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Abstract

The Lipschitz stability estimate for a coefficient inverse problem for the non-stationary
single-speed transport equation with the lateral boundary data is obtained. The method of Carleman
estimates is used. Uniqueness of the solution follows.

1. Introduction

The transport equation is used to model a variety of diffusion processes, such as diffusion of
neutrons in medium, scattering of light in the turbulent atmosphere, propagation of y —raysin a
scattering medium, etc. (see, e.g., the book of Case and Zweifel [6]). Coefficient inverse problems
(ClIPs) for the transport equation are the problems of determining of the absorption coefficient,
angular density of sources or scattering indicatrix from an extra boundary data. They find a variety
of applications in optical tomography, theory of nuclear reactors, etc. (see, e.g., the book of
Anikonov, Kovtanyuk and Prokhorov [1], and [6]). This paper addresses the question of the
Lipschitz stability for a CIP for the non-stationary single-speed transport equation with the lateral
boundary data. In general, stability estimates for CIPs provide guidelines for the stability of
corresponding numerical methods.

Stability, uniqueness and existence results and references to such results for CIPs for the
stationary transport equation can be found, e. g., in [1] and in the book of Romanov [23]. Uniqueness
and existence results for CIPs for the non-stationary transport equation were obtained in the works of
Prilepko and Ivankov [20], [21] and [22]. Uniqueness and existence resultsin [20] and [21] were
obtained for special forms of the unknown coefficient using the overdetermination at a point. Also,
uniqueness and existence results were obtained for an inverse problem with the final
overdetermination, i.e. where complete lateral boundary datais not present but both initial and end
conditions (at t = T) are given; see [22]. For some recent publications on inverse problems for the
transport equation see Tamasan [25] and Stefanov [24]. A derivation of the transport equation for the
non-stationary case can be found, for example, in [6].

The proof of the main result of this paper is based on a Carleman estimate, obtained by Klibanov
and Pamyatnykh [16]. Traditionally, Carleman estimates have been used for proofs of stability and
uniqueness results for non-standard Cauchy problems for PDEs. They were first introduced by
Carleman in 1939 [5], also see, e.g., books of Hormander [7], Klibanov and Timonov [17] and
Lavrentev, Romanov and Shishatskii [19]. Bukhgeim and Klibanov [4] have introduced the tool of
Carleman estimates in the field of CIPsfor proofs of global uniqueness and stability results; also, see
Klibanov [12], [13] and [14], and Klibanov and Timonov [17], [18]. This method works for



non-overdetermined CIPs, aslong astheinitia condition is not vanishing and the Carleman estimate
holds for the corresponding differential operator (see Chapter 1in[17] for the definition of
non-overdetermined CIPs). Recently, Klibanov and Timonov have extended the original idea of [4]
and [12] - [14] for the construction of numerical methods for CIPs, including the case when the
initial condition isthe o-function; see [17] for details and more references.

Klibanov and Malinsky [15] and Kazemi and Klibanov [11] have proposed to use the Carleman
estimates for proofs of the Lipschitz stability estimates for hyperbolic equations with the |ateral
Cauchy data; also see[17]. The method of [4], [12]-[14] and [17] has generated many publications,
see, for example, Bellassoued [2], [3], Imanuvilov and Y amamoto [8], [9] and [10] and the
references cited therein. The Lipschitz stability of the solution of the non-stationary transport
equation with the lateral data was proved in [16].

In this paper the ideas of [11] and [15] are combined with the ideas of [8], [9], and [16]-[18]. In
Section 2 the statements of the results are given; in Section 3, 4 and 5 the proofs of these results are
provided.

2. Statements of results
2.1. Statements of results
Let T and R be positive numbers. Denote

Q={xecR":X<R, S={veR":p =1,

H=QxS"x(-T,T), T=0Qx3"x(-T,T), Z=Qx S

Also, denote

Nk —
C (H) = {se CKH) : D¢ u(x,t,v) € C(H), |a| < k}
The transport equation in H has the form [6]

Ut + (v, VU) + a(x, v)u +j 90X t,v, UK.t o, = F(x,t,v), (2.1)

SFI

wherev € S"isthe unit vector of particle velocity, u(x,t,v) € 63(H) isthe density of particle flow,
a(x, V) isthe absorption coefficient, F(x,t,V) isthe angular density of sources, g(x,t,v, i) isthe
scattering indicatrix and (v,Vu) denotes the scalar product of two vectors v and Vu.

Consider the following boundary condition

ur = p(x,t,v), where (x,t,v) € 0Q x [-T,T|] x S*and (n,v) < 0. (2.2

Here (n,V) isthe scalar product of the outer unit normal vector n to the surface 6€ and the direction
v of the velocity. So, only incoming radiation is given at the boundary in this case.
Equation (2.1) with the boundary condition (2.2) and theinitial conditionatt = 0O

u(x,0,v) = f(x,v), VY(x,v) € Z, (2.3)

form the classical forward problem for the transport equation in any direction of t (positive or
negative). Unigqueness, existence and stability results for this problem are well known, see, e. g.,
Prilepko and Ivankov [20].

Suppose now that the absorption coefficient a(x, v) is unknown, but the following additional



boundary condition is given:
ur = q(xt,v), where(x,t,v) € 0Q x [-T,T|] x S"and (n,v) > 0.

The function q(x,t, V) describes the outgoing radiation at the boundary. Introduce the function
r(Xtv)

) pxty), if (nv) <0,
y(x,t,v) = { Gty if (W) > 0 (2.4)

Hence
ur = y(xt,v), V(X tVv) € 0Q x [-T,T] x S (2.5

Thus, we obtain the following coefficient inverse problem for the non-stationary transport equation:

Inver se Problem: Given theinitial condition (2.3) and the lateral data (2.5), determine the
coefficient a(x, v) of the equation (2.1).

