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Abstract. We consider OPRL and OPUC with measures regular
in the sense of Ullman–Stahl–Totik and prove consequences on
the Jacobi parameters or Verblunsky coefficients. For example,

regularity on [−2, 2] implies limN→∞ N−1[
∑N

n=1
(an−1)2+b2

n
] = 0.

1. Introduction and Background

This paper concerns the general theory of orthogonal polynomials on
the real line, OPRL (see [26, 1, 8, 23]), and the unit circle, OPUC (see
[26, 9, 18, 19]). Ullman [27] introduced the notion of regular measure
on [−2, 2] (he used [−1, 1]; we use the normalization more common in
the spectral theory literature): a measure, dµ, on R with

supp(dµ) = [−2, 2] (1.1)

and ({an, bn}
∞
n=1 are the Jacobi parameters of dµ)

lim
n→∞

(a1 . . . an)1/n = 1 (1.2)

Here we will look at the larger class with (1.1) replaced by

σess(dµ) = [−2, 2] (1.3)

(i.e., supp(dµ) is [−2, 2] plus a countable set whose only limit points
are a subset of {±2}).

Our goal is to explore what restrictions regularity places on the Ja-
cobi parameters. At first sight, one might think (1.2) is the only re-
striction but, in fact, the combination of both (1.2) and (1.3) is quite
strong. This should not be unexpected. After all, it is well known
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(going back at least to Nevai [15]; see also [19, Sect. 13.3]) that (1.1)
plus lim inf(a1 . . . an) > 0 implies

∞
∑

n=1

(an − 1)2 + b2
n < ∞ (1.4)

One can use variational principles to deduce some restrictions on the
a’s and b’s. For example, picking ϕn to be the vector in ℓ2({1, 2, . . .})

ϕn,j =

{

1√
n

j ≤ n

0 j ≥ n + 1
(1.5)

and using the Jacobi matrix

J =









b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .









(1.6)

one sees, for example, that (1.3) implies (see also Theorem 1.2 below)

bn ≡ 0 ⇒ lim sup
n→∞

1

n

n−1
∑

j=1

aj ≤ 1 (1.7)

an ≡ 1 ⇒ lim
n→∞

1

n

n
∑

j=1

bj = 0 (1.8)

In fact, we will prove much more:

Theorem 1.1. If µ obeys (1.3) and (1.2), then

lim
n→∞

1

n

n
∑

j=1

(|aj − 1| + |bj |) = 0 (1.9)

Following the terminology for the OPUC analog of this in Golinskii–
Khrushchev [10], we call (1.9) the Cesàro–Nevai condition and
{aj, bj}

∞
j=1 obeying (1.9) the Cesàro–Nevai class. It, of course, con-

tains the Nevai class (named after [15]) where |aj − 1| + |bj| → 0.
Noting that supp(dµ) bounded implies

A = sup
n

(|an − 1| + |bn|) < ∞ (1.10)

and that, by the Schwarz inequality,
(

1

n

n
∑

j=1

|aj − 1| + |bj |

)2

≤
2

n

n
∑

j=1

(aj − 1)2 + (bj)
2



REGULARITY AND THE CESÀRO–NEVAI CLASS 3

≤ 2A
1

n

n
∑

j=1

(|aj − 1| + |bj|) (1.11)

we see

(1.9) ⇔
1

n

n
∑

j=1

(aj − 1)2 + (bj)
2 → 0 (1.12)

While Theorem 1.1 has a lot of information, it is not the whole story.
For example, if an ≡ 1, then by the same variational principle, for any
jk → ∞,

1

n

jk+n
∑

jk

bj → 0

It would be interesting to see what else can be said.
A major theme we explore is what can be said if [−2, 2] is replaced

by a more general set, e. In Section 5, we define Nevai and CN classes
for finite gap sets e and state a general conjecture which we prove in
the special case where d has p components, each of harmonic measure
1/p, that is, the periodic case with all gaps open.

In Section 3, we extend Theorem 1.1 to the matrix OPRL case on
[−2, 2], and in Section 6, we use this and ideas of Damanik–Killip–
Simon [6] to obtain the result in the last paragraph. Section 4 has a
brief discussion of OPUC.

