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Abstract

We study the Gibbsian character of time-evolved planar rotor sys-
tems on Zd, d ≥ 2, in the transient regime, evolving with stochastic
dynamics and starting from an initial Gibbs measure ν. We model the
system by interacting Brownian diffusions X = (Xi(t))t≥0,i∈Zd moving
on circles. We prove that for small times t and arbitrary initial Gibbs
measures ν, or for long times and both high- or infinite-temperature
initial measure and dynamics, the evolved measure νt stays Gibbsian.
Furthermore, we show that for a low-temperature initial measure ν
evolving under infinite-temperature dynamics there is a time interval
(t0, t1) such that νt fails to be Gibbsian in d = 2.

1 Introduction

During a stochastic evolution of Gibbs measures for spin systems various
things can happen. In [vEntFerHolRed02] the authors considered Ising-spin
systems starting from an initial Gibbs measure ν and evolving under a spin-
flip dynamics (high-temperature Glauber dynamics) towards a reversible
Gibbs measure µ 6= ν, both having a finite-range interaction. They show
that in this transient regime the evolved measure νt = νS(t) stays Gibbsian
if either t is small, or if both ν and µ are at high or infinite temperature.
It can lose the Gibbs property after some time t if the initial measure is at
low temperature and zero or small magnetic field and µ is at high or infinite
temperature. The Gibbs measure property is also shown to be recovered af-
ter some time if the initial measure ν has a non-zero magnetic field. In some
sense the initial external field will be compensated by a dynamic field, caus-
ing a hidden phase transition which makes the evolved measure non-Gibbs.
For large enough time when the dynamic field is too weak to do this, there
is re-entrance into the Gibbsian regime again. Thus in that case the evolved
measure is Gibbsian if the time is either small or large enough. Le Ny and
Redig generalized in [LeNRed02] the result for small times t to more general
dynamics. They consider spin systems with spins in {0, 1}Zd

and prove that
Gibbsianness stays conserved when the system evolves under a more gen-
eral local stochastic dynamics such as Kawasaki or mixtures of Glauber and
Kawasaki dynamics.
The case of an infinite-temperature dynamics leads to the question of whether
an effective temperature can be defined [OliPet06] in the transient regime,
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or, in a different interpretation, how reliable noisy observations are, see e.g.
[You89, PryBru95] or [Tan02, SaiNis02]. The last type of questions lead to
the study of so-called “Hidden Markov Fields”.
Another Gibbsian question of interest for discrete spins with discrete-time
dynamics is the study of PCA’s (probabilistic cellular automata) in d di-
mensions. Their stationary measures are projections of space-time Gibbs
measures for a Hamiltonian obtained by the PCA in d + 1 dimensions in the
stationary case. In [GolKuiLebMae89] the authors prove the converse direc-
tion that all translation invariant or periodic stationary measures correspond
to Gibbs measures on space-time histories for the PCA on a space SZd+1

.

What is known about the situation for continuous spins? Deuschel in
[Deu87] and later Roelly, Zessin and coauthors investigated in [MinRoeZes00]
and [CatRoeZes96] Gibbs measures of interacting diffusions indexed by lat-
tice sites on Zd. First Deuschel described the law Qν of the entire infinite-
dimensional unbounded process X = ((Xi(t))0≤t≤1,i∈Zd as a space-time Gibbs

measure with state space C([0, 1])Zd
when the initial distribution ν is Gibb-

sian. Then Roelly, Zessin and coauthors showed a bijection between the set
of initial Gibbs measures associated to an initial interaction on RZd

and the
set of Gibbs measures on the path space describing the full dynamics, see
[CatRoeZes96].
In [DerRoe05] Dereudre and Roelly considered a problem which is close to
the one we study, namely the Gibbsianness in the transient regime for the
time evolution of unbounded continuous spins under high-temperature dy-
namics with bounded interactions. They start with the Gibbs representation
of Qν on the path level and look at the projections at time t of the law
Qν . Then they prove that if the initial measure obeys a strong uniqueness
condition, then either for small times or if the dynamical interaction is weak
enough, Gibbsianness propagates for bounded initial and dynamical interac-
tion. That means that the time-evolved measure is again a Gibbs measure for
continuous spins and an absolutely summable interaction. Another case of
unbounded continuous spins was treated by Külske and Redig in [KueRed06]
where the authors also consider the time evolution of continuous unbounded
spin models under infinite-temperature dynamics and unbounded interaction
(compared to Roelly and Dereudre who consider a bounded one). They
prove that (similar to the result of [vEntFerHolRed02] for discrete spins)
for continuous unbounded spins the time-evolved measure stays Gibbsian for
small times but loses this property for t large if the initial measure is a low-
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temperature measure. In contrast to the discrete-spin situation the Gibbsian
property cannot be recovered again. The initial Gibbs measure is Gibbsian
for a Hamiltonian with a quadratic nearest neighbour interaction and an a
priori single-site double well potential that has a specific form. This particu-
lar form of the interaction term allows an explicit analysis. Their definition
of a Gibbsian measure is weaker than the DLR definition imposing an abso-
lutely summability condition on the interaction like [DerRoe05]. In the case
of unbounded spins it seems more natural to weaken the assumptions on the
interaction since absolutely summability does not even allow Gaussian fields.

In this paper we consider continuous but compact spins living on a cir-
cle S1. We investigate the Gibbsian property of the system first for small
times t and arbitrary initial Gibbs measures ν under different dynamics
and then for small inverse initial temperature and arbitrary times. The
purpose of the third section will be to show that the time-evolved mea-
sure νt is Gibbsian for small t under infinite- or high-temperature dynamics
and arbitrary-temperature initial Gibbs measure, and for any t for high-
or infinite-temperature dynamics starting in a high- or infinite-temperature
initial measure. We follow and in our case can simplify the approach of
[DerRoe05]. Like in their approach we will get the time-evolved measure
from projecting the path-space measure Qν at time t. In the fourth section
we prove that the Gibbs property will be lost after some time t for a low-
temperature initial measure and infinite-temperature dynamics, somewhat
similarly to the situation in [KueRed06] for the classical nearest neighbour
plane rotor in d = 2 with zero external initial field. This may seem slightly
surprising, since the (translation-invariant) Gibbs measure is unique at all
temperatures (and in all homogeneous external fields). In our opinion the ad-
vantage of working with compact spins, next to the technical simplifications,
is that the notion of Gibbsianness for a “reasonable” class of interaction is
much less ambiguous. See e.g. the discussion in [vEnFerSok93]. Closely
related results have been obtained by Külske and Opoku [KueOpo07] via
a different approach using Dobrushin uniqueness techniques. The authors
investigate short-time behaviour of spins moving on SN−1 and evolving with
infinite-temperature dynamics.
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2 General framework

We introduce some definitions and notations. The state space of one con-
tinuous spin is the circle, S1. We identify the circle with the interval [0, 2π)
where 0 and 2π are considered to be the same points. Thus the configuration
space Ω of all spins is isomorphic to [0, 2π)Zd

. We endow Ω with the product
topology and natural product measure ν0(dx) =

⊗
i∈Zd ν0(dxi). In our case

we take ν0(dxi) = 1
2π

dxi. An interaction ϕ is a collection of FΛ-measurable
functions ϕΛ from ([0, 2π))Λ to R where Λ ⊂ Zd is finite. FΛ is the σ-algebra
generated by the canonical projection on [0, 2π)Λ. The interaction ϕ is said
to be of finite range if there exists a r > 0 s.t. diam(Λ) > r implies ϕΛ ≡ 0
and it is called absolutely summable if for all i,

∑
Λ3i ‖ ϕΛ ‖∞< ∞. We

call µ a Gibbs measure associated to a reference measure ν0 and interaction
ϕ if the series Hϕ

Λ =
∑

Λ′∩Λ6=∅
ϕΛ′ converges (ϕ is absolutely summable) and µ

satisfies the DLR equations for all i:

µ(dxi | xj, j 6= i) =
1

Zi

exp(−Hϕ
i (x))ν0(dxi),

where Zi = 1
2π

∫ 2π

0
exp(−Hϕ

i (x))dx is the partition function. We omit the
inverse temperature β here, because in this section we deal with arbitrary
initial inverse temperature. The set of all Gibbs measures associated to ϕ
and ν0 is denoted by G(ϕ, ν0) (resp. Gβ(ϕ, ν0) if we want to make the β
dependence clear).

Furthermore we say an interaction ϕ satisfies a high-temperature Do-
brushin condition if it is absolutely summable and

sup
i∈Zd

∑
Λ3i

(|Λ| − 1) sup
x,y
|ϕΛ(x)− ϕΛ(y)| < 2. (1)

We will also refer to such an interaction as a high-temperature interaction
and use the fact that if an interaction satisfies the condition above it follows
that |G(ϕ, ν0)| = 1, see e.g. [Geo88].

Now, instead of working with Gibbs measures on [0, 2π)Zd
we will first

investigate Gibbs measures as space-time measures on the path space
∼
Ω =

C(R+, [0, 2π))Zd
. In [Deu87] Deuschel introduced and descibed infinite-dimen-

sional diffusions as Gibbs measures on the path space C([0, 1])Zd
when the
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initial distribution is Gibbsian. This approach was later generalized by
[CatRoeZes96] who showed that there exists a one-to-one correspondence
between the set of initial Gibbs measures and the set of path-space measures
Qν .

