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Abstract. In this note, we discuss some basic aspects of the dynamics of
a homogenous Fermi gas in a weak random potential, under simplifying as-
sumptions on the particle pair interactions. We are particularly interested in
studying the delocalizing effects due to the Pauli principle. We derive the

kinetic hydrodynamic limit, determined by a linear Boltzmann equation, for
the momentum distribution function. Moreover, we prove that if the initial
state is quasifree, then the time evolved state averaged over the randomness,
which is by itself not quasifree, has a quasifree hydrodynamic limit. We show
that the momentum distributions determined by the Gibbs states of a free
fermion field persist into the diffusive time scale; this includes the limit of zero
temperature.

1. Introduction

In this note, we address a problem related to the delocalization conjecture in
the theory of random Schrödinger operators. The latter poses the question if in di-
mensions d ≥ 3, the Anderson model at weak disorders exhibits an absolutely con-
tinuous spectral component corresponding to delocalized generalized eigenstates.
Some crucial advances elucidating aspects of this problem have been achieved in
[9, 10, 11, 12, 15, 21] through the analysis of macroscopic hydrodynamic limits of the
microscopic quantum dynamics; see also [7, 8, 19]. We refer also to [1, 5, 6, 18, 20]
for related works.

Here, we investigate some basic aspects of the related question if for electrons in a
disordered medium, the inter-particle repulsion due to the Pauli principle enhances
the persistence of delocalized states when a weak random potential is added. At
least in the simplified setting considered here, we find some affirmative indications.
We study the dynamics of a homogenous fermion gas in a weak static random
potential where the pair interactions between particles are treated in a simplified
mean field approximation. With the single-particle dynamics of the Anderson model
at weak disorders in mind, we are especially interested in the interplay between the
delocalizing effects due to the Pauli repulsion and the localizing effects due to the
weak random potential.

We consider a gas of fermions on the lattice ΛL := [−L
2 , L

2 ]d ∩ Zd in dimension
d ≥ 3 and with periodic boundary conditions, for L ≫ 1. We denote the dual
lattice by Λ∗

L = ΛL/L, and write
∫

dp ≡ 1
Ld

∑
p∈Λ∗

L
for brevity. Letting F =

1
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⊕
n≥0

∧n
1 ℓ2(ΛL) denote the Fock space accounting for scalar fermions on ΛL, we

denote the creation- and annihilation operators by a+
p , ap, with p ∈ Λ∗

L, satisfying
the usual canonical anticommutation relations.

Let A denote the C∗-algebra of bounded operators on F. We let ρ0 denote a
translation invariant, normalized state on A, which preserves the particle num-
ber (i.e., ρ0(NA) = ρ0(AN) for all A ∈ A, where N =

∑
x a+

x ax is the number
operator).

We consider the Hamiltonian

Hω :=

∫
dp E(p) a+

p ap + η Vω (1.1)

which generates the dynamics of a free Fermi gas coupled to a random potential

Vω :=
∑

x∈ΛL

ωx a+
x ax (1.2)

where {ωx}x∈ΛL
are Gaussian i.i.d. random variables, and 0 < η ≪ 1 is a small

coupling constant accounting for the disorder strength. We assume that the kinetic
energy function is given by

E(p) =

d∑

j=1

cos(2πpj) , (1.3)

i.e., the Fourier multiplication operator determined by the centered nearest neighbor
Laplacian (∆f)(x) =

∑
|y−x|=1 f(y) on Zd.

Due to the translation invariance of the initial state, the dynamics of a significant
class of simplified mean field models reduces to the one generated by Hω, as we
point out in Section 3.3. Therefore, we essentially formulate everything for Hω.

We are interested in the long-time dynamics of the fermion field described by

ρt(A ) := ρ0( eitHω Ae−itHω ) , (1.4)

where A ∈ A. While the direct pair interactions between the electrons will not
be important, due to our model assumptions, the effective interaction between the
particles through their coupling to the random potential, and due to the Pauli
principle remain significant. We prove the following. In a time scale t = T

η2 where

T > 0 denotes a macroscopic time variable, we find, in the thermodynamic limit,
that for all T > 0 and for all test functions f , g of Schwartz class S(Td),

Ω
(2)
T (f ; g) := lim

η→0
lim

L→∞
E[ ρT/η2( a+(f) a(g) ) ] =

∫

Td

dp FT (p) f(p) g(p) , (1.5)

where FT (p) satisfies the linear Boltzmann equation

∂T FT (p) = 2 π

∫
du δ(E(u) − E(p) ) (FT (u) − FT (p) ) (1.6)

with initial condition F0(p) = limL→∞
1

Ld ρ0( a+
p ap ). The proof is based on a

generalization of methods due to Erdös and Yau in [15], and extended in [7], for
the derivation of linear Boltzmann equations from the random Schrödinger dynam-
ics in the weakly disordered 1-particle Anderson model. The same strategy can
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likewise be applied to prove that if ρ0 is spatially inhomogenous, the long-time dy-
namics generated by Hω is governed by a linear Boltzmann equation with a spatial
transport term; however, we will not address this issue here.

A simple but important special case of ρ0 is given by the Gibbs distribution of
the free fermion field for inverse temperature β and chemical potential µ. It is of
particular interest because the corresponding momentum occupation density

F0(p) =
1

1 + eβ(E(p)−µ)
(1.7)

is an equilibrium solution of the linear Boltzmann equation (1.6), for all β > 0.
This is also valid in the zero temperature limit β → ∞ where in the weak sense,

1

1 + eβ(E(p)−µ)
→ χ[E(p) < µ] , (1.8)

which is nontrivial if µ > 0. Erdös, Salmhofer and Yau have proved in their land-
mark work [10, 11, 12] that for a time t beyond the kinetic scale η−2, the effective
dynamics of a single electron is diffusive; i.e., in this time scale, a wave packet
evolves in position space according to the solution of a heat equation. Thus, there
arises the question if given an initial condition ρ0 corresponding to a Gibbs state
of the free fermion field, high frequency fermions will eventually ”slow down” over
a diffusive time scale, i.e., that the probability for small momenta to be occupied
increases in time, while the probability for large momenta to be occupied decreases
due to the localizing effect of the random potential. On the other hand, the Pauli
principle has a stabilizing effect on the Fermi sea, even if it is perturbed by a weak
random potential, and imposes a natural restriction on the validity of the picture
just described. As we prove here, the momentum density corresponding to the
initial free Gibbs state in fact persists for a time extending beyond the onset of
diffusive dynamics.

We are interested in the stability of (1.7) because FT (p) 6= 0 is an indication
for the presence of electron states which are in some sense delocalized (in position
space). In the analysis presented here, the interactions between the particles are
omitted or suitably simplified such that they become inessential. The Hamiltonian
determining the translation invariant model without the random potential (i.e.,
η = 0) but including the full repulsive particle pair interaction is given by

H̃λ :=

∫
dp E(p) a+

p ap + λ
∑

x,y∈ΛL

a+
y a+

x v(x − y) ax ay . (1.9)

It is widely believed that in a time scale t = T
λ2 , the momentum density FT (p) :=

limλ→0 limL→∞
1

Ld ρT/λ2( a+
p ap ) for the dynamics generated by H̃λ satisfies the

Boltzmann-Uhlenbeck-Uehling equation

∂T FT (p) = −4 π

∫
dp1 dp2 dq1 dq2 | v̂(p1 − q1) − v̂(p1 − q2) |

2 δ( p − p1 )

δ( p1 + p2 − q1 − q2 ) δ(E(p1) + E(p2) − E(q1) − E(q2) )[
FT (p1)FT (p2)F̃T (q1)F̃T (q2) − FT (q1)FT (q2)F̃T (p1)F̃T (p2)

]
,

where F̃T (p) := 1−FT (p). The derivation of (1.10) from the microscopic quantum
dynamics is an extremely challenging open problem; for some work in this direction,
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see [4, 13, 16, 22]. We note that (1.7) is also an equilibrium solution of (1.10); one

easily sees this by observing that F̃0(p) = eβ(E(p)−µ)F0(p). This is connected to the
fact that (1.7) is a function of the kinetic energy E(p) which is a collision invariant
in both (1.6) and (1.10). As a matter of fact, all functions of the form f(E(p))
are equilibria of (1.6); on the other hand, the special structure of (1.7), apart
from being a function of E(p), is necessary for it to be an equilibrium of (1.10).
For a combined Boltzmann limit of the coupled model with λ, η > 0 (which is an
open problem), what has been noted above appears to support the conjecture that
the kinetic energy E(p) will remain a collision invariant, and that the momentum
distribution (1.7) will still persist for a time beyond the diffusive scale.

