STABILITY IN HIGH DIMENSIONAL STEEP REPELLING POTENTIALS.

A. RAPOPORT, V. ROM-KEDAR AND D. TURAEV

ABSTRACT. The appearance of elliptic periodic orbits in familiesiedimensional smooth
repelling billiard-like potentials that are arbitrarily steep is established for any finkar-
thermore, the stability regions in the parameter space scale as a powertlavaind in the
steepness parameter. Thus, it is shown that even though these systems have a uniformly hy-
perbolic (albeit singular) limit, the ergodicity properties of this limit system are destroyed

in the more realistic smooth setting. The considered example is highly symmetric and is
not directly linked to the smooth many particle problem. Nonetheless, the possibility of
explicitly constructing stable motion in smoathdegrees of freedom systems limiting to
strictly dispersing billiards is now established.

1. INTRODUCTION

At sufficiently high temperature, many-particle gas systems show fast decay of correla-
tion, and, for most initial configurations, the time averages of this system and the appro-
priately defined ensemble averages coincide. This fundamental observation of Boltzmann
lead to the development of the theory of statistical mechanics. It was further suggested
by Boltzmann that at such temperatures the particles interaction resembles that of hard
spheres, independent of the details of their effective potentials, hence, that a gas of hard
spheres supplies an instructive universal model for studying statistical properties of gases.
Notably, Boltzmann considered the many-particle case. Krylov explained that the fast de-
cay of correlations of the hard sphere model is caused by the instability associated with the
dispersive nature of the collision between the hard spheres, similar to the instabilities that
appear in geodesic flows with negative curvature [15]. Sinai found that this instability ap-
pears in any dispersing billiardeometry (later on called Sinai billiarjjsn any dimension,
and set the mathematical foundation for rigorously studying such systems. Sinai proved,
in his seminal works [30, 31], that such systems are ergodic and hyperbolic in the two
dimensional billiard case. He further stated (the Sinai-Boltzmann conjécthes if one
considers the motion dfl hard spheres oné-dimensional torus (an= Nd dimensional
system), this motion will be mixirfgfor anyd > 2 andN > 2. In particular, the Sinai-
Boltzmann conjecture means that for adyd > 2, ergodicity is achieved independently
of the number of particles because of the universal nature of the instability associated with
the convex particles collision.

1The behavior of a point particle traveling with a constant speed in a ré@jiemdergoing elastic collisions
at the region’s boundary, is known as the billiard problem. The billiard is dispersing if its boundary is piecewise
strictly concave when looking from the billiards’s interior.

2strictly dispersing billiards for which the smooth boundary components intersect at positive angles (no cusps
are allowed).

3Proved initially for theN = d = 2 by Sinai[31], then for th&l = 2,d = 3 by [32] whereas the proofs for the
most general higher dimensional cases appeared only recently [11, 12, 13, 14, 26, 25, 29, 27, 28]

4on the reduced manifold, eliminating the total energy and momenta conservation laws.
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We propose that the study of real particles, with smooth potentials, or, more generally,
in studying Hamiltonians with smooth stegglimensional potentials, may shed light on
the role of dimensionality in this problem. Thus, to formalize this notion, we consider a
Hamiltonian
X

(1.1 H= +W(x;€)

whereW(x;€) is a smooth potential that becomes a hard-wall potetitighe limite — O:

) 0 xeD\oD,
Wixe) sjo{ ¢ xedD.

In general, studying (1.1) for a finieevalue is a formidable task. Boltzmann'’s insight and
Sinai’s theory, in which the-dimensional nonlinear system is replaced by the study of bil-
liards, serve as a great simplification. To mimic the soft nature of the particles interactions
and still obtain a tractable system, finite-range axis-symmetric potentials were introduced.
It was established that these systems may be studied by a modified (non-smooth) billiard
map, and thus that in two dimensions some configurations remain ergodic [30, 16, 6, 3],
while other configurations may possess stability islands [2, 5]. More recently, some higher
dimensional configurations were proved to be hyperbolic [4].

Yet, it was noticed in [34] that the behavior of any smooth approximation has to be
fundamentally different from the discontinuous behavior of the billiards. Indeed, in math-
ematical terms the Krylov-Sinai instability translates to the existence of a universal hy-
perbolic structure in any dispersing billiard problem. More precisely, the family of cones
dx-dp> 0is forward invariant with respect to the billiard flow in the dispersing case in-
dependent of the details of the billiard’s shape. After each reflection from the billiard’s
boundary, the cones are mapped into each other with flipped orientation (the normal com-
ponent of the momentump changes sign, while all other components are preserved), see
[31, 36, 34]. In particular, nearby orbits experiencing different number of reflections (i.e.
near tangencies or near corners), have unstable manifolds with opposite orientability prop-
erties — one orientable and the other non-orientable [34]. Such a discontinuous dependence
of the unstable manifold on initial conditions in smooth uniformly hyperbolic systems is
impossible.

On the other hand, the hyperbolic structure near regular orbits of the billiard (e.g. pe-
riodic orbits which are bounded away from the singularity set) is typically inherited by
steep billiard-like potentials [34, 21]. It follows that the Krylov-Sinai instability mech-
anism indeed controls the smooth dynamics but only for some limited time scale, after
which the non-hyperbolic behavior which stems from the billiard singularities will prevail.
Therefore, we propose that the dependence of this instability time scale on the number of
particles and other parameters is the most relevant question in the study of many-particle
systems.

One concludes then, that in order to study the dynamics of real particles, one needs to
study (1.1) for smooth steep potentials, utilizing the theoretical advancements regarding
the singular billiard limit as a tool in this study. This approach requires a well-defined
limiting procedure that is well developed by now [17, 22, 21].

This formulation was first introduced in the most general two-dimensional setting of
Sinai billiards (not necessarily axis-symmetric, nor of finite range) in [22]. After proving

Sherec > 0 may be finite or infinite, and we always take the particle’s endrgio be positive and strictly
smaller thart so that the particle cannot croais.
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that regular hyperbolic orbits of the billiard persist in the smooth flow, two mechanisms
by which the billiards ergodicity property is destroyed were identified [22, 35]. One such
mechanism is a tangency: periodic orbits or homoclinic orbits which are tangent to the
billiard’s boundary produce islands of stability [22]. Another mechanism are corners — a
sequence of regular reflections which begins and ends in a corner (tercoedes poly-

gon) may, under some prescribed conditions, produce stable periodic orbits [35]. In both
cases it was shown that a two-parameter family of potenfiélls 1, €) (¢ is the steepness
parameter angd is responsible for a regular continuous change of the billiard’s geometry)
possesses a wedge in thee)-plane, at which the Hamiltonian flow has an elliptic pe-
riodic orbit. This orbit limits to the tangent billiard orbit/ the corner polygoreas O.
These findings were shown to correctly describe the motion of cold atoms in atom-optics
billiards in laboratory experiments [10].

What would one expect in the multi-dimensional case? Can there be other type of uni-
versal instabilities, besides the Krylov-Sinai one, which makes such systems ergodic for
sufficiently steep potentials? Namely, would the billiard’s ergodicity be preserved for
dimensional steep billiard-like potentials wher> 3? While there are some conjectures
regarding the generic appearance of islands in smoakkgrees of freedom systems, re-
sults of this nature appeared only in the cas€bflows andassumehe systems are not
partially hyperbolic (see [33, 19, 1, 24]), which is the heart of the problem here. In fact,
the above described mechanism of orientation flipping, which corresponds to a direct gen-
eralization of our previous two-dimensional results (e.g. [22]) to dispersiigrensional
billiards, will produce orbits which have one pair of imaginary multipliers (ruining hyper-
bolicity), yet all the othen — 2 pairs can still correspond to hyperbolic behavior. Namely,
such a direct generalization will ruin hyperbolicity yet it is not necessarily going to ruin
ergodicity in the smooth case, as the existence of some uniform partially hyperbolic struc-
ture is not ruled out by this mechanism. This intuition might lead one to believe that the
mechanisms described in [22, 35] for ruining ergodicity are inherently two-dimensional.

Recently, it was demonstrated numerically that regions of effective stability, hereafter
called islands, are created in steep dispersing three-dimensional billiards for what appears
to be arbitrarily smalk [20]. Before further describing this construction and its current
generalization to tha degrees of freedom case, let us discuss the issue of islands in the
multi-dimensional context.

As opposed to the two-dimensional situation, due to the possible existence of Arnold
diffusion, one cannot claim that in the vicinity of non-degenerate non-resonant elliptic orbit
there exists an invariant open neighborhood (on energy surfaces or on the full phase space).
Nonetheless, by KAM theory, near such elliptic orbits there exigiesitive measure set
foliated by KAM-tori that corresponds to trajectories which renfaievernear the elliptic
trajectory. Furthermore, while other trajectories in this neighborhood may perhaps escape,
this can take exponentially long time [18, 7] (namely, such islands may correspond to high-
dimensional dynamical traps, generalizing the 2d stickiness phenomena). Thus, hereafter,
an island in the multi-dimensional context will be defined as the small neighborhood of the
elliptic orbit which is effectively stable [7], bearing in mind that only in the two degrees of
freedom case this neighborhood is known to correspond to an invariant set.

The islands constructed in [20] are produced by a highly symmetric orbit of the smooth
system which visits the vicinity of a symmeti3ecorner. The3-corner is a point at which
three smooth spheres of identical radius intersect in a symmetric fashion, so that only
one characteristic paramefeicontrols the angle of their intersectiop€ 0 corresponds
to a cusp whereag = 1 corresponds to a complete overlap of the spheres, see Figure
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1). It is demonstrated numerically in [20] that for any valueedhere are intervals gf
values for which the symmetric orbit is elliptic. Here, we generalize this example te the
dimensional case, for arbitrary larggproving, that for certain classes of smooth repelling
potentials (such as the power-law family) the smooth symmetric orbit which enters the
vicinity of ann-corner has, for arbitrary smal] intervals ofu values for which it is elliptic

(all its 2n multipliers belong to the unit circle). Furthermore, these intervals converge to
positivep values and their length, for sufficiently smalalues scales as a functionaf.