More precisely, let X = (Xi(t))t≥0,i∈Zd be the solution of the following
stochastic differential equation (SDE){

dXi(t) = −∇iH
ϕ
i (X(t))dt + dB�

i (t), t > 0, i ∈ Zd

X(0) ' ν, t = 0
(2)

where ν will be the initial Gibbs measure, ν ∈ G(
∼
ϕ, ν0) associated to some

initial interaction
∼
ϕ which is supposed to be of finite range and at least C2.

B� = (B�
i (t))t≥0,i∈Zd denotes a collection of independent Brownian motions

on the circle at each lattice site i. ∇i is a differential operator on the circle
at lattice site i (equal to d

dxi
). In other words, the system at time 0 starts in

a Gibbs distribution ν and evolves, according to a Brownian motion on the
circle with some drift. Basically Xi(t) describes the position of the rotor spin
at site i at time t, it takes values in Xi(t)(ω) ∈ [0, 2π) for every event ω.

The interaction part of the stochastic dynamics of this process is hidden
in the drift term of the SDE, namely in the gradient of the Hamiltonian
Hϕ. The underlying dynamical interaction ϕ is also assumed to be of finite
range and at least C2 so that the Gibbs measures for it are transient and
reversible. We will refer to different temperatures for the dynamics. What
we mean by that is the following: Let the Gibbs measure ν converge towards
a reversible Gibbs measure µ. Then we say the dynamics is low, high or
infinite temperature if the corresponding infinite-time measure µ is a low-,
high- or infinite-temperature Gibbs measure. Since the spins are compact,
this implies that the derivatives are automatically bounded. The assump-
tions on ν and ϕ provide the existence of a strong Markovian solution X of
the above system (2). Let furthermore Qν denote the law of the solution X

on
∼
Ω with initial distribution ν.

We first note that the initial Gibbs measure ν is a mixture of extremal
Gibbs measures from the set G(

∼
ϕ, ν0), see also the representation theorem

(Theorems 7.12 and 7.26 in [Geo88]). Note that in general the mixture of
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Qx under a measure η is given by Qη =
∫

Qxη(dx). This means that if µ is

an extremal element of G(ϕ, ν0), then there exists a y ∈ [0, 2π)Zd
such that

µ = lim
Λ→Zd

µΛ,y ⊗ δyΛc (3)

where µΛ,y(dx) = 1
Zy

Λ
exp(−Hϕ

Λ,Λc(x, y))ν⊗Λ
0 (dxΛ) is the finite-volume Gibbs

measure with fixed boundary condition y.

Let first ν ∈ G(
∼
ϕ, ν0) be extremal and let (νΛ,y)Λ denote the approximat-

ing sequence as in (3). Then we have

νΛ,y(dxΛ) =
1

Zy
Λ

exp(−
∼
H

∼
ϕ

Λ,Λc(x, y))ν⊗Λ
0 (dxΛ). (4)

The tilde in
∼
H

∼
ϕ

and
∼
ϕ will always refer to the Hamiltonian, resp. the interac-

tion belonging to the initial distribution ν. Let us denote the set of all Gibbs
measures which are obtained as weak limit points of finite-volume measure
by G0(

∼
ϕ, ν0) and remark that G0(

∼
ϕ, ν0) ⊂ G(

∼
ϕ, ν0).

We define the i-decoupled initial measure νi
Λ,y as

νi
Λ,y(dxΛ) =

1

Zy
Λ,i

exp(−
∼
H

∼
ϕ

Λ\i,Λc(x, y))
1

(2π)|Λ|−1
dxΛ\i

1

2π
dxi

= Zy
Λ,i exp(

∼
H

∼
ϕ

i (xΛ, yΛc))νΛ,y(dxΛ).

The decoupled Hamiltonian leaves out of the summation all sets containg
site i. We notice that νi

Λ,y

⊗
δyΛc converges in Λ towards a measure νi on

[0, 2π)Zd
with the following properties

• ν << νi (absolutely continuous) and

• ν(dx) = 1
Zi

exp(−
∼
H

∼
ϕ

i (x))νi(dx).

Let us write down the finite-dimensional i-decoupled dynamics:{
dXj(t) = −∇jH

ϕ
j (X(t))dt + dB�

j (t), j ∈ Λ, j 6= i, t > 0

dXi(t) = dB�
i (t), t > 0
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that is at lattice site i we put a Brownian motion B�
i and the dynamics on

the other lattice sites depend on all spins j which are not equal to i. In the
“decoupled regime” we start with an i-decoupled measure and evolve with i-
decoupled dynamics. We denote by QxΛ

Λ (resp. QxΛ,i
Λ ) the law of the solution

of the (resp. i-decoupled) system of the finite system on Λ with fixed initial
condition xΛ.

Moreover, the measures

lim
Λ→Zd

νt
Λ,y = νt resp. lim

Λ→Zd
νt,i

Λ,y = νt,i (5)

converge in a weak sense. Here also no difficulties arise because of compact-
ness of the spins.

If t is large we divide, like [DerRoe05], the dynamical interaction into two
parts, U + βϕ. U is the self-interaction, which is a single-site term, and ϕ
is the interaction proper, while β will serve as a small parameter. The term
U can also be viewed as the single-site drift term of the Brownian motions
moving on the circle. The system will be defined as follows{

dXi(t) = −1
2
U ′(Xi(t))dt− β

2
∇iH

ϕ
i (X(t))dt + dB�

i (t), i ∈ Zd, t > 0

X(0) ' ν, t = 0
(6)

and for β = 0{
dXi(t) = −1

2
U ′(Xi(t))dt + dB�

i (t), i ∈ Zd, t > 0

X(0) ' ν, t = 0.
(7)

For long times the role of the inverse temperature β will be important, so
we include it into the definition of the process. We denote in the same
spirit as before Qν

β the law of the solution of (6) resp. Qν
0 the law of the

solution of (7). We call S, the space [0, 2π)Zd×{0,1}, the bi-space. It will
represent a double-layer system, to treat the distribution at time 0 and at
the t simultaneously. The joint distribution on the bi-space will be denoted
by Qν

β = Qν
β ◦ (X(0), X(t))−1. So we project the path-space measure Qν at

time 0 and t.

We will use the following proposition to detect Gibbsianness of the evolved
measure νt.
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Proposition 2.1 The following statements are equivalent:

1. µ is a Gibbs measure.

2. For all configurations η and finite Λ ⊂ Zd the the measure µ admits a
continuous and strictly positive version of its conditional probabilities.

3. µ admits a continuous version of the Radon-Nikodým derivatives dµi

dµ

for all i ∈ Zd in the product topology.

A proof can be found in e.g. [Sul73] and for continuous spins [Geo88]. To
determine if a measure is Gibbs or not we will mainly use the third item. For
the failure of Gibbsianness we will use the necessary and sufficient condition
of finding a point of essential discontinuity of (every version of) the condi-
tional probabilities of µ, i.e. a so-called ”bad configuration”. It is defined as
follows

Definition 2.1 A configuration ζ is called bad for a probability measure µ
if there exists a ε > 0 and i ∈ Zd such that for all Λ there exists Γ ⊃ Λ and
configurations ξ, η such that

|µΓ(Xi|ζΛ\{i}ηΓ\Λ)− µΓ(Xi|ζΛ\{i}ξΓ\Λ)| > ε.

3 Conservation of Gibbsianness

3.1 Small times

Let the dynamical interaction ϕ be of finite range and for every Λ ⊂ Zd finite,
let ϕΛ be C2([0, 2π)Λ). Denote by Hϕ

i the associated Hamiltonian function
(Hϕ

i =
∑

A:A∩{i}6=∅ ϕA). We consider now the process X = (Xi(t))t≥0,i∈Zd

defined by{
dXi(t) = −∇iH

ϕ
i (X(t))dt + dB�

i (t), i ∈ Zd, t > 0

X(0) ' ν, t = 0.
(8)

where ν ∈ G(
∼
ϕ, 1

2π
dx) with

∼
ϕ of also finite range and C2. In particular since

the spins are compact,
∼
ϕ and ϕ are also Lipschitz continuous. Conservation

of Gibbsianness for small times does not need any constraints on either the
initial or the dynamical temperature, so we will not specify them. Then we
have the following theorem.
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Theorem 3.1 Let Qν be the law of the solution X of the system (8). Let

ν ∈ G(
∼
ϕ, 1

2π
dx) and let ϕ satisfy the conditions above. Then there exists a

time t0(ϕ,
∼
ϕ) > 0 s.t. for all t ≤ t0 there exists an absolutely summable

interaction ϕt for which {νt = Qν ◦X(t)−1 : ν ∈ G(
∼
ϕ, 1

2π
dx)} ⊂ G(ϕt, 1

2π
dx)

is a Gibbs measure. The evolved interaction ϕt depends only on the time t,
the initial interaction

∼
ϕ and the dynamical interaction ϕ.

