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Abstract. Mean field quantum random graphs give a natural generalization of classical
Erdős-Rényi percolation model on complete graph GN with p = β/N . Quantum case
incorporates an additional parameter λ > 0, and the short-long range order transition
should be studied in the (β, λ)-quarter plane. In this work we explicitly compute the
corresponding critical curve γc, and derive results on two-point functions and sizes of
connected components in both short and long range order regions. In this way the
classical case corresponds to the limiting point (βc, 0) = (1, 0) on γc.

1. Introduction and Results

1.1. Classical Erdős-Rényi random graphs. In the classical Erdős - Rényi model
of random graphs each two vertices i 6= j of the complete graph GN = {1, . . . ,N} are
connected with probability p = β/N independently from all other edges. The phase
transition [JLR] occurs at the critical value

βc = 1. (1.1)

Namely, for β > βc with probabilities of order 1− o(1) there is a unique giant connected
component of size O(N) , whereas for β < βc all the connected components of GN have
sizes of the order O(log N) or less.

1.2. Quantum version of Erdős-Rényi random graphs. Let us formulate now a
quantum version of Erdős-Rényi random graphs. As we shall briefly explain in the end
of the section, both the motivation and the choice of terminology comes from the sto-
chastic geometric (Fortuin-Kasteleyn type) representation of quantum Curie-Weiss model
in transverse magnetic field, which was originally developed in the general ferromagnetic
context in [AKN].

There are two parameters β ∈ (0,∞] - the inverse temperature and λ ∈ [0,∞) - the
strength of the transversal field. The case β = ∞ corresponds to the ground state, and
the case λ = 0 brings us back to the context of classical random graphs discussed above.

Given β ∈ [0,∞] let us use Sβ to denote the circle of length β under the convention

S∞ = R. The model is built on the space G
β
N = GN × Sβ, that is to each site i ∈ GN we

attach a copy Si
β of Sβ. With a slight abuse of notation we shall also write Si

β = i× Sβ.

Our next step is to make finite (β < ∞) or countable (β = ∞) random number of
holes in each Si

β and draw finite ( β < ∞ ) or countable (β = ∞) random number of
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links between various points of GN with the same time coordinates, that is between points
of the type (i, t) and (j, t) where i 6= j and t ∈ Sβ. Both operations are going to be
performed with the help of independent Poisson point processes over the time space Sβ

and, eventually, will lead to a splitting of G
β
N into a finite (β <∞) or countable (β =∞)

number of disjoint maximal connected components,

G
β
N \ H = C1 ∨ · · · ∨ Cn, (1.2)

where H is the set of the holes. An example for N = 3 is given on Figure 1.2. For each

fixed x ∈ G
β
N the probability P

β,λ
N (x ∈ H) = 0. Thus, for given x ∈ G

β
N the notion C(x)

of the connected component containing x in the decomposition (1.2) is well defined.
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Figure 1. An example of the decomposition of G
β
3 after all the holes are punched and

all the links are drawn: G
β
3 \H = C1∨C2 , where C1 = I1

1 ∪I2
1 ∪I1

3 and C2 = I3
1∪I1

2 ∪I2
2 ∪I2

3

Processes of holes Hi. For each i ∈ GN the process of holes Hi is the Poisson point process
on Si

β with intensity λ. Hi-s are assumed to be independent for different i-s. For β < ∞

the punched circle Si
β \ Hi consists of n disjoint connected intervals,

Si
β \ Hi = I1

i ∪ I2
i ∪ · · · ∪ In

i . (1.3)

Of course n = 1 whenever the cardinality #Hi = 0, 1.
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In the case β =∞ the punched real line Si
β \ Hi is split into a countable disjoint union

of connected intervals,

Si
∞ \ Hi =

∞
⋃

r=−∞

Ir
i , (1.4)

where we label I0
i the interval which contains (i, 0).

In the sequel we shall use |Ik
i | to denote the length of Ik

i , and we shall write H for the
total collection of all the holes,

H = ∪iHi ⊂ G
β
N .

Processes of links Lij and decomposition (1.2). With each (unordered) pair of vertices

i, j ∈ GN we associate a copy S
ij
β of Sβ and a Poisson point process Lij on S

ij
β with

intensity 1/N . Processes Lij = Lji are assumed to be independent for different (i, j) and
also independent of the processes of holes Hi.

Two intervals Ik
i and I l

j either in the decomposition (1.3) or accordingly , in the case

β = ∞, in the decomposition (1.4) are said to be connected if there exists t ∈ S
ij
β such

that t ∈ Lij, whereas (i, t) ∈ Ik
i and (j, t) ∈ I l

j . The decomposition (1.2) of G
β
N \ H into

maximal connected components is, thereby, well defined.

Relation to the classical Erdős-Rényi random graph. If λ = 0 then there are no holes
and Si

β \ Hi always contains only one connected component, which of course equals to Si
β

itself. In the latter case, the probability (β <∞) that Si
β and S

j
β are connected equals to

1− e−β/N and we are back to the original Erdős- Rényi setup.