For a positive constant M, denote
D(M) = {s(x) € C(2) : lIsllcz) < M}

Theorem 1. [Lipschitz stability and uniqueness] Let T > R. Suppose that derivatives okg exist
inHx S"and ||a{<g||c(ﬁxsn) <rqfor k= 0,1,2, wherer isa positive constant. Let [f(x,v)| > r, and
[f{(X, V)llcz) <rs, wherers > rz > 0. Suppose that the coefficientsa;,a, € D(M) correspond to the
boundary data y1(x,t,v) and y2(x,t,V), respectively, and functions oty € L(Q) for k = 0,1,2,
i=12

Then the following Lipschitz stability estimate holds

la: - @zl < Ko [llys— vallam + 101y — y2)llm + 1081 — r2)llol,  (2:6)

whereK = K(Q,T,r1,r2,rs3,M) isthe positive constant dependingon Q, T, r1, r2, rs3, M and
independent on the functions as, az, y1, 72

In particular, when y1 = y2, then ai(x,v) = ax(x,v) which implies that the Inverse Problem has
at most one solution.

Below K = K(Q,T,r1,r2,r3,M) denotes different positive constants, dependingon Q, T, r, ra,
rs, M and independent on functions ai, az, y1, y2, and conditions of Theorem 1 are assumed to be
satisfied. The proof of Theorem 1 is based on the Carleman estimate formulated in Lemma 1.

Let

n
Lou = Ut + (v,VU) = Uy +Z vili,

i=1

where u; = ou/ox;. Let xo € R". Introduce the function



v(x,1) = X—Xo|>—nt?, n = congt € (0,1).
Let c = const > 0. Denote
Ge(Xo) = {(X,1) : [Xx=Xo|>—nt? > c? and |x| < R}. (2.7)
Obvioudly,
Ge, € G, if c1 > ca. (2.7 1)
Introduce the Carleman Weight Function (CWF) as
C(x,t) = exp[Aw(Xx,1)].

Lemma 1. Choose the number 1 such that n € (0,1) and T > R/ /7. Also, choose the constant
¢ > Osuchthat Ge(xo) < Q x (=T, T). Then there exist positive constants 1o = 10(Gc(Xo)) and
B = B(Gc(Xo)), depending only on the domain G¢(Xo), such that the following pointwise Carleman
estimate holdsin G¢(xo) x " for all functions u(x,t,v) € C1(G¢(x0)) x C(S") and for all
A > lo(Gc(Xo)) :

(Lou)2C? > 2A(1 - muC?+ Ve U + V4, (2.8)
where the vector function (U, V) satisfies the estimate
|(U,V)| < BAU?C2. (2.9)

The proof of thislemma can be found in [16].
Also, we will use the following Lipschitz stability result, proved in [16]

Theorem 2. Suppose that the functionu € CY(Q x [T, T]) x C(S") satisfies the conditions
(2.1) and (2.4). Let functions a(x,t,v) and g(x,t,v, 1) be bounded, i.e. [a(x,t,v)| < rs V(x,t,v) € H
and |g(x,t,v,p)| < re V(X t,v,u) € Hx S, wherers and rg are positive constants. Let functions
y(X,t,v) € Lo(I'), F(x,t,v) € Lo(H) andlet T > R Then the following Lipschitz stability estimate
holds:

lullLy < Koo [yl + IFllLwy ],

where K = K(€, T, rs,rg) iSsthe positive constant independent on functionsu, y and F.

2.2. Preliminaries

Before proceeding with the proof of the Theorem 1, we introduce some new functions and
formulate necessary lemmata. Let functions u; and u, be solutions of equation (2.1) with theinitial
condition (2.3) and the lateral data (2.5) for a(x,v) = ai(x,Vv), y(Xt,v) = y1(Xt,v) and
a(x,v) = az2(x,v), y(x,t,v) = y2(x,t,v), respectively. Denote

T = Uu; — Uy,



ad=a;—ay, (210)

Y=71-72
Fromrelations (2.1), (2.3), (2.5) and (2.10), noticing that a;u; — azu, = a; U + Auy, we obtain

T+ (v, V) + a1 (X, v)0 + j g(x,t,v, WTU(X t, w)do, = Ay, (2.11)
S

ux0,v) =0, V(xV) e Z (2.12)

Ur = 7(xt,v), V(X t,v) € 0Q x [-T,T] x S (2.13)

Applying the Theorem 2 to the equation (2.11) with lateral data (2.13), we obtain the following
estimate for the function T

[Tll.ry < KAF Nz + &lL.)- (2.14)
Denote v = T;. Differentiating (2.11) and (2.13) with respect to t, we obtain
ve+ (v, V) + a1 (x,v)v +j (9T + gv)do,, = —AUz (2.15)
e
and
ol = 7, (%t v),  V(XtV) € 0Q x [-T,T] x S". (2.16)

Settingin (2.11) t = O, we obtain
v(X,0,v) = —auz(X,0,v) = —a(x,v)f(x,v), where (x,v) € Z (2.17)

Differentiating (2.15) and (2.16) with respect to t and denoting w = v, we obtain

Wi + (v, Vw) + ai(X, v)w+j (uT + 20w + gw)do, = —auzy, (2.18)
s
Wr = 7,(Xt,v), V(xtv) e oQx[-T, T] xS (2.19)

We will need the following lemma
Lemma 2. Let functionsai(x,v), a2(x,v) € D(M). The following Lipschitz stability estimates

hold:

ol = Ke @@ + 171wy + 17l (2.20)

IWlleohy < Koo [l + PNl + 7l + 17l (221)

These estimates are similar to the Lipschitz stability estimate that was obtained in [16], but do
not follow directly from the result of [16] due to the presence of the function T in (2.15) and (2.18).



The following lemma provides an estimate from the above for an integral containing the CWF.
Lemma 3. For all functionss € C(G¢(xo)) and for all A > 1, the following estimate holds

t 2
j [ j S(X,r)dr:| C2(x, t)dxdt < /1117 . j (s2C2)(x, t)dxctt.

Ge(Xo) 0 Ge(Xo)

See Section 3.1in [17] for the proof.

