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Abstract

The Lipschitz stability estimate for a coefficient inverse problem for the non-stationary
single-speed transport equation with the lateral boundary data isobtained. The method of Carleman
estimates isused. Uniquenessof the solution follows.

1. Introduction

The transport equation isused to model a variety of diffusion processes, such asdiffusion of
neutrons in medium, scattering of light in the turbulent atmosphere, propagation of ��� rays in a
scattering medium, etc. (see, e.g., the book of Case and Zweifel [6]). Coefficient inverse problems
(CIPs) for the transport equation are the problemsof determining of the absorption coefficient,
angular density of sourcesor scattering indicatrix from an extra boundary data. They find a variety
of applications in optical tomography, theory of nuclear reactors, etc. (see, e.g., the book of
Anikonov, Kovtanyuk and Prokhorov [1], and [6]). Thispaper addresses the question of the
Lipschitz stability for a CIP for the non-stationary single-speed transport equation with the lateral
boundary data. In general, stability estimates for CIPsprovide guidelines for the stability of
corresponding numerical methods.

Stability, uniquenessand existence resultsand references to such results for CIPs for the
stationary transport equation can be found, e. g., in [1] and in the book of Romanov [23]. Uniqueness
and existence results for CIPs for the non-stationary transport equation were obtained in the worksof
Prilepko and Ivankov [20], [21] and [22]. Uniquenessand existence results in [20] and [21] were
obtained for special formsof the unknown coefficient using the overdetermination at a point. Also,
uniquenessand existence resultswere obtained for an inverse problem with the final
overdetermination, i.e. where complete lateral boundary data isnot present but both initial and end
conditions (at t � T) are given; see [22]. For some recent publicationson inverse problems for the
transport equation see Tamasan [25] and Stefanov [24]. A derivation of the transport equation for the
non-stationary case can be found, for example, in [6].

The proof of the main result of thispaper isbased on a Carleman estimate, obtained by Klibanov
and Pamyatnykh [16]. Traditionally, Carleman estimateshave been used for proofsof stability and
uniqueness results for non-standard Cauchy problems for PDEs. They were first introduced by
Carleman in 1939 [5], also see, e.g., booksof Hörmander [7], Klibanov and Timonov [17] and
Lavrentev, Romanov and Shishatskii [19]. Bukhgeim and Klibanov [4] have introduced the tool of
Carleman estimates in the field of CIPs for proofsof global uniquenessand stability results; also, see
Klibanov [12], [13] and [14], and Klibanov and Timonov [17], [18]. Thismethod works for
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non-overdetermined CIPs, as long as the initial condition isnot vanishing and the Carleman estimate
holds for the corresponding differential operator (see Chapter 1 in [17] for the definition of
non-overdetermined CIPs). Recently, Klibanov and Timonov have extended the original idea of [4]
and [12] - [14] for the construction of numerical methods for CIPs, including the case when the
initial condition is the � -function; see [17] for detailsand more references.

Klibanov and Malinsky [15] and Kazemi and Klibanov [11] have proposed to use the Carleman
estimates for proofsof the Lipschitz stability estimates for hyperbolic equationswith the lateral
Cauchy data; also see [17]. The method of [4], [12]-[14] and [17] hasgenerated many publications,
see, for example, Bellassoued [2], [3], Imanuvilov and Yamamoto [8], [9] and [10] and the
referencescited therein. The Lipschitz stability of the solution of the non-stationary transport
equation with the lateral data wasproved in [16].

In thispaper the ideasof [11] and [15] are combined with the ideasof [8], [9], and [16]-[18]. In
Section 2 the statementsof the resultsare given; in Section 3, 4 and 5 the proofsof these resultsare
provided.

2. Statements of results
2.1. Statements of results
Let T and R be positive numbers. Denote

�
��� x � Rn : |x| � R� , Sn �����	� Rn : |� | � 1� ,

H �
��


Sn 

� � T,T� , � ��� ��
 Sn 

� � T,T� , Z �
��


Sn.

Also, denote

C
k �

H � ��� s � Ck � H � : Dx,t
�

u
�
x, t,v��� C

�
H � , |� | � k�

The transport equation in H has the form [6]

ut � � � , � u� � a
�
x, ��� u �

Sn

∫ g
�
x, t, � , ��� u � x, t, ��� d��� � F

�
x, t, ��� ,     (2.1)

where �	� Sn is the unit vector of particle velocity, u
�
x, t,v��� C

3 �
H � is the density of particle flow,

a
�
x,v� is the absorption coefficient, F

�
x, t,v� is the angular density of sources, g

�
x, t,v, ��� is the

scattering indicatrix and
� � , � u� denotes the scalar product of two vectors � and � u.

Consider the following boundary condition

u|� � p
�
x, t, ��� , where

�
x, t,v����� ��
! � T,T" 
 Sn and

�
n,v�#� 0.     (2.2)

Here
�
n,v� is the scalar product of the outer unit normal vector n to the surface � � and the direction

v of the velocity. So, only incoming radiation isgiven at the boundary in thiscase.
Equation (2.1) with the boundary condition (2.2) and the initial condition at t � 0

u
�
x,0,v� � f

�
x, ��� , $ � x,v��� Z,     (2.3)

form the classical forward problem for the transport equation in any direction of t (positive or
negative). Uniqueness, existence and stability results for thisproblem are well known, see, e. g.,
Prilepko and Ivankov [20].

Suppose now that the absorption coefficient a
�
x,v� isunknown, but the following additional
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boundary condition isgiven:

u|� � q
�
x, t, ��� , where

�
x, t,v����� ��
! � T,T" 
 Sn and

�
n,v��� 0.

The function q
�
x, t,v� describes the outgoing radiation at the boundary. Introduce the function

� � x, t, ���

� � x, t, ��� � p
�
x, t, ��� ,

q
�
x, t, ��� ,

if
�
n,v�#� 0,

if
�
n,v��� 0.

    (2.4)

Hence

u|� � � � x, t, ��� , $ � x, t,v����� ��
! � T,T" 
 Sn.     (2.5)

Thus, we obtain the following coefficient inverse problem for the non-stationary transport equation:

Inverse Problem: Given the initial condition (2.3) and the lateral data (2.5), determine the
coefficient a

�
x,v� of the equation (2.1).

For a positive constant M, denote

D
�
M � ��� s� x��� C

�
Z� : ||s||C � Z� � M � .

Theorem 1. [Lipschitz stability and uniqueness] Let T � R. Suppose that derivatives � t
kg exist

in H



Sn and ||� t
kg||C � H � Sn � � r1 for k � 0,1,2, where r1 isa positive constant. Let |f

�
x,v� | � r2 and

||f
�
x,v� ||C � Z� � r3, where r3 � r2 � 0. Suppose that the coefficientsa1,a2 � D

�
M � correspond to the

boundary data � 1
�
x, t,v� and � 2

�
x, t,v� , respectively, and functions � t

k �
i � L2

� � � for k � 0,1,2,
i � 1,2.