1.3. Phase transition in the (β, λ)-plane. The critical curve γc in the (β, λ)-coordinate
quarter plane is implicitly given by (see Figure 1.3)

F (β, λ)
∆
=

2

λ

(

1− e−λβ
)

− βe−λβ = 1. (1.5)

It is easy to check that γc is in fact a graph of a function λc = λc(β) defined on β ∈ [1,∞).
Consider the decomposition (Figure 1.3) of the off-critical region

R2
+ \ γc = ALRO ∪ASRO

where
ALRO =

{

(β, λ) ∈ R2
+ : F (β, λ) > 1

}

. (1.6)

LRO and SRO above stand for the long (respectively short ) range order.
Our main result states that for (β, λ) ∈ ALRO there is a long range order in the sense that

the probability of two points (i, j) and (j, s) being connected does not vanish when the size
of the system tends to infinity. Contrary to this such probability vanishes in the N →∞
limit whenever (β, λ) ∈ ASRO. The survival of probabilities of connections is related to
an emergence of an O(N)-giant connected component in the disjoint decomposition (1.2)
in the LRO regime; in particular for (β, λ) ∈ ASRO typical connected component of any

point (i, t) ∈ G
β
N is of order O(log N). This is a quantum version of Erdős- Rényi phase

transition phenomenon and, since

lim
λ→0

F (β, λ) = β,

the classical case is recovered in the limiting λ = 0 case.
We proceed with several exact alternative statements of this result.
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Figure 2. Decomposition of the (β, λ) quarter plane into the short range and long range regions.

1.4. Long and short range order. In the sequel we shall use P
β,λ
N (·) for the joint

product measure of all the processes Hi of holes and all the processes Lij of links as
defined above.

Let us say that two points (i, t), (j, s) ∈ G
β
N are connected if they belong to the same

connected component in the decomposition (1.2). We shall denote the latter event as
{(i, t)←→ (j, s)}.

Theorem A. If (β, λ) ∈ ASRO, then

P
β,λ
N ((i, t)←→ (j, s)) = O

(

log N

N

)

(1.7)

uniformly in t, s ∈ Sβ and i 6= j.
On the other hand, if β < ∞ and (β, λ) ∈ ALRO, then there exists p = p(β, λ) ∈ (0, 1),
such that

P
β,λ
N ((i, t)←→ (j, s)) = p(β, λ)2 (1 + o(1)) , (1.8)

also uniformly in t, s ∈ Sβ and i 6= j.

1.5. Emergence of the giant component. Each connected cluster Ck in the decompo-
sition (1.2) consists of disjoint union of intervals

Ck =
⋃

l

J l
k,

where each J l
k coincides with some Ir

i in one of the decompositions (1.3) ((1.4) in the
β =∞ case). Define,

|Ck| =
∑

l

|J l
k|.

For any fixed (i, t) ∈ G
β
N the probability

P
β,λ
N ((i, t) ∈ H) = 0.
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Thus, in general position, (i, t) ∈ G
β
N \H and there exists Ck(i, t) (which from now on we

shall denote as C((i, t)) such that (i, t) ∈ Ck. Evidently the distribution of |C(x)| does not
depend on a particular x = (i, t).

If β <∞ we also define the maximal cluster size

M = max
k
|Ck|, (1.9)

and the next to maximal cluster size,

Mnext = max {|Ck| : |Ck| 6=M} . (1.10)

These definitions would clearly make little sense if β =∞.

Theorem B. If (β, λ) ∈ ASRO, then for every κ > 0 there exists c = c(β, λ, κ) <∞, such

that

P
β,λ
N (|C(x)| > c log N) = o

(

1

Nκ

)

. (1.11)

Furthermore, if β <∞, then

P
β,λ
N (M > c log N) = o

(

1

Nκ−1

)

(1.12)

If, however, β < ∞ and (β, λ) ∈ ALRO then there exists a sequence of positive numbers

ǫN (β, λ)→ 0 such that,

P
β,λ
N

(∣

∣

∣

∣

|C(x)|

N
− ρ

∣

∣

∣

∣

< ǫN

)

= p(β, λ)(1 − o(1)), (1.13)

where ρ = ρ(β, λ) = βp(β, λ) > 0, and p(β, λ) is the same probability as in (1.8). Further-

more, in the β <∞ case, there exists a constant c = c(β, λ) <∞ such that

P
β,λ
N (E(ρ, ǫN , c)) = 1− o(1), (1.14)

where the event E(ρ, ǫN , c) is defined via

E(ρ, ǫN , c) =

{∣

∣

∣

∣

M

N
− ρ

∣

∣

∣

∣

< ǫN

}

∩
{

Mnext < c log N
}

. (1.15)

In this paper we shall prove the short range order parts of Theorem A and Theorem B
for all β 6 ∞, whereas in the long range order case we shall concentrate only on the
case of positive temperatures β < ∞. A treatment of the LRO properties of the ground
state case β = ∞ requires an additional coupling with branching random walks in the
sense of [Bi]. Specifically, in the β = ∞ case in order to show that two large connected
clusters intersect one should also control the time spread-off of each of these clusters. The
corresponding results may be interesting in their own right and we relegate them to the
forthcoming [IL].