Proof:
The proof follows basically that of [DerRoe05]. Some results will follow easier
since we are dealing with compact spins. The first part of the argument is
essentially the same. The scheme will be as follows.
To identify νt as being a Gibbs measure for small times we want to use propo-
sition 2.1. Therefore we need to know how the Radon-Nikodým derivative,
dνt

dνt,i (x), looks like for every t and i. (We will prove the theorem for ν being
an extremal Gibbs measure for convenience.) Therefore we first compute
dνt

Λ,y

dνt,i
Λ,y

(xΛ), the Radon-Nikodým derivative of the projected law of the finite-

dimensional system in Λ ⊂ Zd at time t and some boundary condition yΛc

outside Λ. Then using cluster expansion techniques and the weak conver-
gence (5) we will be able to demonstrate that for t small, this derivative is
continuous and behaves nicely. Next we can use the Kotecky-Preiss criterion,
see [KotPre86], to deduce that this expansion converges, uniformly in Λ, x
and the boundary condition y. For Λ going to infinity this RN-derivative ap-
proaches a continuous function. That will be enough to deduce the existence
of an absolute summable interaction ϕt for which νt is Gibbs if t is small.

In the following we fix a boundary condition yΛc and compare the time-
evolved finite-dimensional distribution νt

Λ,y with the i-decoupled one νt,i
Λ,y.

By some algebraic manipulation we get for the Radon-Nikodým derivative
dνt

Λ,y

dνt,i
Λ,y

(xΛ) that it has the following form.

Lemma 3.1 Let t > 0, Λ ⊂ Zd and i ∈ Λ, then we have

dνt
Λ,y

dνt,i
Λ,y

(xΛ) = exp(−
∼
H

∼
ϕ

i (xΛ, yΛc))
EQ

xΛ
Λ

(exp(fΛ,y(XΛ)(t)− fΛ,y(xΛ)))

EQ
xΛ
Λ,i

(exp(fΛ\i,y(XΛ)(t)− fΛ\i,y(xΛ)))

where

fΛ,y(x) = Hϕ
Λ,∅(xΛ)−

∼
H

∼
ϕ

Λ,Λc(x, y).
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EQ
xΛ
Λ

means the expectation with respect to the measure QxΛ
Λ . Let us remark

that for t small fΛ,y(XΛ)(t)− fΛ,y(xΛ) will turn out to be close to 0. We fix
the time t and use Girsanov’s theorem and write the measures QxΛ

Λ and the
decoupled one QxΛ

Λ,i in terms of densities w.r.t. the product
⊗

j∈Λ ρ�,xj . The
terms ρ�,xj denote the “Wiener measure on the circle” with initial condition
xj. In other words, we want to find a function F t

Λ, such that

QxΛ
Λ,y(dXΛ) = F t

Λ(XΛ)
⊗
j∈Λ

ρ�,xj(dXj).

Girsanov’s theorem gives us the following form of F t
Λ.

F t
Λ(XΛ) :=

exp
∑
i∈Λ

(∫ t

0

−1

2

(
d

dxi

Hϕ
i,Λ(XΛ(s))

)
dXi(s)−

1

8

∫ t

0

(
d

dxi

Hϕ
i,Λ

)2

(XΛ(s))ds

)
.

and using Itô’s formula, we can write the function F t
Λ(XΛ) as

F t
Λ(XΛ)

= exp

(
−1

2
Hϕ

Λ,∅(XΛ(t)) +
1

2
Hϕ

Λ,∅(XΛ(0))

)
×

× exp

(∑
i∈Λ

∫ t

0

[
1

4

(
d2

dx2
i

Hϕ
Λ,∅

)
− 1

8

(
d

dxi

Hϕ
Λ,∅

)2]
(XΛ(s))ds

)
=: exp

(
−

∑
A⊂Λ

Φϕ,t
A (XΛ)

)
with

Φϕ,t
A (XΛ) :=

1

2
ϕA(XΛ(t))− 1

2
ϕA(XΛ(0))−∫ t

0

(
1

4

∑
j∈A

d2

dx2
j

ϕA(XΛ(s))− 1

8

∑
B∪C=A
B∩C 6=∅

∑
j∈B∩C

d

dxj

ϕB(XΛ(s))
d

dxj

ϕC(XΛ(s))

)
ds.

The collection Φϕ,t = (Φϕ,t
A )A⊂Zd forms an interaction potential on

∼
Ω on events

that depend only on times between 0 and t. Let HΦt
denote the Hamiltonian

associated to Φϕ,t then we can write finally

QxΛ
Λ,y(dXΛ) = exp(−HΦt

Λ,∅(XΛ))
⊗
j∈Λ

ρ�,xj(dXj) (9)
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and analogously for the decoupled measure

QxΛ
Λ,i,y(dXΛ) = exp(−HΦt

Λ\i,∅(XΛ\i))
⊗
j∈Λ\i

ρ�,xj(dXj)⊗ ρ�,xi(dXi)

So far we have established a nice representation for QxΛ
Λ,y with a new inter-

action Φϕ,t. The terms in the expression Φϕ,t
A are of finite range and the

derivatives of ϕ are bounded, so Φϕ,t is of finite range too. Let us repeat
here that we wrote the measure QxΛ

Λ,y (resp. QxΛ
Λ,i,y) as a measure w.r.t. a

product of independent Brownian motions on the circle. All dependencies
are now shifted to the term exp(−HΦt

Λ,∅(XΛ)) which we will control using a
cluster expansion. Our next goal will be to show that those dependencies
are small if t is small. Due to its form it is clear that there exists a constant
C > 0 such that for any X and A ⊂ Zd

|Φϕ,t
A (X)| ≤ C

(
t + sup

j∈A
|Xj(t)−Xj(0)|

)
. (10)

Let us turn back to the Radon-Nikodým derivative given by lemma 3.1. We
will now perform a cluster expansion of the nominator

EQ
xΛ
Λ

(
exp(fΛ,y(XΛ)(t)− fΛ,y(xΛ))

)
(11)

The one for the decoupled measure works analogously. Thanks to (9) we can
express the above expression (11) as

E N
j∈Λ

ρ�,xj

(
exp

(
−

∑
A⊂Λ

Ψy,Λ,t
A (XΛ)

))
where Ψy,Λ,t

A is the interaction potential on C([0, 2π))Λ given by

Ψy,Λ,t
A (XΛ) = Φϕ,t

A (X)− ϕA(X(t)) + ϕA(X(0)) +∑
B∪Λ=A

(
∼
ϕA(XΛ(t)yΛc)− ∼

ϕA(XΛc(0)yΛc)

)
.

Note that Ψy,Λ,t
A satisfies the same bound as in (10). Furthermore we remark

that Girsanov gave us the representation of the expectation w.r.t. a product
measure.
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Now we want to turn to the space-time cluster expansion and need some
more notation. Let N ∈ N be such that for ]A > N one has Ψy,Λ,t

A ≡ 0 and
let Γ ⊂ Zd be finite s.t. for any A with Ψy,Λ,t

A 6= ∅ one has A ⊂ ∩
j∈A

(Γ + j).

We define a subclass of finite subsets in Zd, which play the role of polymers

D := {A ⊂ Zd : 1 ≤ ]A ≤ N and A ⊂ ∩
j∈A

(Γ + j)}

Let A1, ...An ∈ D. We call γ = {A1, ..., An}, a collection of n sets, a cluster.
A cluster is called connected if for any Ai, Aj ∈ γ there is a sequence i =
i1, .., im = j s.t. Ai1∩Ai2 6= ∅...Aim−1∩Aim 6= ∅. The set A will denote the set
of all connected clusters (resp. AΛ the set of connected clusters whose support
is contained in Λ). Two clusters are called compatible if their supports are
disjoint. LΛ is the set of all compatible clusters. Finally we define the set
MΛ of collections of clusters such that their union is connected too. We
expand

E N
j∈Λ

ρ�,xj

(
exp(−

∑
A⊂Λ

Ψy,Λ,t
A (XΛ))

)
=

E N
j∈Λ

ρ�,xj

(
1 +

∑
n≥1

∑
{γ1,..,γn}∈LΛ

n∏
i=1

Ky,Λ,t(γi)(X)

)
where

Ky,Λ,t(γi)(X) =
∏
A∈γi

(
exp(−Ψy,Λ,t

A (XΛ))− 1

)
.

The clusters in LΛ have disjoint supports, thus we can write the expectation
of the product as a product of the expectations

1 +
∑
n≥1

∑
{γ1,..,γn}∈LΛ

n∏
i=1

E N
j∈Zd

ρ�,xj (Ky,Λ,t(γi)(X)).

We will abbreviate Ky,Λ,t
x (γi) := E N

j∈Zd
ρ�,xj (Ky,Λ,t(γi)(X)), which plays the

role of a “weight” on the cluster. First we prove some estimates on these
weights Ky,Λ,t

x .