Then the following Lipschitzstability estimate holds

||a1
� a2||L2 � Z� � K �

 
||� 1

� �
2||L2 � � � � ||� t

� �
1
� �

2 � ||L2 � � � � ||� t
2 � �

1
� �

2 � ||L2 � � � " ,     (2.6)

where K � K
� �

,T,r1,r2,r3,M � is the positive constant depending on
�

, T, r1, r2, r3, M and
independent on the functionsa1, a2,

�
1,
�

2.
In particular, when � 1 � � 2, then a1

�
x,v� � a2

�
x,v� which implies that the Inverse Problemhas

at most one solution.

Below K � K
� �

,T,r1,r2,r3,M � denotesdifferent positive constants, depending on
�

, T, r1, r2,
r3, M and independent on functionsa1, a2,

�
1,
�

2, and conditionsof Theorem 1 are assumed to be
satisfied. The proof of Theorem 1 isbased on the Carleman estimate formulated in Lemma 1.

Let

L0u � ut � � � , � u� � ut �
i � 1

n

∑ � iui ,

where ui � � u/ � xi . Let x0 � Rn. Introduce the function
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� � x, t � � |x � x0|2
��� t2, �

� const � � 0,1� .
Let c � const � 0. Denote

Gc
�
x0 � ��� � x, t � : |x � x0|2

��� t2 � c2 and |x| � R� .     (2.7)

Obviously,

Gc1 � Gc2 if c1 � c2.     (2.7_1)

Introduce the Carleman Weight Function (CWF) as

C
�
x, t � � exp

 �� � � x, t � " .

Lemma 1. Choose the number � such that � � � 0,1� and T � R/ � . Also, choose the constant
c � 0 such that Gc

�
x0 � � ��

� � T,T� . Then there exist positive constants

�
0 �

�
0
�
Gc
�
x0 � � and

B � B
�
Gc
�
x0 � � , depending only on the domain Gc

�
x0 � , such that the following pointwise Carleman

estimate holds in Gc
�
x0 � 
 Sn for all functionsu

�
x, t, ����� C1 � Gc

�
x0 � � 
 C

�
Sn � and for all�

�
�

0
�
Gc
�
x0 � � :

�
L0u� 2C2 � 2

� �
1 ��� � u2C2 � � � U � Vt,     (2.8)

where the vector function
�
U,V� satisfies the estimate

|
�
U,V� | � B

�
u2C2.     (2.9)

The proof of this lemma can be found in [16].
Also, we will use the following Lipschitz stability result, proved in [16]

Theorem 2. Suppose that the function u � C1 � ��
! � T,T" � 
 C
�
Sn � satisfies the conditions

(2.1) and (2.4). Let functionsa
�
x, t, ��� and g

�
x, t, � , ��� be bounded, i.e. |a

�
x, t, ��� | � r5 $ � x, t,v��� H

and |g
�
x, t, � , ��� | � r6 $ � x, t,v, ��� � H



Sn, where r5 and r6 are positive constants. Let functions

� � x, t,v��� L2
� ��� , F

�
x, t,v��� L2

�
H � and let T � R. Then the following Lipschitzstability estimate

holds:

||u||L2 � H � � K �
 
||� ||L2 � � � � ||F||L2 � H � " ,

where K � K
� �

,T,r5,r6 � is the positive constant independent on functionsu, � and F.

2.2. Preliminaries

Before proceeding with the proof of the Theorem 1, we introduce some new functionsand
formulate necessary lemmata. Let functionsu1 and u2 be solutionsof equation (2.1) with the initial
condition (2.3) and the lateral data (2.5) for a

�
x,v� � a1

�
x,v� , � � x, t,v� � � 1

�
x, t,v� and

a
�
x,v� � a2

�
x,v� , � � x, t,v� � � 2

�
x, t,v� , respectively. Denote

�
u � u1

� u2,
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�
a � a1

� a2,     (2.10)

� �
�
�

1
� �

2.

From relations (2.1), (2.3), (2.5) and (2.10), noticing that a1u1
� a2u2 � a1

�
u � �au2, we obtain

�
ut � � � , � �u � � a1

�
x, ��� �u �

Sn

∫ g
�
x, t, � , ��� �u � x, t, ��� d��� � � �au2,     (2.11)

�
u
�
x,0,v� � 0, $ � x,v��� Z,     (2.12)

�
u|� � � � � x, t, ��� , $ � x, t,v����� ��
! � T,T" 
 Sn.     (2.13)

Applying the Theorem 2 to the equation (2.11) with lateral data (2.13), we obtain the following
estimate for the function

�
u

||
�
u||L2 � H � � K

�
||
� � ||L2 � � � � ||

�
a||L2 � Z� � .     (2.14)

Denote � �
�
ut. Differentiating (2.11) and (2.13) with respect to t, we obtain

� t � � � , ����� � a1
�
x, ����� �

Sn

∫ � gt
�
u � g��� d��� � � �au2 t     (2.15)

and

� |� � � �
t

�
x, t, ��� , $ � x, t,v����� ��
! � T,T" 
 Sn.     (2.16)

Setting in (2.11) t � 0, we obtain

�
�
x,0,v� � � �au2

�
x,0,v� � � �a � x,v� f � x,v� , where

�
x,v��� Z.     (2.17)

Differentiating (2.15) and (2.16) with respect to t and denoting w ��� t, we obtain

wt � � � , � w� � a1
�
x, ��� w �

Sn

∫ � gtt
�
u � 2gt � � gw� d��� � � �au2 tt,     (2.18)

w|� � � �
tt

�
x, t, ��� , $ � x, t,v����� ��
! � T,T" 
 Sn.     (2.19)

We will need the following lemma
Lemma 2. Let functionsa1

�
x, ��� , a2

�
x, ����� D

�
M � . The following Lipschitzstability estimates

hold:

||� ||L2 � H � � K �
 
||
�
a||L2 � Z� � ||

� � ||L2 � � � � ||
� �

t||L2 � � � " ,     (2.20)

||w||L2 � H � � K �
 
||
�
a||L2 � Z� � ||

� � ||L2 � � � � ||
� �

t||L2 � � � � ||
� �

tt||L2 � � � " .     (2.21)

These estimatesare similar to the Lipschitz stability estimate that wasobtained in [16], but do
not follow directly from the result of [16] due to the presence of the function

�
u in (2.15) and (2.18).
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The following lemma providesan estimate from the above for an integral containing the CWF.
Lemma 3. For all functionss � C

�
Gc
�
x0 � � and for all

�
� 1, the following estimate holds

Gc � x0 �
∫

t

0

∫ s
�
x, � � d�

2

C2 � x, t � dxdt � 1� � �
Gc � x0 �
∫ �

s2C2 � � x, t � dxdt.

See Section 3.1 in [17] for the proof.

Lemma 4. Let T � R. Then for any c � � 0,R� there existsa �
0 �

�
0
�
R,T,c � � � 0,1 � such that

Gc �
��

� � T,T� for all � � � � 0

�
R,T,c � ,1 � .

Proof. By the definition of the domain Gc

Gc � � ��
 � � T,T � �������max � � x,T� � c2.,

i.e. when

R2 ��� T2 � c2,

which leads to the following inequality

� � R2 � c2

T2 .