In other words, we show that for arbitrarily largewe can construat-dimensional Sinai
billiards and corresponding families of billiard-like smooth potentials, where, for arbitrary
steepness the smooth flow possesses elliptic behavior. Our main result may be summarized
by the following theorem:

Theorem 1. There exist families of analytic billiard potentials which limit (in the sense
of [35]), as the steepness parameter- O, to Sinai billiards inn-dimensional compact
domain$, yet, for arbitrary smalle, the corresponding smooth Hamiltonian flows have
stable (elliptic) periodic orbits.

Proof. We construct specific families ofdimensional billiards depending on a parameter

Y, such that the billiards are Sinai billiards for apy> 0 depending smoothly op for

pe (0,1) (Section 2). We then consider families of potentiléx; u,€) which limit as

€ — 0, for any fixedy, to these billiards. We establish that for sufficiently sneathese
Hamiltonian flows have a periodic orhift, 1, €) and we prove that the Floquet multipliers

of this orbit may be found by solving a linear second order equation with a time-periodic
coefficient (Section 3). This coefficient dependsipoa and n as parameters, and it ap-
proaches a sum of delta-like functions&s- 0. For certain classes & (x;,€) (e.g.
whenW(x; i, €) decays as a power-law in the distance to the scatterers) we are able to ana-
lyze the asymptotic behavior of the emerging linear second order equation: we prove that
for these potentials there are countable infinity valueg, @he of them given by% (i.e.

bounded away fronu = 0, 1), from which a wedge of stability region in thg, €) plane
emerges. Namely, we prove that for amyfor arbitrary smalk, there exists an interval of
pvalues at whicly(t, i, €) is linearly stable (Lemma 1 in Section 3). O

In particular, this theorem proves that such systems are not partial hyperbolic.

The paper is ordered as follows; we first construct the geometry of the limiting bil-
liard domain. The construction of the billiards boundary, by intersecting sefreral)-
dimensional spheres R, is valid for any finite dimension. Then, we establish that in the
smooth case, for sufficiently smallthere exists a symmetric periodic orgit) which cor-
responds to the one dimensional motion along the diagonal (in-thimensional space),
and that this motion may be found by integrating a one-degree of freedom system which is
independent of. Next we show that the linear stability analysis about this motion is gov-
erned by a single second order linear differential equation with a time periodic coefficient
in which n appears as a parametein the third section we construct asymptotic solutions
to this equation showing that for smaih it has intervals of parameter values at which
y(t) is linearly stable, thus establishing the main theorem. Precise estimates of the length
of these intervals are found for the power-law case. In the last section we integrate nu-
merically these equations and compare the numerically found wedges of stability with the
corresponding asymptotic estimates. Finally, we demonstrate the appearance of islands of

Gin particular, for any finiten such billiards are hyperbolic, ergodic and mixing.
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FIGURE 1. The billiard geometry in the two-dimensional and three-
dimensional cases.

effective stability by numerical integration of the symmetrid.o.f. system and of a slight
asymmetrigperturbation of it for a fewn values(n = 2,3,10) for two different types of
potential families — the power-law family and the Gaussian family (e.g. we present islands
of effective stability of dispersing, repelling, nonlinear 20 dimensional system).

2. CONSTRUCTION OF THE BILLIARD AND THE LIMITING SMOOTH FLOWS

2.1. The billiard geometry. Define then-dimensional billiard’s domai as the region
exterior to(n+ 1) spheresS’1: one spheré& 1 of radiusRwhich is centered on the diag-
onal at a distanck from the origin, i.e. at the poin\%(L, ..,L), andn sphereg,...,I,

of radiusr, each centered along a different principle axis at a disténed <r, /-3
from the origin, i.e. the spherig is centered ato,...,l,...,0) (Figure 1). To obtain a
N——

bounded domain, we enclose this construction b)ll( a lardiemensional hyper-cube cen-
tered at the origin (we will look only at the local behavior near the diagonal connecting the
radiust sphered 1,...,I, to the radiusk spherd ;1 and thus we will not be concerned
with the form of the outer boundary). The diagonal lifE&...,&) intersects the radius-

R sphere in the normal direction and the sphdres.., I, at their common intersection
pointP; = (&, ...,&c), where (Figure 1):

(2.1) EC=L+\% r2—I2(1—%)

Thus, forL > R+ /n &, it defines acorner ray

= {(a,...,i)l = (Ec’l_\_fnR>}

that starts at the corné, gets reflected from the radil&sphere and returns . (and
then get stuck as there is no reflection rule at the corner).

Notice that the dynamics in the billiard is unchanged when all the geometrical parame-
ters are proportionally increased, hence, with no loss of generality, we may=sktaind
regard all the other parameters as scaled.Hyis convenient for us to express the scaled
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| andL through

] 112 L-R—yN&

Note thatp governs the angle created by the intersection ofrtlspheres at the corner
point; atp = 0 then spheres are tangent to each other, namely the corner becomes a cusp.
The casqi= 1/,/n corresponds tb=r, hence the spheres intersect at a right angle. The
casep = 1 corresponds td = 0, namely the limit at which theé spheres collapse to a
single sphere of radiuswhich is centered at the origin. In this case the diagonal becomes
a hyperbolic periodic orbit of the billiard (note that the limit- 1 is singular: ajt= 1the
billiard’s boundary is smooth, whereas for plE (0,1) it has a corner).

2.2. Smooth motion — the diagonal periodic orbit. In this section we establish that for
sufficiently smalle the diagonal corner ray of the billiard flow transforms into a peri-
odic orbit of the smooth flow. Consider the smooth motion in the scaled billiard region,
governed by the Hamiltonian (1.1), i.e.

n A2

2.3) H= %i FW(Xe, %)
with

R Qk Qn+1
(2.4) Wixe) =1 3 v (E) v (E)

K
whereQx(x) (the pattern function of [23, 21]) is the distance frarno I'y:

n
Q(X) = ¢/ leiz—ZkaJrlz —1 for k=1,...,n
(2.5) =

n

Q1= Y (i~ 52 ~R

(recall that we scale= 1). TheCkt1 (k > 1) smooth functionV satisfies az > 0
(2.6) V(z) > 0andV’(z) <0,
so the potentials are repelling. We further assumeWar) decays sufficiently rapidly

for largez (with accordance to the assumptions in [23, 21, 35]), so there existssonte
such that

1
As atypicalV, one can take the power-law potentials:
a
(2.8) V(z) = (i) , a>0,

the Gaussian potential
(2.9) V(2) = exp(—7Z),
or the exponential potential
V(2) = exp(-2),
which naturally appear in applications (e.g. the Gaussian form arises in the problem of

cold atomic motion in optical traps [10], whereas the power-law and exponential potentials
are abundant in various classical models of atomic interactions).
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The potentiaW(x; €) given by (2.4),(2.5) is symmetric with respect to any permutation
of thex’s (i = 1,...,n). This strong symmetry enables us to progress with the analysis
for anyn. Notice that it is easy to break this symmetry, by, for example, multiplying the
termsV (Qk(x)/€) in (2.4) by slightly different coefficients. Such a modification is studied
numerically in Section 4.2.

Now, consider the smooth motion along the diagogat - -- = x, = &. By the symme-

try,

O W, 5= 2w, gfori=1...n

o &) =0 yenes =1...,n
sothe plangx; = - =X, =&, pr =+ = Pn = E} is an invariant submanifold of the
phase space. It follows from the conservation of energy that

éz

(2.10) H :nE +WC(E,...,%),

for the orbits in this manifold; by differentiating this identity we obtain the following
equation of motion on the invariant plane:

. 0
(2.11) g+ aTqW(E’ ..., &) =0.
Let

(2.12) v=1ynE-%&),

whereé. is defined by (2.1) withh = 1. The energy conservation law (2.10) at the fixed
energy leveh/2 reads as

h V2
(2.13) 5= =5 +Werr(v;€,1,d),
2 2
where the effective potential is as follows (see (2.4),(2.5) and (2.12)):
/ 2 _ —
(2.14) Weff:v< 1+aw+v l) ny (d")

€ €

Equation (2.11) for the motion on the diagonal line transforms then into the equation
(which is independent af):

(2.15) \')+6%Weff(v;s, p,d)=0.

This is a Hamiltonian equation with the Hamiltonian given by the right-hand side of (2.13).
SinceV’ < 0, for any finiteg, the potentials¢(v;€,,d) has a minimal value fov in

the interval(0,d) and the potential is monotonically increasing as the boundaries of this
interval are approached. Thus, by (2.13), it has periodic solutions for the non-critical values
of hin the interval:

(2.16) h > hmin(g, 1, d) == 2mMinWef (V)

(ath = hmin the periodic orbit degenerates into an equilibrium point). The critical values of
hare those at whicWs ¢ t has maxima, and then the periodic orbit is replaced by homoclinic
or heteroclinic orbits.

Summarizing, we have established the following lemma:
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Lemma 1. For every non-critical value oh > hnin(€, 1, d) the Hamiltonian flow (2.3)
satisfying (2.4)-(2.6) possesses in the energy Idvselg a periodic solution of the diagonal

form: y(t) = (§(t),...,&(t)) where§(t) = % +&c with v(t) € (0,d) being a periodic
solution of (2.15) with energy.

Let T(e,n,d,h) be the period ofy(t). To fix the notation, let us parameterize time
alongy(t) so thatt = 0 will correspond to the turning point near the corner wheea2
corresponds to the turning point near the large sphere, namely:

Wer (v(0)) =Wer (v(T/2)) = 5

with v(0) ~ 0, v(T /2) ~ d.