1.6. Relation to Curie-Weiss model in transverse field. The Hamiltonian of the
Curie-Weiss model in transversal field is given by

−
1

2N

∑

i6=j

σz
i σ

z
j − λ

∑

i

σx
i , (1.16)

where σz
i , σ

x
i are Pauli spin 1/2 matrices. As it has been discovered in [AKN] (in a general

ferromagnetic context) path-integral type representation of the Curie-Weiss leads to the
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following modification P̃
β,λ
N of our basic product measure of “holes” and “links”, which is

in fact the Fortuin-Kasteleyn representation of (1.16)

P̃
β,λ
N (dH,dL) =

1

ZN (β, λ)
2#c(H,L)P

β,λ
N (dH,dL) , (1.17)

where #c(H,L) is the number of maximal connected components in the decomposition
(1.2). In particular, the two point function could be expressed in terms of this FK-measure
as

〈σz
i σ

z
j〉

β,λ
N = P̃

β,λ
N (i←→ j) .

A sample path large deviation analysis [IL] of (1.16) indicates that the long/short range
order critical curve in the (β, λ)-plane is still given by (1.5). This, in view of the analysis
of classical FK models on complete graphs [BGJ], is not very surprising, however so far
we did not find a way it deduce it from purely stochastic geometric considerations, which
would generalize recolouring techniques of the latter paper.

1.7. FKG properties of P
β,λ
N (·). Many of our arguments rely on the following FKG

(Fortuin-Kasteleyn-Ginibre) property of P
β,λ
N (·):

Let us define the partial order of the probability space, Ω, in which (H,L) takes values
in the following way:

(H′,L′)≫ (H,L)⇔ H′ ⊆ H and L′ ⊇ L

In other words, in the decomposition of G
β
N generated by (H′,L′) there are less holes and

more links than in the decomposition corresponding to (H,L).
In the sequel we shall say that A is an increasing (decreasing) event if for all (H,L) ∈ A,

if (H′,L′)≫ (H,L)
(

(H′,L′)≪ (H,L)
)

then (H′,L′) ∈ A.

As it has been proved in [AKN] a probability measure P
β,λ
N (·) has the positive association

property: if both A and B are increasing (decreasing) events, then

P
β,λ
N (A ∩B) > P

β,λ
N (A) P

β,λ
N (B)

1.8. Structure of the paper. Our proof is built upon the classical treatment (see e.g.
[BGJ]). An essential additional complication to be encountered is that in the quantum
case two different clusters may share a spatial component without intersecting. In other
words it can happen that there exists an index i ∈ GN and two disjoint clusters C1 and C2

such that Cl ∩ Si
β 6= ∅ for l = 1, 2.

In Section 2 we set up most of the relevant notation and develop our basic inductive
construction of percolation clusters. In the β < ∞ case the genealogical structure of
percolation clusters could be ignored and, accordingly, our exposition could be slightly
simplified. However, the multi-index notation we employ will become indispensable in
the β = ∞ case [IL] and, besides, we feel that it gives a rather natural way to describe
connected clusters.

Section 3 is devoted to the proofs of all our main results.

2. Construction of connected clusters

2.1. Underlying probability space. Let M+ be the countable set of all finite multi-
indices α,

M+ = {α = (α1, . . . , αn) ; αi ∈ N , n = 1, 2, . . .} .
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There is a total order on M+: we shall say that α ≺ γ if either α has less entries (belongs
to an older generation) than γ or else if α is less than γ in the lexicographical order. The

underlying probability measure which we proceed to call P
β,λ
N (·) is a product measure

P
β,λ
N (·) =

⊗

α∈M+

Q
β,λ
N,α·.

Each measure Q
β,λ
N,α(·) generates an interval I[α] ⊆ Sβ and, subsequently, a point process

X+[α] on G
β
N = GN × Sβ according to the following procedure, whose relation to the

background (H,L) process of holes and links should be obvious:

Construction of I[α]. Let U, V be two independent Exp(λ) random variables. If U+V > β,
then I = Sβ. Otherwise, I = (−V,U) ⊂ Sβ.

In the sequel we shall refer to the distribution of the interval I[α], or more precisely to
the distribution of its length |I[α]|, just constructed as to Γβ(2, λ) distribution. Obviously,
in the β =∞ case |I| of I is distributed as Γ(2, λ) variable.

Construction of the number of offsprings and of the point process X+[α]. Given I[α] and,
in particular the length |I[α]|, sample the number of off-springs ξ+[α] from the Poisson
distribution

ξ+[α] ∼ Poisson (|I[α]|) .