Since c � � 0,R� and R � T then � � � 0,1� and we can choose � 0 �
� .
�

3. Proof of Lemma 2

Denote Gc � Gc
�
0� for arbitrary c � const � 0. Since T � R, we can choose a small number�

�
� � R,T� � 0, such that

T � R � 3� and � |x| � 3� � � � .     (3.1)

Choose � 0 �
�

0
�
R,T, � /2� ( Lemma 4 ) and let, for the sake of definiteness,

�
�

1 � � 0
�
R,T, � /2�
2

,

so that

G 	 /2 �
��

� � T,T� .     (3.2)

Choose a small number � � � � � ��� � 0, � /12� , such that

G 	 /2
 3�
�  ��

� � T,T� "���� . and � |x| � 3� � � � .     (3.3)

Consider the domains G 	 /2
 3� � G 	 /2
 2� � G 	 /2
�� � G 	 /2. (See (2.7_1) and Fig.1 for a schematic

representation in the 1 - D case)
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Fig.1. Sets G 	 /2
 3� � G 	 /2
 2� � G 	 /2
�� � G 	 /2.

Also, consider the cut-off function �
�
x, t ��� C1 � � ��

� � T,T� � � , such that

�
�
x, t � �

1

0

between 0 and 1

in G 	 /2
 2� ,
in � ��

� � T,T� � \G 	 /2
�� ,

in G 	 /2
�� \G 	 /2
 2� .

The equations (2.15) and (2.18) imply that

|� t � � � , ����� | � K |� | �
Sn

∫ |
�
u|d��� �

Sn

∫ |� |d��� � |
�
a| ,     (3.4)

|wt � � � , � w� | � K |w| �
Sn

∫ |
�
u|d��� �

Sn

∫ |� |d��� �
Sn

∫ |w|d��� � |
�
a|     (3.5)

Let �
�
x, t, ��� ��� � x, t, ��� ��� � x, t � . Then
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� t �
i � 1

n

∑ � i � i � � � t �
i � 1

n

∑ � i � i � � � t �
i � 1

n

∑ � i � i .

Derivatives � t, � i , i � 1,...,n equal to zero in G 	 /2
 2� and in � ��

� � T,T� � \G 	 /2
�� and are bounded in
G 	 /2
�� \G 	 /2
 2� . So, using the inequality (3.4), we obtain

|� t �
i � 1

n

∑ � i � i | �

� K � � |� | �
Sn

∫ |
�
u|d��� �

Sn

∫ |� |d��� � |
�
a| � � 1 � ��� � |� | .     (3.6)

Similarly, for w
�
x, t, ��� � w

�
x, t, ��� ��� � x, t � , we obtain from (3.5)

|wt �
i � 1

n

∑ � iwi | �

� K � � |w| �
Sn

∫ |
�
u|d��� �

Sn

∫ |� |d��� �
Sn

∫ |w|d��� � |
�
a| � � 1 � ��� � |w|     (3.7)

Denote u �
�
u
�
x, t, ��� ��� � x, t � . Then (3.6) and (3.7) become

|� t �
i � 1

n

∑ � i � i | �

� K � |� | �
Sn

∫ |u|d��� �
Sn

∫ |� |d��� � |
�
a| � � 1 � ��� � |� |     (3.8)

and

|wt �
i � 1

n

∑ � iwi | �

� K � |w| �
Sn

∫ |u|d��� �
Sn

∫ |� |d��� �
Sn

∫ |w|d��� � |
�
a| � � 1 � ��� � |w|     (3.9)

Multiplying (3.8) and (3.9) by the CWF and squaring both sides, we obtain
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� t �
i � 1

n

∑ � i � i

2

C2 � K � � 2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� � �a2 C2 �

� K
 �

1 � ��� � � 2 " C2,

wt �
i � 1

n

∑ � iwi

2

C2 �

� K � w2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� �
Sn

∫ w2d��� � �a2 � � 1 � ��� � w2 C2.

The Carleman estimate (2.8) leads to

2
� �

1 ��� � � 2C2 � � � U1 � � V1 � t �     (3.10)

� K � � 2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� � �a2 � � 1 � ��� � � 2 C2

and

2
� �

1 ��� � w2C2 � � � U2 � � V2 � t �     (3.11)

� K � w2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� �
Sn

∫ w2d��� � �a2 � � 1 � ��� � w2 C2

where
�
x, t, ����� H 	 /2, H 	 /2 � G 	 /2 
 Sn and functionsU1, V1 and U2, V2 are the functionsU, V from

the Carleman estimate (2.8)-(2.9) for the case, when the function u is replaced by the functions � and
w, respectively. Integrating over H 	 /2 and applying the Gauss’ formula, we obtain

2
� �

1 ��� �
H � /2

∫ � 2C2dh � K �
H � /2

∫ � 2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� � �a2 C2dh �

� K �
H � /2

∫ �
1 � ����� 2C2dh �

M � /2

∫ |
�
U1,V1 � |dS     (3.12)

Similarly, we obtain for w

2
� �

1 ��� �
H � /2

∫ w2C2dh �     (3.13)
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� K �
H � /2

∫ w2 �
Sn

∫ u2d��� �
Sn

∫ � 2d��� �
Sn

∫ w2d��� � �a2 C2dh �

H � /2

∫ �
1 � ��� � w2C2dh �

M � /2

∫ |
�
U2,V2 � |dS.

where dh � dxd� vdt, M 	 /2 ��� G 	 /2 
 Sn and � G 	 /2 denotes the boundary of the domain G 	 /2.
Noticing that for any function s

�
x, t,v��� C

�
H �

H � /2

∫
Sn

∫ s2d��� C2dh � A �
H � /2

∫ s2C2dh,

where A is the area of the unit sphere Sn, we remove the inner integralsover Sn in (3.12) and (3.13).
So, (3.12) and (3.13) become

2
� �

1 ��� �
H � /2

∫ � 2C2dh � K �
H � /2

∫ � 2 � u2 � �a2 C2dh �

� K �
H � /2

∫ �
1 � ����� 2C2dh �

M � /2

∫ |
�
U1,V1 � |dS

and

2
� �

1 ��� �
H � /2

∫ w2C2dh �

� K �
H � /2

∫ w2 � u2 � � 2 � �a2 C2dh �

H � /2

∫ �
1 � ��� � w2C2dh �

M � /2

∫ |
�
U2,V2 � |dS.

Choose
�

0 such that K/
�
2
�

0
�
1 ��� � � � 1/2. Then for all

�
�
�

0 we have

�

H � /2

∫ � 2C2dh �

� K �
H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh �
H � /2

∫ �
1 � ����� 2C2dh �

M � /2

∫ |
�
U1,V1 � |dS

and
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�

H � /2

∫ w2C2dh �

� K �
H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh �
H � /2

∫ � 2C2dh �
H � /2

∫ �
1 � ��� � w2C2dh �

�
M � /2

∫ |
�
U2,V2 � |dS.

Using (2.9), we obtain

�

H � /2

∫ � 2C2dh �     (3.14)

� K �
H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh �
H � /2

∫ �
1 � ����� 2C2dh � K

�

M � /2

∫ � 2C2dS

and

�

H � /2

∫ w2C2dh �     (3.15)

� K �
H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh �
H � /2

∫ � 2C2dh �
H � /2

∫ �
1 � ��� � w2C2dh �

� K
�

M � /2

∫ w2C2dS.

The boundary M 	 /2 of the domain G 	 /2 consistsof two partsM 	 /2 � M 	 /21 � M 	 /22 , where

M 	 /21 ��� � x, t,v� : |x| � R� � � G 	 /2 
 Sn �
and

M 	 /22 ��� � x, t,v� : |x|2 ��� t2 �
� � /2� 2 � � � G 	 /2 
 Sn � .