3. STABILITY OF THE PERIODIC ORBIT

To study the stability of the periodic orbjtt), one needs to linearize the Hamiltonian
equations of motion corresponding to (1.1) about this solution, solve the corresp@neing
dimensional linear system with the time-periodic coefficients for a s@hafrthonormal
initial conditions and find the stability of the associaf@d x 2n)-dimensional monodromy
matrix, leading finally to a set &fn Floquet multipliers 2 of which are trivially one). The
symmetric form of the potential allows to reduce this formidable task to a much simpler one
— to solving a single second order homogeneous equation with a time periodic coefficient
which depends on as a parameter in a very simple form:

Lemma 2. The Floguet multipliers of th@-periodic orbity(t) are (1,1, ,...,A, })
whereh is given by:

1 Tr(A)2
A A==Tr(A -1
(3.1) STHA +y — 1,
andA is the monodromy matrix of the second order linear equation:
3.2 y+at)yy=0

with the T -periodic coefficiena(t) given by (see also (2.15)):

(3.3)
| (VeI o) Ve )
a(t;e,d,Rn,h) = ( e/112m 12 * e(R+d—v) )

1— 2 <v”(sl(\/1+ v +Vv2-1)) V(e X1t 2w tvi- 1)))
n-1

€2(1+ 2 +v2) €/ (1+2uv +v2)3

+

—
at(v(D:e . h),

1
=a (v(t);e,,d,R h)+ -
Proof. Consider the linearization aboy(t) of the system defined by (2.3). Let:

b(t) = 5ZEWE®D).....E(1)),

=4 alt) = SWIEW), .. &) ~b(D)
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By symmetry,%;ij(E(t), .. &(1) =b(t) foralli # j and ZW(E(t), ..., (1)) = a(t) +
b(t) for all i. Hence,the linearization of (2.3) is given by

n

(3.5) X +a(t)x +b(t) ij =0, i=1,...,n

i
Lets= 3 ;% andy, = x — 2 in (3.5). By summing the above equationione obtain

§+ (a(t) +nb(t))s=0,

(3:6) yi+a(t)yi =0 i=2....n

Every equation in this system is decoupled from the others, therefore the spectrum of the
Floquet multipliers ofy(t) is the union of the spectra of the monodromy matrices (i.e. the
spectra of the tim&@- maps) corresponding to each of the equations. It is easy to check that
the first equation is the linearization of (2.11) ab®(t). Hence, both the eigenvalues of its
monodromy matrix are equal fo(as (2.11) is a Hamiltonian equation). These correspond

to trivial Floquet multipliers ofy(t). Since the rest of the equations in (3.6) are identical,
the other Flogquet multipliers of(t) correspond to the — 1 identical pairsA andA~1, the
eigenvalues of the monodromy matrix of the equation (3.2) withTteeriodica(t) given

by (3.4). By applying the above formulas to the system (2.3),(2.4),(2.5), and using the
coordinatev instead of (see (2.12)), we obtain (3.3). O

To establish the main theorem, the spectral properties a2 th& monodromy matrix
A of equation (3.2), that depend @nand the geometric parameters @), need to be
studied. The rest of this section is dedicated to estimating the eigenvalAda ghrious
limits.

First, we show that in the limit of fixeel and largen the periodic orbity(t) is unstable.
Likewise, we show that in the limit of low energies (née£ hpin(€, 11, d), see (2.16)), the
periodic orbit which oscillates near the fixed point is unstable fon albove some critical
value. These observations show that the stable orbits we get do not correspond to a motion
near the bottom of a potential well. Then, we prove the main result, that for anyrfixed
there exists a sequenceofalues,, such that the periodic orbit is stable in wedges in
the (W, €) plane that are close t@,0). The widths of these wedges is then found in two
specific limits, with explicit formulae in the power-law potential case.

In the limit n = +o0, equation (3.2) turns into
y+a (t)y=0.

Sincea™ is always negative by (2.6), this equation cannot have non-trivial bounded so-
lutions and the monodromy matrik has multiplierA > 1. Thus, at every fixed and

h > hnmin(€g, 1, d), the diagonal solutiony(t) is linearly unstable for sufficiently large.
Therefore, it is not surprising that the stability zones which we find later on correspond
to bounded values @, i.e. for higher dimension of the configuration space one should
make the potential steeper in order to make the diagonal periodic orbit stable.

The stability of the equilibrium state on the diagonalhat hyn, is determined by
1—2
(h—1)

a’ < 0, where instead o (t) in a* one should substitute

equation (3.2) of Lemma 2; the equilibrium is linearly stabla’if+ a® >0, and

1—12

(n-1)

linearly unstable i~ +
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FIGURE 2. The critical dimensionn;, beyond which the fixed point

at the minimal energy level becomes unstable, for varigud, €) at

R = 10. Results for three potentials are presented: power-law (solid),
exponential (dotted) and Gaussian (dashed).

the value ofv = v' that corresponds to the minimum\b¢ ¢ (see (2.14)). Defining

at (vf
n(udRe) =1+ 2L - 42)
we see that the equilibrium (and small oscillations on the diagonal near it) are stable at
n < nc and unstable at > nc. In Figure 2 we ploing(, d, R, €) for the power-law, ex-
ponential and Gaussian potentials, showing the dependencigsoofy, d ande. In the

case of power-law potentiah. does not depend e (see (2.8),(2.14) and (3.3)), thus, the
stable periodic orbit that we find for smaliclearly does not inherit its stability from the
equilibrium state, i.e. the effect has truly billiard origin. For the exponential and Gaussian
caseq diverges ag — 0. In these cases the stable fixed point appears for exponentially
small energies (see ((2.14)). Since the effective potential is essentially flat away from the
scatterers, for energies that are not exponentially small, the amplitude of the oscillations
becomes large and the linearization nehis not applicable. Indeed, it is proved below
that for such energies the periodic orbit changes its stability several times-aB8, so

again, the stability regions we find do not correspond to small oscillations that inherit their
stability from the equilibrium state.
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Gaussian potential

FIGURE 3. The rescaled ingredients aft).The peaks ofi* (Y(t)) and
a~ (Y(t)) are shown to scale dg? and1/s respectively. Hergt= 0.5,
ande = 0.1,0.01,0.001 from widest to narrowest respectively.

For any finiten, for sufficiently smalk, y(t) has a finite positive period aradt) changes
sign’ as shown in Figure 3, so the behavior of the monodromy matiixthe limite — 0
becomes non-trivial. Our main result is that there are wedges ifptlag space at which
the eigenvalues ok are on the unit circle:

While a~ is always negative, for sufficiently smad) there exists an interval dfvalues at whicha* is
positive (asV’ is negative, and/ is bounded from below, it follows that” has to be positive somewhere). In
fact,a™ > 0 everywhere in the power-law potential case.
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Theorem 2. Suppose the potential functidh satisfies (2.6),(2.7). Then, given ahy
(0,2V(0)), any naturaln > 2, and any positivedl and R, there exists a tending to zero
countable infinite sequende> o > W = 1/4/n> ... > W > ... > 0 such that arbitrarily
close to every poinu = i, € = 0) there are wedges ¢f, €) at which the orbityis linearly
stable.

Proof. Recall the definition of the monodromy matéx the linear second order differen-
tial equation (3.2) with the periodic coefficiea(t) defines the linear magy(to),Yy (to)) —
(Y(to+T),Y (to+T)) =A(y(to),Y (to)). While Amay depend on the choicegf its eigen-
values, the Floquet multipliers gft), do not. We choosi = —At whereAt > 0 is slowly
tending to zero as — 0, and expres# as the product of two matriceg = BC, where
C corresponds to the map from= —At tot = At (i.e. to the linearized smooth motion in
the neighborhood of the billiard corner), aBaorresponds to the time intervait, T — At]
(i.e. to the linearization about the smooth regular motion along the diagonal and the regular
reflection from the radiuR spherd ;1 in the normal direction at= T /2).

Below, we find the form oB andC in the limit of smalle and fixedu. We then compute
the trace ofA and find the wedges in thg, €) plane, where the trace éfvaries between
—2to 2.

The form ofB is easily found by utilizing the billiard limit (using [21])

Lemma 3. For small At and sufficiently smakit, the linearized map about the diagonal
orbit: (y(At),y (At)) — (y(T —At),y (T — At)) = B(y(At),y (At)) satisfies

1+8 Ha+d)
3.7 B= R vh R o(1
(3.7 ( 2k 142 +0(1)

Proof. Fixing At and lettinge — 0, the diagonal periodic orbif(t) on the intervalAt, T —

At] approaches the boundary of the billiard domain only ondes=ak /2, hitting the radius-

R spherd 11 in the normal direction. This is a regular reflection, therefore, according to

[21]8, the flow map from any time moment before the reflection to any moment after the

reflection is close to the corresponding map for the billiard flow. The closeness is along

with k derivatives of the map (recall th¥tis Ckt1 k > 1), i.e. the derivative of the flow

map fromt = At tot = T — At tends to the derivative of the billiard flow map&s- 0. It

is true for every fixed\t, hence it remains true for a sufficiently slowly tending to z&tro
Because of the symmetry of the diagonal orpithe matrix of the derivative of the

smooth flow has a block-diagonal structure with one idempotent block that corresponds to

the variablesin (3.6) and the other blocks equalBo The derivative matrix of the billiard

flow has the same structure; to find this matrix, consider the billiard flow of a particle with

a velocity vh which starts at a distanakfrom the sphere of radiug and reflects in the

normal direction back to its original position &t= 2d/+/h. Then, by direct computation,

it can be shown that thigh block of the linearization of the billiard flow map is of the form:

AY(T—0),W(T—-0) [ 1+% Z1+§)
0(yi (+0), % (+0)) 2/h 144
and (3.7) follows from [21] as explained above (the same results can be achieved by as-

ymptotic integration of equation (3.2), namely following a simplified version of the below
construction ofC). O

Sitis easy to verify that the conditions (2.6)-(2.7)drsuffice to guarantee the(q, €) satisfies the conditions
in [21].
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Finding the form ofC is more complicated, and requires the integration of (3.2) in some
asymptotic limits. In Appendix A, we prove the following:

Lemma 4. For any fixedu € (0,1), smallAt and sufficiently smak, the linearized map
about the diagonal orbit near the corngly(—At),y (—At)) — (y(At),y (At)) =C(y(At),y (At))
satisfies

(3.8) cz( s11+0%21(140(1)) +0(1) $210(36?) + O(30) )

5(21(1+0(2)) +0(07 %)) 2+ 0%21(1+0(1)) +0(2)
whered, o1 are small scaling parameters (tending@@se — 0) such thato = At, and
Sis a matrix which tends ase — 0, to a smooth limiSy(p).