We should close by noting an earlier result of Máté–Nevai–Totik [14]
related to—but neither stronger nor weaker than—Theorem 1.2:

Theorem 1.2 ([14]). Suppose µ obeys (1.1) and an → 1 as n → ∞.

Then bn → 0 as n → ∞.

Remarks. 1. µ need only obey (1.3) as seen by Remark 3 below.

2. This strengthens (1.8). There is no similar strengthening of (1.7).

3. One way of seeing this is as follows: By Last–Simon [13], any
right limit of a J obeying (1.3) has σ(Jr) ⊂ [−2, 2] and has an ≡ 1. By
a result of Killip–Simon [11] (see also [3, 4, 5]), any such Jr has bn ≡ 0.
By compactness, bn → 0 for the original J .

It is a pleasure to thank Paul Nevai and Christian Remling for useful
correspondence.

2. OPRL on [−2, 2]

Our goal here is to prove Theorem 1.1.
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Lemma 2.1. Suppose an ∈ (0,∞) is a sequence so that

(i) lim inf
N→∞

(a1 . . . aN)1/N ≥ 1 (2.1)

(ii) lim sup
N→∞

1

N

N
∑

n=1

a2
n ≤ 1 (2.2)

Then, as N → ∞,

1

N

N
∑

n=1

an → 1
1

N

N
∑

n=1

a2
n → 1 (2.3)

1

N

N
∑

n=1

(an − 1)2 → 0 (2.4)

Proof. By concavity of log x for all x ∈ (0,∞),

log x ≤ x − 1

so (2.1) implies

lim inf
N→∞

1

N

N
∑

n=1

an ≥ 1 + lim inf
N→∞

log(a1 . . . aN)1/N ≥ 1

Thus,

lim sup
1

N

N
∑

n=1

(an − 1)2 ≤ 1 − 2 + 1 = 0

so (2.4) holds.
By the Schwarz inequality,

1

N

N
∑

n=1

|an − 1| ≤

[

1

N

N
∑

n=1

(an − 1)2

]1/2

→ 0

which implies the first limit in (2.3). (2.4) and that limit imply (2.3).
�

Proposition 2.2. Let {an, bn}
∞
n=1 be the Jacobi parameters for a reg-

ular measure with σess(J) = [−2, 2]. Then

1

N

[

2

N−1
∑

n=1

a2
n +

N
∑

n=1

b2
n

]

→ 2 (2.5)

as N → ∞.
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Proof. Let {x
(N)
j }N

j=1 be the zeros of the OPRL pN(x) associated to the
Jacobi parameters. Let dρ[−2,2] be the equilibrium measures for [−2, 2]
(see [12, 16, 22] for potential theory notions). Since regularity implies
that the density of zeros converges to dρ[−2,2] (see [25, 22]), we have

1

N

N
∑

n=1

(x
(N)
j )2 →

∫

x2dρ[−2,2](x) (2.6)

Since {x
(N)
j }N

j=1 are the eigenvalues of the finite Jacobi matrix

JN ;F =

















b1 a1

a1 b2
. . .

. . .
. . .

. . .
. . . bN−1 aN−1

aN−1 bN

















(2.7)

we have that

LHS of (2.6) =
1

N
Tr(J2

N ;F )

=
1

N

[ N
∑

n=1

b2
n + 2

N−1
∑

n=1

a2
n

]

(2.8)

Thus (2.5) is equivalent to
∫

x2dρ[−2,2](x) = 2 (2.9)

This can be seen either by using the explicit formula for dρ[−2,2] (and
∫ π

0
(2 cos θ)2 dθ

π
= 2) or by considering the special case an ≡ 1, bn ≡ 0

since the limit in (2.5) is the same for all regular J ’s. �

Proof of Theorem 1.1. By regularity,

lim inf
N→∞

(a1 . . . aN)1/N = 1 (2.10)

and by Proposition 2.2 and

lim sup
1

N

N−1
∑

n=1

a2
n ≤ 1 (2.11)

By Lemma 2.1, we have (2.4), and this and (2.5) imply

1

N

N
∑

n=1

b2
n → 0 (2.12)

By(1.12), we get (1.9). �
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3. MOPRL on [−2, 2]

In this section, both for its own sake and because of the application in
Section 6, we want to consider matrix-valued measures for [−2, 2]. Our
reference for the associated OPRL will be [7] which discusses regular
measures. ℓ is fixed and finite, and we have a block Jacobi matrix of
the form

J =











B1 A1 0 · · ·

A†
1 B2 A2 · · ·

0 A†
2 B3 · · ·

...
...