Since

�
�
x, t,v� � �

� �
t

�
x, t,v� and w

�
x, t,v� � �

� �
tt

�
x, t,v� , for

�
x, t,v��� M 	 /21 ,
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�
�
x, t,v� � 0 and w

�
x, t,v� � 0, for

�
x, t,v��� M 	 /22 ,

then

M � /2

∫ � 2C2dS �

M � /2
1

∫ �
� �

t
2C2dS and

M � /2

∫ w2C2dS �

M � /2
1

∫ �
� �

tt
2C2dS.

Estimate both sidesof the inequality (3.14). Note that since � ��� in H 	 /2
 2� and H 	 /2
 3� � H 	 /2,
then

�

H � /2

∫ � 2C2dh �
�

H � /2� 3
�

∫ � 2C2dh �
�
e2

� � 	 /2
 3� � 2
H � /2� 3

�

∫ � 2dh.     (3.16)

Also, since 1 � �
�
x, t � � 0 in G 	 /2
 2� , then

|1 � � |C2 � e2
� � 	 /2
 2� � 2, $ � x, t ��� H 	 /2.

Hence,

H � /2

∫ �
1 � ����� 2C2dh � e2

� � 	 /2
 2� � 2
H � /2

∫ � 2dh.

Therefore (3.14) and (3.16) lead to

�
e2

� � 	 /2
 3� � 2
H � /2� 3

�

∫ � 2dh �     (3.17)

� K

H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh � e2
� � 	 /2
 2� � 2 �

H � /2

∫ � 2dh � �
M � /2

1

∫ � �
t
2C2dS .

Similarly, from (3.15) we obtain

�
e2

� � 	 /2
 3� � 2
H � /2� 3

�

∫ w2dh �     (3.18)

� K

H � /2

∫ �
a2C2dh �

H � /2

∫ u2C2dh �
H � /2

∫ � 2C2dh � e2
� � 	 /2
 2� � 2 �

H � /2

∫ w2dh � �
M � /2

1

∫ � �
tt
2C2dS .

Let m �
G� /2

sup
�
|x|2 ��� t2 � . Then (3.17) and (3.18) yield

�
e2

� � 	 /2
 3� � 2||� ||L2 � H � /2� 3
� �2 �     (3.19)

12



� K e2
� � 	 /2
 2� � 2||� ||L2 � H � /2 �

2 � e2
�
m ||

�
a||L2 � H � /2 � � t � 0� �

2 � ||u||L2 � H � /2 �
2 � � ||

� �
t||L2 � M � /2

1 �
2

and
�
e2

� � 	 /2
 3� � 2||w||L2 � H � /2� 3
� �2 �     (3.20)

� K e2
� � 	 /2
 2� � 2||w||L2 � H � /2 �

2 � e2
�
m ||

�
a||L2 � H � /2 � � t � 0� �

2 � ||u||L2 � H � /2 �
2 � ||� ||L2 � H � /2 �

2 � � ||
� �

tt||L2 � M � /2
1 �

2 .

Since

|u
�
x, t,v� | � |

�
u
�
x, t,v� | and |�

�
x, t,v� | � |�

�
x, t,v� | $ � x, t,v��� H,

then (3.19) and (3.20) become
�
e2

� � 	 /2
 3� � 2||� ||L2 � H � /2� 3
� �2 �

� K e2
� � 	 /2
 2� � 2||� ||L2 � H � /2 �

2 � e2
�
m ||

�
a||L2 � H � /2 � � t � 0� �

2 � ||
�
u||L2 � H � /2 �

2 � � ||
� �

t||L2 � M � /2
1 �

2

and
�
e2

� � 	 /2
 3� � 2||w||L2 � H � /2� 3
� �2 �

� K e2
� � 	 /2
 2� � 2||w||L2 � H � /2 �

2 � e2
�
m ||

�
a||L2 � H � /2 � � t � 0� �

2 � ||
�
u||L2 � H � /2 �

2 � ||� ||L2 � H � /2 �
2 � � ||

� �
tt||L2 � M � /2

1 �
2 .

Dividing these inequalitiesby
�
exp
 
2
� � � /2 � 3��� 2 " , we obtain

||� ||L2 � H � /2� 3
� �2 �     (3.21)

� K e� 2
� � � 	 
 5� �
� ||� ||L2 � H � /2 �

2 � e2
�
m

� ||
�
a||L2 � H � /2 � � t � 0� �

2 � ||
�
u||L2 � H � /2 �

2 � � ||
� �

t||L2 � M � /2
1 �

2 ,

||w||L2 � H � /2� 3
� �2 � K e� 2

� � � 	 
 5� �
� ||w||L2 � H � /2 �

2 �     (3.22)

� K e2
�
m

� ||
�
a||L2 � H � /2 � � t � 0� �

2 � ||
�
u||L2 � H � /2 �

2 � ||� ||L2 � H � /2 �
2 � � ||

� �
tt||L2 � M � /2

1 �
2 .

An inconvenience of the domain H 	 /2
 3� for our goal is that although the domain
H 	 /2
 3�
� � t � 0 � � � , but

� � H 	 /2
 3�
� � t � 0 � . Thus, we now “shift” thisdomain. Choose an x0

such that |x0| � 3� /2 and consider the domain G 	 /2 � x0 � , which isobtained by a shift of the domain
G 	 /2. Clearly one can choose � � � � R,T � and � � � � � � � � 0, � /12 � so small that in addition to
(3.1)-(3.3)

G 	 /2 � x0 � � ��
 � � T,T � and G 	 /2
 3� � x0 � �  ��
 � � T,T ��" ��� .

Then
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G 	 /2
 3�
� � t � 0� � |x| �
�
2 � 3� � �     (3.23)

and

G 	 /2
 3� � x0 � � � t � 0� � |x � x0| �
�
2 � 3� � � .     (3.24)

Consider now the ball B
�
0, � /2 � 3� � :� � x : |x| � � /2 � 3� � . By (3.1) B

�
0, � /2 � 3� � � � , since

� � � � � � � � 0, � /12 � . We prove now that B � G 	 /2
 3� � x0 � � � t � 0� . Let x � B be an arbitrary point
of the ball B. Then

|x � x0| � |x0| � |x| � 3
2
� � |x| � 3

2
� � �

2
� 3� � � � 3� .

Since �	� � 0, � /12 � , then � � 3� � � /2 � 3� . Hence,

|x � x0| � � � 3� � �
2 � 3� .

Hence, by (3.24) B � G 	 /2
 3� � x0 � � � t � 0� . Therefore, using (3.23) and (3.24), we obtain that
�
�
�
G 	 /2
 3� � G 	 /2
 3� � x0 � � � � t � 0� .