Let us explain the meaning of the matfwhich appears in (3.8). It is shown that in
the appropriate scaling limit equation (3.2) near the corner reduces to

2
39) AV BV (2(T) y =0
where
_ 1y
(3.10) B= R
andz(t) solves
h_ (2)? _

Notice that by (2.7) equations (3.9)-(3.11) define a scattering matrix: it is shown in the
appendix that the solutiongt) to (3.11) run from+co through some minimal positive
value back tot+o sufficiently rapidly and thus that (3.9) reduces, in the limitef +o

to dd—fzy = 0. Then, as is usual in scattering theory, one may define two bases of solutions
at the two asymptotic limits. Let. (1) denote the uniquely defined solutions having the
following asymptotic form as — +oo (respectively):

3.12) ye(1) =1+0(T7%),  ¥i(1)=0(t .
Lety. (1)) denote solutior’d with asymptotic:
(3.13) Joe =1+O(T" ), Yi(t)=1+0(T|"%)

so the Wronskians dfy_ (1), y_ (1)) and of(y;(1), ¥+ (1)) arel. Let S denote the scatter-
ing matrix which sends the coefficients of the solution in the b@siét), y_ (1)) into the
coefficients of the same solution in the basis(t),¥ (1)) . This matrix depends only on
3 andh —the only two parameters which appear in the above limit equations. In Appendix
A, we derive the finitee version of (3.9)-(3.11), the corresponding asymptotic bases and
the scattering matri$(, €) which limits to S(u) ase — 0 for any fixedu > 0.

Using the formulae foB andC ((3.7) and (3.8)) witlod = At tending to zero sufficiently
slowly andd — 0, one obtains that the trace of the monodromy mairix BC equals to

= ;%(1-&- %)521(1+0(1)) + (s11+522)(1+ %) +0(1).

The periodic orbit is stable wher(A)| < 2. Note that the main contribution to (3.14) is
given by the term that includes;: sinced — 0 ase — 0, if sp1(4,€) stays bounded away

(3.14) Tr(A)

9uniformly on any compact subset jpt> 0.
10he functionsyy (1)) are defined in a unique way in Appendix A.
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from zero, then for sufficiently smadlthe trace ofA is very large and positive for positive
sp1 and very large negative for negatisg. This means that if we fik,n,d, R, choosee
sufficiently small and changg thenTr(A), as a function ofy, will change sign near the
values ofu wheresy; (i, 0) changes sign. Thefr(A) is necessarily small near these values
of . Therefore, from these valuesoh wedge of parameter values for which the periodic
orbit y is linearly stable emerges. We need to establish that there is an infinite number of
such values ofi.

By definition, sp1 is determined as follows (see appendix): take the solutigi) of
(3.9) that tends td ast = —o, then

_dy
(3.15) 1= ot

namely, the asymptotic propertiesyof(t) determines;;. Next we establish:

(+0),

Lemma 5. The limit system (3.9) has a non trivial bounded solutjort; ) for all
T € (—,40) if and only ifsy1 (4", 0) = 0. Furthermore,

ds B —vhl, B(u) =0,
(3.16) £ = 1 o
2=0 | gyt Sl Y (9%ds (W) #0,
where
1 =, I mpy 9z
(3.17) | = 7h/4» Vi (z(1))dt = \fh/v,l(h/z)v @ h—2V(2)

If sp1(1,0) # O, thensignsy; = (—1)X0-) whereA((y_ ) denotes the number of zeroes of
y_(1). Finally, if p* <1, or i* =1andl > 0O, thenA(y-) is decreased by one when
changes fromu* — 0 to W* + 0.

Proof. Using the definition of the scattering matrix (see (3.12),(3.38))has the follow-
ing asymptotic as — +oo (uniformly on any compact subset of positive valuesgiof
(3.18) y- =$1(T+ 0T %)) +511(1+0(1™%)),

Y. =s1(1+0(t ) +0(t %),
It thus follows immediately that i§y1vanishes, thegy_(1) is bounded. To prove the con-
verse, notice that non-trivial bounded solutions must be proportional(tn ast — —oo,

and therefore, i1 # 0, these cannot remain boundedtas +oo.
Next, we establish (3.16). Define= dy_ /dp. By definition (see (3.15))

dsn _
dp
By differentiating (3.9) with respect  we find thatu is the solution of
U+ BV (z(0)u = —V"(Z(1))y- (1),
which satisfiesi(—e) = U'(—) = 0. By the variation of constants formula (recall that the
Wronskian ofy_ (1) andy_ (1) is 1):

(320)  u@) =y @ [ V@s)y (99 (5ds-y (1) [ V'@s)y (97ds

—00

(3.19) U (4-0).

It follows that

+oo +eo
U (ree) =y (o) [V (29)y-(99-(9)ds—F(+) [ V"(&8))y-(?ds



STABILITY IN HIGH DIMENSIONAL STEEP REPELLING POTENTIALS. 15

If sp1 =0, then we have/_(+) = 0andy’_(+) = y-1(+o00) (since the Wronskian is).
Thus,
ds1 . 1

-+oo
" 2 —
B 77m/—w V"(z(s))y-(s)°ds at 51 =0.

At B # 0we havev”(2)y- = —B~ 1y, hence, integrating by parts, we find
T +o0
(322) [ vias)y-(s2ds= % JIRACER

which gives the second line of (3.16).

At B = 0the scattering matrix of system (3.9) is the identityss@1, 0) = 0. In this case
(3.9) has the bounded solutigft) = 1 and by (3.21) the first line of (3.16) is obtained, or
equivalently

d521 2
(3.23) Tu“‘:l = mﬁL

Finally, let us relate the number of zeroes of the fundamental solytiof\’(y_), and
the sign ofsp;. By (3.15), ify. — +o ast — 4, thensy; > 0, and ify. — —o as
T — 4, thensy; < 0. Recall thaty_ (—) = 1is always positive. Clearly, B,1 > 0, then
y_ has an even number of zeros, ang;if < 0, then the number of zeros gf is odd so
signsy; = (—1)N0-) as claimed.

Note thaty_ cannot have multiple zeros, as it is a non-trivial solution of a second order
linear homogeneous equation. It follows thatuagries, the number of zeros gf can
increase only when some zeros come out-of.

It follows from (3.18), and the fact tha§, + s3, is bounded away from zero by preser-
vation of the Wronskian, that- may have only one zero at large Therefore, ifA (y-)
changes at some> 0, the increase/decrease in the valus\6Equals exactly td.

It follows from (3.20) and (3.18) that at; = O (i.e. wheny_(T) is bounded)

4

dp
Hence, it follows from (3.19), and from (3.16) witti < 1, or u* = 1 andl > 0, that for all
T sufficiently large

(3.21)

Y- (1) = u(t) = T (+) + 0(T) 1 4<o-

(3.24) sign(;j—uy,(T) = signdd—sa1 = signy_ (+o) = (~1)N0-),
so it follows thatA(y_ ) decreases whanincreases througp'. O

It follows from the trace formula oA (3.14), that to complete the proof of Theorem
2, we need to show that the coefficient of the scattering matrix for the limit equation
(3.9),(3.11) changes its sign infinitely many times. By the above lemma, we need to exam-
ine the bounded solutions of (3.9) and their number of zeroes.

Now, notice that independently of the choice\bfand of the value oh there are two
values ofp at which the bounded solutions are easily identified. ypAt 1 we have the
bounded solutiory_ = 1 which has no zeroes. At = p; = n~%/2 there is a bounded
solution with one zeroy(t) = Z(1), wherez is the solution of (3.11). It follows from
(3.16) that wheh' | > 0, 5,1 changes sign from negative to positive wheiincreases

Uthis is always the case ¥f” > 0 for all z, e.g. for the power-law potentials (2.8), where the following
explicit formula forl may be established:

(3.25) I =2(a+1)(h/2)¥@ /0 i (cos9)& +1dg > 0.
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throughp = 1 (recall thatp’ () < 0 for p < 1), and whenl < O (this is the case e.g. of
Gaussian potential (2.9) &tclose t02) s;; changes sign from positive to negative. It
follows from (3.24) that aft = 1 + 0 we havesy; < 0. Hence, using (3.23) we see that if

| <0, there existgl= | < 1 for whichsy; = 0 (so there is a non-constant positive bounded
solution atyp). This is the tip of theéd-th stability zone. Furthermore, since fagr < 1 the
number of zeros of_ always decreases by one whechanges fromuy — O to p + 0, it
follows that forl < Othere is only one suciy value in the interva{n—/2, 1), whereas for

| >0we setyy = 1.

We conclude that fok > 1, the tipp = i of the k-th stability zone corresponds to the
existence of a bounded solution of (3.9), which has exactigros. To establish that there
is a countable infinity of values of sugl, recall that there is a non-empty interval of
values oft for whichVV”(z(1)) is strictly positive (by (2.6) and (2.7)). Since the coefficient
B of V”(z)y grows to+ asp — +0, it follows that the number of zeros of every solution
of (3.9) on this interval grows to infinity gs— +0. In particular, the number of zeros of
y_ — hence the number of sigh changes;in— grows to infinity agt — +0, as required.