...
. . .











(3.1)

where Aj and Bj are ℓ× ℓ matrices and † is Hermitian conjugate. One
requires each Aj is nonsingular.

Two sets of Jacobi parameters, {Aj, Bj}
∞
j=1 and {Ãj, B̃j}

∞
j=1, are

called equivalent if there exist ℓ × ℓ unitaries, u1 ≡ 1, u2, u3, . . . so
that

B̃j = u†
jBjuj Ãj = u†

jAjuj+1 (3.2)

It is known (see [7, Thm. 2.11]) that there is a one-one correspondence
between nontrivial ℓ×ℓ matrix-valued measures, dµ, (with nontriviality
suitably defined) and equivalence classes of Jacobi parameters.
{Aj , Bj}

∞
j=1 is called type 1 (resp. type 3) if each Aj is positive

(resp. Aj is lower triangular and positive on diagonal). Moreover ([7,
Thm. 2.8]), each equivalence class has exactly one representative of
type 1 and one of type 3. An ℓ × ℓ matrix-valued measure is called
regular ([7, Ch. 5]) for [−2, 2] if and only if

σess(dµ) = [−2, 2] (3.3)

and
[ N

∏

n=1

|det(An)|

]1/N

→ 1 (3.4)

Our basic result for such MOPRL is:

Theorem 3.1. If {An, Bn}
∞
n=1 are the Jacobi parameters for an ℓ × ℓ

matrix-valued measure which is regular for [−2, 2] and are either of

type 1 or type 3, then

1

N

N
∑

n=1

‖An − 1‖ + ‖Bn‖ → 1 (3.5)
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Remark. (3.5) does not hold for all equivalent {Ãn, B̃n}
∞
n=1, but it is

easy to see that

1

N

N
∑

n=1

‖A∗
nAn − 1‖ + ‖Bn‖ → 0 (3.6)

is equivalence class independent and implied by (3.5) for the type 1 or
type 3 representative.

Proof. We consider type 3 first. By Thm. 5.2 of [7], the density of zeros
converges to the equilibrium measure, so analogously to (2.5),

1

Nℓ

[

2

N−1
∑

n=1

Tr(A∗
nAn) +

N
∑

n=1

Tr(B∗
nBn)

]

→ 2 (3.7)

In the type 3 case, (3.4) says

[ N
∏

n=1

ℓ
∏

j=1

(An)jj

]1/Nℓ

→ 1 (3.8)

so as in the proof of Theorem 1.1, we find

1

Nℓ

N
∑

n=1

ℓ
∑

j=1

|(An)jj − 1|2 → 0 (3.9)

and then that

1

N

N
∑

n=1

Tr(B∗
nBn) → 0 (3.10)

and

1

N

N
∑

n=1

|Tr(A∗
nA − 1)| → 0 (3.11)

In the type 1 case, one uses the inequality

A ≥ 0 ⇒ det(A) ≤
ℓ

∏

j=1

Ajj (3.12)

(see Simon [20, Cor. 8.10]) and the fact that Lemma 2.1 only requires
an inequality in (2.1). �
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4. OPUC

Here we will prove two results about OPUC. Recall dµ on ∂D with
σess(dµ) = e is called regular if and only if

lim
N→∞

( N−1
∏

j=0

ρj

)1/N

= C(e) (4.1)

the capacity of e where ρj = (1−|αj |
2)1/2 and {αj}

∞
j=0 are the Verblun-

sky coefficients.