Hence, there existsa number � 1 � � 0,T � such that the layer

E � 1 ��� � x, t � : x � � , |t| ��� 1 � � �
G 	 /2 � G 	 /2 � x0 � � .     (3.25)

The schematic representation of the domainsG 	 /2, G 	 /2 � x0 � and E � 1 in 1-D case isprovided on Fig.
2.
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Fig. 2. � G 	 /2 � Solid line, � G 	 /2 � x0 � � Dashed line, E � 1 � Shaded area.
Since the Carleman estimate (2.8)-(2.9) isvalid for the domain G 	 /2 � x0 � , we can obtain estimates

similar to (3.21) and (3.22)

||� ||L2 � H � /2� 3
� � x0 � �

2 �     (3.26)

� K e� 2
� � � 	 
 5� �
� ||� ||L2 � H � /2 � x0 � �

2 � e2
�
m

� ||
�
a||L2 � H � /2 � x0 � � � t � 0� �

2 � ||
�
u||L2 � H � /2 � x0 � �

2 � � ||
� �

t||L2 � M � /2
1 � x0 � �

2

and

||w||L2 � H � /2� 3
� � x0 � �

2 � K e� 2
� � � 	 
 5� �
� ||w||L2 � H � /2 � x0 � �

2 �     (3.27)

� K e2
�
m

� ||
�
a||L2 � H � /2 � x0 � � � t � 0� �

2 � ||
�
u||L2 � H � /2 � x0 � �

2 � ||� ||L2 � H � /2 � x0 � �
2 � � ||

� �
tt||L2 � M � /2

1 � x0 � �
2 .

where

H 	 /2 � x0 � � G 	 /2 � x0 � 
 Sn

and

M 	 /21 � x0 � � � G 	 /2 � x0 � � � � x, t � : |x| � R� � 
 Sn.

Consider now the layer E � 1 defined by (3.25) (see Fig.2). Estimates (3.21), (3.26) and (3.22),
(3.27) lead to the following estimates in E � 1 
 Sn :

||� ||L2 � E�
1 � Sn �2 � K e� 2

� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2

    (3.28)

and

||w||L2 � E�
1 � Sn �2 �     (3.29)

� K e� 2
� � � 	 
 5� �
� ||w||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � ||� ||L2 � H �
2 � � ||

� �
tt||L2 � � �2 .

Since for any function s
�
x, t,v��� C

�
H � there exists t1 � � � � 1, � 1 � such that

Sn

∫ �∫ s2 � x, t1,v� dxd� v � 1
2� 1

||s||L2 � E�
1 � Sn �2 ,

then (3.28) and (3.29) lead to

Sn

∫ �∫ � 2 � x, t1,v� dxd� v � N1,     (3.30)

Sn

∫ �∫ w2 � x, t1,v� dxd� v � N2,

15



where

N1 � K e� 2
� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2     (3.31)

and

N2 � K e� 2
� � � 	 
 5� �
� ||w||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � ||� ||L2 � H �
2 � � ||

� �
tt||L2 � � �2 .

Let

S
 � t1 � ��� ��

� t1,T� 
 Sn, H 
 � t1 � � ��

� t1,T� 
 Sn,

S� � t1 � ��� ��

� � T, t1 � 
 Sn, H � � t1 � � ��

� � T, t1 � 
 Sn.

Denote

Y
�
x, t, ��� ��� t �

i � 1

n

∑ � i � i ,     (3.32)

�
�
x, t1, ��� ��� 0

�
x, ��� ,

� |S� � t1 � �
� �

t

�
x, t, ��� .

Estimate the L2
�
H 
 � t1 � � norm of the function � . Multiplying (3.32) by 2� and integrating over

Z


�

t1, t � , where t � � t1,T� , we obtain

t1

t

∫
Sn

∫ �∫
�
� �
�
� 2 � dxd� vd� �

t1

t

∫
Sn

∫ �∫
n

i � 1
∑ �

vi � 2 � idxd� vd� �
t1

t

∫
Sn

∫ �∫ 2� Ydxd� vd� .     (3.33)

Consider the vector function B �
� � 1 � 2, � 2 � 2, ..., � n � 2 � . Then

i � 1

n

∑ � � i � 2 � i � � � B,

so (3.33) becomes

Sn

∫ �∫ � 2 � x, t,v� dxd� v
�

Sn

∫ �∫ � 2 � x, t1,v� dxd� v �
t1

t

∫
Sn

∫ ���∫
�
B,n� dSd� vd�
�

� K

t1

t

∫
Sn

∫ �∫ � 2dxd� vd� �
t1

t

∫
Sn

∫ �∫ Y2dxd� vd� .

Here
�
B,n� denotes the scalar product of vectorsB and n, where n is the outward normal vector on

� � .
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Noticing that B � � � � 2, where |� | � 1 and using the Cauchy-Schwarz inequality, we obtain

Sn

∫ �∫ � 2 � x, t,v� dxd� v �
Sn

∫ �∫ � 2 � x, t1,v� dxd� v �
t1

t

∫
Sn

∫ ���∫ � 2dSd� vd� �     (3.34)

� K

t1

t

∫
Sn

∫ �∫ � 2dxd� vd� �
t1

t

∫
Sn

∫ �∫ Y2dxd� vd� ,

Estimate |Y| using (3.4) and (3.32)

|Y| � K |� | �
Sn

∫ |
�
u|d��� �

Sn

∫ |� |d��� � |
�
a| .     (3.35)

Estimates (3.34) and (3.35) lead to

Sn

∫ �∫ � 2 � x, t,v� dxd� v �
Sn

∫ �∫ � 2 � x, t1,v� dxd� v �
t1

t

∫
Sn

∫ ���∫
� �

t
2dSd� vd� �

� K

t1

t

∫
Sn

∫ �∫ � 2dxd� vd� �
t1

t

∫
Sn

∫ �∫
�
u2dxd� vd� �

t1

t

∫
Sn

∫ �∫
�
a2dxd� vd� .

Using the Gronwall’s inequality, we obtain

Sn

∫ �∫ � 2 � x, t,v� dxd� v �     (3.36)

� K

Sn

∫ �∫ � 2 � x, t1,v� dxd� v �
t1

t

∫
Sn

∫ ���∫
� �

t
2dSd� vd� �

t1

t

∫
Sn

∫ �∫
�
u2dxd� vd� �

t1

t

∫
Sn

∫ �∫
�
a2dxd� vd� .

Substituting (3.30) and (3.31) in the right-hand side of (3.36), we get

Sn

∫ �∫ � 2 � x, t,v� dxd� v � K N1 �
t1

t

∫
Sn

∫ ���∫
� �

t
2dSd� vd� �

t1

t

∫
Sn

∫ �∫
�
u2dxd� vd� �

t1

t

∫
Sn

∫ �∫
�
a2dxd� vd� �

� K e� 2
� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2 �
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� K

t1

t

∫
Sn

∫ ���∫
� �

t
2dSd� vd� �

t1

t

∫
Sn

∫ �∫
�
u2dxd� vd� �

t1

t

∫
Sn

∫ �∫
�
a2dxd� vd� �

� K e� 2
� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2 .

Thus,

||� ||L2 � H � � t1 � �
2 � K e� 2

� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2 .

    (3.37)

One can obtain similar estimate for ||� ||L2 � H � � t1 � �
2 .

Summing up that estimate with (3.37), we obtain

||� ||L2 � H �
2 � K e� 2

� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
�
u||L2 � H �

2 � � ||
� �

t||L2 � � �2 .

To remove the term with
�
u from the latter formula we apply the estimate (2.14). Hence

||� ||L2 � H �
2 � K e� 2

� � � 	 
 5� �
� ||� ||L2 � H �

2 � e2
�
m

� ||
�
a||L2 � Z�

2 � ||
� � ||L2 � � �2 � � ||

� �
t||L2 � � �2 .