This completes the proof of Theorem 2. |

Notice that the pointgy, where the stability zones touch the axis- 0 are determined
by the behavior of the limit system (3.9)-(3.11) only. In particular, depending on the form
of V andh there are the correspondifig values at which the stability zones appear, and
these are independentiofl andR. Thus, we conclude from (3.10) that

b= (1+Bk(n—1))" Y2,
where the numberBy — +o depend only orh and on the potential functiod. If | >0
thenBo = 0. For allV andh we have3; = 1.
Note that in the proof of Theorem 2 the limit of fixed> 0 ande — O was considered. It
follows that for any finitek value a stability zone will appear negay for sufficiently small
€ (non-uniformly ink). In the appendix we prove that an infinite number of these stability
zones extend towards tleaxis:

Lemma 6. Let £ be a continuous curve in the regidp > 0,¢ > 0) of the (y,€)-plane,
which starts at(p= 0,€ = 0). ThenZL intersects the region of stability of the diagonal
periodic orbity in an infinite sequence of intervals convergingic= 0,€ = 0).

Proof. See Appendix A. After calculating the form of the mat@xn this limit of small

(w €), which involves deriving a rescaled system similar to (3.9), it is shown that the trace

of A changes betweefi2 whenever the number of zeroes of the bounded solutions of this
rescaled system are changed. Then, we again argue that the number of zeros of this system
tends to infinity agp, ) — 0. O

3.1. Estimates of the stability wedges width.We have thus established that for any finite
dimensionn there is a infinite number of wedges of linear stability zones emanating from
pvalues af0,1). Next we estimate their width in they, €)-plane af values that are near

Bo = 0 (corresponding to eitherclose tol or to largen):

Proposition 1. If | > 0 (see (3.17)), then the diagonal periodic oriis stable for(l, €)
values in the wedge enclosed by the two curves

B 1_u2 1 -1 1—u2
(3.26) & = (n—1)p2 <1+ d+R> o <(”—1)HZ>
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and
- 1— 2 1\ * 12
3.27 =l——|1+= — .
827 %= \ooow (1) (e
Proof. See Appendix A, where formula (3.14) is expande@ja near(0,0) at whichS
limits to the identity matrix. O

The other limit in which we are able to obtain analytical results regarding the stability
wedges width correspondsiyio= 0, i.e. it is the limit of the zero angle between the spheres
I,...,Mn at the corner point. We prove that for sufficiently lardgethe stability zone
emanating fron{j, € = 0) extends towards theaxis as shown in Figure 4:

a
Proposition 2. Consider the power-law potenti®l(Q,€) = (%) . Then, for sufficiently

small € and , there exists an infinite number of disjoint stability tongues in (ja€)
plane at whichy(t; W, €, n) is linearly stable. For sufficiently largk the kth stability zone
emanates from thg axis near the bifurcation value:

2(a+1)
a(n—1)’

(3.28) L ~ %

and extends up to theaxis, intersecting it near

G (a+1) 4 (w2 N\
(3.29) e~ (h/2)Y é?n_ 1))112k2< /0 (sing)Y de) ,

at a stability interval of length

(3.30) (D) ~ 4ex (40((0( +1) (28)° ) 1/2(a+1)

TkG(0,a)d(1+ %) \ n-1 h

whereG(0,a) > 0 depends only on and is defined by (B.12).

Proof. See Appendix B for details. It is proved that any curve of the form
(3.31) Ly = {(1he) : 22M = P(1-M)},

with M € [0,1] considered as a fixed parameter, intersects the stability wedges infinite
number of times. Moreover, the location and width of these intersections is evaluated
along a parametrization afyy by an auxiliary parametey:

(3.32) p=1/26+ 2

Thus, formula (3.28) is established by applying formula (B.14) al6pg: whereas for-
mulae (3.29),(3.30) are established by applying (B.14) and (B.15) agng (using (B.3)
and (B.5)). O

As described next, the asymptotic formulae are in excellent agreement with our numer-
ics.
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4. NUMERICAL COMPUTATIONS

4.1. Stability of the periodic orbit. In general, the numerical computation of a periodic
trajectory and its stability in a steapdimensional potential is, for large, a difficult
problem; a high-dimensional scheme for locating the periodic trajectory is needed, and
the search involves the integration of nonlinear, stiff, high-dimensional system. Once the
periodic orbit is found, the numerical computation of the linearized system and its Floquet
multipliers for largen may be a formidable task.

Here we use Lemmas 1 and 2 and some proper rescaling to reduce this problem to a
simpler computational task. The search for the periodic orbit is unnecessary by Lemma
1 (using symmetry and proper parameters) and the need to compute eigenvalues of large
matrices is demolished by Lemma 2: for alive find the solutions of one second-order
non-linear equation (2.15) and the monodromy matrix of one second-order linear equation
(3.2),(3.3) which depends anas a parameter. The steep limit is handled as in [20]: we fix
€ and increase the size of the billiard domairin((2.2)) to get an effectively smegl=¢€/r
without running into stiffness problems (in the bulk of the domain the motion is essentially
inertial and non-stiff).

To find the stability regions, as shown in Figure 4, we use the continuation scheme
which was developed in [20]; first we compute the stabilityy@) at u= O (the case of
a cusp created by tangent spheres) along tleaxis (see Figure 4 left). By symmetry
(see Lemma 2Re(|An(n=0,€))|) > 1 always corresponds to real eigenvalue (i.e. saddle-
foci do not appear) and thus the valueseot & (n) at which Re(An(i = 0,€)) = +1
correspond to degenerate saddle-center and degenerate period-doubling bifurcations re-
spectively. Then, we use the valueseof ski(n) as the starting point for a continuation
scheme inu to locate thekth wedge of stability in thép, €) plane (see Figure 4 right).

With accordance to Theorem 2 and Propositions 1,2, these calculations (performed for
the Gaussian, exponential and power-law potentials, and shown here only for the power-
law case) demonstrate that for any givenat u = 0, the stability ofye n,—o(t) rapidly
changes as — 0", whereas for any € (0, 1), there are finite number of intervals ®fn
whichyg (1) is stable.

Next, we demonstrate that the asymptotic formulae provided in these propositions are
in good agreement with the numerics; in all the numerical simulations shown below we fix
h=1R=10andd = 2, consider the power-law case (2.8) with= 1, and study, for each
n, how the stability ofy(t) depends orp ande.

Figure 4 shows that the estimates (3.26),(3.27) of Proposition 1 for the stability bound-
ary of the first wedge and their numerical calculation agree when ditheris small orn

is large (recall the (ﬁ) correction term in (3.26),(3.27)).

The origin of the second stability zonegt 0 is found, by Theorem 2, to be given by
W = 1/y/n, sop=3 ~ 0.577 andu}~1° ~ 0.33, which agrees with the numerical data at
Figure 4.

The behavior neapn = 0 is examined next. In Figure 5 we pleﬁl(n), the first and

secondk value at whichye —o(t) becomes stable, as a functionrof- 1. It shows that

+
ski(n) ~ %(k: 0,1) in accordance to (3.29), even thoulgis not sufficiently large for
the asymptotic estimates to hold.
For largerk values, the oscillatory behavior inge of Re(An(l = 0,€)) is shown in
Figures 6 and 7.
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FIGURE 4. Bifurcation diagram for the power-law potential. Left: real
part of the eigenvalug atpp= 0. Right: Wedges of stability iy, ne)
space (note that theaxis is scaled wittm). The stability wedges lie be-
tween the saddle-center bifurcation curves (dotted lines) and the period
doubling bifurcation curves (solid lines). The asymptotic predictions
(thin lines) of formulae (3.27),(3.26) for the first wedge are shown.
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—+— log(e)= - 0.95log(n-1) - 0.58

—o6— log(e,)= - 0.92log(n-1) - 082

0=
o~
—_— \og(z;): -0.99l0og(n-1)-2.1
-

—w— log(e])= - 0.98log(n-1) - 2.1

1

log(e)

FIGURE 5. The intersection of the first and second wedges of stability
with thee-axis (sél(n)) is shown to scale liké/n.

Indeed, in the proof of Proposition 2, it is established that for the power-law potential,
ata = 1 (see Appendix B):

41)  Tr(A)=G(0,1) (h(”sl)) Yda+ 3)sine2 +20(0,1))+ ...

h

R e(n—1)
with G(0,1),¢(0,1) some constants, and thus, using (3Xk1 = 0,€) may be estimated
in this asymptotic limit; Figure 7 shows the agreement between the numerical computation
and the asymptotic form for sufficiently small we fittedG(0,1) = 1.85,¢(0,1) = 1.1t
for then= 3 case and used these for the- 10 case, suggesting that these constants are
indeed independent ofas predicted by (4.1).