We note that the question of the stability of the Fermi sea for a gas of interacting
fermions is a quintessential problem in mathematical physics which has in recent
years received much attention, especially due to the landmark works of Feldman,
Knörrer, and Trubowitz summarized in [14].

The next question we address is how strongly the electrons are effectively corre-
lated through their interactions with the random potential. To this end, we assume
that ρ0 is number preserving, homogenous, and quasifree. That is, for any tuple of
test functions f1, . . . , fr, g1, . . . , gs,

ρ0( a+(f1) · · · a
+(fr) a(g1) · · · a(gs) ) = δr,s det[ ρ0( a+(fj) a(gℓ) ) ]rj,ℓ=1 . (1.10)

We consider the dynamics generated by Hω, and observe that since Hω is bilinear
in a+, a, the time evolved state ρt is almost surely quasifree. However, the state
averaged over the randomness is not quasifree,

lim
L→∞

E[ ρt( f1, . . . , fr ; g1, . . . , gr ) ] 6= det[ lim
L→∞

E[ ρt( fj ; gℓ ) ] ]rj,ℓ=1 , (1.11)

for any η > 0. This is not surprising because quasifreeness is a nonlinear condition.
We prove that in the hydrodynamic limit stated above, the limiting 2r-correlation
functions are quasifree,

Ω
(2r)
T ( f1, . . . , fr ; g1, . . . , gr )

:= lim
η→0

lim
L→∞

E[ ρT/η2( a+(f1) · · · a
+(fr) a(g1) · · · a(g2) ) ]

= det[ Ω
(2)
T ( fj ; gℓ ) ]rj,ℓ=1 (1.12)

for any r ∈ N. The proof is based on an extension of the proof in [8] for the 1-
particle Anderson model at weak disorders that the random Schrödinger evolution
converges in arbitrary higher mean to a linear Boltzmann evolution. Quasifreeness
of the 2r-point correlation functions is a significant ingredient in some approaches
to the problem of quantum charge transport; see for instance [2] and the references
therein.
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2. Definition of the model

We consider a fermion gas in a finite box ΛL := [−L
2 , L

2 ]d ∩ Zd of side length
L ≫ 1, with periodic boundary conditions, in dimensions d ≥ 3. We denote its dual
lattice by Λ∗

L := ΛL/L ⊂ Td. For the Fourier transform, we use the convention

f̂(p) :=
∑

x∈ΛL

e−2πip·x f(x) , (2.1)

where p ∈ Λ∗
L, and

f(x) =
1

Ld

∑

p∈Λ∗
L

e2πip·x f̂(p) (2.2)

for its inverse. For brevity, we will use the notation
∫

dp ≡
1

Ld

∑

p∈Λ∗
L

(2.3)

in the sequel, which recovers its usual meaning in the thermodynamic limit L → ∞.

We denote the fermionic Fock space of scalar electrons by

F =
⊕

n≥0

Fn , (2.4)

where

F0 = C , Fn =
n∧

1

ℓ2(ΛL) , n ≥ 1 . (2.5)

We introduce creation- and annihilation operators a+
p , aq, for p, q ∈ Λ∗

L, satisfying
the canonical anticommutation relations

a+
p aq + aq a+

p = δ(p − q) :=

{
Ld if p = q
0 otherwise.

(2.6)

We first study a Fermi gas coupled to a random potential without direct interactions
between the particles. As we will explain below, this also covers the dynamics in
some simplified mean field models.

We define the fermionic manybody Hamiltonian

Hω := T + η Vω (2.7)

where

T =

∫
dp E(p) a+

p ap (2.8)

is the kinetic energy operator, and

Vω :=
∑

x∈ΛL

ωx a+
x ax (2.9)

couples the fermions to a static random potential; {ωx}x∈ΛL
is a field of i.i.d.

random variables which we assume to be centered, normalized, and Gaussian for
simplicity. Thus,

E[ ωx ] = 0 , E[ ω2
x ] = 1 (2.10)
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for all x ∈ ΛL. Moreover, we assume that

E(p) =

d∑

j=1

cos(2πpj) , (2.11)

which defines the Fourier multiplier corresponding to the nearest neighbor Laplacian
on Zd.

Let

N :=
∑

x∈ΛL

a+
x ax (2.12)

denote the particle number operator. It is clear that

[Hω, N ] = 0 (2.13)

holds.

Let A denote the C∗-algebra of bounded operators on F. We consider the dy-
namics on A given by

αt(A) = eitHω Ae−itHω (2.14)

generated by the random Hamiltonian Hω.

3. Statement of the main results

We consider a normalized, translation-invariant, deterministic state

ρ0 : A −→ C . (3.1)

We define the time-evolved state

ρt(A) := ρ0( eitHω Ae−itHω ) , (3.2)

with t ∈ R, and initial condition given by ρ0. We particularly focus on the dynamics
of the averaged two-point functions

E[ ρt( a+
p aq ) ] , (3.3)

where p, q ∈ Λ∗
L. Clearly,

E[ ρ0( a+
p aq ) ] = ρ0( a+

p aq ) = δ(p − q)
1

Ld
ρ0( a+

p ap ) , (3.4)

where

δ(k) := Ldδk , (3.5)

and where

δk =

{
1 if p = q
0 otherwise

(3.6)

denotes the Kronecker delta on the lattice Λ∗
L (mod Td). We remark that for

fermions,

0 ≤
1

Ld
ρ0( a+

p ap ) ≤ 1 , (3.7)

since ‖a
(+)
p ‖ = Ld/2 in operator norm, ∀p ∈ Λ∗

L.
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3.1. The Boltzmann limit. We denote the microscopic time, position, and veloc-
ity variables by (t, x, p), and the corresponding macroscopic variables by (T, X, V ) =
(η2t, η2x, v). We prove that the momentum distribution ft(q) converges to a solu-
tion of a linear Boltzmann equation in the limit η → 0.

Theorem 3.1. We assume that ρ0 is translation invariant. Then, the averaged
two-point functions are translation invariant,

E[ρt( a+(f)a(g) )] =

∫
dp f(p) g(p) E[ρt( a+

p ap )] , (3.8)

(i.e., diagonal in a+, a) for any f, g ∈ S(Td) of Schwartz class, and the thermody-
namic limit

Ω
(2;η)
T (f ; g) := lim

L→∞
E[ρT/η2( a+(f) a(g) )] (3.9)

exists for all f, g ∈ S(Td), and T > 0.