Lemma 3.2 There exists a function λ(t) > 0 which tends to 0 as t goes to
0, such that for any y, x ∈ [0, 2π)Zd

, Λ ⊂ Zd finite and connected clusters
γ ∈ A we have the following estimate

| Ky,Λ,t
x (γ) |≤ λ(t)]γ.
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Proof:

| Ky,Λ,t
x (γ) |=

∣∣∣∣E N
j∈Zd

ρ�,xj

(∏
A∈γ

exp(−Ψy,Λ,t
A (XΛ))− 1

)∣∣∣∣
Now we want to exchange the product and integration. We use lemma 5.2.
from [MinVerZag00] to write∣∣∣∣E N

j∈Zd
ρ�,xj

(∏
A∈γ

exp(−Ψy,Λ,t
A (XΛ))−1

)∣∣∣∣ ≤ ∏
A∈γ

E N
j∈Zd

ρ�,xj

(∣∣∣∣exp(−Ψy,Λ,t
A (XΛ))−1

∣∣∣∣p) 1
p

for p bigger than N and an even number. We use (10) to estimate

E N
j∈Zd

ρ�,xj

(∣∣∣∣exp(−Ψy,Λ,t
A (XΛ))− 1

∣∣∣∣p) 1
p

≤

E N
j∈Zd

ρ�,xj

(∣∣∣∣exp

[
C · t + sup

j∈A
| Xj(t)−Xj(0) |

]
−1

∣∣∣∣p) 1
p

We are seeking to get some bound on the p-th moment of an exponential
function of a Brownian motion on the circle w.r.t. the N-dimensional Wiener
measure on the circle. We recall that N was chosen in such a way that for
]A > N it follows Ψy,Λ,t

A ≡ 0. This moment exists and is equal to some
positive constant λ depending on the time t. Thus

∏
A∈γ

E N
j∈Zd

ρ�,xj

(∣∣∣∣exp(−Ψy,Λ,t
A (XΛ))− 1

∣∣∣∣p) 1
p

≤ λ(t)]γ.

From the bound (10) for the interaction Ψ we deduce that λ(t) tends to 0 as
t goes to 0.

�

Now we can deduce from the previous lemma that for t small enough and
incompatible clusters γ ∈ A

sup
x,y∈[0,2π]Zd

sup
Λ⊂Zd

∑
γ′∈A:

supp(γ)∩supp(γ′) 6=∅

| Ky,Λ,t
x (γ′) | exp(]γ′) ≤ ]γ. (12)
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In the following we use the Kotecky-Preiss condition from [KotPre86]. In
that paper the authors prove that if there are two positive functions a and
d on the set of polymers such that one has for the polymer weights Φ and
incompatible clusters C the following inequality∑

C,C′ incomp.

exp(a(C ′) + d(C ′)) | Φ(C ′) |≤ a(C) (13)

then the log of the partition function admits a unique cluster expansion. The
criterion (13) is satisfied by (12) for d = 0 and a = | · |. Let us mention that
the convergence criteria could be improved in [FerPro07].
Thus we can apply the cluster expansion following Kotecky and Preiss and
get a unique expansion of the logarithm of the partition function.

ln

(
EQ

xΛ
Λ

(exp(−
∼
H

∼
ϕ

Λ,Λc(XΛ(t), y) +
∼
H

∼
ϕ

Λ,Λc(x, y)))

)
=

ln

(
1 +

∑
n≥1

∑
{γ1,..γn}∈LΛ

n∏
i=1

Ky,Λ,t
x (γi)

)
=

∑
n≥1

∑
{γ1,..γn}∈MΛ

a(γ1, .., γn)Ky,Λ
x,t (γ1)..K

y,Λ,t
x (γn)

with a(γ1, .., γn) ∈ R coming from the Taylor expansion of the logarithm and
where MΛ was the set of connected clusters whose supports are connected
too. For the i-decoupled measure we have the same expression except we
sum over MΛ\i, the set of all clusters in Λ \ i whose support is connected

too. Therefore the log of the ratio
dνt

Λ,y

dνt,i
Λ,y

(xΛ) provides∑
n≥1

∑
{γ1,..γn}∈MΛ

a(γ1, .., γn)Ky,Λ,t
x (γ1)..K

y,Λ,t
x (γn) −

∑
n≥1

∑
{γ1,..γn}∈MΛ\i

a(γ1, .., γn)Ky,Λ,t
x (γ1)..K

y,Λ,t
x (γn) =

∑
n≥1

∑
{γ1,..γn}∈MΛ:
i∈supp(∪jγj)

a(γ1, .., γn)Ky,Λ,t
x (γ1)..K

y,Λ,t
x (γn) (14)

for t small. The bound in (12) is uniform in x, y and Λ, thus again using
[KotPre86] we can conclude that the former series (14) converges uniformly
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in x, y and Λ. Take an arbitrary connected cluster γ, then

E N
j∈Λ

ρ�,xj

(∏
A∈γ

(exp(−Ψy,Λ,t
A (XΛ))− 1)

)
−→

Λ−→Zd

E N
j∈Zd

ρ�,xj

(∏
A∈γ

(exp(−Ψt
A(X))− 1)

)

and it follows using the Lebesgue dominated convergence theorem that
dνt

Λ,y

dνt,i
Λ,y

(xΛ)

converges uniformly in x, y towards exp(−
∼
H

∼
ϕ

i (x)) exp(Gt
i(x)) with

Gt
i(x) =

∑
n≥1

∑
{γ1,..γn}∈MZd :

i∈supp(∪jγj)

a(γ1, .., γn)Kt
x(γ1)..K

t
x(γn).

Because of the weak convergence of νt
Λ,y towards νt, as well as for the decou-

pled measures, one has for each i that νt(dx) = exp(−
∼
H

∼
ϕ

i (x)+Gt
i(x))νt,i(dx).

For g a local bounded function from [0, 2π)∆ to [0, 2π)

∫
[0,2π)Zd

g(x∆)νt(dx) = lim
Λ→Zd

∫
[0,2π)Λ

g(x∆)νt
Λ(dxΛ)

=

∫
[0,2π)Zd

g(x∆) exp(−
∼
H

∼
ϕ

i (x) + Gt
i(x))νt,i(dx)

thus it follows that the measures νt(dx) and exp

(
−
∼
H

∼
ϕ

i (x) + Gt
i(x)

)
νt,i(dx)

coincide for each i and that the RN-derivative is continuous.

The product measure on [0, 2π)Λ\i × [0, 2π), νt,i
Λ,y, is the measure of the

decoupled dynamics with decoupled initial condition. This projection on the
i-th coordinate is the Haar measure 1

2π
dx. Therefore νt,i is a product measure

on [0, 2π)Zd\i × [0, 2π) with also the Haar measure as projection on the i-th
coordinate.

Altogether we get for t small that νt is a Gibbs measure associated to the
Haar measure as reference measure with interaction ϕt given by

16



ϕt
A(x) =

∼
ϕA(x)−

∑
n≥1

∑
{γ1,..γn}∈MA:
A=supp(∪jγj)

a(γ1, .., γn)Kt
x(γ1)..K

t
x(γn).

We conclude that for t small the time-evolved interaction is a small pertur-
bation of the initial interaction. There exists a time-evolved interaction ϕt

which is given by the above equation and depends on
∼
ϕ and ϕ and is abso-

lute summable, since
∼
ϕ and ϕ are absolutely summable. For the case that

the initial measure ν is an extremal Gibbs measure we have proven that νt

(associated to ϕt) is Gibbs too, i.e. νt ∈ G(ϕt, 1
2π

dx). It is even extremal in
the set G(ϕt, 1

2π
dx).

An arbitrary Gibbs measure is a mixture of extremal Gibbs measures so
if we take any average over extremal Gibbs measures we get the result for a
general ν.

�

3.2 High temperatures at arbitrary times

Now we look at arbitrary times t. We consider the infinite-dimensional gra-
dient system where both the initial and the dynamical interactions are small.
Let us recall the definition of the system{

dXi(t) = −1
2
U ′(Xi(t))dt− β

2
∇iH

ϕ
i (X(t))dt + dB�

i (t), i ∈ Zd, t > 0

X(0) ' ν, t = 0
(15)

and for β = 0{
dXi(t) = −1

2
U ′(Xi(t))dt + dB�

i (t), i ∈ Zd, t > 0

X(0) ' ν, t = 0.
(16)

We note that the only difference with the previous section is that here the
single-site term U is not included in Hϕ but considered separately. The initial
interaction

∼
ϕ will always be a ”high-temperature interaction”, so it satisfies

condition (1). Therefore we will always start in a unique Gibbs measure
ν. Furthermore we distinguish, like in the previous part, between the case
where the dynamical interaction is infinite-temperature, like system (16),

17



which means that the evolution follows independent Brownian motions with
drift moving on circles, and the system defined in (15) including both high-
and infinite-temperature dynamics. We assume that U is at least C2([0, 2π)).

Theorem 3.2 Let U be a C2-function, let
∼
ϕ be a high- or infinite-temperature

interaction and let the finite-dimensional dynamical interaction ϕΛ be C2,
for all Λ. Let β be the inverse temperature. Furthermore let Qν

β be the

law of the solution of (15) on
∼
Ω with the unique ν ∈ G(

∼
ϕ, m) and m given

by m(dx) = 1
Z
e−U(x) 1

2π
dx. Then there exists an inverse temperature β0 :=

β0(
∼
ϕ, ϕ) > 0 such that for any β ≤ β0 and any t there exists an interac-

tion ϕt which is absolutely summable, and which has as a Gibbs measure
νt

β = Qν
β ◦X(t)−1 ∈ Gβ(ϕt, m).