Figure 6 shows the 1 envelope ofRe(An(1 = 0,¢)) for finite n (similar fitting for
the Gaussian case gives rise ta &1 envelope). In particular, this finding shows that
for very smalle values approaching the cusp limit, the omit,—o(t) has increasingly
large multipliers which grow, on the appropriately defined subsequeneevalues, as

(n—1)/)"*,

4.2. Non-linear stability — Phase space plotsTo support the claim that fqiu, €) values

inside the stability wedges the linearly stable periodic oyhji(t) is surrounded by island

of effective stability (i.e. that KAM tori survive in its neighborhood), we choose parameter
values inside the wedges (using Figure 4 right) and integrat@rfeguations of motion
directly. The(xq, p1) projection of the return map to the sect&n= %‘ for the power-law
potential withn = 10is shown in Figure 8 (left column). The islands of effective stability

are clearly observed in this projection. To examine the non-degeneracy of these islands to
asymmetric perturbations, we introduce the following family of potentials:

(4.2) VP (x;€) = k(X €) + BaVik(x:€),

whereay are uniformly distributed on the unit interval (i.e. we consider the case by which
each sphere has a slightly different potential). The phase portraits of the perturbed motion
with 6 = 0.001are shown in the right column of Figure 8 (we do verify that the projection



n

n=

STABILITY IN HIGH DIMENSIONAL STEEP REPELLING POTENTIALS. 21

10

n=100

1000

Re(A(u=0)) vs. log((n—1)¢) log|A(u=0)| vs. log((n—1)e)
50 — — —y=-0.29x+1.7
4
9] —
- VWWW 2 VA
-50 0
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4
100 — — —y=-0.29x+2.5
4
0 = -
-100 0
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4
100 — — —y=-0.29x+3.7
4 e
0
V 2 W
-100 0
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4
100 6 — — —y=-0.5x+5.4
4
0
2
-100 0
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4
Re(A(u=0)) vs. log(e) log|A(1=0)| vs. log(e)
200 5 — — — y=-0.5x+1.57
4
& 100 \
c
2
0 0
-8 -6 -4 -2 0 -8 -6 -4 -2 0

FIGURE 6. The oscillatory nature of the Floquet multiplierg.at O for
severah values is shown.
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G(0,1)=1.85, ¢(0,1)=1.17
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FIGURE 7. Oscillations of J(A(u=0;¢)) atn=3,10. Thin line (blue)
- analytical estimates (eq. (4.1)). Thick line (red) - numerical computa-
tions.

plots of X = ||[x—y(0)||,P = foyH remain bounded, namely that there is no instability
in any direction of the 20-dimensional phase space).

5. DISCUSSION

We have constructed a set of examples that show that fordimensional dispersing
billiard, for any finiten, symmetric corners witin faces can produce islands of effective
stability when the billiard is replaced by a more realistic model of a particle moving in a
steep repelling potential, for arbitrarily high values of the steepness of the potential. In
particular, for a certain symmetric geometry, we have found a specific (diagonal) periodic
orbit for which we proved that for anythere is a countable set of wedges in the parameter
plane where the periodic orbit is linearly stable. As the steepness paragnéteends to
infinity, these stability zones do not disappear and remain in a finite region of the parameter
plane up toe = 0 that corresponds to the (dispersing) billiard limit. Moreover, we were
able to estimate the width and location of these wedges for the power-law potentials. The
qualitative results and the asymptotic formulae were supported by numerical computations
for the power-law, the Gaussian and the exponential potentials. Finally, we conjecture
that for most parameter values in the wedges, where the periodic orbit is linearly stable, a
region of effective stability is created (namely, KAM-tori exist, i.e. despite the symmetric
form of the potential, the behavior near the elliptic points is similar to the behavior near
generic elliptic points). This conjecture is supported by numerical simulations for several
n values, for both the power-law and the Gaussian potentials: in these simulations islands
of effective stability surviving small symmetry breaking perturbations of the potential are
clearly seen (see Figure 8, where projections of islands in 20-dimensional phase space are
shown for the power-law potential).
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without perturbation
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FIGURE 8. Islands in a 20 dimensional symmetric (left) and asymet-
ric(right) systems. Parameter values are chosen inside the first wedge of
stability (see figure 4)e = 0.0625 u = 0,0.1,0.2. Return map projec-

tion to the ki, p1) plane is shown for the power-law potential with= 1.

On the right panel the potentials (4.2) wiik= 0.001are used.
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From the mathematical point of view, one generally expects that smooth Hamiltonian
systems will have islands of stability. Here, we go beyond genericity type results — we
identified specific mechanisms by which the ergodicity and hyperbolicity of the underly-
ing dispersing billiard are destroyed, and a stable motion is created in the problem of a
particle moving in a smooth, steep repellimglimensional potential. The proofs construc-
tion includes estimates for the scaling of the stability zones with the control parameters
and a description of the bifurcation sequence associated with their creation — such explicit
results may be of interest in specific applications.

Admittedly, the presented construction has two limitations which we hope to abolish in
future works; the first is the strong symmetry under which the example is constructed; it
leads to a highly degenerate spectra —in fact all the non-trivial Floquet multipliers collapse
onto only one paifA,1/A), (which is shown to belong to the unit circle in the intervals of
stability). Thus, in the symmetric case resonance phenomena must be studied. When the
symmetry is slightly broken, either all the eigenvalues remain on the unit circle, or some of
them may bifurcate in quadruples to a Hamiltonian Hopf bifurcation. Such possibility may
pose difficulties in proving that the periodic orbit remains stable (though one would expect
that even in this case stable regions will be created, see [8, 9]). The other limitations is that
the constructed mechanism for the creation of islands requiresamer — it corresponds
to the intersection af truly n-dimensional strictly dispersing scatterers imagimensional
space. Currently, the most interesting applications of high-dimensional billiards3j
are concerned with the problem Nf particles in ad dimensional box. In this case the
scatterers in th@ = Nd-dimensional configuration space are cylinders with ahly 1
dispersing directions [32, 27], and the phase space structure may prohibit the appearance
of the symmetrim-corners considered here.

We believe that both of these issues may be resolved in future works. Indeed, the main
ingredient in our construction is the concurrent singularity #11 directions which is in-
duced by ther-corner. We conjecture that it is possible to produce islands (non-degenerate
elliptic orbits) in any smooth dispersing billiard family in which singular orbits are con-
trolled byn— 1 independent parameters (here the angles betweerfdices of the corner).

The symmetric settings are simply convenient for collapsing the number of independent
control parameters (here to one). Furthermore, we conjecture that the set of billiards having
such singular orbits that produce elliptic islands are dense in the family of Sinai bitfards
Hence, while we did not prove yet that a systenNofoft particles ind-dimensional box

is non-ergodic, we can now state that it is likely to be true — if strictly dispersive geome-
tries give rise to elliptic islands, semi-dispersing geometries should do so as well. The
methodologies we develop may shed light on the scaling of the non-ergodic components
with N andg, supplying interesting insight on the Boltzmann ergodic hypothesis: while in
the hard sphere case Sinai's works show that there is no need to consider th¢ large

(which is a major ideological cornerstone in Boltzmann’'s arguméhtoes enter into the
estimates of the non-ergodic component volume (and possibly their stickiness properties)
in the smooth case.

12The recent results of [4], in which hyperbolicity is proved for finite range potentials that have discontin-
uous derivatives at their outer perimeter, is consistent with these conjectures — we propose that in that work the
hyperbolicity is linked to the lack of smoothness of the potentials.
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APPENDIXA. LINEARIZED BEHAVIOR NEAR THE CORNER

Here we construct the linearized reflection matrix near the corner in thefioétee and
establish Proposition 1 regarding the stability wedge width in this limit. Then we consider
the limit of u— 0T: we construct the reflection mati@in this limit and establish Lemma
6.

First we present the proof of Lemma 4 regarding the fornCpfthe matrix corre-
sponding to the linearized map near the corngii—At),y' (—At)) — (y(At),y (At)) =
C(y(At),y (At)) in the limit of smalle and fixedu > O:

Proof. On the time interval—At, At] we scale time — &- T where

(A1) d=¢/l
Note thaty(t) then changes tg(1)5 1, hence
1 0 (1 0
w2 - (2 2)e(32)
A : - y(-0) ) < y(o) ) _ e ( y(-0) )
whereC is the matrix of the linear ma =C
‘{ y(-o) ) 7\ ¥(0) y(-o)
defined by the rescaled equation (3.2):
(A.3) y' +%a(1d)y =0
on the intervak € [—0,0], where we denote
(A.4) o=A»At/d.

Note thato tends to+ aso(e~1), because we assume tidt= 0(1)¢_.o. Let us introduce
a new variablez by the rule

(A.5) V31+2Ww+vZ=1+¢z

i.e.zis arescaled distance to the corner. Recall that we choose our parametrization of time
alongy in such a way that = 0 corresponds to the point nearest to the corner. Hence, we
have from (2.13),(2.14),(A.5),(2.7) that
h
5=V(@+0("),
i.e. z(0) stays uniformly bounded for all. As the velocityv is bounded from above
by virtue of (2.13),(2.6), it follows that(t) — v(0) = O(At) at |t| < At, soz(t) —z(0) =
O(At/g), i.e.z=o(e™?) for all t from this interval.

It is easy to see that equation (A.3) (see also (3.3)) takes the following form after the
rescaling:

1— 12

!
(A.6) y'+ <(n_ 0i2
whered is uniformly bounded and
(A7) a=0(77 19,

V" (2) +€é(z, s)) y=0
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uniformly for all zsuch thakzis small. Equation (2.13) changes to

(A.8) g = @(1—&—({)(2,8)) +V(2) +V(ze),
where
(A.9) V =0(c%), and @=0(1)¢ 0.

As we mentioned, we consider equations (A.6),(A.8) atz* with somez* = o(e~1).
Therefore, az > z* we may definep andV in an arbitrary way, and we define there
02 = @(z) andV(2) =V (z')(z'/2®. Then, by virtue of (2.7),(A.9), the potential in
the right-hand side of (A.8) uniformly (for all smad) tends to zero ag — +o. Hence,
uniformly for all smallg,

z(t) =1(vh+0(1)) as T— =o.

By plugging this into (A.6), and defining(z) = &(z*)(z" /2)>"® we see from (2.7),(A.7)
that equation (A.6) has the form

(A.10) y'+Q(t,e)y=0 where, uniformly foralle, Q= O(|Jt| 2% asT— +.

Moreover,Q is continuous with respect tand has a limit (uniformly for alk) ase — 0:
the limit system is

/ V// — O’
(A.12) Y 73[3: (127)32/
(n-1)12
wherez(t) solves
2
(A.12) g = (Z/?) +V(2).