For any T > 0 and all f, g ∈ S(Td), the limit

Ω
(2)
T (f ; g) := lim

η→0
Ω

(2;η)
T (f ; g) (3.10)

exists, and is the inner product of f, g with respect to a Borel measure FT (p)dp,

Ω
(2)
T (f ; g) =

∫
dp FT (p) f(p) g(p) , (3.11)

where FT (V ) satisfies the linear Boltzmann equation

∂T FT (V ) = 2 π

∫

Td

dU δ(E(U) − E(V ) ) (FT (U) − FT (V ) ) , (3.12)

with initial condition

F0(p) = lim
L→∞

1

Ld
ρ0( a+

pΛ∗
L

apΛ∗
L

) (3.13)

for p ∈ Td, where pΛ∗
L

:= Q 1
2L

(p) ∩ Λ∗
L, and Qδ(p) := p + [−δ, δ)d.

We note that there exists a unique pΛ∗
L
∈ Λ∗

L such that |p− pΛ∗
L
| ≤ 1

2L , for every

p ∈ Td.

An initial condition of particular interest is the Gibbs state (with inverse tem-
perature β and chemical potential µ) for a non-interacting fermion gas,

ρ0(A) =
1

Zβ,µ
Tr( e−β(T−µN)A ) (3.14)

where Zβ,µ := Tr( e−β(T−µN) ). The corresponding momentum distribution func-
tion

lim
L→∞

1

Ld
ρ0( a+

p ap ) =
1

1 + eβ(E(p)−µ)
(3.15)

is a fixed point of the linear Boltzmann equation (3.12), for all β > 0, including the
zero temperature limit β → ∞ where in the weak sense,

1

1 + eβ(E(p)−µ)
→ χ[E(p) < µ] , (3.16)
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which is nontrivial if µ > 0. We note that all our results in this paper remain valid
in the limit β → ∞.

Invoking the results of Erdös, Salmhofer and Yau proven in [10, 11, 12], the
following long-time stability result holds.

Theorem 3.2. Assume ρ0 is the Gibbs state for a non-interacting fermion gas
such that

F0(p) =
1

1 + eβ(E(p)−µ)
, (3.17)

is a fixed point solution of the Boltzmann equation,

FT (p) = F0(p) (3.18)

for all T ≥ 0, p ∈ Td, and 0 < β ≤ ∞. Accordingly,

ρ0( a+(f) a(g) ) =

∫
dp F0(p) f(p) g(p) . (3.19)

Then, the corresponding microscopic state is long-time stable beyond the diffusive
time scale t = O(η−2); that is, for

t =
T

η2+δ
, (3.20)

where 0 < δ < 1
2000 , and any 0 < T < ∞,

lim
L→∞

∣∣∣ E[ ρT/η2+δ ( a+(f) a(g) ) ] − ρ0( a+(f) a(g) )
∣∣∣ = oη(1) , (3.21)

for all f, g ∈ S(Td).

3.2. Quasifreeness. We prove that if in addition to the conditions formulated
above, the initial state ρ0 is quasifree, then E[ρt], which is not quasifree for η > 0,
becomes quasifree in the hydrodynamic scaling limit described in Theorem 3.1.

A state ρ0 is quasifree if for any normal ordered product of creation- and anni-
hilation operators

a+
p1

· · ·a+
pr

aq1 · · ·aqs
, (3.22)

with arbitrary r, s ∈ N and pi, qj ∈ Λ∗
L,

ρ0( a+
p1

· · · a+
pr

aq1 · · · aqs
) = δr,s det

[
ρ0( a+

pi
aqj

)
]
1≤i,j≤r

. (3.23)

That is, any higher order correlation function decomposes into the determinant
of the matrix of pair correlations. In its most general form, a particle number
conserving quasifree state ρ0 : A → C can be written as

ρ0(A) :=
1

ZK
Tr( e−KA ) (3.24)

for A ∈ A, with

ZK := Tr( e−K ) , (3.25)

and

K =

∫
dp dq κ(p, q) a+

p aq (3.26)
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bilinear in a+, a; for a proof, see [3]. We assume K to be deterministic (with respect
to {ωx}x).

If in addition, translation invariance is imposed, such that

[K, T ] = 0 (3.27)

then

K =

∫
dp h(p) a+

p ap (3.28)

is bilinear and diagonal in a+, a.

Since Hω is bilinear in the creation- and annihilation operators, it is immediately
clear that

K(t) := eitHω K e−itHω (3.29)

is also bilinear in a+, a. Therefore,

ρt(A) =
1

ZK
Tr( e−K(t)A ) (3.30)

is quasifree with probability 1. However, since quasifreeness is a nonlinear condition
on determinants, almost sure quasifreeness does not imply that E[ρt( · )] is quasifree.

In fact, E[ρt( · )] is not quasifree for any η > 0.

However, we prove in Theorem 3.3 below that it possesses a hydrodynamic limit
(in the sense of Theorem 3.1) which is quasifree.

Theorem 3.3. Assume that ρ0 is number conserving and quasifree, and translation
invariant. Then, the following holds. For any normal ordered monomial in creation-
and annihilation operators,

a+(f1) · · · a
+(fr) a(g1) · · ·a(gr) , (3.31)

with r, s ∈ N and Schwartz class test functions fj , gℓ ∈ S(Td), and any T > 0, the
macroscopic 2r-point function

Ω
(2r)
T ( f1, . . . , fr ; g1, . . . , gr ) (3.32)

:= lim
η→0

lim
L→∞

E[ρT/η2 ( a+(f1) · · · a
+(fr) a(g1) · · ·a(gr) )]

exists and is quasifree,

Ω
(2r)
T ( f1, . . . , fr ; g1, . . . , gr ) = det

[
Ω

(2)
T ( fi , gj )

]
1≤i,j≤r

. (3.33)

The macroscopic 2-point function is the same as in Theorem 3.1,

Ω
(2)
T ( f ; g ) =

∫
dp FT (p) f(p) g(p) , (3.34)

and FT (p) solves the linear Boltzmann equation (3.12) with initial condition (3.13).

We note that the assumption of translation invariance can easily be dropped.
However, we do not address inhomogenous Fermi gases in this text.
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3.3. Mean field interactions. We briefly discuss interactions between electrons
in a simplified mean field approximation. The interacting model is described by
the Hamiltonian

Hω,λ := T + η
∑

x∈ΛL

ωxa+
x ax + λ

∑

x,y∈ΛL

a+
y a+

x v(x − y) ax ay , (3.35)

where v extends to a positive translation- and rotation invariant function on Rd.

Since {ωx}x∈ΛL
are i.i.d. random variables, and Hλ,0 is translation invariant,

the state

ρ
(λ,η)
t ( · ) := ρ0( eitHω,λ ( · ) e−itHω,λ ) (3.36)

has a translation-invariant E-average. In particular, E[ ρ
(λ,η)
t ( a+

x ax ) ] does not
depend on x; hence,

E[ ρ
(λ,η)
t ( a+

x ax ) ] =
1

Ld

∑

x∈ΛL

E[ ρ
(λ,η)
t ( a+

x ax ) ] =
1

Ld
E[ ρ

(λ,η)
t (N) ] , (3.37)

where N denotes the number operator. Since for every realization of the random
potential we have [Hω,λ, N ] = 0, and since [K, N ] = 0 in the definition of ρ0, it
follows that

1

Ld
ρ
(λ,η)
t (N ) =

1

Ld
ρ0(N ) , (3.38)

which is the particle density (we note that 0 < 1
Ld ρ0(N ) ≤ 1 for all L, and

especially for L → ∞). In particular, this result is non-random, and thus equals its
E-average. Moreover, it is independent of time t, and of the coupling parameters λ
and η.