Lemmad4. Let T > R Thenfor any ¢ € (O,R) thereexistsano = no(R, T,c) € (0,1) such that
Ge c Qx (-T,T) forall n € (no(R T,C),1).
Proof. By the definition of the domain G

Ge € {Qx (-T,T)} emax y(x,T) < c?,
oQ

i.e. when
R2 —nT? < c?,
which leads to the following inequality

Sincec € (0,R) and R < Tthenn € (0,1) and we can choose o = n.L1
3. Proof of Lemma 2

n

Denote G, = G¢(0) for arbitrary c = const > 0. Since T > R, we can choose a small number
e =¢(RT) > 0, such that

T>R+3 and {|x| < 3} < Q. (3.2

Choose o = no(R, T,€/2) (Lemma4 ) and let, for the sake of definiteness,

_ 1+ no(RT,e/2)
= > ,

o that
Gy C Qx (=T, T). (3.2)
Choose asmall number 6 = 6(¢) € (0,&/12), such that
Guzas N[QAX (-T,T)] #0. and {X < 3} < Q. (3.3)

Consider thedomains G135 © Geoizs © Gezis © Gero. (See (2.7_1) and Fig.1 for a schematic

representation in the 1 - D case)



Fig.1. Sets Geoizs © Geaizs © Geois < Gero.

Also, consider the cut-off function y(x,t) € C1{({Q x (=T, T)}), such that

1 in Gep:2s,
2(x,t) = 0 in {Qx (=T, N}\Gg2s5,
between 0 and 1 in Gyo.5\Geroios.

The equations (2.15) and (2.18) imply that

loe + (v, V)| < K|:|v|+J [uldo, +[ oldo + |a|}

S S

Wi + (v, Yw)| < K|:|w|+J [Uldo, + [ ldoy, + [ Wwido + rﬂ

S S S

Let o(x,t,v) = v(Xt,v) e y(X1). Then

(3.4)

(35)



n n n
Ut +Z ViDj = x(vt +Z Vivi) +U(}(t +Z Vi%i)-
i=1 i=1 i=1

Derivatives yt, xi,i = 1,...,n equal to zero in G5 and in {Q x (=T, T)}\G/2,s and are bounded in
Ge2+6\Ge212s. SO, Using the inequality (3.4), we obtain

n
e+ vivi| <
i=1

< K- [x(lvhf [oldor -+ foldo, + |a|) +(1-7) ﬂ. (36)

S S

Similarly, for w(x,t,v) = w(x,t,v) « y(X,t), we obtain from (3.5)

n
Wi+ vimw| <

i=1

<Ko (%[IWHJ [oldo, +] oldo, + | IWId0u+I3I}+(1—x)-IWI) 37

S S S

Denote D = T(X,t,v) « y(X,t). Then (3.6) and (3.7) become

n
e+ vivi| <
i=1

<Ko [(wuj joldo + [ Ipldo, + |a|) +(1=—g) e |v|} (38)

S Sn
and

n
Wi+ vimw| <

i=1

< K- vawf joldor + [ poido + [ |W|dou+ra|)+<1—x>-|wl} (39)

S S S

Multiplying (3.8) and (3.9) by the CWF and squaring both sides, we obtain



i 2
(T)t 2 Vil_)i) C?<Ke |:’72 +,[ 0%do, +_[ v2do, +§2:|C2+
i1

S S

+K[(1- ) +v?]C?

2
n
(Wt +Z Viwi) Cc? <
i=1

<Ko |:(w2 +J 0%do +I v2do, +J w2do ), +az) +(1-x)- W2:|C2.

s " S
The Carleman estimate (2.8) leads to
2A(L—=n)v2C?+ Ve Uy + (V1) < (3.10)

<Ko |:(1‘)2 +J 0%do +_[ v2do +32) +(1—y)e 1)2:|C2
s s

2A(1 — n)W2C2 + V o Uy + (Vo) < (3.11)

<Ko |:(w2 +J 0%do +I v%do ), +J w2do ), +az) +(1-x)- w2:|c:2

S S S

and

where (x,t,v) € Hgp, Hyo = Gy x S and functions U5, Vi and Uy, V; are the functions U, V from
the Carleman estimate (2.8)-(2.9) for the case, when the function u is replaced by the functions o and
w, respectively. Integrating over H, and applying the Gauss formula, we obtain

2(1— 1) j 52C2dh < K.j (z—m j u?do,, +j deo,,+aZ)czdh+

Hero Hez S Sk
+K j (1- y)v2C2dh + j (U1, Vo)|dS (3.12)
Hg/z M£/2
Similarly, we obtain for w
2(1- 1) j W2C2dh < (3.13)
Hz;/2



<Ko _[ (WZ +I 0édo, +_[ v2do, +I w2do , +32)C2dh+
H

€2 S " n

j (1— ) » W2C2dh + j I(U»,V2)|dS.

Herz Mgz

where dh = dxdodt, M, = 0G,» x S" and 0G,/, denotes the boundary of the domain G,.
Noticing that for any function s(x,t,v) € C(H)

[ (j szdo-,,)czdh - A« [ s2cdh,

Herz s Herz

where A isthe area of the unit sphere S", we remove the inner integralsover S in (3.12) and (3.13).
S0, (3.12) and (3.13) become

22(1-n) [ v°C2%h<Ke[ (0%+0%+2a2)CZh+

Herz Herz

+Ke j (1- y)v2C2dh + j (U1, V)|dS

Hc/2 Mc/2
and

20(1— 1) j Ww2C2dh <

Hez

< K'.[ (Ww? + 0%+ 02 +3%)C?dh +

Hez

j (1—)()-W202dh+j Uz, V2)[dS

Hez Mg

Choose Ao such that K/(2A0(1—-1)) < 1/2. Thenfor al A > 1o we have

A j p2C2dh <

Herz

<Ke| [ a%CZh+ [ wC%h+[ (1-xv?C2h |+ [ (UsViidS
Hc/2 Hz;/2 Hc/2 Mz;/2

and

10



A J w2C?dh <

Herz

<Ko j azczdh+j uzczdh+j vZCzdh+j (1- ) +W2C2%h |+

Herz Herz Herz Herz

+ [ U2 V218

Mc/2
Using (2.9), we obtain
A [ v°CZdh < (3.14)