We shall denote the (unconditional ) distribution of ξ+[α] constructed above as Ξβ(2, λ).
With I[α] and ξ+[α] fixed, sample

X+[α] =
{

x1[α], . . . , xξ+ [α]
}

=
{

(d1[α], τ1[α]), . . . , (dξ+ [α], τξ+ [α])
}

,

where the departure times τ1, . . . , τξ+ are i.i.d. random variables with the uniform distri-
bution on I[α], whereas the departure destinations d1, . . . dξ+ are i.i.d. uniform Uni(GN )
random variables. For the latter use we define the set of all departure destinations from
α,

D+[α] = projGN
X+[α].

2.2. Construction of C(x). Let x ∈ G
β
N . The connected cluster C(x) (see Subsection 1.2)

is a disjoint union,

C(x) =
∨

k

ik × Jk (2.18)

of intervals Jk ⊆ Sβ with spatial coordinates ik. These disjoint intervals will be labeled by
a subset Mx ⊂M+ of multi-indices. We shall always record the multi-indices from Mx in
their increasing order, Mx = {α1, α2, . . .}. In this way we denote the spatial coordinate
ik = i[αk] and the associated interval Jk = J [αk] and rewrite (2.18) as

C(x) =
∨

α∈Mx

i[α]× J [α]. (2.19)

Our construction of Mx and, accordingly, of {i[α], J [α]} is an inductive one: At each stage
we screen a certain multi-index α and keep track of

• Mx(α) - set of multi-indices which were already saturated into Mx before α.
• Rx(α) - set of multi-indices (including α itself) which are potential candidates for

the membership in Mx and which are yet to be screened.
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Both Mx and Rx are updated once α is screened. The construction is complete whenever
we finish an update with Rx = ∅.

Notice that at each stage we also keep track both of space coordinates i[α] ∈ GN and
of time coordinates t[α] ∈ Sβ for all multi-indices α from Mx ∪Rx. On the other hand,
we sample intervals J [α] and the associated point processes X [α] ⊆ X+[α] only at the
moment when α is screened.

The fact the construction below indeed reproduces the correct distribution of C(x) is
straightforward once we try to think about all the Poisson processes involved in terms of
the usual approximation by Bernoulli trials.

Initial stage. For x = (j, t) set

α1 = (1) i[α1] = j t[α1] = t Mx = ∅ Rx = {α1} .

Screening stage. If Rx is empty, then stop. Otherwise, choose α to be the minimal element
of Rx (and set Rx(α) = Rx and Mx(α) = Mx). There are two steps to be performed and
several cases to be considered:

STEP 1 Deciding whether α is to be included into Mx (Cases 2 and 3 below) and, if yes,
sampling of J [α].

CASE 1 If there exists γ ∈Mx(α) (and then necessarily satisfying γ ≺ α) such that

i[α] = i[γ] and t[α] ∈ J [γ],

then remove α from Rx and proceed to screen the next multi-index of Rx.

CASE 2 If i[α] 6= i[γ] for every γ ∈Mx(α), which means that

Cα(x)
∆
=

∨

γ∈Mx(α)

i[γ]× J [γ] (2.20)

does not hit S
i[α]
β , then set J [α] = t[α] + I[α], where I[α] is sampled from P

β,λ
N (·) as

described in Subsection 2.1.

CASE 3 In the remaining case,

Cα(x) ∩ S
i[α]
β 6= ∅ but (i[α], t[α]) 6∈ Cα(x).

In such a situation define J [α] as the connected component of t[α] of

(t[α] + I[α]) \
(

Cα(x) ∩ S
i[α]
β

)

.

If either CASE 2 or CASE 3 took place then add α to Mx, remove α from Rx and proceed
with the second step.

STEP 2 Generating descendants of α. Sample ξ+[α] and, accordingly, the point process

X+[α] from the underlying distribution P
β,λ
N (·). Screen all k = 1, . . . , ξ+ departures of X+

as follows:

CASE 1 If t[α] + τk 6∈ J [α], then ignore this k-th departure.

CASE 2 Otherwise register k-th departure as follows: Add (α, k) to Rx and set,

i[(α, k)] = dk and t[(α, k)] = t[α] + τk.

Return to the beginning of the screening stage. �

In the sequel we shall use the following notation: For each α ∈ Mx we define Nx(α) as
the set of all registered descendants of α. The corresponding point process is X [α] =
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{

(i[γ], τ [γ]) ; γ ∈ Nx(α)
}

. Finally, we shall denote the set of all spatial coordinates of
registered descendants of α as

D[α] = projGN
X [α].

2.3. The critical curve. As it becomes clear from the above construction of C(x), the size
of Mx is stochastically dominated by the total population size of Galton-Watson process
with offspring distribution Ξβ[2, λ]. Let ξ ∼ Ξβ[2, λ]. Evidently, ξ has finite exponential
moments. Furthermore,

E
β,λ
N (ξ) = NE

β,λ
N

(

1− e−|I|/N
)

= O

(

1

N

)

+ E
β,λ
N (|I|) .