Theorem 4.1. Let dµ be a measure of ∂D regular for e = ∂D. Then,

as N → ∞,

1

N

N−1
∑

j=0

|αj| → 0 (4.2)

Remark. This is the original CN class of [10].

Proof. C(∂D) = 1, so by Lemma 2.1 and

1

N

N−1
∑

j=0

ρ2
j ≤ 1 (4.3)

we obtain

1

N

N−1
∑

j=0

(1 − ρ2
j) → 0 (4.4)

which implies (4.2) by the Schwarz inequality. �

For a ∈ (0, 1), let Γa be the arc

{z ∈ ∂D | z = eiθ, π ≥ |θ| > 2 arcsin(a)} (4.5)

which has capacity a. Then

Theorem 4.2. Let dµ be a measure on ∂D, regular for e = Γa. Then

as N → ∞,

(a)
1

N

N−1
∑

j=0

(|αj| − a)2 → 0 (4.6)

(b)
1

N

N−1
∑

j=0

|αj+1 − αj |
2 → 0 (4.7)
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For any k,

(c)
1

N

N−1
∑

j=0

min
θ

( k
∑

ℓ=1

|αj+ℓ − aeiθ|2
)

→ 0 (4.8)

Remark. The isospectral torus for Γa is exactly {{αj ≡ aeiθ}}θ∈[0,2π),
that is, the constant sequence of Verblunsky coefficients, so (c) involves
an approach to an isospectral torus.

Proof. By regularity and the connection between zeros of POPUC and
eigenvalues of finite CMV matrices as defined in [21], one has that

1

N

N−1
∑

n=0

−ᾱn+1αn → c (4.9)

where c is the first moment of the equilibrium measure, that is,
∫

z dρΓa
(z). Specializing to the case αn ≡ a to evaluate c, we see

that

1

N

N−1
∑

n=0

ᾱn+1αn → a2 (4.10)

On the other hand, by regularity,

1

N

N−1
∑

n=0

log(1 − |αn|
2) → log(1 − |a|2) (4.11)

and by concavity of log,

log(1 − x) − log(1 − |a|2) ≤
1

1 − |a|2
(|a|2 − x)

so

lim inf
1

N

N−1
∑

n=0

(|a|2 − |αn|
2) ≥ 0 (4.12)

and thus,

lim sup
1

N

N−1
∑

n=0

|αn|
2 ≤ a2 (4.13)

By (4.10) and the Schwarz inequality,

lim inf
1

N

N−1
∑

n=0

|αn|
2 ≥ a2 (4.14)

so

1

N

N−1
∑

n=0

|αn|
2 → a2 (4.15)



10 BARRY SIMON

For y ∈ (0, 1] (by Taylor’s theorem with remainder and

max(0,1]
d2

dy2 log(y) = −1),

log(y) − log(1 − |a|2) −

[

y − (1 − |a|2)

1 − |a|2

]

≤ −
1

2
(y − (1 − |a|2))2

so (4.11) and (4.15) imply

1

N

N−1
∑

n=0

||α|2 − a2| → 0

which implies (4.7).
(4.15) and (4.10) imply (4.7). Finally, (4.6) and (4.7) imply (4.8). �

5. The Nevai and CN Classes

In [19], I proposed using approach to an isospectral torus as a replace-
ment for the Nevai class when [−2, 2] is replaced by the spectrum of a
periodic Jacobi matrix. This idea was then implemented in Last–Simon
[13] and Damanik–Killip–Simon [6]. The latter discussed extending this
notion to a general finite gap set, and this idea was further developed
in Remling [17].

e will denote a finite gap set, that is,

e = [α1, β1] ∪ [α2, β2] ∪ · · · ∪ [αℓ+1, βℓ+1] ⊂ R (5.1)

where
α1 < β1 < α2 < β2 < · · · < βℓ+1 (5.2)

Given such a set, there is a natural torus, Te, of almost periodic Jacobi
matrices, discussed, for example, in [24, 2]; it can be described [17] as
the restriction to {1, . . .} of the two-sided reflectionless Jacobi matrices,
J ♯, with

σ(J ♯) = e (5.3)

All J ∈ Te have
σess(J) = e (5.4)

