

M (|UE (2)(UeE(2)|) = {6z } -

Then for any non negative function @ € L'(R,ds) such that [ ¢(s)(1+|s])® ds < oo for some § >0
and [ @(s) ds =1, the state

p(‘; = Z SI/Z(P(SI/Q(H—8_1))|ng®n><ng®"’
n=0

satisfies the conditions of Definition 6.5 and

c 1 2
///(p(p) = E A 5eiSZU do.

Proof. Owing to the relation
r(efie)bWeylr(eiG) — efiQNbWeyleiON — b(efie .)Weyl )
Our assumptions imply

A (T(€®) UE () (UeE )T (™)) = S,
for any 8 € R. The assumptions of Definition 6.5 are satisfied because U, preserves the number. After
taking the average w.r.t 6 € [0,27]:

0° = o [T UeE @) WeE Q)T (e™) a6
~ 21 o e el (2 el (2 e

this implies
c 1 2
%(0- )ZE 0 561'621] d9
where the right-side is an extremal point of the convex set of Borel probability measure which are
invariant after the natural action of S' on 2: S' x 23 (v,2) —» yz € Z.
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Again the commutation [Ug, N] = 0 and the expression (4) for E(z) imply

ot = (n) ! [ U EQ)T)ER) g 6

O27t . )
= (2m)”! /0 Ue|E(e®2)\(E(e2)|U; d6

o=

e
=) Uez™") (Uez™"|.
n:OEnn!‘ e2 ") (Uez™|

For any b € .%,,;(Z), the quantity

Z :n Ey <Usz®n, bWElesz®> =Tr [bweylcg]
oo €'n!

converges as € — 0 to (27) ! ()znb(eier) d6 . By Lemma A.1 this implies

2

) ez B 2T ;
Vbe S(Z), ;lir(l)/Ra[gq/zng](g I)E:(Zn) 1/0 b(e GZU) do,

where [¢] is the integer part of 7 € R and

an(e™") = (Uez™ ,bYOUe2™").

52 . e e
Call y the Gaussian measure e~ 2 jzs? on R. For any finite subdivision . = {I, ..., I} of R=1; LI... U

I; with intervals, the states
-~ —1/2 —1 -1/2 -1
Gf; _ (’}/(I(/)) 1/1 ’UEZ®[8 s+e ]><U£Z®[8 s+e ]| d}/(s)
4

satisfy the assumptions of Definition 6.5 with the gauge invariance
F(e"e)O'IjF(e*"e) =o0j .

Moreover the state
L
of = [[Ue™ ot et P ayts) = Y vl of
R (=1

is a finite barycenter of the Glj with a unique Wigner measure (27) 02 d 0,6, dB. Since . is finite (or
countable), from any sequence (0';;”) with lim,_... &, = 0, one can extract a subsequence (&, )keny such
that
8)1

M (0} k€ N) = {v}.
Since the measure piy; is an extremal point in the convex set of gauge invariant probability measures, all
the v, have to be identical to py. Since this holds for any sequence (&,),cn, we have proved for any
interval I = (a, B) with a < B, # (of,e € (0,€)) = {uv}.
Now take ¥ € L'(R, y) and consider the state

L
o = [ 0e e ) et e ay(s) = Y v
R (=1

If there exists § > 0 such that [ (1+ |s])®w(s) d¥(s) < oo, the family (0% )ec(0,e) satisfy the assump-
tion of Definition 6.5. Let (&,),cn be a sequence such that ./ (o ,n € N) = {v}. Fix b € Z.,(Z).
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The function W can be approximated in L' (R,dy) by . € €°(R). After choosing a finite subdivision
# such that the diameter of any /; intersecting the support of y. is bounded by A one gets

<Gy |0(y)A+ Iy = Vel

Ly ye(t) di
Weyl n Weyl I, ve
o] e o £ I ey

where @(V,) is the continuity modulus of .. Hence the right-hand side can be made arbitrarily small,
uniformly with respect to &,, while we know that the second term of the left-hand side converges when
Y. and .# are fixed. We have proved

/ b(z) dv(z) = lim Tr bWey’ Sn / b(z) duy(z
z

n—oo

for any b € 7;;(2’) and this proves v = py. Since this holds for any v € .#(07,), we obtain

M(0%) = {1} -

The result for pg comes from

£—0

— 0
LY(R,ds)

o g (fona)

kEZ

71,/ LU

(N

with 1€ = [e'/%k —e7'/2 €2 (k+1) — e7'/] and y(s) = @(s)v2me=. The condition [5(1+ |s])®
@(s)ds < +oo ensures that .# (pg) is well defined. O

7.7 Application 2: Propagation of correlated states

This a simple application of the orthogonality of Wigner measures combined with the results of Subsec-
tion 7.3.

Let He = dT'(—A) + Q"i* be the Hamiltonian studied in Section 5 and let z; denote the solution to
0z = —Az + (V% |zt|2)zt. The family of integers (ke )ec(0,5) is assumed to satisfy lime o eke = 1.