Now (with the usual convention 0 · ∞ = 0 in the β =∞ case),

E
β,λ
N (|I|) = E (U + V ;U + V < β) + βP (U + V > β) ,

where, as before, U and V are two independent exponential Exp(λ) random variables.
Since U + V ∼ Γ(2, λ),

P (U + V > β) =

∫ ∞

β
λ2te−λtdt = (λβ + 1)e−λβ .

In the same fashion,

E (U + V ;U + V 6 β) =

∫ β

0
λ2t2e−λtdt

=
2

λ

(

1− e−λβ
)

−
(

β2λ + 2β
)

e−λβ.

Consequently,

E
β,λ
N (|I|) =

2

λ

(

1− e−λβ
)

− βe−λβ = F (β, λ), (2.21)

which is, of course, precisely the right hand side of (1.5).

2.4. LRO: size of Sx. In the LRO-case of F (β, λ) > 1 we shall confine the discussion to
the case of finite β <∞. Define

Sx = projGN
C(x).

In other words Sx is the set of all different spatial coordinates of C(x). Obviously,

|C(x)| 6 β #Sx.

In fact, as we shall see in Section 3 a converse is also true in the sense that large size of
#Sx necessarily implies that |C(x)| is also large. Meanwhile:

Lemma 2.1. In the LRO-case let δ > 0 be such that (1− δ)F (β, λ) > 1. Then, for every

κ > 0 there exists c1 = c1(β, λ, κ), such that

P
β,λ
N ( #Sx ∈ [c1 log N, δN ]) = o

(

1

Nκ

)

. (2.22)

In the sequel we shall say that C(x) is small if #Sx < c1 log N and, accordingly, that it is
large if #Sx > δN .

Proof of Lemma 2.1. Let us go back to STEP 2 of the screening stage of Subsection 2.2. A
multi-index descendant γ ∈ Nx(α) of α ∈Mx is called free if its colour i[γ] is encountered
for the first time in the course of our construction of C(x). Formally, γ is free if

i[γ] 6∈
{

i[ν] : ν ≺ γ and ν ∈Mx(α) ∪Rx(α) ∪Nx(α)
}

.
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Notice that any free descendant of α will be duly included into Mx at later screening stages.
Also notice that the set Fx ⊆Mx of all free multi-indices is in one-to-one correspondence
with Sx. Let us define

Sx(α) =
{

i[γ] : γ ∈Mx(α) ∪Rx(α)
}

.

In other words Sx(α) is the set of all different spatial coordinates of C(x) which were
generated before screening of α. Then the number ηf (α) of free descendants of α is given
by

ηf (α) =
∑

i∈GN\Sx(α)

1Ii∈D[α]. (2.23)

If α is itself free and, moreover, #Sx(α) < δN , then ηf (α) stochastically dominates
and, in fact, could be coupled in a straightforward way with a random variable η[α]
whose conditional on I[α] distribution is binomial Bin

(

(1− δ)N, 1 − e−|I[α]|/N
)

. Of course,

E
β,λ
N (η)→ (1− δ)F (β, λ) > 1 as N →∞.
Let us, thereby, consider an i.i.d. family {ηk} of random variables distributed as above,

which is coupled with the collection {ηf (α)} in the following way: Write all free multi-
indices Fx = {α∗

1, α
∗
2, . . .} in their increasing order. Then ηk 6 ηf [α∗

k] on the event
{#Sx(α∗

k) < δN}. Since #Sx = #Fx, and

#Sx
>
∑

α∈Fx

ηf (α), (2.24)

we infer that

P
β,λ
N ( #Sx ∈ [c1 log N, δN ]) 6

δN
∑

n=c1 log N

P
β,λ
N

(

n
∑

1

ηk 6 n

)

,

and (2.22) follows from a usual LD upper bound, as E
β,λ
N (η) > 1. �

2.5. Coupling between two clusters. Recall that we are recording the multi-indices
Mx = {α1, α2, . . .} according to the order in which they were saturated or, equivalently,
in their increasing order. With each k = 1, 2, . . . we associate a σ-algebra

Σx
k = σ (X+[αl], I[αl] ; l 6 k} . (2.25)

In order to avoid ambiguities we set αk ≡ αmx for k > mx, where mx ∆
= #Mx. Clearly,

Σx
k contains all the information on the growth of C(x) up to the kth (or, in the case

k > mx, up to the last) saturation. In particular, the eventual number of intervals mx in
the decomposition (2.18) is a stopping time with respect to the filtration {Σx

k}.
Our proof of various claims in the LRO case is based on the following modification of

the growth algorithm described in Subsection 2.2: Let x, y be two points of G
β
N .

First of all we shall grow C(x) according to the rules of Subsection 2.2 until a certain
stopping time S (with respect to the filtration {Σx

k}). We shall define S below. In any
case, the relevant notation is (see (2.20)),

Ck(x) = Cαk+1
(x) , Mx

k = Mx(αk+1) and Rx
k = Rx(αk+1).