If the electron pair interactions are modeled by the mean field Hamiltonian

Hω,λ := T + η
∑

x∈ΛL

ωxa+
x ax + λ

∑

x,y∈ΛL

E[ ρ
(λ,η)
t ( a+

y ay ) ] v(x − y) a+
x ax (3.39)

with ρ
(λ,η)
t as above, the problem reduces to the one formulated for Hω (this is

explained below). However, inclusion of the fermion exchange term would lead to
a random nonlinear evolution equation for the mean field; this issue is beyond the
scope of the present work.

By translation invariance of E[ ρ
(λ,η)
t ( a+

y ay ) ], the mean field interaction is given
by

λ
∑

x,y∈ΛL

E[ ρ
(λ,η)
t ( a+

y ay ) ] v(x − y) a+
x ax = λ

1

Ld
ρ0(N)

(∑

y

v(y)
)

N , (3.40)

i.e., it is a constant multiple of the number operator N .

Since [N, H0,η] = 0, [K, N ] = 0 in ρ0, and [N, a+
p aq] = 0, it immediately follows

that

E[ ρ0( eitHω,λa+(f) a(g)eitHω,λ ) ] = E[ ρ0( eitHωa+(f) a(g)e−itHω ) ] (3.41)

for all test functions f, g, where Hω ≡ H0,η is the random Hamiltonian considered
in Theorems 3.1 and 3.3, which involves no two-body interactions.
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Thus, we obtain the following result about the translation invariant system with
interactions between particles modeled in mean-field approximation.

Theorem 3.4. Assume that ρ0 is translation invariant. Then, all results stated
in Theorems 3.1, 3.2, and 3.3 (i.e., the Boltzmann limit, long-time stability, and
quasifreeness) remain valid if Hω is replaced by the mean field Hamiltonian Hω,λ.

We remark that evidently, E[ ρ
(λ,η)
t ( a+

y ay ) ] in (3.39) can be replaced by any
arbitrary translation invariant average density, and Theorem 3.4 remains valid.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is obtained from an extension of the analysis in [7, 15].

4.1. Duhamel expansion. We consider the Heisenberg evolution of the creation-
and annihilation operators. We define

ap(t) := eitHω ape
−itHω , (4.1)

and

a(f, t) := eitHωa(f)e−itHω . (4.2)

We make the key observation that

a(f, t) = a(ft) (4.3)

where ft is the solution of the 1-particle random Schrödinger equation

i∂tft = H(1)
ω ft := ∆ft + η V (1)

ω ft (4.4)

with initial condition

f0 = f . (4.5)

Here, ∆ denotes the nearest neighbor Laplacian on ΛL, and H
(1)
ω = Hω|F1 is the 1-

particle Anderson Hamiltonian at weak disorders studied in [7, 8, 15]. V
(1)
ω = Vω |F1

is the 1-particle multiplication operator (V
(1)
ω f)(x) = ωxf(x).

To prove (4.4), (4.5), we observe that since Hω is bilinear in a+, a, it follows that
a(f, t) is a linear superposition of annihilation operators. Therefore, there exists a
function ft such that a(f, t) = a(ft). In particular,

i∂ta(ft) = [ Hω , a(ft) ]

=

∫
dp ft(p)E(p) ap + η

∫
dp

∫
du ft(p) ω̂(u − p) au

= a(∆ft ) + a( η V (1)
ω ft ) , (4.6)

and moreover, it is clear that a(f, 0) = a(f0) = a(f). This implies (4.4), (4.5).
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Thus,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) )

=

∫
dp dq ρ0( a+

p aq) ft(p) gt(q)

=

∫
dp J(p) ft(p) gt(p) (4.7)

where

ρ0( a+
p aq) = δ(p − q)J(p) (4.8)

due to translation invariance, with

0 ≤ J(p) =
1

Ld
ρ0( a+

p ap ) ≤ 1 , (4.9)

see (3.7). In particular, this implies (3.8).

For N ∈ N, which we determine later, we expand ft, gt into the truncated
Duhamel series at level N ,

ft = f
(≤N)
t + f

(>N)
t , (4.10)

with

f
(≤N)
t :=

N∑

n=0

f
(n)
t , (4.11)

and where the Duhamel term of n-th order (in powers of η) is given by

f
(n)
t (p) := (iη)n

∫
ds0 · · · dsn δ(t −

n∑

j=0

sj) (4.12)

∫
dk0 · · · dkn δ(p − k0)

( n∏

j=0

eisjE(kj)
)( n∏

j=1

ω̂(kj − kj−1)
)

f(kn)

= ηn eǫt

∫
dα eitα

∫
dk0 · · · dkn δ(p − k0) (4.13)

( n∏

j=0

1

E(kj) − α − iǫ

)( n∏

j=1

ω̂(kj − kj−1)
)

f(kn) .

The remainder term is given by

f
(>N)
t = iη

∫ t

0

ds ei(t−s)Hω V (1)
ω f

(N)
t (s) . (4.14)

We choose

ǫ =
1

t
(4.15)

so that the factor eǫt remains bounded for all t. Accordingly,

ρt( a+(f) a(g) ) = ρ0( a+(ft) a(gt) ) =

N+1∑

n,en=0

ρ
(n,en)
t (f ; g) (4.16)

where

ρ
(n,en)
t (f ; g) := ρ0( a+(f

(n)
t ) a(g

(en)
t ) ) (4.17)
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if n, ñ ≤ N , and

ρ
(n,N+1)
t (f ; g) := ρ0( a+(f

(n)
t ) a(g

(>N)
t ) ) ,

ρ
(N+1,en)
t (f ; g) := ρ0( a+(f

(>N)
t ) a(g

(en)
t ) ) (4.18)

if n ≤ N , respectively if ñ ≤ N , and

ρ
(N+1,N+1)
t (f ; g) := ρ0( a+(f

(>N)
t ) a(g

(>N)
t ) ) . (4.19)

In particular, for n, ñ ≤ N ,

ρ
(n,en)
t (f ; g) = ηn+en e2ǫt

∫
dα dα̃ eit(α−eα)

∫
dk0 · · · dkn

∫
dk̃0 · · ·dk̃en f(kn) g(k̃en) J(k0) δ(k0 − k̃0) )

n∏

j=0

1

E(kj) − α − iǫ

n∏

ℓ=0

1

E(k̃ℓ) − α̃ + iǫ

n∏

j=1

ω̂(kj − kj−1)

n∏

ℓ=1

ω̂(k̃ℓ−1 − k̃ℓ) . (4.20)

This expression, and the expressions involving n and / or ñ = N +1, are completely
analogous to those appearing in the truncated Duhamel expansion of the Wigner
transform in [7, 15].

This permits us to use the methods of [7, 15] to prove Theorem 3.1. We will here
only sketch the strategy; for the detailed proof, we refer to [7, 15]. In our subsequent
discussion, we will compare the expressions appearing in the given problem to those
treated in [7, 15].

To begin with, we introduce a more convenient notation. Clearly, if n, ñ ≤ N ,

and n + ñ is odd, E[ρ
(n,en)
t (p, q)] = 0. Thus, we let

n̄ :=
n + ñ

2
∈ N , (4.21)

and we define {uj}
2n̄+1
j=0 by

uj :=

{
kn−j if j ≤ n

k̃j−n−1 if j ≥ n + 1 .
(4.22)

Consequently,

E[ρ
(n,en)
t (f ; g)] = η2n̄ e2ǫt

∑

π∈Γn,en

∫
dα dα̃ eit(α−eα) (4.23)

∫
du0 · · · du2n̄+1 f(u0) g(u2n̄+1)J(un) δ(un − un+1)

n∏

j=0

1

E(uj) − α − iǫ

2n̄+1∏

ℓ=n+1

1

E(uℓ) − α̃ + iǫ

n∏

j=1

ω̂(uj − uj−1)

2n̄+1∏

j=n+2

ω̂(uj − uj−1) (4.24)

in these new variables.
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4.2. Graph expansion. Next, we take the expectation with respect to the random
potential. To this end, we introduce the set of Feynman graphs Γn,en, with n + ñ ∈
2N, as follows.