Hero

<Ko j azczdh+j 02C2dh + j (1- y)v2C2dh | + K2 j p2C2dS
He2 Hez He2 Mg/2
and
A [ weC?dn < (3.15)

Herz

<Ko j 22C2dh + j uZCzdh+j 92C2dh + j (1- y)»w2C%h |+
Heo He2 Heo He2
+Ka [ weczds
M2
The boundary M./, of the domain G/, consists of two parts M, = M2, U M2,, where
Miz = {(xtv) : X = RbN (G2 x S

and

M2, = {(x,t,V) : [X]2 = nt? = (/2)%} N (Ggz x ).
Since

o(Xt,V) = x7, (% t,v) and W(x,t,v) = y7,(XtV), for (x,t,v) € M,

11



o(x t,v) = 0andw(x,t,v) = 0, for (x,t,v) € M2,
then
j p2C2dS = j 472C%dS  and j W2C2dS = j ¥72C2dS,
Mz;/2 Mg-/Z Mz;/2 Mg-/Z

Estimate both sides of the inequality (3.14). Note that sSinced = v in Hgp.2s and Heoi3s < Hypo,
then

A j 92C2dh > j p2C2dh > Je2ME/2:%)? j v2dh. (3.16)
Her Hei2i3s Her2i35
Also, since 1 — y(x,t) = 0in G5, then
[1— y|C? < e22:2)? - y(x 1) € Hyp.
Hence,
[ (- pw2CPdn < e2e22" [ y2dh,
Her2 Her2

Therefore (3.14) and (3.16) lead to

2e2M(e/2+35)2 J‘ v2dh < (3.17)

Hero13s

<K| [ a2C%h+ [ wC?dh+e¥@2". [ v2h+2 [ y2C%ds
Hz;/2 Hc/2 Hz;/2 MllZ

&

Similarly, from (3.15) we obtain

L e2M(e/2+35)? I w2dh < (3.18)

Her2135

<K| [ a%CZ%h+ | wCdh+[ p°CZdh+e?22" . [ wedh+a [ 72CZds
Her2 Herz Her2 Her M,

&

Let m =sup ([x|*> — nt?). Then (3.17) and (3.18) yield

G2

2
AP (El230) ”v”Ez(Hgm&s) = (319)

12



NYA
< K(e”(‘“"m") IIIE ,k1,.0) + eam[llallfz(Hslzﬂ{t=0>) + I0MIE ) + AP NE D

and

AePHel2139)* ”W”EZ(H (3.20)

/2435) —

< K( 2R,y + €2 BIZ 0 010p) + IR0 + 100 sty + A el s, ] )
Since
[ax, t,v)| < [O(x,t,v)| and [o(xt,v)| < [p(Xt,v)] V(XtV) € H,
then (3.19) and (3.20) become

2
AePHeI2130) ||v”|-2(HL/2+36)

)2
< K(e222% 2, ) + € IR 01,1000 + IO 1) + AT 0, |)
and

2
@2 (e/2+35) ||W||L2(H£/2+35)

2
< K(em(8/2+25) ||W|||_2(HL,2) + emm[”a”Lz(HL/zm{t oy T ”U"LZ(HL/Z) + ”””Lz(HL/z) + Mlyﬂlle(M })

Dividing these inequalities by Aexp[2A(e/2 + 35)?], we obtain

I 4,0 < (3.21)
@ 25(e+55). 215(s+55)
S K( ”v”Lz(HL/z) [lra”Lz(HL/zﬂ{t 0}) + |rU||L2(HL/2) + A’ll/}/tlll_z(M :| 1
g 248(s+56)
I ) = K (S ) + (322)

+ K( [llalle(Hglzﬁ{t op T ||U||EZ(HE,2) + ||U||EZ(HE,2) + MHIILZ(M })

An inconvenience of the domain H.,. 35 for our goal isthat although the domain
Heoizs N {t = 0} < Q, but Q = Hyo.35 N {t = 0}. Thus, we now “shift” this domain. Choose an Xo
such that [xo| = 3¢/2 and consider the domain G.2(Xo), which is obtained by a shift of the domain
Gg/2. Clearly one can choosee = ¢(R,T) and 6 = d(¢) € (0,¢/12) so small that in addition to
(3.1D)-(3.3)

Ge2(X0) € Q % -T,T) and Gg2:35(Xo0) N [QAx (-T,T)] = &.
Then

13



; = = £
Guzias 1 {t= 0y = {)| > £ +36} N O (3.23)
and

Guzas(¥o) N {t = 0} = {)=Xo > § +35} NQ. (3:24)

Consider now the ball B(0,e/2+ 30) = {X : |X| < €/2+ 35}. By (3.1) B(0,e/2 + 35) < Q, since
0 = 0(g) € (0,¢/12). We prove now that B < G.2.35(X0) N {t = O}. Let X € B be an arbitrary point
of the ball B. Then

X = Xo| = [Xo| = x| = %s—|x|> %g—%—ss=s—35.

Sinced € (0,e/12), thene — 36 > €/2+35. Hence,

X—Xo| > €—-38 > & +35.
2

Hence, by (3.24) B ¢ Gg»,35(X0) N {t = O}. Therefore, using (3.23) and (3.24), we obtain that
Q = (Ggorzs U Ggarzs(Xo)) N {t = OF.
Hence, there exists anumber 61 € (0, T) such that the layer
Es, = {(X1) 1 x € Q,t] < 61} < (Guz U Gera(Xo0))- (3.25)

The schematic representation of the domains G.», G.»(Xo) and Es, in 1-D caseis provided on Fig.
2.