Accordingly, CS(x) is the shape of the cluster whose growth was suspended at S, and Rx
S

is the set of all multi-indices which were registered but not yet saturated (or dropped) by
time S.

Secondly, we shall grow C(y) according to the following modified set of rules, which
should necessarily take into account already existing information as recorded in Σx

S.
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Growth of C(y) will be halted at some random stage and certainly once it will become clear
that C(x) and C(y) are going to merge. In the sequel we shall use T to denote the stage

at which we halt the construction of C(y). We use M̃y, R̃y etc notation to stress that we

construct C(y) after all the data for Σx
S has been already sampled. If M̃y =

{

γ
1
, γ

2
, . . .

}

is the (ordered) set of all saturated multi-indices of C(y), then T will be a the stopping
time with respect to the filtration

Σ̃y
0 = Σx

S and Σ̃y
k = σ

(

Σx
S,Σy

k

)

,

where Σy
k is defined as in (2.25).

The initial stage. If y ∈ CS(x), then set T = 0 and halt immediately. Otherwise proceed
as in the initial stage of one-cluster construction of Subsection 2.2 (except for setting
(γ

1
) = (2), so that x and y related multi-indices are distinguished).

An update stage. There are several corrections which are due to the already existing in-
formation contained in Σx

S. Let γ ∈ R̃y be a multi-index under screening.

CORRECTION 1 In STEP 1 if (i[γ], t[γ]) ∈ CS(x), then remove γ from R̃y and proceed to

screen the next multi-index of R̃y.

CORRECTION 2 In CASE 2 and CASE 3 of STEP 1 define the interval J [γ] as the connected
component of t[γ] of

(

(t[γ] + I[γ]
)

\
(

Cγ(y) ∩ CS(x) ∩ S
i[γ]

β

)

.

CORRECTION 3 If, after J [γ] is sampled, there exists α ∈ Rx
S such that i[α] = i[γ] and

t[α] ∈ J [γ], then the clusters of x and y are going to merge. If γ = γ
k
, then set T = k and

halt the construction of C(y).

2.6. Merging of two large clusters. Recall that a cluster C(x) is called large if #(Sx) >
δN , where δ > 0 is some fixed number satisfying (1− δ)F (β, λ) > 1.

Lemma 2.2. Let β <∞. Then for every κ > 0,

P
β,λ
N (C(x) ∩ C(y) = ∅ | both C(x) and C(y) are large) = o

(

1

Nκ

)

, (2.26)

uniformly in x, y ∈ G
β
N .

Proof of Lemma 2.2 The proof relies on the construction of clusters and, accordingly, on
the coupling between C(x) and C(y) as introduced in Subsection 2.2 and Subsection 2.5.

STEP 1 We start by growing the cluster C(x) until the stopping time S which is described
as follows: Let ǫ > 0 be small, e.g. 3ǫ < δ would suffice. Then,

S = max {k 6 m
x : #Sx(αk) < ǫN} . (2.27)

Evidently, S is a stopping time with respect to the filtration {Σx
k}.

Let Fx
S be the set of all free multi-indices of C(x) which were generated by time S. In

this notation,

Sx(αS) ∪ D(αS) =
⋃

α∈F
x
S

i[α].
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We shall distinguish between the free multi-indices Fx
S,− = Fx

S ∩Mx
S which were already

saturated by time S and the remaining free multi-indices Fx
S,+ = Fx

S \F
x
S,−. Let ν > 0 be

such that

(1− 3ν)(1− δ)F (β, λ) > 1. (2.28)

We claim that once C(x) is large, then up to o
(

1
Nκ

)

-probabilities the cardinality of unsat-
urated free multi-indices #Fx

S,+ exceeds 3νǫN , or, more precisely, the cardinality of satu-

rated multi-indices #Fx
S,+ does not exceed (1−3ν)ǫN . Indeed, by construction #Fx

S > ǫN ,

whereas #Sx(αS) < ǫN . On the other hand, as in (2.24),

#Sx(αS) >
∑

α∗

k
∈F

x
S,−

\ αS

ηk.

Consequently,

P
β,λ
N

(

#Fx
S,+ < 3νǫN ; C(x) is large

)

6 P
β,λ
N

(

#Fx
S,− > (1− 3ν)ǫN ; # (Sx(αS)) < ǫN

)

6 P
β,λ
N





(1−3ν)ǫN
∑

1

ηk < ǫN



 = o

(

1

Nκ

)

,

(2.29)

since (1− 3ν)Eβ,λ
N (ηk) is still larger than 1 whenever ν complies with (2.28).

STEP 2 We shall now switch to the coupled construction of C(y). First of all we shall

adjust the notion of the set F̃y of free multi-indices of C(y): Recall that free multi-indices
are generated at STEP 2 of the screening stage when we consider family of multi-index
descendants Ny(α) of freshly saturated multi-indices α ∈ M̃y. We shall say that γ ∈
Ny(α) is free if, as before, its colour i[γ] is encountered for the first time in the course of
construction of C(y), but, in addition, i[γ] was not saturated in CS(x), that is:

i[γ] 6∈ {i[ν] : ν ∈Mx
S} .