We consider two horizontal solid lines, which we refer to as particle lines, joined
by a distinguished vertex which we refer to as the ρ0-vertex (corresponding to
the term ρ0( a+

un
aun+1 ). On the line on its left, we introduce n vertices, and on

the line on its right, we insert ñ vertices. We refer to those vertices as interaction
vertices, and enumerate them from 1 to 2n̄ starting from the left. The edges between
the interaction vertices are referred to as propagator lines. We label them by the
momentum variables u0, ..., u2n̄+1, increasingly indexed starting from the left. To
the j-th propagator line, we associate the resolvent 1

E(uj)−α−iǫ if 0 ≤ j ≤ n, and
1

E(uj)−eα+iǫ if n + 1 ≤ j ≤ 2n̄ + 1. To the ℓ-th interaction vertex (adjacent to the

edges labeled by uℓ−1 and uℓ), we associate the random potential ω̂(uℓ − uℓ−1),
where 1 ≤ ℓ ≤ 2n̄ + 1.

A contraction graph associated to the above pair of particle lines joined by the
ρ0-vertex, and decorated by n + ñ interaction vertices, is the graph obtained by
pairwise connecting interaction vertices by dashed contraction lines. We denote
the set of all such contraction graphs by Γn,en; it contains

|Γn,en| = (2n̄ − 1)(2n̄ − 3) · · · 3 · 1 =
(2n̄)!

n̄!2n̄
= O(n̄!) (4.25)

elements.

If in a given graph π ∈ Γn,en, the ℓ-th and the ℓ′-th vertex are joined by a
contraction line, we write

ℓ ∼π ℓ′ , (4.26)

and we associate the delta distribution

δ(uℓ − uℓ−1 − (uℓ′ − uℓ′−1)) = E[ ω̂(uℓ − uℓ−1 ) ω̂(uℓ′ − uℓ′−1 ) ] (4.27)

to this contraction line.

4.3. Classification of graphs. For the proof of Theorem 3.1, we classify Feynman
graphs as follows; see [7, 15], and Figure 1.

• A subgraph consisting of one propagator line adjacent to a pair of vertices
ℓ and ℓ + 1, and a contraction line connecting them, i.e., ℓ ∼π ℓ + 1, where
both ℓ, ℓ + 1 are either ≤ n or ≥ n + 1, is called an immediate recollision.

• The graph π ∈ Γn,n (i.e., n = ñ = n̄) with ℓ ∼π 2n − ℓ for all ℓ = 1, . . . , n,
is called a basic ladder diagram. The contraction lines are called rungs of
the ladder. We note that a rung contraction always has the form ℓ ∼π ℓ′

with ℓ ≤ n and ℓ′ ≥ n + 1. Moreover, in a basic ladder diagram one always
has that if ℓ1 ∼π ℓ′1 and ℓ2 ∼π ℓ′2 with ℓ1 < ℓ2, then ℓ′2 < ℓ′1.

• A diagram π ∈ Γn,en is called a decorated ladder if any contraction is either
an immediate recollision, or a rung contraction ℓj ∼π ℓ′j with ℓj ≤ n and
ℓ′j ≥ n for j = 1, . . . , k, and ℓ1 < · · · < ℓk, ℓ′1 > · · · > ℓ′k. Evidently, a basic
ladder diagram is the special case of a decorated ladder which contains no
immediate recollisions (so that necessarily, n = ñ).



HOMOGENOUS FERMI GAS IN A RANDOM MEDIUM 15

• A diagram π ∈ Γn,en is called crossing if there is a pair of contractions
ℓ ∼π ℓ′, j ∼π j′, with ℓ < ℓ′ and j < j′, such that ℓ < j.

• A diagram π ∈ Γn,en is called nesting if there is a subdiagram with ℓ ∼π

ℓ + 2k, with k ≥ 1, and either ℓ ≥ n + 1 or ℓ + 2k ≤ n, with j ∼π j + 1 for
j = ℓ + 1, ℓ + 3, . . . , ℓ + 2k − 1. The latter corresponds to a progression of
k − 1 immediate recollisions.

We note that any diagram that is not a decorated ladder contains at least a crossing
or a nesting subdiagram.

Figure 1. An example of a Feynman graph, π ∈ Γn,en, with n = 4, ñ = 6. The
distinguished vertex is the ρ0-vertex.

4.4. Feynman amplitudes. Next, we average (4.20) with respect to the random
potential. Accordingly, E[

∏
ω̂(uℓ − uℓ−1) ] splits into the sum of all possible prod-

ucts of pair correlations, according to Wick’s theorem (we recall that {ωx} are
assumed to be i.i.d. Gaussian). This implies that

E[ ρ
(n,en)
t (f ; g) ] =

∑

π∈Γn,en

Ampπ(f ; g; ǫ; η) (4.28)

with

Ampπ(f ; g; ǫ; η) := η2n̄ e2ǫt

∫
dα dα̃ eit(α−eα) (4.29)

∫
du0 · · · du2n̄+1 f(u0) g(u2n̄+1)J(un) δ(un − un+1) )

δπ( {uj}
2n̄+1
j=0 )

n∏

j=0

1

E(uj) − α − iǫ

2n̄∏

ℓ=n+2

1

E(uℓ) − α̃ + iǫ
,

and ǫ = 1
t . Here,

δπ( {uj}
2n̄+1
j=0 ) :=

∏

ℓ∼πℓ′

δ(uℓ − uℓ−1 − (uℓ′ − uℓ′−1) ) (4.30)

is the product of the delta distributions associated to all contraction lines in π.
Moreover, we recall that

δ(un − un+1 )J(un) = ρ0( a+
un

aun+1 ) , (4.31)

see (4.8). We note that

u0 − u2n̄+1 = 0 , (4.32)

as one easily sees by summing up the arguments of all delta distributions. This
holds for any n, ñ and again implies (3.8).
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We observe that the rôle of (4.31) in (4.29) is analogous to that of the rescaled
Schwartz class function Jǫ in [7, 15], and that the test functions f , g here correspond

to the initial state φ̂0 in [7, 15].

4.5. Contribution from crossing and nesting diagrams. The amplitude of
any graph π ∈ Γn,en that contains either a crossing or a nesting can be estimated
by

lim
L→∞

|Ampπ(f ; g; ǫ; η)| ≤ ‖ f ‖2‖ g ‖2 ‖ J ‖∞ ǫ1/5 (log
1

ǫ
)4(cη2ǫ−1 log

1

ǫ
)n̄ , (4.33)

see [7, 15]. We note that similarly as in [7, 15], the bounds on all error terms will
only depend on the L2-norm of the initial condition, which in [7, 15] is normalized

by ‖φ̂0‖
2
2 = 1.

The existence of the the thermodynamic limit, as L → ∞, is obtained precisely
in the same manner as in [7, 8]. Let

Γc−n
n,en ⊂ Γn,en (4.34)

denote the subset of diagrams of crossing or nesting type. The number of graphs
in

Γc−n
2n̄ :=

⋃

n+en=2n̄

Γc−n
n,en (4.35)

is bounded by 2n̄n̄!.