Consider
�

1, such that

Ke� 2
�

1 � � 	 
 5� � � 1
2

.

Then

�
1 �

� 1
2� � � � 5��� ln

� 1
2K
� .

Choosing
�
� max

�
1,
�

1 � , we obtain

||� ||L2 � H �
2 � K e2

�
m

� ||
�
a||L2 � Z�

2 � e2
�
m ||

� � ||L2 � � �2 � ||
� �

t||L2 � � �2 ,     (3.38)

which implies the desired estimate (2.20).
Applying the procedure, similar to (3.32)-(3.38), to the equationsdepending on w, and using the

estimate (3.38), one can similarly obtain the estimate (2.21).
�

4. Proof of the Theorem 1.

Thissection consistsof three subsections. In the subsection 4.1 geometry isdefined and the
proof of the Theorem 1 isstarted. In the subsection 4.2 the supplementary fact isproved. In the
subsection 4.3 the proof of the Theorem 1 is finished.

4.1. Beginning of the Proof of Theorem 1.
The proof of the theorem isbased on the Carleman estimate (2.8)-(2.9). The valuesof the

18



parameters
�
, � and � that are used in the proof of this theorem are independent on the valuesof

these parametersused in the proof of the Lemma 2.
Consider the problem (2.11)-(2.13) in H. Also, consider the relations , (2.15)-(2.17) and

(2.18)-(2.19). At t � 0 equation (2.11) becomes
�
ut
�
x,0,v� � � �au2

�
x,0,v� ,     (4.1)

Since

u2
�
x,0,v� � f

�
x,v�

and

|f
�
x,v� | � r2,

then (4.1) leads to

|
�
a
�
x,v� | � K � |

�
ut
�
x,0,v� |.     (4.2)

Since

�
ut
�
x, t,v� � �

ut
�
x,0,v� �

t

0

∫ �
utt
�
x, � ,v� d� ,

we have

�
ut

2 � x,0,v� � 2
�
ut

2 � x, t,v� � 2
t

0

∫ �
utt
�
x, � ,v� d�

2

.     (4.3)

Choose a point x1 � Rn, R � |x1|� 2R. Choose the number � � � 0,1� such that T � R/ � .
Denote the domains

Pc � Gc
�
x1 � and Qc � Gc

�
x1 � 
 Sn, $ c � 0,

where the domainsGc
�
x1 � are defined by (2.7).

Choose the constant c � 0 such that |x � x1|2
� c2 � � T2, $ x � Rn : |x| � R. Hence,

Gc
�
x1 � � � t � �

T� � � . Define the domain
�

b �
��

�

0,b� and choose constantsb � 0 and � � 0
such that

�
b � Pc
 3� � Pc. (See fig. 3 for a schematic representation in the 1 - D case)
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Fig. 3. The shaded area schematically represents the domain Pc.
Consider the domains Pc
 3� � Pc
 2� � Pc
�� � Pc. Also, consider the function

� 1
�
x, t ��� C1 � � ��

� � T,T� � � , such that

� 1
�
x, t � �

1

0

between 0 and 1

in Pc
 2� ,
in � ��

� � T,T� � \Pc
�� ,

in Pc
�� \Pc
 2� ,

and let � 1
�
x, t � be a non-increasing function of t in the domain

�
Pc
�� \Pc
 2� � � � t � 0� , and a

non-decreasing function of t in the domain
�
Pc
�� \Pc
 2� � � � t � 0� , so that the following inequality

holds for any function s
�
x, t,v��� C

�
H � and any

�
x, t,v��� H

� 1
�
x, t � �

0

t

∫ s
�
x, � ,v� d� �

0

t

∫ � 1
�
x, � � s� x, � ,v� d� .

An example of such function isconstructed in Appendix A. Denote �
�
x, t, ��� ��� � x, t, ��� ��� 1

�
x, t �

and w
�
x, t, ��� � w

�
x, t, ��� ��� 1

�
x, t � . Following the proof of Lemma 2 from (3.4) to (3.15), we obtain

the analogs to estimates (3.14) and (3.15) for the domainsQc

�

Qc

∫ � 2C2dh �     (4.4)
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� K �
Qc

∫ �
a2C2dh �

Qc

∫ u2C2dh �
Qc

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS,

�

Qc

∫ w2C2dh �     (4.5)

� K �
Qc

∫ �
a2C2dh �

Qc

∫ u2C2dh �
Qc

∫ � 2C2dh �
Qc

∫ �
1 � � 1 � � w2C2dh � K

�

Bc

∫ w2C2dS,

where Bc is the boundary of the domain Qc. Represent the integrals

Qc

∫ u2C2dh and

Qc

∫ � 2C2dh

asa sumsof integrals

Qc

∫ u2C2dh �

Qc� 2
�

∫ u2C2dh �
Qc\Qc� 2

�

∫ u2C2dh

and

Qc

∫ � 2C2dh �

Qc� 2
�

∫ � 2C2dh �
Qc\Qc� 2

�

∫ � 2C2dh,

and consider the integralsover the domain Qc
 2� first. Since

�
u
�
x, t,v� � �

u
�
x,0,v� �

t

0

∫ �
ut
�
x, � ,v� d�

and

�
�
x, t,v� ��� � x,0,v� �

t

0

∫ � t
�
x, � ,v� d� ,

we obtain, using (2.12) and (2.17),

�
u2 � x, t,v� � 2

�
u2 � x,0,v� � 2

t

0

∫ �
ut
�
x, � ,v� d�

2

�

� 2
t

0

∫ �
ut
�
x, � ,v� d�

2

    (4.6)

21



and

� 2 � x, t,v� � 2� 2 � x,0,v� � 2
t

0

∫ � t
�
x, � ,v� d�

2

�

� 2
�
a2f2 � 2

t

0

∫ � t
�
x, � ,v� d�

2

,     (4.7)

Since

u
�
x, t,v� � �

u
�
x, t,v� , �

�
x, t,v� ��� � x, t,v� , $ � x, t,v��� Qc
 2� ,

then, applying (4.6) and (4.7) to the integrals

Qc� 2
�

∫ u2C2dh and

Qc� 2
�

∫ � 2C2dh,

we obtain

Qc� 2
�

∫ u2C2dh �     (4.8)

� K

Qc� 2
�

∫
t

0

∫ �
ut
�
x, � ,v� d�

2

C2dh � K

Qc� 2
�

∫
t

0

∫ �
�
x, � ,v� d�

2

C2dh

and

Qc� 2
�

∫ � 2C2dh � K

Qc� 2
�

∫ �
a2C2dh �

Qc� 2
�

∫
t

0

∫ � t
�
x, � ,v� d�

2

C2dh �

� K

Qc� 2
�

∫ �
a2C2dh �

Qc� 2
�

∫
t

0

∫ w
�
x, � ,v� d�

2

C2dh .     (4.9)

Applying Lemma 3 to (4.8) and (4.9), we obtain

Qc� 2
�

∫ u2C2dh � K�

Qc� 2
�

∫ � 2C2dh     (4.10)

and
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Qc� 2
�

∫ � 2C2dh � K

Qc� 2
�

∫ �
a2C2dh � 1�

Qc� 2
�

∫ w2C2dh .     (4.11)