14



Fig. 2. 0Gg2— Solidline, 0Gg2(Xo) — Dashed line, Es, — Shaded area.
Since the Carleman estimate (2.8)-(2.9) is valid for the domain G,>(Xo), we can obtain estimates
similar to (3.21) and (3.22)

||v||Ez(Hg/2+35(Xo)) = (326)

o 25(5+50) e2im
= K(—,l T [llalle(Hslz(Xo)ﬂ{t o * INE om0 + ATAIE z(xo)):|

and
"W"Ez(Hdzm(Xo)) < K(M” ”Lz(HL/z(Xo))) (3:27)
+ K( . [llalle(Hglz(Xo)ﬁ{t o+ IOIE h,000) + RNE 00y + AT IE 002, 000 D
where
He2(Xo) = Gea(Xo) x S
and

M1, (x0) = (Ge2(X0) N {(X,1) : x| = R}) x S".

Consider now the layer E;, defined by (3.25) (see Fig.2). Estimates (3.21), (3.26) and (3.22),
(3.27) lead to the following estimates in E;, x S" :

2)L6(s+56) Z/Im
||v||EZ(E51xS“) < K( £ - ||U|||_2(H) + l |:||a||Ez(z) + ”U”EZ(H) + MWt”Ez(r) ])
(3.28)
and
”W”EZ(E,;le”) < (3.29)
2)L6(s+55) Zlm ~
= K( £ [Iw] ||L2(H) + l |:||a||Ez(z) + ”U”EZ(H) + ||U||EZ(H) + Mh’tt”Ez(D ])
Since for any function s(x,t,v) € C(H) there existst; € (-81,81) such that
J] st vdidoy < Sl e, o
S0
then (3.28) and (3.29) lead to
j j v2(x,t1,V)dxdoy < N, (3.30)

SQ

” W2(X,t1,V)dxdoy < Np,

SQ
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where

2/lb(s+5¢5) 2/1m .
N; = K( e ||U||L2(H) l |:||a||52(2) + ”U”EZ(H) + l”ﬁ”fz(r) ]) (3.31)
and
2/'{5(s+55) 2/lm
N2 = K( L I ) + /l [IBIIEZ@ + I1OE 0y + IOIE sy + A7 el ])
Let
S+(t1) = 0Q x (tl,T) X Sn, H+(t1) =Qx (tl,T) X Sn,

S_(tl) = 0Q) x (_T!tl) X Sny H_(tl) =Qx (—T,t]_) x S,

Denote

Y(xtv) = vi ) vivi, (3.32)

i=1
v(X,t1,v) = vo(X,Vv),

U|S+(t1) = 7t(xi ty V) .

Estimate the Lo(H*(t1)) norm of the function v. Multiplying (3.32) by 2v and integrating over
Z x (t1,t), wheret € (t1,T), we obtain

j j j 9 (p?)dxdodr +j j IZ (Viv2)idxdode _j j j 2vYdxdo . (3.33)

11S5'Q t197Q i=1 11S5'Q

Consider the vector function B = (v1v?,v2v?,...,vhv?). Then
n
Z (viv?)i = VB,
i=1

s0 (3.33) becomes

” v2(x,t,v)dxdoy —” v2(X,t1,Vv)dxdoy +_|EJJ (B,n)ddodr <

90 90 11560
< KO j j v2dxdodr +jj j dedcvdr).
1,5'Q t19'Q

Here (B, n) denotes the scalar product of vectors B and n, where n is the outward normal vector on
oQ.
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Noticing that B = v « v2, where Jv| = 1 and using the Cauchy-Schwarz inequality, we obtain

j j p2(xt,V)dxdoy < j j v2 (X t1, V)dxdoy +jjj v2dSdodr + (3.34)
SQ SQ t15"0Q
+ KO j j v2dxdodr +jj j dedcvdr),
1,5'Q t19'Q

Estimate |Y] using (3.4) and (3.32)

M < K|:|v|+J. [ldo,, +[ foldo,, + |a|}. (3.35)

S S

Estimates (3.34) and (3.35) lead to

j j 2(x,t,v)dxdoy < j j v2 (%, t1,V)dxdoy +j” 72dSdo Az +

SQ SQ t1S"6Q
+ KOI j v2dxdodr +j j j T2dxdodr +jj j azdxdovdr).
115"Q t1S5'Q 115"Q

Using the Gronwall’ s inequality, we obtain

j j 2(x,t,v)dxdoy < (3.36)

SQ

< K( j j v2 (X t1, V)dxdoy +jjj 72dSdo dr +j j j T2dxdodr +jj j %izdxdcvdr).

SQ t1S"8Q t15'Q t1S"Q

Substituting (3.30) and (3.31) in the right-hand side of (3.36), we get

J.J‘ v2(x,t,v)dxdo, < K(Nl +j.J‘J‘ 7t2d8davdr +JEJ.J‘ T2dxdodr +j.” adedavdr) =

s'Q t1S"0Q2 t1S"Q t1S'Q

—21.5(c+55) 2/m ~
= K(eT”U”EZ(H) + eT[”a”Ez(z) + ”U”EZ(H) + i”ﬁ”fz(r) ]) +

17



s K(Hj 72dSdo,dr + j [ [ v?axdoyds +j [ azdxdavdr) <

t1870Q t1S"Q t1S"Q

226(&+50) 2/1m
< K(EZE R o + S LRI 0 + I+ AP R ] ).

Thus,

ma(s+5a) g2im ~
== ”U||L2(H) + /1 |:||3||Ez(2) + ||U||EZ(H) + Mh’t”fz(r) :| )

(3.37)

IIIE e ey < K(

One can obtain similar estimate for [[v|[?, -, ),-
Summing up that estimate with (3.37), we obtain

( e 25(e+59) 2,15(8+55)

||U||EZ(H) <K ||U|||_2(H) + == |:|ra|||_2(z) + ”U”LZ(H) + /1||7t||52(r) :| )

To remove the term with T from the latter formula we apply the estimate (2.14). Hence
228(+58) e2m .
ol < K( 2 0l + S LRI 0 + I71R.ir) + 7R T ).
Consider 11, such that
~27.18(e+55) _ 1
Ke 5

Then

- _ 1 1
M= =25+ 5oy oK)
Choosing A > max(1,41), weobtain
IR, = K( SR ) + LTIy + 172y 1), (3:39)
which implies the desired estimate (2.20).