Thus, the sum of amplitudes associated to all crossing and nesting diagrams is
bounded by

∑

1≤n̄≤N

∑

π∈Γc−n
2n̄

lim
L→∞

|Ampπ(f ; g; ǫ; η)| (4.36)

< (N + 1)! ǫ1/5 (log
1

ǫ
)4(cη2ǫ−1 log

1

ǫ
)N

noting that evidently, ‖f‖2, ‖g‖2 < C for f, g of Schwartz class, and recalling from
(3.7) that

‖ J ‖∞ ≤ 1 , (4.37)

which in particular is the case for J(p) = (1 + eβ(E(p)−µ))−1 associated to a Gibbs
state of the free Fermi field, for all 0 ≤ β ≤ ∞.

4.6. Remainder term and time partitioning. If at least one of the indices n, ñ
equals N + 1, we first use

|E[ ρ
(N+1,en)
t (f ; g) ] | ≤ (E[ ρ

(en,en)
t (g; g) ])1/2 (E[ ρ

(N+1,N+1)
t (f ; f) ])1/2 (4.38)

by the Schwarz inequality (assuming without any loss of generality that n = N +1).

If ñ ≤ N , the term E[ ρ
(en,en)
t (g; g) ] admits a bound of the form (4.47) below.

To bound E[ ρ
(N+1,N+1)
t (f ; f) ], corresponding to the remainder term in the

Duhamel expansion, we use the time partitioning method of [15]; see also [7]. To
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this end, we further expand the remainder term into, say, 3N additional Duhamel
terms, and to subdivide the time integration interval [0, t] into κ ∈ N equal segments

[0, t] =

κ⋃

j=1

[τj−1, τj ] , τj =
jt

κ
, (4.39)

whereby one obtains

f
(>N)
t = f

(N,4N)
t + f

(>4N)
t , (4.40)

where

f
(N,4N)
t :=

κ∑

j=1

4N−1∑

n=N+1

ei(t−τj)H
(1)
ω f (n,N,τj−1)

τj
, (4.41)

with

f (n,N,τ)
s (p) := (iη)n−N

∫

Rn−N+1

ds0 · · · dsn−N δ(

n−N∑

j=0

sj − (s − τ)) (4.42)

∫
du0 · · · dun−N δ(p − u0)

n−N∏

j=0

eisjE(uj)
n−N∏

ℓ=1

ω̂(uj − uj−1) f(un−N) ,

and

f̃ (n,N,τj−1)
s := i η V (1)

ω f (n,N,τj−1)
s . (4.43)

Moreover,

f
(>4N)
t =

κ∑

j=1

ei(t−τj)Hω

∫ τj

τj−1

ds ei(τj−s)H(1)
ω f (N,4N,τj−1)

s .

By the Schwarz inequality,

ρ
(N+1,N+1)
t (f ; f) ≤ R1(f, t) + R2(f, t) (4.44)

where

R1(f, t) := (3N)2 κ2 sup
N<n≤4N

1≤j≤κ

ρ0( a+(f (n,N,τj−1)
τj

) a(f (n,N,τj−1)
τj

) ) (4.45)

and

R2(f, t) := t2 sup
1≤j≤κ

sup
s∈[τj−1,τj ]

ρ0( a+(f̃ (N,4N,τj−1)
s ) a(f̃ (N,4N,τj−1)

s ) ) . (4.46)

By separating terms due to decorated ladders from those due to crossing and nesting
diagrams, one finds

lim
L→∞

E[ ρ0( a+(f (n,N,τj−1)
τj

) a(f (n,N,τj−1)
τj

) ) ]

= E[

∫
dp J(p) | f (n,N,τj−1)

τj
(p) |2 ]

≤ ‖ J ‖∞ E[ ‖ f (n,N,τj−1)
τj

‖2
2 ] (4.47)

≤ ‖ f ‖2
2 ‖ J ‖∞

[ (c ǫ−1 λ2)

(N !)1/2
+ ǫ1/5 (log

1

ǫ
)4(cλ2ǫ−1 log

1

ǫ
)8N

]
.
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Observing that for a time integral on the interval [τj−1, τj ] of length t
κ , the param-

eter ǫ = t−1 can be replaced by κǫ = ( t
κ )−1, one gets

lim
L→∞

E[ ρ0( a+(f̃ (N,4N,τj−1)
s ) a(f̃ (N,4N,τj−1)

s ) ) ]

≤ ‖ J ‖∞ E[ ‖ f̃ (N,4N,τj−1)
s ‖2

2 ]

≤ ‖ f ‖2
2 ‖ J ‖∞

[ ((4N)!)

κ2N
(log

1

ǫ
)4(cλ2ǫ−1 log

1

ǫ
)8N

]
. (4.48)

The crucial gain of a factor κ−2N expresses that the probability for the occurrence
of O(N) collisions in a short time interval of length t

κ is small.

One obtains that if at least one of the indices n, ñ equals N + 1,

lim
L→∞

|E[ρ(n,en)(f ; f)]| ≤ ‖ f ‖2
2 ‖ J ‖∞

[ N2 κ2 (c ǫ−1 λ2)

(N !)1/2

+
(

N2 κ2 ǫ1/5 + ǫ−2 κ−N
)

((4N)!) (log
1

ǫ
)4(cλ2ǫ−1 log

1

ǫ
)8N

]
, (4.49)

where κ remains to be chosen. The first term on the right hand side of (4.49)
bounds the contribution from all basic ladder diagrams contained in the Duhamel
expanded remainder term. For a detailed discussion, we refer to [7, 8, 15].

4.7. Choosing the constants. We recall from (4.37) that ‖ J ‖∞ ≤ 1. Moreover,
‖ f ‖2, ‖ g ‖2 < C for all test functions f , g ∈ S(Td). As in [7, 8, 15], we choose

t =
1

ǫ
=

T

η2

N =
log 1

ǫ

10 log log 1
ǫ

κ = (log
1

ǫ
)15 . (4.50)

Then,

ǫ−1/11 < N ! < ǫ−1/10

κN > ǫ−3/2 (4.51)

and consequently,

(4.36) , (4.48) < η1/15 (4.52)

and

(4.49) < η1/4 (4.53)

for η sufficiently small. It follows that the sum of all crossing, nesting, and remain-
der terms is bounded by η1/20.

4.8. Resummation of decorated ladder diagrams. Let Γ
(lad)
n,en ⊂ Γn,en denote

the subset of all decorated ladders based on n + ñ vertices. Then, for T > 0, let

Ω
(2;η)
T (f ; g) :=

N(ǫ(T,η))∑

n̄=0

∑

n+en=2n̄

∑

π⊂Γ
(lad)
n,en

lim
L→∞

Ampπ(f ; g; ǫ(T, η); η) (4.54)
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with ǫ(T, η) = η2

T . In the hydrodynamic limit η → 0 with t = 1
ǫ = T/η2, one

obtains

Ω
(2)
T (f ; g) := lim

η→0
Ω

(2;η)
T (f ; g) =

∫
dp FT (p) f(p) g(p) , (4.55)

where

FT (p) := lim
η→0

F
(η)
T (p) (4.56)

= e−2πT
R

du (E(u)−E(p))
∞∑

n̄=0

∫

R
n̄+1
+

dS0 · · · dSn̄ δ(T −
n̄∑

j=0

Sj)

∫
du0 · · · dun δ(p − u0)

( n̄∏

j=1

2πδ(E(uj) − E(uj−1))
)

F0(un) ,

with initial condition

F0(u) = lim
L→∞

J(uΛ∗
L
) = lim

L→∞

1

Ld
ρ0( a+

uΛ∗
L

auΛ∗
L

) (4.57)

(for the definition of uΛ∗
L
, see Theorem 3.1). It can be straightforwardly verified

that (4.56) is a solution of the Cauchy problem for the linear Boltzmann equation
(3.12), as asserted in Theorem 3.1.