Also, applying the estimate (4.7) to the right-hand side of (4.10) and using Lemma 3, we obtain

Qc� 2
�

∫ u2C2dh � K�

Qc� 2
�

∫ �
a2C2dh � 1�

Qc� 2
�

∫ w2C2dh .     (4.12)

Applying the estimates (4.10), (4.11) and (4.12) to (4.4) and (4.5), and choosing
�

to be
sufficiently large, we obtain

�

Qc

∫ � 2C2dh �     (4.13)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ u2C2dh �
Qc

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS,

�

Qc

∫ w2C2dh �     (4.14)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ u2C2dh �
Qc\Qc� 2

�

∫ � 2C2dh �
Qc

∫ �
1 � � 1 � � w2C2dh �

� K
�

Bc

∫ w2C2dS,

Since

|u
�
x, t,v� | � |

�
u
�
x, t,v� | and |�

�
x, t,v� | � |�

�
x, t,v� | $ � x, t,v��� H,

(4.13) and (4.14) become

�

Qc

∫ � 2C2dh �     (4.15)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS

and
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�

Qc

∫ w2C2dh �     (4.16)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �
Qc

∫ �
1 � � 1 � � w2C2dh �

� K
�

Bc

∫ w2C2dS.

4.2. Proof of the Integral Inequality.
Here we estimate the integral

∫
Qc

�
a2C2dh

from the above through the integral

∫ �
b � Sn

�
a2C2dh.

Consider the function

tc
�
x� � |x � x1|2

� c2

� .

Then for any function s
�
x, t,v��� C

�
Qc � , which iseven with respect to the variable t, we have

Qc

∫ s
�
x, t,v� dh �

Z

∫
tc � x�

� tc � x�
∫ s

�
x, t,v� dtd� vdx �

Z

2∫
tc � x�

0

∫ s
�
x, t,v� dtd� vdx.     (4.17)

Hence,

Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
a2C2dh �

Qc� 2
�

∫ �
a2C2dh �     (4.18)

�

Qc\Qc� 2
�

∫ �
a2C2dh � 2

Z

∫
b

0

∫ �
a2C2dtd� vdx � 2

Z

∫
tc� 2

� � x�

b

∫ �
a2C2dtd� vdx.

Note that, since
�
a
�
x,v� is independent of t,we have

Z

∫
b

0

∫ �
a2C2dtd� vdx �

Z

∫
tc� 2

� � x�

b

∫ �
a2C2dt d� vdx �
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Z

∫ �
a2

b

0

∫ C2 � x, t � dtd� vdx �
Z

∫ �
a2

tc� 2
� � x�

b

∫ C2 � x, t � dt d� vdx.     (4.19)

Since the function
� �

t � � e� 2
���

t2

isdecreasing when t � 0, we have

tc� 2
� � x�

b

∫ C2 � x, t � dt � e2
�
|x� x1|2

tc� 2
� � x�

b

∫ e� 2
���

t2
dt � � tc
 2� � x� � b� � e2

�
|x� x1|2 � e� 2

���
b2
�

�
�
tc
 2� � x� � b� � e2

�
|x� x1|2 � b � 1 �

b

0

∫ e� 2
���

b2
dt.

Since

b

0

∫ e� 2
���

b2
dt �

b

0

∫ e� 2
���

t2
dt,

then

�
tc
 2� � x� � b� � e2

�
|x� x1|2 � b � 1 �

b

0

∫ e� 2
���

b2
dt �

� � tc
 2� � x� � b� � e2
�
|x� x1|2 � b � 1 �

b

0

∫ e� 2
���

t2
dt � K

b

0

∫ C2 � x, t � dt.

So, by (4.18) and (4.19), we obtain

Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
a2C2dh � K �

b � Sn

∫ �
a2C2dh.     (4.20)

Note that

C2 � x, t � � e2
� � c
 2� � 2 $ � x, t ��� Pc\Pc
 2� .     (4.21)

From (4.17), (4.19) and (4.21), we obtain

Qc\Qc� 2
�

∫ �
a2C2dh � e2

� � c
 2� � 2 �
Qc\Qc� 2

�

∫ �
a2dh � e2

� � c
 2� � 2 �
Qc

∫ �
a2dh �
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� e2
� � c
 2� � 2 �

Z

∫ �
a2d� vdx �

� tc � x�

tc � x�
∫ dt �

� Ke2
� � c
 2� � 2 �

Z

∫ �
a2d� vdx �

0

b

∫ dt � Ke2
� � c
 2� � 2 � �

b � Sn

∫ �
a2dh.

Thus, we have

Qc\Qc� 2
�

∫ �
a2C2dh � Ke2

� � c
 2� � 2 � �
b � Sn

∫ �
a2dh.     (4.22)

Since
�

b � Pc
 3� � Pc
 2� , then

e2
� � c
 2� � 2 � e2

� � c
 3� � 2 � C2 � x, t � $ � x, t ��� � b.

So, (4.22) implies that

Qc\Qc� 2
�

∫ �
a2C2dh � K �

b � Sn

∫ e2
� � c
 2� � 2 �a2dh � K �

b � Sn

∫ �
a2C2dh.     (4.23)

Finally, by (4.20) and (4.23), we have

Qc

∫ �
a2C2dh � K �

b � Sn

∫ �
a2C2dh.     (4.24)

4.3. The End of the Proof of the Theorem 1.

Consider now the estimates (4.2), (4.3) and (4.15). By (4.2) we have

|
�
a
�
x,v� | � K � |�

�
x,0,v� |,     (4.25)

and (4.3) leads to

� 2 � x,0,v� � 2� 2 � x, t,v� � 2
t

0

∫ w
�
x, � ,v� d�

2

.     (4.26)

Combining (4.25) and (4.26), we obtain

|
�
a
�
x,v� |2 � 2� 2 � x, t,v� � 2

t

0

∫ w
�
x, � ,v� d�

2

.

Multiplying the last inequality by the C2 � x, t � and integrating over Qc
 3� , we obtain

Qc� 3
�

∫ |
�
a
�
x,v� |2C2dh �     (4.27)
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�
Qc� 3

�

∫ � 2 � x, t,v� C2dh �
Qc� 3

�

∫
t

0

∫ w
�
x, � ,v� d�

2

C2dh.

Since Qc
 3� � Qc, the estimates (4.15) and (4.16) lead to

�

Qc� 3
�

∫ � 2C2dh �     (4.28)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS

and

�

Qc� 3
�

∫ w2C2dh �     (4.29)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �
Qc

∫ �
1 � � 1 � � w2C2dh �

� K
�

Bc

∫ w2C2dS.

Since

�
�
x, t,v� � � � x, t,v� , $ � x, t,v��� Qc
 3� ,

then, combining the estimates (4.27) and (4.28), we obtain

�

Qc� 3
�

∫ �
a2C2dh �

�

Qc� 3
�

∫
t

0

∫ w
�
x, � ,v� d�

2

C2dh �     (4.30)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS.

By Lemma 3

� � �
Qc� 3

�

∫
t

0

∫ w
�
x, � ,v� d�

2

C2 � x, t � dh �
Qc� 3

�

∫ w2 � x, t,v� C2 � x, t � dh.