The latter set is in one-to-one correspondence with Fx
S,−. As a result, on the event

{C(y) is large and C(y) ∩ C(x) = ∅},

#F̃y > #Sy −#Fx
S,− > δN − (1− 3ν)ǫN > 2ǫN,

where the first inequality (up to o
(

1
Nκ

)

-probability) follows from (2.29) and the second

inequality follows from our choice of 3ǫ < δ. Define now a
{

Σ̃y
k

}

-stopping time

T = min
{

k : #F̃y(γ
k
) > νǫN

}

,

where, F̃y(γ
k
) is the set of all (modified ) free multi-indices which were generated during

the first k screening sessions. Since by construction (end of Subsection 2.1) {#D+[α]} is
a family of i.i.d random variables with exponentially decaying tails, we can safely assume
that, up to o

(

1
Nκ

)

-probability

#F̃y(γ
T
) 6 2νǫN. (2.30)

Similarly to (2.29), set F̃
y
T,− = M̃

y
T ∩ F̃

y
T . Then,

P
β,λ
N

(

#F̃
y
T,− > (1− 3ǫ)#F̃

y
T ; #F̃

y
T ∈ [νǫN, 2νǫN ]

)

= o

(

1

Nκ

)

.
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Consequently, up to o
(

1
Nκ

)

-probability, at least 3νǫ2N modified free multi-indices from

F̃
y
T were not saturated by time T . Let us denote the latter set of multi-indices as F̃

y
S,T ,

#F̃
y
S,T > 3νǫ2N. (2.31)

On the other hand, the number of all saturated multi-indices from F̃
y
T is, in view of (2.30),

bounded above by 2νǫN , which falls short of at least 3νǫ free unsaturated multi-indices
of Fx

S,+. Thus the cardinality of the set

F̃x
S,T

∆
=
{

α ∈ Fx
S,+ : i[α] 6∈ projGN

CT (y)
}

satisfies,

#F̃x
S,T > νǫN. (2.32)

STEP 3 In view of (2.31) and (2.32) let us summarize the above results as follows: Consider
the event {C(x) ∩ C(y) = ∅ ; both C(x) and C(y) are large} and let S and T be stopping
times defined as above. Then, up to o

(

1
Nκ

)

-probability, there exists a set of unsaturated

free multi-indices F̃x
S,T and, accordingly, a set of unsaturated free multi-indices F̃

y
S,T such

that,

(1) #F̃x
S,T > νǫN and #F̃

y
S,T > 3νǫ2N .

(2) For every α ∈ F̃x
S,T ∪ F̃

y
S,T and every γ ∈Mx

S ∪ M̃
y
T the colours i[α] 6= i[γ].

(3) Any two different multi-indices of F̃x
S,T , respectively of F̃y

S,T , have different colours.

Set

Sx,y
S,T =

{

i[α] : α ∈ F̃x
S,T ∪ F̃

y
S,T

}

.

Property (2) above means that none of the processes of holes Hi was ever sampled for
i ∈ Sx,y

S,T . Similarly none of the processes Lij of links was ever sampled for i, j ∈ Sx,y
S,T .

Since the family of processes

{Hi , Lij}i,j∈Sx,y
S,T

is, conditionally on Sx,y
S,T , independent of Σ̃y

T , we infer that up to a o
(

1
Nκ

)

-probability,

P
β,λ
N

(

C(x) 6↔ C(y) | Σ̃y
T

)

6 max
v1,...,vL
u1,...,uM

P
β,λ
N





⋂

i,j

{I(vi) 6↔ I(uj)}



 , (2.33)

where L = νǫN , M = 3ν2ǫN and the maximum above is over all colour disjoint collections

(see property (3) above) of points {v1, . . . , vL} ⊂ G
β
N and {u1, . . . , uM} ⊂ G

β
N . We have

used the obvious notation in (2.33): For z = (i, t) ∈ G
β
N , I(z) denotes the interval which

contains t in the decomposition (1.3) of Si
β.

STEP 4 It remains to derive an upper bound on the right-hand side of (2.33). Set K =
L−M = ν(1−3ν)ǫN . By our choice of ν in (2.28) the number K is positive and, moreover,
proportional to N . At least K of colour disjoint uj-s have spatial coordinates different
from any of ui spatial coordinates. There is no loss to assume that this property is enjoyed
by the first K points {v1, . . . , vK}. Thus, the right hand side of (2.33) is bounded above
by

max
v1,...,vK
u1,...,uM

P
β,λ
N





⋂

i,j

{I(vi) 6↔ I(uj)}



 , (2.34)



14 DMITRY IOFFE AND ANNA LEVIT

where the maximum is now over all possible K + L colour disjoint points of G
β
N . By

usual large deviation estimates there is a constant c = c(βǫ, ν) > 0 such that up to e−cN -
probability there are at least e−λβK/2 of vj-s lie on Sβ circles without holes, and at least

e−λβM/2 of uj-s which also lie on Sβ circles without holes. This is a reduction to the
computation employed in the classical case: Indeed, for any two vi and uj with spatial
coordinates i 6= j,

P
β,λ
N (I(vi) 6↔ I(uj) | Hi = ∅,Hj = ∅) = e−β/N .