Applying the procedure, similar to (3.32)-(3.38), to the equations depending on w, and using the
estimate (3.38), one can similarly obtain the estimate (2.21). [

4. Proof of the Theorem 1.

This section consists of three subsections. In the subsection 4.1 geometry is defined and the
proof of the Theorem 1 is started. In the subsection 4.2 the supplementary fact is proved. In the
subsection 4.3 the proof of the Theorem 1 is finished.

4.1. Beginning of the Proof of Theorem 1.
The proof of the theorem is based on the Carleman estimate (2.8)-(2.9). The values of the
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parameters 4, n and ¢ that are used in the proof of this theorem are independent on the values of
these parameters used in the proof of the Lemma 2.

Consider the problem (2.11)-(2.13) in H. Also, consider therelations, (2.15)-(2.17) and
(2.18)-(2.19). Att = O equation (2.11) becomes

Ti(x,0,v) = —auz(x,0,v), (4.2
Since
u2(x,0,v) = f(x,v)
and
[f, V)| = 12,
then (4.1) leadsto
[a(x,v)| < K [0¢(X,0,V)|. (4.2)
Since
Ti(X,t,v) = T(x,0,v) +JE Tu(X,7,V)dr,
0
we have

t 2
T2(x,0,V) < 202(x,t,V) + 2( j Un(x,r,v)dr) . (4.3)

0
Choose apoint x; € R", R <[xq|< 2R. Choose the number n € (0,1) suchthat T > R/ /77.
Denote the domains
PC = Gc(X]_) and Qc = Gc(X]_) X Sn, VC > O,

where the domains G¢(x;) are defined by (2.7).

Choose the constant ¢ > 0 such that [x — x1]? — ¢® < nT?, Vx € R" : |x] = R. Hence,
Ge(x1) N {t = £T} = 0. Define the domain Qp = Q x (0, b) and choose constantsb > 0and o > 0
such that Qp < Peias < Pe. (Seefig. 3 for a schematic representation in the 1 - D case)
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Fig. 3. The shaded area schematically represents the domain P.
Consider the domains Pcias © Peios © Pes < Pe. Also, consider the function

x1(x,t) € CY{Q x (-T,T)}), such that

1 in Peios,
Xl(X, t) = 0 in {Q X (—T, T)}\Pc+5;
between 0 and 1 in Pe.s\Pci2s,

and let y1(x,t) be anon-increasing function of t in the domain (Pes\Pci25) N {t > 0}, and a
non-decreasing function of t in the domain (Pc.s\Pci2s) N {t < O}, so that the following inequality
holds for any function s(x,t,v) € C(H) and any (x,t,v) € H

[ 2108 7, vydr

0

<

j s(x,7,Vv)dr

0

An example of such function is constructed in Appendix A. Denote o(x,t,v) = v(X,t,v) « x1(X1)
and W(x,t,v) = w(x,t,v) e y1(X,t). Following the proof of Lemma 2 from (3.4) to (3.15), we obtain
the analogs to estimates (3.14) and (3.15) for the domains Q.

A j 92C2dh < (4.4)
Qc

21(X,1)

20



<Ko [ j aZCZdh+j u2C2dh + j (1- m)chzth + KA j p2C2dS,

Qc Qc Qc Bc

A | wCdh < (4.5)
Qc

<Ko [ j 22C2dh +j u2C2dh + j 2C2dh +j (1- 1) * W2C2dh:| + KA j W2C2dS,
Qe Qe Qe Qc Be
where B is the boundary of the domain Q.. Represent the integrals
[ wCdn and [ v°CZdh
Qe Qe
asasums of integrals

juZCZdh: j n2C2dh + j u2C2dh
Qc Qc+26 QC\Qc+25
and

jz-ﬂc?dh: j p2C2dh + j p2C2dh,
Qc Qc+26 QC\Qc+25

and consider the integrals over the domain Qs first. Since
t
UL, V) = TU(X0,V) +j T(x,7,v)de
0

and
(% t,V) = v(x,0,V) +j vi(x,7,V)d,
0

we obtain, using (2.12) and (2.17),

t 2
T3(x,t,v) < 20%(x,0,V) + 2([ Ut(X,T,V)dT) =

0

t 2
- 20 tlt(x,r,v)dr) (4.6)
0
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and

t 2
v%(X,1,V) < 20%(X,0,V) + 2(_[ vt(x,r,v)dr) =

0

t 2
- 2322 4 20 vt(x,r,v)dr) , (4.7)

0
Since
ox, t,v) = U(x,t,v), (X, t,v) = v(Xxt,V), V(X t,V) € Qcizs,
then, applying (4.6) and (4.7) to the integrals

j u2C2h  and j 2C2dh,

Qc+26 Qc+26

we obtain
j 02C2dh < (4.8)
Qc+25

t 2 t 2
<K j (j Ut(x,r,v)dr) C2dh = K j (j v(x,r,v)dr) C2dh
Qci2s 0 Qci2s 0
and

2
[ vczh<k| [ a’Cih+ | 0 vt(x,r,v)dr) c2dh | =

Qci2s Qcr2s Qci2o 0

2
t
- K j azczdmj (j w(x,r,v)dr) c2dh |. (4.9)
Qci2s Qci2s 0
Applying Lemma 3 to (4.8) and (4.9), we obtain
[ u’C?dh < K [ v2czan (4.10)
Qc+26 Qc+26

and
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j 52C2dh < K|: j aZCZdh+% j W2C2dh:|. (4.11)
Qc+2§ Qc+26 Qc+26

Also, applying the estimate (4.7) to the right-hand side of (4.10) and using Lemma 3, we obtain

202 K 22 1 202
j quhsl[J‘ a’C%dn+ 4 ijth. (4.12)

Qci25

Applying the estimates (4.10), (4.11) and (4.12) to (4.4) and (4.5), and choosing A to be
sufficiently large, we obtain