Hence, (4.30) leads to
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�

Qc� 3
�

∫ �
a2C2dh �

Qc� 3
�

∫ w2C2dh �     (4.31)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc

∫ �
1 � � 1 ��� 2C2dh � K

�

Bc

∫ � 2C2dS.

Summing up the estimates (4.31) and (4.29), noticing that

w
�
x, t,v� � w

�
x, t,v� , $ � x, t,v��� Qc
 3� ,

and taking
�
� 2, we obtain

�

Qc� 3
�

∫ �
a2C2dh � �

Qc� 3
�

∫ w2C2dh �     (4.32)

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �

� K �
Qc

∫ �
1 � � 1 ��� 2C2dh �

Qc

∫ �
1 � � 1 � w2C2dh �

� K
�

Bc

∫ � 2C2dS � K
�

Bc

∫ w2C2dS.

The boundary Bc consistsof two parts. Denote

Bc
1 �

� � � x, t � : |x| � R� � Pc � 
 Sn,

Bc
2 �

� � � x, t � : |x � x1|2
��� t2 � c2 � � Pc � 
 Sn.

Then Bc � Bc
1 � Bc

2. Since

�
�
x, t,v� � � 1

� �
t

�
x, t,v� and w

�
x, t,v� � � 1

� �
tt

�
x, t,v� , if

�
x, t,v��� Bc

1,

�
�
x, t,v� � 0 and w

�
x, t,v� � 0, if

�
x, t,v��� Bc

2,

then

Bc

∫ � 2C2dS �

Bc
1

∫ � 1
� �

t
2C2dS and

Bc

∫ w2C2dS �

Bc
1

∫ � 1
� �

tt
2C2dS.

Thus, (4.32) leads to
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�

Qc� 3
�

∫ |
�
a
�
x,v� |2C2dh �

� K �
Qc

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �
Qc\Qc� 2

�

∫ w2C2dh �

� K
�

Bc
1

∫ � �
t
2C2dS � K

�

Bc
1

∫ � �
tt
2C2dS.

Noticing that
�

b



Sn � Qc
 3� and applying (4.24) to the last inequality, we obtain

�
�

b � Sn

∫ |
�
a
�
x,v� |2C2dh �     (4.33)

� K � �
b � Sn

∫ �
a2C2dh �

Qc\Qc� 2
�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �
Qc\Qc� 2

�

∫ w2C2dh �

� K
�

Bc
1

∫ � �
t
2C2dS � K

�

Bc
1

∫ � �
tt
2C2dS.

Taking
�
� 2K in (4.33), we obtain

�
�

b � Sn

∫ |
�
a
�
x,v� |2C2dh �     (4.34)

� K �
Qc\Qc� 2

�

∫ �
u2C2dh �

Qc\Qc� 2
�

∫ � 2C2dh �
Qc\Qc� 2

�

∫ w2C2dh �

� K
�

Bc
1

∫ � �
t
2C2dS � K

�

Bc
1

∫ � �
tt
2C2dS.

Let m1 � �sup
�
|x � x1|2

��� t2 � . Then, since

max � C2 � x, t � :
�
x, t ��� Qc\Qc
 2� � � e2

� � c
 2� � 2,
inequality (4.34) yields

�
�

b � Sn

∫ |
�
a
�
x,v� |2C2dh �
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� K � e2
� � c
 2� � 2 ||

�
u||L2 � H �

2 � ||� ||L2 � H �
2 � ||w||L2 � H �

2 �

� K
�
e2

�
m1 ||

� �
t||L2 � � �2 � ||

� �
tt||L2 � � �2 .     (4.35)

Let d1 � �
b

inf
�
|x � x1|2

��� t2 � . Then (4.35) becomes

�
e2

�
d1||
�
a||L2 � Z�

2 �

� K � e2
� � c
 2� � 2 ||

�
u||L2 � H �

2 � ||� ||L2 � H �
2 � ||w||L2 � H �

2 �

� K
�
e2

�
m1 ||

� �
t||L2 � � �2 � ||

� �
tt||L2 � � �2 .

Using the estimates for ||� ||L2 � H � and ||w||L2 � H � , given by Lemma 2 and the estimate (2.14) for
||
�
u||L2 � H �

2 , we obtain
�
e2

�
d1||
�
a||L2 � Z�

2 �

� K � e2
� � c
 2� � 2 ||

�
a||L2 � Z�

2 � ||
� � ||L2 � � �2 � ||

� �
t||L2 � � �2 � ||

� �
tt||L2 � � �2 �

� K
�
e2

�
m1 ||

� �
t||L2 � � �2 � ||

� �
tt||L2 � � �2 .     (4.36)

Since d1 �
�
c � 2��� 2, then dividing (4.36) by

�
e2

�
d1 and taking

�
to be so large that

K� exp
 � 2

� �
d1
� � c � 2��� 2 � " � 1

2
,

we obtain the desired estimate (2.6).
�

Appendix A.

Here we construct supplementary function � 1.
Consider constantsCi � 0, i � 1,...,6, that will be chosen later, and denote the surfaces in Rn,

corresponding to these constants,

Si ��� � x, t � : |x|2 ��� t2 � Ci
2 � , i � 1,...,6.

Let 0 � C1 � C2. Consider the function �
�
C�

�
�
C� �

0, 0 � C � C1

e� 1 � exp � � C2 � C1 � 2
� C2 � C1 � 2 � � C2 � C� 2

, C1 � C � C2

1, C � C2

.

This isa non-increasing function of the parameter C � 0. Consider the function
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� 1
�
x, t � � �

�
|x|2 ��� t2 � , �

x, t ��� Rn 

� � T,T� .
Consider any x2 � Rn, such that the line x � x2 in Rn 

� � T,T� crossesboth surfacesS1 and S2.
Let t � 0 first. Choose arbitrary t1, t2 �  0,T" , t1 � t2, such that the points

�
x2, t1 � and

�
x2, t2 �

are located between the surfacesS1 and S2. Clearly, the points
�
x2, t1 � and

�
x2, t2 � correspond to

different level surfacesof the function � 1
�
x, t � , S3 and S4, respectively, that have corresponding

constantsC3 and C4, such that C1 � C4 � C3 � C2 (see. Fig.4).

Fig.4. Schematic representation of level surfaces for 1-D case.

Since �
�
C� isa non-increasing function, we have � 1

�
x2, t1 � � � 1

�
x2, t2 � . Thus, the function

� 1
�
x, t � isnon-increasing with respect to t, when t � 0.
Let t � 0. Choose arbitrary t3, t4 �  � T,0" , t3 � t4, such that the points

�
x2, t3 � and

�
x2, t4 � are

located between the surfacesS1 and S2. Clearly, the points
�
x2, t3 � and

�
x2, t4 � correspond to

different level surfacesof function � 1
�
x, t � , S5 and S6, respectively, that have corresponding

constantsC5 and C6, such that C1 � C6 � C5 � C2 (see Fig. 4). Since the function �
�
C� isa

non-increasing function, we have � 1
�
x2, t3 � � � 1

�
x2, t4 � . Thus, the function � 1

�
x, t � is

non-decreasing with respect to t, when t � 0.
So, since the function � 1

�
x, t � is continuously differentiable in Rn 

� � T,T� , we can take it as the

function � 1.
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