Proof:
Here again the proof follows essentially the one of [DerRoe05]. Note that in
our case the ultracontractivity condition on U is automatically satisfied, and
the same holds for the balance condition on U and the dynamical potential
ϕ, namely

sup
Λ⊂Zd

sup
i∈Λ

sup
x∈[0,2π)Λ

|U ′(xi) · ∇iϕΛ(x)| < ∞.

Ultracontractivity assures an exponential fast convergence of the system to
equilibrium. Since now we want to look at arbitrarily large times and are
not restricted to a perturbative result around the initial measure, we need to
use different techniques, similarly to the authors of [DerRoe05]. A sketch of
the proof follows. Let us fix some notation first.

As defined before, we recall that Qν
β is the law of the solution of (15),

depending on β and the initial distribution ν. Furthermore QxΛ
β,Λ will denote

the law of the solution of the corresponding finite-dimensional problem on Λ
with initial condition xΛ. Analogously, let Qν

0 denote the law of the solution
of (16) (the infinite-temperature dynamics) and QxΛ

0,Λ the finite-dimensional
version.

In the first step we compute the density of QxΛ
β,Λ with respect to QxΛ

0,Λ,
so we compare the difference evolving with high-resp. infinite-temperature
dynamics after some time, again first for a finite box Λ. Again using cluster
expansion techniques, with β as the small parameter, we will be able to show
that the Radon-Nikodým derivative of these measures will turn out to be
small. So it does not make much difference if the system evolves with high-
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or infinite-temperature dynamics. Next we will study the Gibbsian character
of the joint distribution Qν

β = Qν
β ◦ (X(0), X(t))−1 on the space C(S) instead

of νt directly. This measure will turn out to be Gibbs. It is associated to
some interaction Ht which will depend on the initial Hamiltonian, the terms
from the cluster expansion and a two-body potential induced by p�,U

t (the
transition probability of a Brownian motion on the circle with drift U ′ which
depends only on the single sites i). By integrating out the first layer we
will be able to show the existence of of a regular density f t

Λ,β for which the
conditional probabilities

νt
β(dzΛ|yΛc) = f t

Λ,β(zΛyΛc)m⊗Λ(dzΛ)

exist. Using Kozlov’s representation theorem [Koz74] we will identify this
measure to be Gibbs.

Let us consider the time interval [0, t] and let Λ ⊂ Zd. Similarly as in
the previous section using Girsanov’s theorem and Itô’s formula we get that
QxΛ

β,Λ is absolutely continuous w.r.t. QxΛ
0,Λ with density

F t
β,Λ(XΛ) = exp

(
−1

2
βHϕ

Λ,∅(XΛ(t))+
1

2
βHϕ

Λ,∅(XΛ(0))+

∫ t

0

∑
A⊂Λ

gU,ϕ
β,A(X(s))ds

)

where the function gU,ϕ
β,A is FA-measurable and depends on the inverse tem-

perature β, the drift term U and dynamical interaction ϕ. It is defined as
follows

gU,ϕ
β,A(x) =

1

4
β

∑
i∈A

(
d2

dx2
i

ϕA(xA) + U ′(xi)
d

dxi

ϕA(xA)

)
−1

8
β2

∑
B∪C=A
B∩C 6=∅

∑
i∈B∩C

d

dxi

ϕB(xB)
d

dxi

ϕC(xC). (17)

So Girsanov’s theorem and Itô’s formula yield the representation

QxΛ
β,Λ(dXΛ) = F t

β,Λ(XΛ)QxΛ
0,Λ(dXΛ),

similarly as in the previous section. We set the initial and final values to
XΛ(0) = xΛ and XΛ(t) = yΛ and deduce from the previous considerations
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that

dQxΛ
β,Λ ◦X(t)−1

dQxΛ
0,Λ ◦X(t)−1

(yΛ) = (18)

EQ
xΛ
0,Λ

(
exp

(
−1

2
βHϕ

Λ,∅(XΛ(t)) +
1

2
βHϕ

Λ,∅(XΛ(0)) +

∫ t

0

∑
A⊂Λ

gU,ϕ
β,A(X(s))ds

))
=

e−
1
2
β[Hϕ

Λ,∅(yΛ)−Hϕ
Λ,∅(xΛ)]EQx,y

0,Λ

(
exp

(∫ t

0

∑
A⊂Λ

gU,ϕ
β,A(X(s))ds

))
(19)

We abbreviate the second factor by

ftΛ,β(x, y) := EQ
xΛ
0,Λ

(
exp

(∫ t

0

∑
A⊂Λ

gU,ϕ
β,A(X(s))ds

))
. (20)

To control the above term and therefore (19) we have to perform a cluster
expansion of ftΛ,β(x, y) for β small, i.e. we are in the case of high-temperature
dynamics. It will be essentially the same as that of [DerRoe05]. We want
to work at the space-time level so a cluster will be a collection of subsets of
Zd × N. The definition of compatibility and connectivity of clusters will be
identical. For a number M ∈ N which we will fix later, we look at clusters
whose supports are included in Λ× {0, ...,M}. In fact M = M t

β will depend
on time t at which we are looking and on β. The time interval [0, t] will
also be discretized and divided into M subintervals [0, t] =

⋃M−1
i=0 [j t

M
, (j +

1) t
M

] =
⋃M−1

i=0 Ii. Let p�,U
t (xi, ·) be the kernel of the free dynamics, i.e.

independent Brownian motion with drift U ′ w.r.t. m. Note if U ≡ 0 then
p�,0

t (xi, ·) = p�t (xi, ·), where p�t was defined as the kernel of Brownian motion
moving on a circle and starting in xi.

We obtain the following expansion of ftΛ,β

ftΛ,β(x, y) = 1 +
∞∑

n=0

∑
{γ1,...,γn}∈LΛ×[0,M ]

Kx,y,t
M,β (γ1)(X)...Kx,y,t

M,β (γn)(X)

where

Kx,y,t
M,β (γi)(X) =

∫
...

∫
Kt

M,β(γi)(X)Qx,x(1)

0,Λ,I0
(dX)...Qx(M−1),y

0,Λ,IM−1
(dX)m⊗Λ(dx

(M−1)
Λ ).

Qx,x(1)

0,Λ,I0
denotes the law of the solution of the free (β = 0) dynamics in the time

interval I0 starting at time 0 in x and being at time t/M in x(1). Kt
M,β(γi)
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consists of products on terms which depend on the p�,U
t and gU,ϕ

β,A on subinter-
vals of [0, t]. We want to use the Kotecky-Preiss condition, as in the section
before, to obtain the expansion of the log of ftΛ,β. Therefore we need analo-
gously that there exists a function λ(β) tending to 0 for β going to infinity
such that

sup
x,y,t

|Kx,y,t
M,β (γi)| ≤ λ(β)]γi ,

which follows from
|Kt

M,β(γ)| ≤ λ(β)]γi .

Let T := t/M . To prove the last statement we define the maximal fluctu-
ation of the kernel w.r.t. the stationary measure p�,U

t on [T,∞) around te
equilibrium

ε(T ) = sup
t≥T

sup
a,b∈[0,2π)

|p�,U
t (a, b)− 1|

and know, since U is nicely defined and the spins are compact, that for T
going to infinity, ε(T ) is going to 0. We choose β0 such that for any β < β0

there exists a constant C with

(1 + ε(1/2
√

β0))e
C
√

β0 − 1 ≤ 1.

For β ≤ 1/t2, we set M = 1 so T = t and therefore the bound for the cluster

weights will be λ(β) =

(
eC1

√
β−1

) |γ|
2]Γ

. For the other case when β > 1/t2 we

set T := t/[t
√

β] + 1 and get for the bound λ(β) =

(
(1 + ε(1/2

√
β))eC2

√
β −

1

) |γ|
2]Γ

. Now we can use the Kotecky-Preiss condition and get an expansion for

the logarithm of ftΛ,β. Let Tr(γ1, .., γn) ⊂ Zd be the projection of the cluster
γ1, ..., γn on its support. Then we can write the log in terms of projections
at time 0 and t coming down from the space-time level, namely

ln

(
ftΛ,β(x, y)

)
=

∑
∆⊂Λ

∞∑
n=0

∑
{γ1,...,γn}∈MΛ×[0,M ]

Tr(γ1,...,γn)=∆

a(γ1, ..., γn)Kx,y,t
M,β (γ1)...K

x,y,t
M,β (γn).

Next, we express the previous RN-derivative

dQxΛ
β,Λ ◦X(t)−1

dQxΛ
0,Λ ◦X(t)−1

(yΛ) = e−
1
2
β[Hϕ

Λ,∅(yΛ)−Hϕ
Λ,∅(xΛ)]elog(ftΛ,β(x,y))
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in terms of the cluster expansion of the logarithm of ftΛ,β(x, y) and get a nice
form

dQxΛ
β,Λ ◦X(t)−1

dQxΛ
0,Λ ◦X(t)−1

(yΛ) = e−
P

∆⊂Λ Φβ,t
∆ (x,y)

with

Φβ,t
∆ (x, y) =

β

2
(ϕ∆(y)− ϕ∆(x))−
∞∑

n=0

∑
{γ1,...,γn}∈MΛ×[0,M ]

Tr(γ1,...,γn)=∆

a(γ1, ..., γn)Kx,y,t
M,β (γ1)...K

x,y,t
M,β (γn).