Qc+25 Qc+25

A j 92C2dh < (4.13)
Qc

<Ko j 72C2dh + j u2C2dh +j (1- y1)v?C%h |+K2 j p2C2dS,
QC QC\Qc+25 QC Bc

A | w2C?dh < (4.14)
Qc

<Ko j 3%C2dh + j w’Ch+ [ 02C2%h+[ (1- 1)+ w?C%h |+
Qe Qc\Qc:2s Qc\Qeizs Qe
+K2 | weczds
Bc
Since
[ax, t,v)| < [0(x,t,v)| and [o(xt,v)| < (X t,v)] V(XtV) € H,
(4.13) and (4.14) become

A j 92C2dh < (4.15)
Qc

<Ko j 22C2dh + j u2C2dh + j (1- y)v?C%h |+K2a j p2C2dS

Qc Qc\Qc+26 QC\QC+26 Be

and
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A j W2C2dh < (4.16)
Qc

<Ko jazczdm j w2C2dh + j UZCZdh+j (1- x1) »w2C2dh | +
QC Qc\Qc+26 Qc\Qc+26 QC
+ KA j w2C2dS

Be

4.2. Proof of the Integral Inequality.
Here we estimate the integral

| a?czn
Qc
from the above through the integral
[ =P
QpxS"
Consider the function
() = JIX= X1 = c?
C ﬁ .
Then for any function s(x,t,v) € C(Qc), which is even with respect to the variable t, we have
te(X) te(X)
j s(x,t,v)dh :j j S(x, t, v)dtdodx zzjj S(x, t, v)dtdodx. (4.17)
Qc Z-te(X) Z 0
Hence,
j 22C2dh = j 22C2dh + j 22C2dh = (4.18)
QC Qc\Qc+26 Qc+25

tor2o (X)

_ j 22C2dh+ 2 IT 22C2dtdo X + 2 j j 22C2dtdo v dx.
Qc\Qci2s zZo Z b

Note that, since a(x, v) isindependent of t,we have

b tei25(X)
j j azc2dtdovdx+j ( j aZCZdt)do-vdx

Z0 Z b
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b tc+25(x)
jaz j cz(x,t)dtdovdx+j az( j Cz(x,t)dt)dovdx.

4 0 z b

Since the function
o(t) = e 2t?

isdecreasing whent > 0, we have

tei2s(X) tei2s(X)

j C2(x,t)dt = ekl j et < (teros(X) — b) » €20 o @ 200” =

b b

b
= (te:2s(X) — b) « €2F o p2 I e 2b’ g,

0

Since
b b
_[ e 2t S_[ e 2,
0 0
then
b
(tesas(X) — b) o @211l ¢ 1 J e 22t <
0

b b
< (tc+25(X) - b) . e2/1|x—x1|2 b1 OJA e‘m”tzdt <K J‘ CZ(X, t)dt
0 0
So, by (4.18) and (4.19), we obtain
[2°c?h< [ a’Cih+K [ a’C%dh
Qe Qc\Qei2s QpxS"

Note that
C2(x,1) < eMe2)® y(xt) € Pc\Peros.
From (4.17), (4.19) and (4.21), we obtain
[ aCrh<ere®’. [ aPdh< e[ ah -
Q\Qc2s Qc\Qeizs Qe

25
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te(X)
— @2M(c+20)? .J‘ ’aszvdX° J. dt <

Zz —te(X)

b
< Ke2er2)? , j A2doydx » j dt = Ke2Hcr2)? j a2dh,

4 0 QpxS"
Thus, we have
[ a’C?dh < ke, [ aldh
Qc\Qci2s QpxS"
Since Qp < Peizs < Peios, then
e2H(e12)? o @2erB)? « C2(x 1)  V(X,t) € Qp.
S0, (4.22) implies that
[ aCth=k [ e?e»adh<k [ a’C%dh.
Qc\Qcr2s QpxS" QpxS"
Finally, by (4.20) and (4.23), we have
[ a’czh<k [ a2cih.
Qe QpxS"
4.3. The End of the Proof of the Theorem 1.
Consider now the estimates (4.2), (4.3) and (4.15). By (4.2) we have
A V)| < Ko o(x,0,v)],
and (4.3) leadsto

t 2
v2(x,0,V) < 20%(X,t,V) + 2([ W(X,T,V)dr) :

0

Combining (4.25) and (4.26), we obtain

t 2
(X, V)2 < 202(x,t,V) + 20 W(x,r,v)dr) .

0

Multiplying the last inequality by the C2(x,t) and integrating over Qc.3s, we obtain

j [A(x, V)[2C2dh <

Q c+30

26

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



t 2
< [ vxtwCin+ | (j W(x,r,v)dr) c2dh.

Qc:3s Qci3s 0

Since Qczs < Qc, the estimates (4.15) and (4.16) lead to

A j 52C2dh < (4.28)

Qc+36

<Ko j 22C2dh + j T2C2dh +j (1- y1)v?C%h |+ K21 j p2C2dS

QC Qc\Qc+26 QC Bc
and
) j w2C2dh < (4.29)
Qc+35
<Ke| [a%CZh+ [ ©wC2dh+ [ v2C2h+[ (1-y1)+w?Coh |+
QC QC\Qc+25 QC\QC+25 QC
+KA j Ww2C2dS
Bc
Since

v(x,t,v) = o(xt,Vv), V(XtV) € Qeass,
then, combining the estimates (4.27) and (4.28), we obtain

t 2
) j 22C2dh- 4 j (j W(x,r,v)dr) C2dh < (4.30)

Qc+35 Qc+35 0

<Ko j 22C2dh + j w2C2dh +j (1- y1)v?C%h |+K2 j p2C2dS
QC QC\Qc+25 QC Bc

By Lemma 3

t 2
Ane j ( j W(x,r,v)dr) C2(x,t)dh < j W2(x,t,V)C2(x, t)dh.
0

Qc+35 Qc+35

Hence, (4.30) leadsto
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| azczdh—j w2C2dh < (4.31)