It is a routine fact that every solutioy(t) of equation of type (A.10) grows at most
linearly ast — Zo0; and that there exists a limit for the derivatiyfe

(A.13) y (1) =Dy +O(T|™%),

uniformly for any bounded set of initial conditions and for all small Moreover, the
solution is bounded as— -+ if and only if D] = 0; and the solution stays bounded as
T — —oo if and only if D; = 0. Among the solutions bounded as— 4, there exists
exactly one solutioty, which tends tal. Analogously, there exists exactly one solution
y_ which tends tdl ast — —co:

(A.14) y+(1) =1+0(T77%),  yi(1)=0O(t| ).
We also take a pay; (1) andy_ (1) of solutions such that

(A.15) Vo(-o)=1 ¥ (+e)=1,

hence

(A.16) g =1+0(jT/t ).

The solutiong/;. are not uniquely defined, therefore we now fix a certain canonical choice
of them, in order to ensure that they will depend continuouslyg and other parameters

of the problem. To do that, l€i(t) denote the solution of (A.10) with initial conditions
$(0) =1, ¢'(0) =0, and let(1) be the solution with initial conditiong(0) =0, Y'(0) =1

(we deal with time-reversible equations, and in this setfirmndy are, respectively, the
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even and odd solutions of (A.10); we do not use this in the proof of this theorem). Recall
that

(A.17) det( i’ LLI'J’ ) —1
for all T, by Wronsky formula. Ay, is defined uniquely (by condition (A.14)), there exist
uniquely defined constankg andK; such that

(A.18) Y+ = Kip — Ko
(one can show thd; = |/ (+) andK, = ¢’(+), but we do not use this information).
We will choose

Ko K1

A.19 y. = .
( ) Y+ K%+K22¢+K12+K22w

Note that(y,,y.) are related td¢, ) by a linear transformation with the determinant
equal tol. Therefore, by virtue of (A.17),

(A.20) det( i’/i t ) —1

for all T. By taking a limit ast — 40, we obtain from this formula (see also (A.14),(A.13))
thaty, (+) = 1, i.e. thus defined satisfies (A.15),(A.16), as required. Analogously one
can fix the choice of —; note that

(A.21) det( & ?f ) -1
Asy, andy, are linearly independent, every solution is a linear combination of them:
(A.22) y(t) =Dgy+ +Dj V.
The same solution can be written as
(A.23) y(t) =Dgy-+Dyy-.
It follows that the solutions of (A.3) define a continuously depending sratteringmatrix

Se):

DS Dy

w2 (of)=s(32 )
Moreover, the matri< of the map( 3;((:?) ) — ( ;;(((;)) > is given by

s_ (V+(0) Y4(0) \ gg . ( Y-(-0) Y- (-0)
w29 (30 Jio ) s (5T )

Recall thato — +o. By (A.2),(A.25),(A.14),(A.16),(A.13),

[ su+0(1)+0si(140(1)) $10(802) +O(0)
a29 o= (N 00 ) sra) tomt o) )
wheres; (€) are the entries of the scattering matrix. O

The proof of Proposition 1, regarding the width of the stability wedges for sghall
values is established next:
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Proof. The stability zone corresponds|ter(A)| < 2. By (3.14),(A.1) the boundarfr(A) =
2is given by

2d 2 d
(A.27) 82— (su+522)(1+ ) +0(L)e—0) = —hd(1+ RS2
and the boundaryr(A) = —2is given by
(A.28) e(—2— 1+2d +0(1)e0) = 2d1+d)
. (S11+522)( ﬁ) (De—o —\ﬁ ( R 21,
wheres; are the entries of the scattering matsxi, ) of equation (A.6). A3 = ﬁ =

0, € = 0 equation (A.6) (the finitee version of (3.9)) degenerates inyth = 0, and the
scattering matrix is equal to the identity. Thuspatlose to0 and smalk, we find that

(A.29) S11+S22=2+0(1)
and
(A.30) Sp1 = P+ Gpe +o([e] +[B)),
where

_ Oz

1= Wh[s:o‘s:o)

and

01

%2 = 55 lig-0e0-

(while Smay be non differentiable ia for generalB, it can be shown, using (A.6), that
at 3 = € = 0 the expansion (A.30) is valid). Thus, by plugging (A.29),(A.30),(3.23) into
(A.27),(A.28), we find the following equations for the boundaries of the stability zone near
(B=0,e=0):

S(mﬂh) +0(g) = —vVhiB+0(B)
and
e(zT\m +q2) +0(g) = —VhIB+0(B).
As we see, in order to prove the lemma, it remains to show that
(A.31) a2 =2vh.

By definition, sp1 equals toy’ (+) wherey_(1) is the solution of (A.6) that satisfies
y_(—o) = 1. Let us write (A.6) in the form (A.10). By differentiating (A.10) we find that
the derivativeu(t) = 2y_(1) satisfies

0Q
/! __ =
U +Qu= 3V

AsQ=0andy_ =1forall tatp=0,e=0, we obtain that

+o
Gz = U (+%)|(p=0e-0) = */40 a—gdr.

From (A.6),(A.3),(3.3), we find
0Q

%hﬁ:o.g:o) = 5_(2, O)|[3:0 = V/(Z)'
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This gives us (see also (3.11))

o= [ Vo= [ "2@)dt=7(+e) - 2(-=) =2/

—00 —00

as required. O

Next we find the form ofC in the limit at which bothy ande are small. Here, as in
Lemma 4, on the time interval-At,At] we scale timeé — &-1, yet here we choose a
different scaling coefficiend (compare with (A.1)):

€
A.32 0= ——.
(A-32) \/ 26 + |2
Obviously,0 — 0 (at IeAast a®(/g)) ase andutend to zero. Then, the mati@is given by
formula (A.2), whereC is the corresponding matrix for system (A.3) obtained from (3.2)
by the new time-scaling.

With such scaling, system (A.3) gets the form

(A.33) y' + ! l_HZV”(Z)JH:‘:?\(Z g))y=0

' 2c+2\ n—-1 ’
whered is uniformly bounded and satisfies (A.7) for auch thatzis small. The equation
for z(t) changes from (A.8) to

(A.34) %(Prsz)z = (2 -V(2) —\7(2,8)) (M4 (1—-M)z(1+£2/2)),
where

H2
(A.35) M(e, W) = 2126

andV satisfies (A.9). Like in the proof of Lemma 4, we consider only the intervalz*

with z* = o(e~1), so outside this interval we may replace the tesnsvith €z* both in

the right- and left-hand side of (A.34), and replabig, ) with V (z,€)(z*/2)®. Thenz(1)

tends to+o linearly with T or faster, with the velocity bounded away from zero. It follows
that like in of Lemma 4, the system (A.33),(A.34) belongs to the class (A.10), hence the
matrixC is expressed by formula (A.25) via the scattering ma(ix 1) defined by (A.24).

Lemma 7. For smallAt and sufficiently small andeg, the linearized map about the diag-
onal orbit near the corne€ : (y(—At),y' (—At)) — (y(At), Y (At)) = C(y(At), Y (At)) is of
the form

(A.36) c_ Ki-K ( 1+0((8/At)%) o(At)

T KZ+KZ\ O3 (a0t 1+0((3/a0)°)
whered — 0 ase — 0, C is a matrix whose exact form is irrelevant here dtadK are the

coefficients of the even and odd components of the solytifr) of equation (A.33) with
zsolving (A.34).

) +Ky Kzéa

Proof. Here we will use the time-reversibility of equation (A.33),(A.34):yift) is its
solution, thery(—1) is a solution as well. It follows that

y-(0) =Y+ (=1),
hence, by (A.18),
(A.37) Y- (1) = Kad(1) + KaW(1),
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whered andy are, respectively, the even and odd solutions of (A.33). Then, analogously
to (A.19),
K> Ky
Kf+K22¢+ Kf+K22qJ'
From (A.18),(A.19),(A.37),(A.38),(A.22),(A.23),(A.24) we obtain the following formula
for the scattering matrix:

(A.38) Vi =

KI-KF  2KiKp
KZ+K2 (KZ+K2)2
(A.39) S=
2_ k2
2K1K3 Kg K22
K+ K3
By (A.2), (A.25), (A.14), (A.16), (A.13), (A.4), (A.39) the required form ©f namely
(A.36) is found. O

Finally we establish Lemma 6 regarding the stability wedges in this limit:

Proof. As before, we represent the monodromy ma#rixs the product of the two matrices

B andC. SinceB corresponds to the regular part of the diagonal orbit and is independent
of y, Lemma 3 applies in this smallande limit as well and the matriB is given by (3.7).

As & andAt tend to zero, whilé\t does this sufficiently slowly, we find from (A.36),(3.7)
that

_ 2d _ =
(A40) TI‘(A) _ { 2(1+ R ) +O(1)(8,U)HO < -2 at K 0,

2(14+ &) +0(1) 0 > 2 at Ko, =0,

The sought stability intervals on the curvecorrespond tdTr(A)| < 2. Therefore, by
virtue of (A.40), we will prove the lemma if we show that there exist a converging to zero
sequence of values g€, ) € £ which correspond td&; = 0 and a converging to zero
sequence of values ¢, ) € £ for whichKz = 0.