5. Proof of Theorem 3.2

The assertion of Theorem 3.2 follows from a straightforward application of the
results in the landmark paper [10, 11, 12] of Erdös, Salmhofer, and Yau. In [10,
11, 12], a diffusive scaling limit is performed for the 1-particle Anderson model on
Z3 with weak disorders where the scaling between the microscopic and macroscopic
time and position variables is given by

t = η2+2δT , x = η2+δX , (5.1)

for a constant 0 < δ < 1
2000 . This scaling implies that first, a kinetic scaling limit

is performed with a scaling factor η2, whereupon one arrives at the Boltzmann
evolution given in Theorem 3.3. Subsequently, one carries out a diffusive scaling
where time scales with η2δ while position scales with ηδ. The heat equation thereby
obtained corresponds to the diffusive limit of the Boltzmann equation in Theorem
3.1. The main task carried out in [10, 11, 12] is to prove that even up to a time
of order O(η−2−2δ), all quantum fluctuations (determined by crossing and nesting
diagrams) around the semiclassical dynamics (determined by decorated ladder di-

agrams) are bounded by O(ηδ′

) for some δ′ > 0. This is accomplished by a subtle
classification of Feynman graphs argument, combined with novel estimates related
to restriction results in Harmonic Analysis, for surfaces with vanishing Gauss cur-
vature on embedded curves, [10].

In our case, the sum over decorated ladders provides an equilibrium solution of
the macroscopic dynamics, hence the estimate (3.21) asserted in Theorem 3.2 is a
bound on the sum of crossing and nesting terms, and on the convergence rate of
the sum of decorated ladder terms.
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6. Proof of Theorem 3.3

Because both K (in the definition of ρ0) and the random Hamiltonian Hω are
bilinear in a+, a (of the form

∫
du1 du2 k(u1, u2) a+

u1
au2), the same is true for

K(t) := eitHω K e−itHω , (6.1)

with probability 1. Therefore,

ρt( · ) =
1

ZK
Tr( e−K(t) ( · ) ) (6.2)

is quasifree with probability 1 (see, for instance, [3]). Thus, for r, s ∈ N,

ρt( a+(f1) · · · a
+(fr) a(g1) · · · a(gs) ) = δr,s det

[
ρt( a+(fj)a(gℓ) )

]r

j,ℓ=1
, (6.3)

where fj, gℓ ∈ S(Td) belong to the Schwartz class. In particular, we can set r = s.

We expand the determinant into

det
[
ρt( a+(fj) a(gℓ) )

]r

j,ℓ=1
(6.4)

=
∑

s∈Sr

(−1)sign(s)
r∏

j=1

ρt( a+(fj) a(gqs(j)
) ) ,

where Sr is the symmetric group of degree r. We claim that for T > 0 and t = T
η2 ,

and any choice of fj , gℓ ∈ S(Td),

lim
L→∞

∣∣∣ E

[ r∏

j=1

ρT/η2( a+(fj)a(gqs(j)
) )

]
−

r∏

j=1

E[ ρT/η2 ( a+(fj) a(gqs(j)
) ]

∣∣∣ < ηδ ,(6.5)

for a constant δ > 0 independent of r, s ∈ Sr, η, and T , and for η > 0 sufficiently
small. This immediately implies that, for every fixed r < ∞,

lim
L→∞

∣∣∣ E

[
ρT/η2( a+(f1) · · · a

+(fr) a(g1) · · · a(gr) )
]

(6.6)

− det
[

E[ ρT/η2( a+(fj)a(gℓ) ) ]
]r

j,ℓ=1

∣∣∣ < r! ηδ

converges to zero as η → 0.

This implies that

Ω
(2r)
T ( f1, . . . , fr ; g1, . . . , gr ) (6.7)

:= lim
η→0

lim
L→∞

E[ρT/η2 ( a+(f1) · · · a
+(fr) a(g1) · · ·a(gr) )]

is quasifree, i.e.,

Ω
(2r)
T ( f1, . . . , fr ; g1, . . . , gr ) = det

[
Ω

(2)
T ( fi ; gj )

]
1≤i,j≤r

, (6.8)

where

Ω
(2)
T ( f ; g ) =

∫
dp FT (p) f(p) g(p) . (6.9)

The function FT (p) solves the linear Boltzmann equation with initial condition
F0(p), as given in Theorem 3.1.
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6.1. Proof of (6.5). The inequality (6.5) follows from a straightforward applica-
tion of the main results in [8] where we refer for details. In this section, we shall
only outline the strategy. The expectation

lim
L→∞

E

[ r∏

j=1

ρt( a+(fj) a(gs(j)) )
]

(6.10)

can be represented by a graph expansion as follows. We expand each of the factors

ρt( a+(f)a(g) ) =

N+1∑

n,en=1

∫
dp J(p) f

(n)
t (p) g

(en)
t (p) (6.11)

separately into a truncated Duhamel series of level N , using the same definitions
as in (4.16). For the remainder term (where at least one of the indices n, ñ equals
N + 1), we subdivide the time integration interval [0, t] into κ pieces of length t

κ .

For the expectation (6.10), we introduce the following extension of the classes of
Feynman graphs discussed for the proof of Theorem 3.1, see also Figure 2. For r > 1,
we consider r particle lines parallel to one another, each containing a distinguished
ρ0-vertex separating it into a left and a right part. Enumerating them from 1 to
r, the j-th particle line contains nj interaction vertices on the left of the ρ0-vertex,
and ñj interaction vertices on its right. We note that for r > 1, only

∑r
j=1(nj + ñj)

has to be an even number, but not every individual

n̂j := nj + ñj . (6.12)

On the j-th interaction line, we label the propagator lines by momentum variables

u
(j)
0 , . . . , u

(j)
bnj+1, with indices increasing from the left.

A contraction graph of degree {(nj, ñj)}
r
j=1 is obtained by connecting pairs of

interaction vertices by contraction lines. We denote the set of contraction graphs
of degree {(nj , ñj)}

r
j=1 by Γ{(nj ,enj)}r

j=1
. If the ℓ-th vertex on the j-th particle line

is connected by a contraction line to the ℓ′-th vertex on the j′-th particle line, we
write

(j; ℓ) ∼π (j′; ℓ′) . (6.13)

To a graph π ∈ Γ{(nj ,enj)}r
j=1

, we associate the Feynman amplitude

Ampπ({fj, gs(j)}; η; T ) := η2
P

1≤j≤r(nj+enj) e2rǫt
r∏

j=1

∫
dαj dα̃j eit(αj−eαj)

∫
du

(j)
0 · · ·du

(j)
bnj+1 fj(u

(j)
0 ) gs(j)(u

(j)
bnj+1)J(u(j)

nj
) δ(u(j)

nj
− u

(j)
nj+1 ) (6.14)

δπ( {u
(j)
j }

bnj+1
j=0 )

nj∏

ℓ=0

1

E(u
(j)
ℓ ) − αj − iǫ

bnj∏

ℓ′=nj+2

1

E(u
(j)
ℓ′ ) − α̃j + iǫ

,

where

ǫ =
1

t
=

η2

T
(6.15)
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for T > 0. The delta distribution

δπ( {u
(j)
j }

bnj+1
j=0 ) =

∏

(j;ℓ)∼π (j′;ℓ′)

δ(u
(j)
ℓ − u

(j)
ℓ−1 − (u

(j′)
ℓ′ − u

(j′)
ℓ′−1) ) (6.16)

is the product of delta distributions associated to all contraction lines in π.

Figure 2. Order r Feynman graph. The particle line indexed by j = 3 is discon-
nected.