Te is a torus in the uniform topology as well as the product topology.
Given a pair of bounded Jacobi parameters, J = {an, bn}

∞
n=1, J̃ =

{ãn, b̃n}
∞
n=1, define dm(J, J̃) by

dm(J, J̃) =

∞
∑

k=0

e−|k|(|am+k − ãm+k| + |bm+k − b̃m+k|) (5.5)

If Te is an isospectral torus, let

dm(J, Te) = inf
J̃∈Te

dm(J, J̃) (5.6)
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Definition. If e ⊂ R is a finite gap set, we define the Nevai class N(e)
to be those J ’s with

lim
m→∞

dm(J, Te) = 0 (5.7)

This is equivalent (by compactness) to saying all the right limits of J
lie in Te.

It is a theorem of Last–Simon [13] that

J ∈ N(e) ⇒ σess(J) = e (5.8)

and of Remling [17] that

σess(J) = σac(J) = e ⇒ J ∈ N(e) (5.9)

It is not hard to see that

J ∈ N(e) ⇒ J is regular for e

Analogously, we define the Cesàro–Nevai class, CN(e), as those J
with

1

N

N
∑

m=1

dm(J, Te) → 0 (5.10)

A main conjecture we make in this note is:

Conjecture 5.1. If J is regular for e, that is, σess(J) = e, and
(a1 . . . aN)1/N → C(e), then J ∈ CN(e).

In the next section, we will prove this for a special class of e’s. Of
course, we make a similar conjecture for finite gap OPUC. Indeed,
Theorem 4.2 is the case of OPUC with one gap!

6. Generic Periodic Spectrum

Our goal is to prove:

Theorem 6.1. Let e be a finite gap set so that each [αj , βj] has har-

monic measure (ℓ + 1)−1 (equivalently, there is a J0 with period ℓ + 1
so e = σess(J0)). Let J be a Jacobi matrix with regular spectral measure

so that σess(J) = e. Then J ∈ CN(e).

We use p for ℓ + 1, the period of J0.
Following [6], we exploit ∆J0

(J) where ∆J0
is the discriminant [6, 23]

of J0, a polynomial of degree p. If J is any Jacobi matrix, ∆J0
(J) is a

p × p block Jacobi matrix of type 3. We use AJ0,k(J) and BJ0,k(J) to
denote the p × p matrix blocks in ∆(J).

[6] proved the following theorem (their Thm. 11.12); here ‖·‖ is the
Hilbert–Schmidt norm.
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Theorem 6.2 ([6]). Fix J0 periodic with σess(J0) = e and J an arbi-

trary bounded Jacobi matrix. Then

∞
∑

k=1

‖AJ0,k(J) − 1‖2
2 + ‖BJ0,k(J)‖2

2 < ∞ (6.1)

if and only if
∞

∑

k=1

dk(J, Te)
2 < ∞ (6.2)

Because this comparison is local, the exact same proof shows

Theorem 6.3. Let J0 be periodic with σess(J0) = e and J an arbitrary

Jacobi matrix. Then

lim
N→∞

1

N

N
∑

k=1

[‖AJ0,k(J) − 1‖2
2 + ‖BJ0,k(J)‖2] = 0 (6.3)

if and only if

lim
N→∞

1

N

N
∑

k=1

dk(J, Te)
2 → 0 (6.4)

With this and Theorem 3.1, we can prove Theorem 6.1.

Proof of Theorem 6.1. ∆(x) has the form

∆(x) = (a0,1 a0,2 . . . a0,p)
−1xp + lower order

so the diagonal matrix elements of ∆(J) are

ajaj+1 . . . aj+p

a0,j . . . a0,j+p
≡ αjj

If J is regular, for e,
[

a1 . . . an

C(e)n

]1/n

→ 1 (6.5)

But a0,j . . . a0,j+p = C(e)p for periodic Jacobi matrices, so (6.5) implies

(α11α22 . . . αnn)1/n → 1

which implies that ∆(J) is a regular block Jacobi matrix.
By Theorem 3.1, (6.3) holds and so, by Theorem 6.3, we have the

CN(e) condition (6.4). �
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