For β small enough it is easy to see that Φβ,t is a ”high-temperature inter-
action”, i.e. satisfies the Dobrushin condition (1).

Next, we investigate the joint distribution on the bi-space, Qν
β = Qν

β ◦
(X(0), X(t))−1. The Hamiltonian of the measure will additionally depend
on the terms Φβ,t

∆ (x, y). We can prove that Qν
β is Gibbs is unique on the

bi-space.

Lemma 3.3 The measure Qν
β is a Gibbs measure on the bi-space associated

to the reference measure m×m on [0, 2π)× [0, 2π) and formal Hamiltonian
function Ht given by

Ht
4(x, y) =

∼
H

∼
ϕ

4(x)−
∑
i∈4

log(p�,U
t (xi, yi)) +

∑
A⊂Zd

A∩46=∅

Φβ,t
A (x, y). (21)

The main argument uses the fact that both
∼
ϕ and Φβ,t are high-temperature

interactions for sufficiently low β, so that the set of Gibbs measures on
([0, 2π)× [0, 2π))Zd

associated to Ht and reference measure m×m contains at
most one element. Taking the natural bijection between ([0, 2π)× [0, 2π))Zd

and S we obtain the desired result.

Now, let Λ ⊂ Zd be a finite box. We fix the boundary condition in the
second layer XΛc(t) = yΛc and note that this measure Qν,yΛc

β := Qν
β(·, · |

XΛc(t) = yΛc) is Gibbs on [0, 2π)Zd×{0}∪Λ×{1}. Desintegrating the w.r.t. the
first layer we get that for almost all yΛc , νt

β(·|yΛc) is the marginal of Qν,yΛc

β .
It is easy to see that there exists a regular density f t

Λ,β such that

νt
β(dzΛ | yΛc) = f t

Λ,β(zΛyΛc)m⊗Λ(dzΛ)
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for y ∈ [0, 2π)Zd
given by

f t
Λ,β(y) =

∫
[0,2π)Zd

1

ZΛ(yΛc)

∏
i∈Λ

p�,U
t (xi, zi) exp

( ∑
A∈Zd

A∩Λ6=∅

Φβ
A(x, zΛyΛc)

)
Q

ν,yΛc

β (dx),

for Q
ν,yΛc

β (dx) a probability measure on [0, 2π)Zd
. Finally we can analo-

gously demonstrate the assumptions for Kozlov’s representation theorem,
see [Koz74]:

Lemma 3.4 For any Λ, f t
Λ,β satisfies the following properties

1. ∃C1, C2 > 0 : C1 ≤ inf
y∈[0,2π)Zd

f t
Λ,β(y) ≤ sup

y∈[0,2π)Zd

f t
Λ,β(y) ≤ C2 and

2. lim∆→Zd supy,u:y∆=u∆
| f t

Λ,β(y)− f t
Λ,β(u) |= 0

and thus the family of conditional probabilities is built on an absolutely
summable interaction and is therefore Gibbs.

Remark:
The authors of [DerRoe05] prove in one of their corolloraries that the evolved
measure is a unique Gibbs measure for the evolved interaction if either the
time is large enough or for all times,when the system evolves with an infinite-
temperature dynamics. The argument goes essentially the same with less
complication in our case; it uses the following argument. We already noticed
that for β small enough and t large enough the potential on S associated to
Ht, as defined in (21), is a high-temperature interaction because it satisfies
the high-temperature Dobrushin condition (1). A fortiori the specifications
for this Hamiltonian are global, see [FerPfi97], such that the DLR-equations
also hold for unbounded subsets of the bi-space S. The uniqueness of the
evolved measure follows then from this global property.

�

4 Loss of the Gibbs property for the plane

rotor in two dimensions

In this section we investigate what happens with the Gibbs measure for long
times if one starts from the classical plane rotor model at a sufficiently low
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temperature in Z2 and evolves with independent Brownian motions moving
on circles. We show that we can find a ”bad configuration” for the time-
evolved measure, which implies that after some time Gibbsianness gets lost.

In the spirit of [vEntFerHolRed02] and [KueRed06] we consider the joint
distribution of the spins at time 0 and at time t, Qνβ which we already
encountered in the previous section. Then we condition on a particular con-
figuration at time t, yspec, and show that this conditioning will create a set
of alternating magnetic fields (hi(t))i∈Z2 , so the configuration of a spin at
site i at time t induces a local magnetic field hi(t). At time t = 0 these
fields will provide two ground states and a phase transition (by breaking a
discrete left-right symmetry) for the conditioned model for certain choices
of configurations which make the model depend sensitively on variations of
these configurations outside arbitrary large volumes. This ”bad configura-
tion”, yspec, implies now non-Gibbsianness for the measure νt

β because looking
“backwards” from time t to time 0 we see that the discontinuity w.r.t. the
boundary at time t when one conditions on the “bad value” comes from the
existence of two distinct Gibbs measures for the conditioned system at time
0 (phase transition at time 0), compare definition 2.1.

The process X = (Xi(t))t≥0,i∈Z2 in this case is defined by the following
SDE {

dXi(t) = dB�
i (t), i ∈ Z2, t > 0

X(0) ' νβ, t = 0
(22)

for νβ ∈ Gβ(
∼
ϕ, ν0) and

∼
ϕ of finite range and Lipschitz continuous and ν0(dx) =

1
2π

dx. We write the initial measure νβ explicitly depending on the inverse
temperature β, and we will consider the standard nearest-neighbour interac-
tion, which has a unique translation-invariant pure Gibbs measure [BriFonLan77].
The main theorem we want to prove is the following.

Theorem 4.1 Let Qνβ be the law of the solution X of the planar rotor system
(22) in Z2, νβ ∈ Gβ(

∼
ϕ, ν0) and

∼
ϕ given by

∼
ϕβ,A(x) = −βJ

∑
i,j∈A:i∼j

cos(xi−xj),

J some non-negative constant. Then there is a time interval (t0, t1) such that
for β large enough the measure νt

β = Qνβ ◦ X(t)−1 is not Gibbs, i.e. νt
β /∈

Gβ(ϕt, ν0) or in other words: one cannot find any version of its conditional

24



probabilities which is a continuous function of the boundary condition (failure
of quasilocality).

Proof:
The outline of the proof is as follows. Like in the previous section we look
at the joint law of the process at time 0 and time t, Qνβ , on the bi-space S.
We fix a particular configuration at time t, namely an alternating up-down
configuration yspec, and show that the conditioned Hamiltonian Ht

β(x, yspec)
has two ground states for t large enough. By applying a percolation argument
for low-energy clusters and discrete symmetry breaking from [Geo81], we will
be able to prove that for sufficiently low temperatures |Gβ(Ht

β(·, yspec), ν0)| ≥
2, a phase transition occurs for the conditioned model at time 0. This means
we have found a ”bad configuration” yspec for νt

β such that the measure will
fail to be Gibbs.
We will rewrite the formal joint Hamiltonian, originally given by

Ht
β(x, y) =

∼
H

∼
ϕ

β (x) +
∑
i∈Z2

log(p�t (xi, yi)) (23)

as

Ht
β(x, y) =

∼
H

∼
ϕ

β (x) +
∑

i

(
2e−t cos(xi − yi) + o(e−t)

)
. (24)

The kernel p�t (xi, ·) in (23) was already defined in the previous section as the
transition kernel of a Brownian motion on the circle starting from xi. It has
the explicit form

p�t (xi, yi) =
1√
2πt

∑
n∈Z

exp

(
−(y − x− 2nπ)2

2t

)
see for example [Ros97]. Using the Poisson summation formula it equals

p�t (xi, yi) =
1

2π

(
1 + 2 ·

∞∑
n=1

e−n2t cos(n(xi − yi))

)
.

We will use the latter for convenience. It allows us to neglect the above single-
site correction terms o(e−t),in the Hamiltonian, which are bounded uniformly
in xi and yi (by const × e−4t in fact), and have the obvious symmetries,
without changing the qualitative behaviour in the rest of the analysis. In the
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following we investigate the conditioned model. We choose an alternating
up-down configuration at time t, namely yspec = (1l{i∈2N+1}π, i ∈ Z2), which
will yield two ground states. For convenience we call a spin xi up if xi = 0
and down if it has the value π. xi points to the right (resp. to the left ) if
xi = π/2 (resp. 3/2π). By abuse of notation we say i = (i1, i2) ∈ Z2 even if
the sum of their components is even, i.e. i1 + i2 ∈ 2N, and odd otherwise.
For example, the spin at the origin takes the value yspec

(0,0) = yspec
0 = 0 and at

position (1, 0) the value yspec
(1,0) = π and so forth. Then we get the following

ground states.

Proposition 4.1 Let νβ be a sufficiently low-temperature initial Gibbs mea-
sure with β = β(t) of order at most O(h(t)−2). Let the Hamiltonian of
the conditioned joint system at time 0 and t, Ht

β(x, y), be defined in (24).
Then we find the following 2 ground states for this Hamiltonian xri :=
(π/2 + (−1)iεt, i ∈ Z2) and xle := (3/2π + (−1)iεt, i ∈ Z2) where εt > 0
is of order O(h(t)/Jβ).