6.1.1. Completely disconnected graphs. The subclass

Γdisc
{(nj ,enj)}r

j=1
⊂ Γ{(nj ,enj)}r

j=1
(6.17)

of completely disconnected graphs of degree {(nj , ñj)}
r
j=1 consists of those graphs

in which contraction lines only connect interaction vertices on the same particle
line.
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It is clear that

lim
L→∞

∑

0≤nj,enj≤N

j=1,...,r

∑

π∈Γdisc
{(nj,enj)}r

j=1

Ampπ({fj , gs(j)}; η; T ) (6.18)

= lim
L→∞

r∏

j=1

N∑

nj ,enj=1

E[

∫
dp J(p) fj,T/η2(p) gs(j),T/η2 (p) ]

= lim
L→∞

r∏

j=1

(
E[ ρT/η2 ( a+(fj)a(gs(j)) ) ] + O(ηδ)

)
, (6.19)

according to our proof of Theorem 3.1. The term of order O(ηδ) accounts for
the remainder term associated to the j-th particle line (i.e., the terms involving

E[ ρ
(nj ,enj)

T/η2 (p, q) ] where at least one of the indices nj , ñj equals N). Thus, for any

fixed r ∈ N, we obtain

lim
η→0

lim
L→∞

∑

0≤nj,enj≤N

j=1,...,r

∑

π∈Γdisc
{(nj,enj)}r

j=1

Ampπ({fj, gs(j)}; η; T )

=

r∏

j=1

Ω
(2)
T ( fj ; gs(j) ) . (6.20)

That is, the sum over completely disconnected graphs yields the corresponding
product of averaged 2-point functions in the hydrodynamic limit.

6.1.2. Non-disconnected graphs. We refer to the complement of the set of com-
pletely disconnected graphs in Γ{(nj ,enj)}r

j=1
,

Γn−d
{(nj ,enj)}r

j=1
:= Γ{(nj ,enj)}r

j=1
\ Γdisc

{(nj ,enj)}r
j=1

, (6.21)

as the set of non-disconnected graphs. It remains to prove that the sum over non-
disconnected graphs, combined with the remainder terms, can be bounded by O(ηδ),
for L sufficiently large.

The condition required in [8] for the estimate analogous to (6.5) to hold is that
for the initial condition φ0 (corresponding to the test functions fj , gℓ in our case)
of the random Schrödinger evolution studied in [8], a ”concentration of singularity
condition” is satisfied (that is, singularities in momentum space are not too much
“spread out” in the limit η → 0). It states that in frequency space T

d,

φ̂0 = φ̂
(reg)
0 + φ̂

(sing)
0 , (6.22)

where

‖ φ̂
(reg)
0 ‖∞ < c (6.23)

and

‖ |φ̂
(sing)
0 | ∗ |φ̂

(sing)
0 | ‖2 < c′ η3/2 (6.24)

are satisfied uniformly in L, as L → ∞.
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In the present case, we have to require that fj, gℓ satisfy the concentration
of singularity condition. This is, however, evidently fulfilled since fj , gℓ are η-
independent Schwartz class functions (in contrast, the initial states considered in
[8] are of WKB type, and scale non-trivially with η.)

It is proven in [8] that the amplitude of every non-disconnected graph with
nj, ñj ≤ N for j = 1, . . . , r, is bounded by

sup
π∈Γn−d

{(nj,enj)}r
j=1

∣∣ Ampπ({fj , gs(j)}; η; T )
∣∣ (6.25)

< ǫ1/5 (c η2 ǫ−1 log
1

ǫ
)

r
2

Pr
j=1 bnj (log

1

ǫ
)4r , (6.26)

where we recall that ǫ = 1
t = η2

T for T > 0. This key estimate is a factor ǫ1/5

smaller than the bound on the sum of disconnected graphs; this improvement is
obtained from exploiting the existence of at least one contraction line that connects
two different particle lines; see [8].

The number of non-disconnected graphs is bounded by

∣∣Γn−d
{(nj ,enj)}r

j=1

∣∣ ≤ (

r∑

j=1

n̂j)! ≤ (2rN)! (6.27)

where n̂j = nj + ñj . Therefore, the sum over all non-disconnected graphs with
0 ≤ nj , ñj ≤ N is bounded by

∑

1≤j≤r

∑

0≤nj ,enj≤N

∑

π∈Γn−d

{(nj,enj)}r
j=1

∣∣ Ampπ({fj, gs(j)}; η; T )
∣∣ (6.28)

≤ ((2rN)!)2ǫ1/5 (c η2 ǫ−1 log
1

ǫ
)rN (log

1

ǫ
)4r (6.29)

since #{(nj , ñj)}
r
j=1 |

∑
j n̂j = m } ≤ m!.

6.1.3. Duhamel remainder term. In case at least one of the indices nj or ñj equals
N + 1, the following argument can be applied. Clearly, from a Hölder estimate of
the form ‖h1 · · ·hs‖1 ≤ ‖h1‖s · · · ‖hs‖s with respect to E, we have

∣∣∣ E

[ r∏

j=1

ρ
(nj ,enj)
t (f ; g)

] ∣∣∣ ≤

r∏

j=1

E[ | ρ
(nj ,enj)
t (f ; g) |2r ]

1
2r . (6.30)

Here, we have used an exponent 2r instead of r because then, even for r odd, an
absolute value of the form |z|2r can be replaced by a product of the form zrzr,
where z ∈ C.

We make a choice of constants

t =
1

ǫ
=

T

η2

N =
log 1

ǫ

10r log log 1
ǫ

κ = (log
1

ǫ
)15r , (6.31)
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similarly as in Section 4.7 of the proof of Theorem 3.1.

If nj or ñj equals N + 1, we can use the bounds (4.52) and (4.53).

If both n, ñ ≤ N , we use the a priori bound
∑

n+en=2n̄

∑

π∈Γn,en

lim
L→∞

E[ | ρ
(n,en)
t (f ; g) |2r ]

1
2r (6.32)

<
[ 2r∑

ℓ=0

(2r

ℓ

)((cη2ǫ−1)n̄

(n̄!)1/2

)ℓ

ǫ1/5 ((2r − ℓ)n̄)!
(

(log
1

ǫ
)4(cη2ǫ−1 log

1

ǫ
)n̄

)2r−ℓ] 1
2r

<
(cη2ǫ−1)n̄

(n̄!)1/2
+ η

1
10 (6.33)

The factor (cη2ǫ−1)ℓn̄

(n̄!)ℓ in [· · · ] accounts for ℓ basic ladders on ℓ copies of Γdisc
n,en ,

while the remaining factor accounts for all other (not necessarily non-disconnected)
contractions on the remaining 2r − ℓ particle lines; for details, see [7, 8, 15].

Let us without any loss of generality assume that n1 = N + 1. Then, keeping n1

fixed and summing over the remaining indices ñ1 and nj , ñj, with j = 2, . . . , r, we
find

∑

0≤n2,nj,enj≤N+1

j=2,...,r

r∏

j=1

E[ | ρ
(nj ,enj)
t (f ; g) |2r ]

1
2r

< η
1
15

[ N∑

n̄=0

(cη2ǫ−1)n̄

(n̄!)1/2
+ η

1
10

]2r−1

(6.34)

where the factor η
1
15 accounts for the remainder term indexed by n1 = N + 1. We

conclude that the sum over all terms (6.30) which contain at least one nj or ñj

equalling N + 1 (i.e., which contain at least one Duhamel remainder term) can be
bounded by

Cr η
1
15 (6.35)

for a constant C independent of η and r.

Combined with

(6.28) < η
1
20 , (6.36)

which one easily verifies, this completes the proof of Theorem 3.4. For more details
addressing the arguments outlined here, we refer to [8].
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