By (A.39), vanishing oKj or K, corresponds to vanishing sf1, i.e. to the bounded-
ness of the solutiog_ of (A.33). At K; = 0 we have from (A.37) thay_ = |, i.e. the
bounded solution is odd, while Kt = 0the bounded solutiop. = ¢ is even. Thusk; =0
corresponds to the existence of a bounded soluytiowith an odd number of zeros, and

K2 = 0 corresponds to the existence of a bounded solution with an even number of zeros.
2

It remains to note that the coefﬁcie?rﬁ_ll)(ziirm of V/(2)y in (A.33) tends to+w as
(g,)) — 0. From that, exactly like in the proof of Theorem 2, we obtain that the number
of zeros ofy_ tends to infinity age, ) — 0. We also showed in the proof of Theorem 2
that each time the number of zeros changes, the increase is ekabtlyw, the required
existence of a converging to zero sequence of valués pf € £ which correspond to the
existence of a bounded solution with odd number of zeros ;e= 0) and a converging

to zero sequence of values @f 1) € £ which correspond to the existence of a bounded

solution with even number of zerok{ = 0) follows immediately. O
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APPENDIXB. THE POWERLAW POTENTIAL

To establish Proposition 2, we integrate equation (A.33) with the power-law potential
in the asymptotic limit of smal(g, ). In fact, we show below that by parameterizing the
(1 ) plane by the parameters

2

(B.1) (P.M) = (v2e 1 12, -

2e+ uz)
we obtain estimates to the width of the wedge for all sufficiently smathiformly in M.
We first introduce some notations. Recall that the parabolas emanating from the origin
Ly = {(1,€) : 26eM = 2(1— M)} were defined for a fixed parametdre [0,1] and thatp
is used to parameterize these curves. Let

+00 dz
(B.2) M) = /<z/h>1/u 2/(h# =2)(M+(1-M)2)

In particular,
1/2a \f /2
B.3 J(1) = —— andJ / (sin®)Y/ de,
®3) ()= - and0) = (3)
and ata = 1, J(0) = v/h. Let
1

_ a2 N— 1 a2
(B.4) P(p,M)_\/Mh<K p 0((0(+1)> ,
wherek = K(p,M) solves the equation

_ a o a+2

(B.5) (hl 4M kitee 4 \/WKW> p? = a(a +11).

Note thatk — +o asp — 0, while P(p,M) remains bounded? € [0,1]. Moreover, one
can rewrite (B.5) in the following form (recall that= & andyM = % see (A.32),(A.35)):

h _ a/(@ra) ((Qla+1)\ Y2
(B.6) K3+ uh=(p/x) — :
from which it follows immediately that
1-M
(B.7) K5=KEL§—l=0ﬂ)
Consider an equation
1

(B.8) 0

YO+ (i -peespejar2Y(® =

defined a9 > 0. In the limit 8 — 40, the coefficient ofy in (B.8) tends to+co, which
produces fast oscillations in every solution has the asymptotic given by

o ap do
y(0) ~E1((1-P)B~+PB) 4 COQ/ (1— P)92+Pe)l+a/2)

(B.9)

Ex((1— P)62+P9)°(T+2 sin(/eJroo (1= P)ezdi P6)1+°‘/2)
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with some constari; ». The asymptotic behavior 8s— + is given by (A.22),(A.16),(A.14),(A.20)
ie.

(B.10) y(8) = Fo(1+0(67%)) + F16(1+0(67 7))

with some constarft 1. Thus, solutions of (B.8) define the scattering maﬁﬂ& a):

(B.11) (E):s(%)

For convenience of later computation we use the following general fori& for
a _( /@cos{ ,/gsinC

(812 SRy = < VGcosp +/Gsing |

Notice thatdetS= 1 by construction, hence

(B.13) v/ Ggsin(p—¢) = 1.

whereG, g, ¢, depend only o anda.

a
Proposition 3. In the case of the power-law potentl(Q, €) = (%) , eVery curvely,
M € [0, 1], intersects infinitely many stability tongues; the intersections happen near (see

(B.2))
2)(a,M)/a(a+1)

B.14 =pk=

(B.14) P =Pk e ;

and the length of the intervals is given by (see (B.4),(B.5) and (B.7))
vh

(B.15) (Bp)i~ B PK(PK. M)(1— M),

“~ K G(P(p, M), a)d(1+ 9)

Proof. As before, we need to estimate the scattering m&rar the rescaled equation
(A.33). For the power-law potential we havé > 0, so the coefficient of is positive at
smalle for all z. Thus, we may represent equation (A.33) in the form

(B.16) Y+ Q%(1,e,0)y =0,

We consider equation (B.16) separately on the intefslak R, and on the intervals
[T] > R, whereR(g, ) tends sufficiently slowly to infinity at, ) — 0 (i.e. asp — 0). Ris
chosen so that fdr| < Rthe frequency? is large, hencg is highly oscillatory, and so its
envelope is found below by the method of averaging. Then, we show that on the intervals
|T| > R (B.16) limits, after some rescaling, to (B.8). Thus, the scattering matrix of (A.33)
is found by composing the rescal8avith the oscillatory solution envelope and then with
the rescale& 1. OnceSis found, the stability regions are found from trake

Let R(g, ) be chosen such th& tends to+c uniformly on the intervalt| < R, as
(g,)) — +0 (it tends to+o indeed on any finite interval af — hence it tends tg-c on
any sufficiently slowly growing interval as well). Then, there exists a limit of (A.33) and
(A.34) by which

.o o a(a+1)
(B.17) ’LIL‘ﬂOp Q° = 7“]_1)2“2,
with z(1) solving
h 1 (Z)?

(B.18) G-z M+(1-Mz =S, Z(0)=0.
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Let us apply an averaging procedure to (B.16) on the intar@al—R R]: define(r, @)

by
1

VQy=/rcosp, = \/rsing.
y= /I cosp mx/ VIsing
Then, equation (B.16) takes the form
Q' (1) Q1) .
! _ — _0O_

r==—5" r cos 2p, ¢ Q 50 sin2p,
or, after we introduce the fast and slow phases
(B.19) n :/Q(T)dt, d=q+n,
the following form

dr do W .
(B.20) ﬁ_corcode:'—r]), ﬁ_—ismzw—n)

wherew := Q'(1)/Q?(1); by (B.17) (and since is bounded by (B.18))

(B.21) w=0(v/2e +12),

uniformly for |t| < R (providedR grows sufficiently slowly). Sincevin (B.20) is small,
by virtue of the averaging principle, the solutions of (B.20) are close to the solutions of the
averaged (with respect tp) system for everp(w~2)-long interval of values ofy.

In fact, the total change im cannot exceed > Q(t)dt = O(p~?!) = o(w?) (see
(B.19),(B.17),(B.21)). Hence, for all € [-R R], the solutions of (B.20) remain close
to the solutions of the system averaged with respeqt tehich is simply

dr do
— = — =0.
dn ’ dn
Thus, the evolution from = —Rto T = Ris, to the leading order, just a rotation by the
angle — [R.Q(1)dt. Denote:

b b
cos[ Q(t)dt sin/ Q(1)dt
a a

(B.22) Sot(a,b) = X A
—sin/ Q(t)dt cos/ Q(1)dt

So the values of andy’ att = =R are related by:
VAR Y(R) VAR y(-R)
(B.23) R b Sa(-RR- [ 3 VR
Q(R) Q(R)

(by time-reversibility,Q(R) = Q(—R)).
Let us now consider the behavior of solutions of (A.33) on the intervaR. Heret is
large, and we estimate the solution of (A.34) as

1- Mr2(1+0(r*°‘)) +VMht(1+0(17%)).

Z(1)(1+¢€z(1)/2)=h

Recall that we are interested only in the behavior|for< At/d, which corresponds to
z=o0(e1) (see (A.32) and (A.35)), so we may write
1—

z(t)=h M (14 0(1)p—0) + VMhT(1+0(1)p—0)
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on the intervalt > R After scaling the tima = k8 wherek is given by (B.5), we find
(after some algebraic manipulations) that equation (A.33) on this interval transforms into
1+0(1
> & a2Y(®)
((1-P)B24+PB(1+0(1)))
whereP(p,M) is given by (B.4). Since equation (B.24) limits to (B.8)@s~ 0, its scat-

tering matrix is well approximated by the scattering ma8iaf (B.8). Thus, returning to
the timet = k6, we obtain from (B.11),(B.9),(B.10) that

Dy E; VKQ(T)y(T)
(B.25) ( ) =S ( ) ~ S Sot (T,) - 1

E2 o) Ky (1)

(B.24) y'(8) +

:07

WhereDg1 are the coefficients of the expansion (A.22) for the solutions of (A.33).
By time-reversibility, for the intervat < —R we have

D Vamym)
(B.26) ( ) ~ VRS - Sot (—e0,1). . ,

—kDy - Q(T))/(T)
namely,
QU)y(1) 1o Dy
~ = : 01(_°°7T)'§1( )
1 _ t
5=/ \/R< o ) KDy
D=
(B.27) :\/1RS{°t (_oo,r).< cl) _01 >-§1< OD )

From (B.23),(B.25) and (B.27) we find

%, ) ~8-So (R®)-So(-RR)-Sot (~=.R)- &

KDI ~ ot ) ot y ot 0
_s cos[ ' Q(1)dr sinf_+°° (T)dt Dy
B ( —sinf*2Q(t)dt cos[*y Q(1)dr ) < ) < ) < KDy

By (B.12), this gives us the following formula for the scattering ma&ixD,,D; ) —
(Dg,D1):

(B.28) S~ ( VGOsinW+o+7)  Kgsin(y+22) )
. SsinW+2¢)  VGgsinW+6+7) )’
where
e 2] Ja(a+1)
(B.29) Wzlm Q(1)dt ~ oV ot

andG,g, ¢, are the coefficients of the scattering matgixhat depend only o anda
(see (B.17),(B.18),(B.2)).
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Now, like in the proof of Theorem 2, by virtue of (A.2),(A.25),(A.14),(A.16),(A.13),(3.7),
(B.7),(B.28), we obtain the following formuta for the trace of the monodromy matrix
A=BC:

(B.30)
2G

Tr(A) = md(w %)sin(W+2¢)(1+o(1)) +2/Ggsin(W+¢+2)(1+ %) +0(1).

EquatingTr(A) to +2 supply the stability intervals (B.14),(B.15); Sinde is small (see
(B.7)) andG is non-zero (by (B.13)), only the first term is of importance, and the stability
intervals are created whéb+ 2¢ = 1k, which gives (B.14) (see (B.29)). Formula (B.15)
is found from:

‘ d¥| 2G d

T2 d(14 o)~ 4
p o ﬁéx( R)
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