Proof:
We plug yspec in (24) and obtain for the formal Hamiltonian

Ht
β(x, yspec) =

∼
H

∼
ϕ

β (x) +
∑

i

(
2(−1)ie−t cos(xi) + o(e−t)

)
.

The initial formal Hamiltonian was chosen as

∼
H

∼
ϕ

β (x) = −βJ
∑
i∼j

cos(xi − xj).

where J > 0 is some nearest neighbour coupling term, which makes the
initial system ferromagnetic. Now, we want to determine the configurations
minimizing the Hamiltonian Ht

β(x, yspec). We will here neglect the correction
term. A configuration x then is called a ground state if for each i ∈ Z2 the
pair (xi, xi+1) is a minimal point of the real function

Φt
β : (z, y) → −βJ cos(z − y) +

1

4
hi(t)(cos(z)− cos(y))

with hi(t) := 2(−1)ie−t = (−1)ih(t). We can safely forget about the cor-
rection term here, which is small with respect to the fields hi(t), and has

26



the same (left-right) symmetry. Note that this interaction Φt
β is equivalent

to the interaction of our Hamiltonian Ht
β(x, yspec). In fact it is a sum of

two competing terms. The term coming from the initial Hamiltonian wants
neighbouring spins to point in the same direction and the other term, which
comes from the conditioning at time t, tries to direct the spins in the specified
up-down directions. They will find a compromise at pointing almost in the
same direction with small corrections alternatingly ”up” and ”down” by the
amount of |εt|. Let us assume that i is even. We take derivatives of Φt

β(z, y)
w.r.t. z and y,

∂

∂z
Φt

β(z, y) = βJ sin(z − y)− 1

4
h(t) sin(z)

∂

∂y
Φt

β(z, y) = −βJ sin(z − y) +
1

4
h(t) sin(y).

Thus the point (z, y) is stationary if

βJ sin(z − y) =
1

4
h(t) sin(z) and

βJ sin(z − y) =
1

4
h(t) sin(y)

i.e. if sin(z) = sin(y) which is the case if either z = y or z + y = π. If z = y
then it follows from the conditions above that the only possible points are
(0, 0) and (π, π). For the second case, if z + y = π, we need that

4βJ

h(t)
sin(2z) = − sin(z) and

4βJ

h(t)
sin(2y) = sin(y)

which is equivalent to

sin(z)

(
1 +

8βJ

h(t)
cos(z)

)
= 0,

sin(y)

(
1− 8βJ

h(t)
cos(y)

)
= 0.

So either sin(z) and sin(y) is equal to 0, which means that all the spins want

to point in either 0 and π-direction ((0, π) and (0, π) ), or cos(z) = −h(t)
8βJ
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and cos(y) = h(t)
8βJ

. For the low-temperature regime, when β is very large, in

fact we will choose β(t) = β at least of order O(h(t)−2) , and since J > 0,

the term ±h(t)
8βJ

approaches 0 from above, respectively from below. Therefore

(z, y) has to be equal to (π
2

+ εt,
π
2
− εt) resp. to (3π

2
+ εt, 3

π
2
− εt) for some

εt > 0 which depends on h(t). It will be of order at most O(h(t)/βJ) (or
O(h(t)3) since we chose β at least O(h(t)−2). Note that the assumption ”i
even” reflects itself in the sign of εt. For i odd the extremal points would be
(π

2
− εt,

π
2

+ εt) resp. (3π
2
− εt, 3

π
2

+ εt). Now we want to determine which
configurations are the proper minima of Φt

β and therefore of Ht
β. The second

derivatives are

∂2

∂z2
Φt

β(z, y) = βJ cos(z − y)− 1

4
h(t) cos(z)

∂2

∂y2
Φt

β(z, y) = βJ cos(z − y) +
1

4
h(t) cos(y)

∂2

∂z∂y
Φt

β(z, y) = −βJ cos(z − y) =
∂2

∂y∂z
Φt

β(z, y).

The determinant of the Hessian matrix is equal to − 1
16

h(t) cos(z) cos(y). It
is strictly negative for the points (0, 0) and (π, π) and strictly positive for
(±π

2
− εt,±π

2
+ εt) and also (0, π) resp. (π, 0). Therefore (0, 0) and (π, π) are

saddle points. The latter two are maximal points since ∂2

∂z2 Φ
t
β(z, y)|(0,π) =

−βJ − 1
4
h(t) < 0 for large times (β large enough). The same is true for the

point (π, 0). Since

βJ cos(2εt) >
1

4
h(t) sin(εt) + o(e−t),

which is true for t large, it follows that

∂2

∂z2
Φt

β(z, y)|(π/2+εt,π/2−εt) > 0

and the same holds for the point (3/2π + εt, 3/2π − εt). So these points are
the only minima. For an illustration we show how the ground states look
like.
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}− ε

xle

} − ε

xri

�

Now we are in a position to prove a phase transition at time 0. We will
essentially follow the arguments of [Geo81]. By conditioning with the con-
figuration yspec at time t we created a discete left-right symmetry for the
continuous model at time 0. Now we want to prove via percolation meth-
ods that there is a time interval (t0, t1) for which a spontanous symmetry
breaking occurs. We will look at Gibbs measures which are obtained by
taking infinite-volume limits of finite-volume Gibbs measures with periodic
boundary conditions. The picture of what happens is the following: if the in-
teraction exhibits a ground state degeneracy then the ”low-energy ocean” is
bound to show a pattern corresponding to one of the 2 distinct ground states.
This pattern can be seen at infinity and the 2 possible values are symmetry
related. A fortiori there exists 2 disjoint symmetry-related tail events with
positive probability, which can only occur if the relating symmetry is broken.

One question Georgii answers in [Geo81] is under which conditions there
exists a unique ”low-energy” infinite cluster and when it implies that the sys-
tem has a phase transition. Two adjacent sites have a low-energy interaction
if for a given δ > 0, their energy is smaller than the ground state energy plus
the correction term δ. The existence of a low-energy bond percolation will
be implied by a low-energy site percolation on the dual lattice for our nearest
neighbour potential having the properties below.

To use percolation for low-energy clusters on the dual lattice and Reflec-
tion Positivity arguments similar to [Geo81] we need to check some assump-
tions on the interaction Φt

β.

Let (Z2)∗ indicate the dual lattice of the square lattice, i.e. (Z2)∗ =
Z2 + (1/2, 1/2). Each point a in (Z2)∗ is identified with the elementary cube
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consisting of 4 sites of Z2, i.e.

a ≡ {i ∈ Z2 : i = a + (±1/2,±1/2)}.

Let v = {(0, 0), (0, 1), (1, 1), (1, 0)} ≡ (1/2, 1/2) be the elementary cube at
the origin of (Z2)∗. We will write the formal Hamiltonian Ht

β as an Hamil-

tonian on the dual lattice, i.e. of the form Ht
β(x) =

∑
a∈(Z2)∗ Φt

β(a, x), where

Φt
β : (Z2)∗ × Ω → R is such that

1. there is a function Φt
v,β : [0, 2π)v → R with Φt

β(v, x) = Φt
v,β(x) for all x.

This is trivially satisfied since we can set Φt
v,β(x) = 1

2

∑
i∼j∈v Φt

β(xi, xj).
Our symmetric interaction Φt

β(xi) can be written as a sum over adjacent
sites Φt

β(xi, xj).

2. Translation and reflection invariance w.r.t. the horizontal and vertical
plane at 1/2 are also trivially satisfied, since our nearest neighbour
potential is symmetric.

3. Φt
v,β is also continuous and we set m ≡ inf Φt

v,β.

We introduce in the sense of Georgii a low-energy site percolation on the
dual lattice as follows. Let δ > 0 be fixed then for each configuration x ∈ Ω
a subgraph Gδ(x) = (Vδ(x), Eδ(x)) of (Z2)∗ consists of the vertex set

Vδ(x) = {a ∈ (Z2)∗ : Φt
v,β(a, x) ≤ m + δ}

and edges connecting adjacent sites in Vδ(x). Let Cδ denote the cluster built
on sites of Gδ(x). {|Cδ| = ∞} denotes the event that there is an infinite
cluster Cδ built on low-energy configurations. The graph Gδ describes the
corresponding low-energy clusters on the dual lattice. Now we can prove the
following.

Proposition 4.2 For β(t) large enough there is a time interval (t0, t1) such
that |Gβ(Ht

β(·, yspec), ν0)| ≥ 2.

Proof:
The proof of this proposition will consist of proving two lemmas. First we
prove the existence of a unique low-energy cluster and afterwards we deduce
from that the spontanous breakdown of discrete symmetry and the existence
of at least two distinct infinite-volume Gibbs measures. We will basically
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apply the proofs of Georgii’s paper, [Geo81], to our simpler case. We con-
sider finite-volume Gibbs distributions νt

β,Λ, corresponding to the joint system
conditioned at time t with periodic boundary conditions, that is

νt
β,Λ(dx) =

e−Ht
β(x,yspec)

Zyspec

β,Λ

ν⊗Λ
0 (dx), (25)

with Λ = Λn.

Lemma 4.1 Let (Z2)∗ indicate the dual lattice of the square lattice. Let
δ > 0 and a ∈ (Z2)∗ be fixed. Then for sufficiently large β(t) there is a time
interval (t0, t1) such that there exists a.s. a unique infinite cluster Cδ for at
least one translation invariant Gibbs measure νt

β, i.e.