Qc+36 Qc+36

<Ko j 22C2dh + j T2C2dh +j (1- y1)v?C%h |+ K21 j p2C2dS,
QC Qc\Qc+26 QC Bc
Summing up the estimates (4.31) and (4.29), noticing that

wW(Xx, t,v) = W(xt,v), V(Xt,V) € Qeass,
and taking 4 > 2, we obtain
) j 22C2dh+ 4 j w2C2dh < (4.32)

Qc+35 Qc+35

<Ke jazc2dh+ j w2C2dh + j v2C2h |+
QC QC\Qc+25 QC\QC+25

+K j (1—%1)u2c2dh+j (1- y)wW2C2dh | +
Qc Qc

+KA j 92C2dS+ KA j w2C2dS
Bc BC

The boundary B consists of two parts. Denote

Bt = {x0 : X = RrNPe) x S,

B2 = ({(x,t) : kx—x12—nt?2 = c?} NPc) x S.
Then B. = Bl U BZ. Since

(X t,V) = x17,(t,v) and W(x,t,v) = y17 (Xt V), if (xt,Vv) € B,

o(x,t,v) = Oand w(x,t,v) = 0, if (xt,v) e B2,
then
[ v2c?ds=| yy?cids and [ wiCZdS=| yi7icias
Bc B Be B

Thus, (4.32) leads to
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A j [A(x, V)[2C2dh <

Qc+36

<Ko j a2C2dh + j u2C2dh + j v2C2dh + j w2C%dh |+
QC Qc\Qc+26 Qc\Qc+26 Qc\Qc+26

+ KA j 72C2dS+ K2 j y2C2ds
B B
Noticing that Qp x S" © Qe and applying (4.24) to the last inequality, we obtain
) j [A(x, V)[2C2%dh < (4.33)

QpxS"

<Ko j 22C2dh + j v2C2dh + j »2C2dh + j w2C2dh |+

QpxS" Qc\Qcr26 Qc\Qc:2s Qc\Qct2s

+Ka [ y2c?ds+Ka | yic?ds
Bl Bt
Taking A > 2K in (4.33), we obtain
) j [A(x, v)[2C2dh < (4.34)

QpxS"
<K«| [ wCxh+ [ w%Cih+ [ wC%h |+
Qc\Qc+26 Qc\Qc+26 Qc\Qc+26

+ KA j 72C2dS+ K2 j y2C2dS
B B

Let my =sup (X — X1|?> — nt?). Then, since
r

max{C%(x,t) : (xt) € Qc\Qeras} = €2HC+2)?
inequality (4.34) yields

A j [A(x, V)[2C2dh <

QpxS"
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2
< Ko @2er2) |:”U||EZ(H) + ||U||EZ(H) + ”W”EZ(H)] +

+ Klemml[”?tnfz(r) + ||7tt||Ez(F):|' (4.35)

Let d; =inf (Jx—X1]? — nt?). Then (4.35) becomes
Qp

rePh 3|2, 5 <
2
< Ko 240r2) |:”U||EZ(H) + [PlIZ, 0 + ”W”EZ(H)] +

+ Klemml[”?tnfz(r) + ||7tt||Ez(F):|'

Using the estimates for [jv|l,,, and [Iw|_, ), given by Lemma 2 and the estimate (2.14) for
I[[IZ 1), we obtain

ieﬂdl”a”EZ(Z) =
NYA I~ I~ I~
< Ko 2402 |:||a||52(2) + ||7’||Ez(r) + ||7’t||52(r) + ”7tt”Ez(F):| +

+ K/leﬂml[lwtllfz(r) + ||7tt”Ez(F)]' (4-36)
Sinced; > (c+ 26)?, then dividing (4.36) by 1e*% and taking A to be so large that
%exp[—z/m(ol1 —(c+28))] < L,
we obtain the desired estimate (2.6). [
Appendix A.
Here we construct supplementary function y 1.

Consider constantsC; > 0, i = 1,...,6, that will be chosen later, and denote the surfacesin R",

corresponding to these constants,
S ={(xt): xZ-nt?=C?, i=1,..6.
Let 0 < C; < C,. Consider the function w(C)

0, 0<C<C(C
_ -1 (C2=C1)?
o€ =+ e eXp(_ Cr G (C2 7 ) Ci<C<Ce
1, C>0C;

Thisisanon-increasing function of the parameter C > 0. Consider the function
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w1(X,t) = (X - nt?), (x,t) € R"x (-T,T).

Consider any x2 € R", such that thelinex = x2 in R" x (=T, T) crosses both surfaces S; and S,.

Lett > Ofirst. Choose arbitrary t1,t> € [0, T], t1 < tz, such that the points (x2,t1) and (X2,t2)
are located between the surfaces S; and S;. Clearly, the points (x2,t1) and (x2,t2) correspond to
different level surfaces of the function w1(x,t), Ss and S4, respectively, that have corresponding
constants C3 and C4, suchthat C; < C4 < C3 < C; (see. Fig.4).

D

X2 X

\

Fig.4. Schematic representation of level surfacesfor 1-D case.

Since w(C) isanon-increasing function, we have w1(X2,t1) > wi(X2,t2). Thus, the function
w1(X,t) isnon-increasing with respect to t, whent > 0.
Lett < 0. Choose arbitrary t3, t4 € [-T,0], t3 > t4, such that the points (xz,t3) and (x2,t4) are

located between the surfaces S; and S,. Clearly, the points (X2,t3) and (X2,t4) correspond to
different level surfaces of function w1(x,t), Ss and S, respectively, that have corresponding
constants Cs and Cg, suchthat C; < Ce < Cs < C; (see Fig. 4). Since the function o(C) isa
non-increasing function, we have w1(X2,t3) > w1(X2,t4). Thus, the function w1(x,t) is
non-decreasing with respect to t, whent < O.

So, since the function w1(X,t) is continuoudly differentiablein R" x (-T, T), we can take it asthe
function y1.
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