1. Letzop € Z, £ =1,...,L, satisfy |z9,| = 1 and set u® = L7'/2yL lsz]lfe, uE(r) = e Tefeyg. At
any time ¢ € R the identity

L T
A (e () (1)) = {(m)l Y [, de}
/=1

as soon as 7y, ...,2¢, are linearly independent. In particular this holds for any # € R when L = 2
and zo,1 and 2o are linearly independent.

2. Letzp € Z satisfy |zo| = 1 and set u® = 2_1/2z8©ks +2712E(z9) and uf (t) = e "¢ u,. Then

A O) = {38, 4 [0 a0 .

3. Moreover the convergence can be tested with Weyl, Anti-Wick and Wick operators according to
Theorem 6.2 and Theorem 6.13 .
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A Normal approximation

We prove a technical lemma which is a slight adaptation of the normal approximation to the Poisson
distribution. Recall that for all —eo < o < B < oo we have the well known fact:

2
An 2 B ef%
lim g / ds. (66)
AHN1+G<Z":<1+.B n! @ 271:
SISt

Lemma A.1 Let {a,()},cz.2~0 be a family of complex numbers with a,(A) = 0 if n < 0. Assume that
there exist € N and Cy;, > 0 such that:

n\—H
sup  a,(A)|{ — <Cy.
neN,)L>O’ ( )‘<;L> H

Then the equality

5] n —

lim ¥ Z-e* a,(2) = lim ¢

= o J VAs A (2) \/T—nds. (67)

holds whenever one of the two limits exists.

Proof. Notice that both the series and the integral in (67) are absolutely convergent for finite values of
n

A. By hypothesis d,(A) = a,(1)(%) " are bounded and moreover they satisfy

e A
fim ¥ e ta) (1=(3)7) =0 )
. . [VAs+A] "\ 9 B

since we may bound uniformly for A large each of the terms inside the sum and the integral respectively
by

2
(o) )ln e_32
C! Z ettt <0 d C2/ H ds < C,, VYA > 1.
ungb”!e n W an iy |s| o s s

Therefore there is no restriction if we assume all a,(A) bounded by 1 since if we prove (67) for d,(A)
then it holds for a,(A) by the limits (68)-(69).
For all 4 > 0 there exists & < 8 such that

2

© e 7 * e
ds < h/7, / ds < h/7.
/ﬁ V2T / —o \/2TC /

Now by (66) we have
A we*% A" “e*%
fn Xt m X e
1+£<4 sz

Therefore there exists A; such that for all A > A; we have

A" A"
) Z_e* <n/e6, ) Z_ et <n/e.
n! " o n!
1+5<4 i<z
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B
Let denote I, g(A) = /a A /Ts ] (A) \/Tds We obtain for all A > A;:

2
o An B oo e—% An B
Y e lan(/l)—/_WC,WHM(;L)\/ﬁds <| ¥ Seta)-lep|+2m3  (0)
n=0 a<”*¢%<ﬁ
Tup 2

y gex[l_\/ﬁ”(’/)n)]an(x) <h/9.
a<%<[3 ’ nmnje

This yields the following estimate

1 n _ n=»> \/TL
Jap)<| Y =) e R 4 a(A) —Iup(A)|+h/12, (71)
7 n—»A 275” n—A\A 27[” )
a<ﬂ<ﬁ a<ﬁ<[3
wp(V)

where @ (x) = x— 1 —xIn(x). To complete the proof one needs to estimate infinitesimally the two terms
in the r.h.s. of the above inequality. Notice that by means of Riemann sums we have

—("2)/2 (2 /2 B ,—s /2
im Y “ _jm Y ‘ (72)
lﬂooa<n\7%<ﬁ 27N ),*)oo i l<ﬁ \/27'[
We have
7(:1—1)2/2
y L joho() _ (P = ¢ M)
V27n 27tn ’
a<%<[3 OC<"\;1il <p

where @(x) = x — 1 —xIn(x) + (x — 1)2/2 which is an increasing function null at 1. Therefore one
obtains

1 . B o=s'/2 o( B
y o) o ORI < [T gy (AP ), (73)
(x<%<l3 27Tn o \/ﬂ
A

oL
with a r.h.s. converging to 0 when A — oo since limy ., MY = 1, which we bound by //12 for A
larger than a given A3. One can obtain the estimate

—(=27/2
LM <| ¥ S——a,(A)—Iup(A)|+h/18,
“ - a<%<[3 o 7
A
using the fact that
—("2)*/2 1

—1| < h/18,




since limy _,.,(1) = 0 and the sum is uniformly bounded by (Equ. 72). By splitting the integral in I, g (1)

n—A ntl—-A7A

over the intervals | N R ) one can show that

e
Ip(A)— an(l)/ ds| < h/18.
(Xaﬁ r;<ﬁ ,1\7% /27.1:

Vi
This yields
SCRPR e 2
LagM) <h/o+ Y [© —ﬁf %ds] w
a<"E<p 2mA Vi o

with a r.h.s. converging to 0 when A — o which we bound by //18 for A larger than A4. Combining
the estimates (71), (73) and (74) with (70) we obtain that for all 4 > 0, there exists Ay such that for all
A > Ay we have

y M © e*%
,;)Ee an(l)—/wa[ﬁsﬂ](l)mds <h.
This gives the claimed result. )
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