νt
β({∃! |Cδ| = ∞}) > 0. (26)

We will sketch the proof of this lemma. The main ingredient which does the
work is the following estimate.

Lemma 4.2 Let for each a ∈ Λ∗ ⊂ (Z2)∗ the function fa, fa : [0, 2π)v →
[0,∞) be given. fa is invariant under reflections of v. Then for all β∫ ∏

a∈Λ∗

fa(xa)ν
t
β,Λ(dx) ≤

∏
a∈Λ∗

[ ∏
b∈Λ∗

fa(xb)ν
t
β,Λ(dx)

]1/|Λ|

. (27)

This estimate is a consequence of the chessboard estimates which follow from
the Reflection Positivity of νt

β,Λ w.r.t. reflections in the pairs of hyperplanes
R1 and R2, where

Rk = {z ∈ R2 : zk = 0 or n}.

To see the Reflection Positivity, Georgii points out that given the spin con-
figuration in Λ ∩ Rk, the spins in the remaining two parts are conditionally
independent and up to reflections identically distributed. This applies clearly
to our measure νt

β,Λ. Using this inequality as a main ingredient, Georgii man-
ages to show that for a fixed δ > 0 the probability that there exists an infinite
low-energy cluster Cδ in the dual lattice including the origin, tends to 1 as β
is going to infinity. His argument on the uniqueness of the low-energy cluster
is based on translation invariance of νt

β, which is also trivially satisfied in our
case.
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Reflection Positivity of the measure and the estimate given above provide
now the following lemma.

Lemma 4.3 There is a function r : [0,∞) → [0, 1] with r(β) → 0 for
β → ∞ such that for all positive β and νt

β ∈ G0,β(Φt
v,β, ν0) and all finite

D ⊂ (Z2)∗ the inequality

νt
β(Vδ(·) ∩D = ∅) ≤ r(β)|D|

holds.

The lemma states that the probability that in any finite set D of the dual
lattice there are no points coming from the low-energy cluster vertices Vδ

is going to 0 for large β. From this lemma he can conclude the existence
of an infinite cluster. In fact the function r is given by r(β) = 1 ∧ e−βcδ

for some constant cδ depending on δ. Uniqueness can be deduced now from
FKG inequalities and the 0-1 law for tail events or Georgii’s argument which
is heavily based on translation invariance of the measure.

In the following we want to prove that the existence of a unique infinite
low-energy cluster implies the existence of Gibbs measures in Gβ,0(Φ

t
v,β, ν0) for

which the discrete left-right symmetry is broken. We will prove the following
statement which we borrow from [Geo81] in our simpler case.

Lemma 4.4 Suppose there is an δ > 0 such that the set {x ∈ ([0, 2π)v :
Φv(x) ≤ m+δ} splits into two disjoint sets Ari and Ale satisfying the stability
and symmetry condition. Let β be large such that νt

β({∃!|Cδ| = ∞}) > 0 for
some νt

β ∈ G0,β(Φt
v,β, ν0) ⊂ Gβ(Φt

v,β, ν0) then there are at least 2 distinct

measures extremal Gibbs measures νt,ri
β and νt,le

β .

Proof:
We basically adapt the proof in [Geo81] for our case, where we have a left-
right symmetry which we want to break, and 2 symmetry-related ground
states.

Let δ > 0 and let us look at the set {Φ ≤ m + δ} ⊂ [0, 2π)v. This is the
set of all configurations which correspond to a raise of energy by the amount
of δ away from the ground state. Clearly this set splits into two disjoint
measurable sets Ari and Ale, since we have exactly two ground states xri
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and xle. This splitting is also stable in the sense of Georgii, because two
elements can only coincide on an edge of v if they come from one of the sets
Ari or Ale (spins in Ari point to the right and those in Ale point to the left).

Let ri : [0, 2π)v → [0, 2π)v, for i = 1 or 2, be the reflections of v with
respect to the hyperplanes {z = (z1, z2) : zi = 1/2}. Let x be a con-
figuration on [0, 2π)Z2

and let A ⊂ [0, 2π)v. Georgii constructs a graph
GA(x) = (VA(x), EA(x)) in the following way. The vertices VA(x) are those
sites for which

xa ∈


A if a ≡ v mod 2

r1(A) if a ≡ v + (1, 0) mod 2

r2(A) if a ≡ v + (0, 1) mod 2

r1(r2(A)) if a ≡ v + (1, 1) mod 2.

(28)

The set r1(A) (resp. r2(A)) is the reflected set A through the vertical (resp.
horizontal) line at 1/2. Similarly, r1(r2(A)) denotes the set A after being
reflected first horizontally and then vertically. For a graph built on Ari, it
means we collect a for which

xa ∈

{
Ari if a ≡ v mod 2 or a ≡ v + (0, 1) mod 2

Ale if a ≡ v + (1, 0) mod 2 or a ≡ v + (1, 1) mod 2
(29)

and for Ale the graph is the same up to an r1-reflection.

This implies that each cluster Cδ of the graph Gδ(x) is a cluster CAri of
GAri(x) or GAle(x). Therefore the event that there exists a unique infinite
cluster splits into a disjoint union of events that this infinite cluster appears
in either Ari or Ale, namely

{∃!|Cδ| = ∞} = {∃!|CAri| = ∞} t {∃!|CAle| = ∞}

where t denotes the disjoint union. The splitting is also symmetric because
of the simple relation r1(A

le) = Ari (we have defined r1 as the reflection w.r.t.
the horizontal line at z1 = 1/2). Thus it follows that for νt

β ∈ G0,β(Φt
v,β, ν0)

νt
β({∃!|CAri| = ∞}) = νt

β({∃!|CAle| = ∞}) (30)

and in particular that νt
β({∃!|Cδ| = ∞}) = 2νt

β({∃!|CAri| = ∞}). Since we
know from the previous lemma that for β large enough νt

β({∃!|Cδ| = ∞}) > 0
we have a fortiori

νt
β({∃!|CAri| = ∞}) > 0 (31)
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which allows us to build conditional probabilities

νt,ri
β := νt

β(· |{∃!|CAri| = ∞})

resp.
νt,le

β := νt
β(· |{∃!|CAle| = ∞})

which are orthogonal since {∃!|CAri| = ∞} and {∃!|CAle| = ∞} are disjoint.
The Gibbsianness of νt,ri

β and νt,le
β follows from the fact that {∃!|CAri| = ∞}

(resp. {∃!|CAle| = ∞}) belongs to the tail σ-field F∞. This is because the
sets {∃!|CAri| = ∞} (resp. {∃!|CAle| = ∞}) are invariant under translations
θi, i ≡ 0 mod 2, where θi denotes the translation by i. We have proved that
the discrete symmetry r1 is broken since there are at least two distinct Gibbs
measures νt,ri

β and νt,le
β .

�

Remark: The above transition is one of the so-called spin-flop type.

5 Comments and possible generalizations

In this section we’d like to discuss what kind of generalizations of our results
will hold. In our first class of results, the conservation of Gibbsianness,
the restriction to finite-range potentials could be weakened, and also one
could obtain results for N -component spins for general N ≥ 3. For some
developments in this direction, using Dobrushin uniqueness techniques, see
[KueOpo07].

A more sensitive question is about the loss of the Gibbsian property.
Although we have given the proof for the loss of Gibbsianness for the stan-
dard interaction in 2 dimensions, where the initial Gibbs state is presumably
unique at all temperatures, the same arguments apply for other models, such
as the nearest-neighbour polynomial nonlinear models in 2 dimensions con-
sidered in [vEnShl02].

An extension to the three-dimensional lattice is also immediate. In fact,
because there is long-range order for any strength of the alternating mag-
netic field including zero, the non-Gibbsianness holds for all times larger
than a certain t0 in that case. Also the statement is true for any initial
translation-invariant (pure or not) Gibbs measure, of which there are known
to be infinitely many [FroSimSpe76, BalOCa99].
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Increasing the spin-dimension, and considering N -component spins is less
immediate. In d = 2, our proof breaks down. In d = 3 however, a ferromagnet
in a small alternating field displays continuous symmetry-breaking in the
plane perpendicular to the field [AizLieSeiSolYng04]. A slight modification
of our argument then will lead to non-Gibbsian behaviour.

A more serious limitation in our proof is that we used Reflection Positiv-
ity in our proof of the phase transition. This restricts the initial interactions
quite severely (it should be a C-potential (generalized nearest-neighbor po-
tential), or a pair interaction of very specific form, and the dynamics needs
to be an infinite-temperature one. To get rid of this limitation, one might
hope to apply a Pirogov-Sinai type of approach. Dobrushin and Zahradnik
[DobZah86, Zah00] have obtained Pirogov-Sinai results for continuous spins.
However, their conditions (quadratic interactions with general single-site po-
tentials having Gaussian minima) do not directly apply. One might hope
that their ideas could be modified to include our set-up; however, till now
this has not been done. This seems a technically non-trivial question for
future research.

Acknowledgements: We thank Christof Külske and Alex Opoku for many
discussions and for making the results of [KueOpo07] available to us. Also
we thank Roberto Fernández for a helpful discussion.
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