Consequently, the expression in (2.34) is bounded above by

e−cN + exp

{

−
βe−2λβKM

4N

}

.

Since KM/N = 3ν2(1− 3ν)ǫ2N , the proof of Lemma 2.2 is complete. �

3. Proofs of main results

3.1. Short range order. We employ the construction and the notation of Subsection 2.1
and Subsection 2.2.

Proof of (1.7) and of (1.11) for β < ∞. . Let Z+ be the sub-critical Galton-Watson
process with offspring distribution Ξβ(2, λ) (Subsection 2.1). The members of Z+ are
naturally labeled by multi-indices from M+ and, furthermore, it is straightforward to
couple the construction of Z+ with that of C(x) in such a way that

Mx ⊆ Z+ and |C(x)| 6
∑

α∈Z+

|I[α]|
∆
= |Z+|.

As a result for every κ > 0 there exists c > 0 such that

P
β,λ
N (# (Sx) > c log N) 6 P

β,λ
N (#Z+ > c log N) = o

(

1

Nκ

)

. (3.35)

Since, |C(x)| 6 β#Sx, the bound (1.11) readily follows in the β <∞ case.
Furthermore, if x = (i, t) and j 6= i, then by the GN -permutation invariance,

P
β,λ
N (j ∈ Sx | #Sx = n) =

n− 1

N − 1
, (3.36)

which, in view of (3.35), implies the SRO bound (1.7) at any β 6∞.

Proof of (1.11) in the β = ∞ case. First of all notice that in the β = ∞ case, the
underlying distribution Ξ∞(2, λ) of offsprings is just negative binomial (for the number of
failures),

P(ξ+ = k) = (k + 1)
λ2

(1 + λ)k+2
k = 0, 1, 2, . . . , (3.37)

whereas the conditional distribution of the interval length |I| is

|I| ∼ Γ (k + 2, 1 + λ) given ξ+ = k for k = 0, 1, 2, . . . . (3.38)

In the β = ∞ case formula (3.38) implies that the conditional distribution of |Z+| given
the value of the total size of the population #Z+ is precisely that of the sum of 3#Z+− 1
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independent exponential Exp(1 + λ) random variables. Therefore,

P
β,λ
N (|Z+| > c log N) 6 P

β,λ
N

(

#Z+ >
1 + λ

6
c log N

)

+ max
n 6

c(1+λ) log N

6

P
β,λ
N

(

3n
∑

1

(ηi − E
β,λ
N (ηi)) >

c

2
log N

)

,

(3.39)

where η1, η2, . . . are i.i.d. Exp(1 + λ) random variables. Clearly, for every κ > 0 one can
choose c sufficiently large so that the right-hand side of (3.39) is bounded above by 1/Nκ.

Proof of (1.12). Let β <∞. By the union bound and GN -permutation invariance of the
distribution ofM,

P
β,λ
N (M > c log N) 6 NP

β,λ
N

(

M > c log N ; C
∗ ∩ Si

β 6= ∅
)

,

where C∗ is the maximal cluster in the decomposition (1.2), |C∗| = M. At this stage
define,

Mi = max
{

|Ck| : Ck ∩ Si
β 6= ∅

}

.

Obviously,
{

M > c log N ; C
∗ ∩ Si

β 6= ∅
}

⊆ {Mi > c log N} .

Since the latter event is already increasing,

P
β,λ
N (Mi > c log N) 6 P

β,λ
N

(

Mi > c log N
∣

∣Hi = ∅
)

.

However,

P
β,λ
N

(

Mi > c log N
∣

∣Hi = ∅
)

6
P

β,λ
N (|C((i, 0))| > c log N)

P
β,λ
N (Hi = ∅)

.

Since P
β,λ
N (Hi = ∅) = e−λβ, the target bound (1.12) follows. �

3.2. LRO: Proof of Theorem B. For the rest of the paper we shall assume that β <∞
and that F (β, λ) > 1.

Probability of large cluster. Recall that we say that C(x) is large if the number of spatial
coordinates satisfies #Sx > δN , where δ is a fixed small number, (1− δ)F (β, λ) > 1.

Both upper and lower bounds on P
β,λ
N (C(x) is large) follow, as in the classical case, from

comparison with appropriate Galton-Watson processes.
The upper bound is straightforward: As in Subsection 3.1 let Z+ be the Galton-Watson

process with offspring distribution Ξβ(2, λ). Define p(β, λ) as the survival probability of
Z+, that is p(β, λ) is the unique non-trivial root of

1− p = E
β,λ
N

(

(1− p)ξ+
)

, (3.40)

where ξ+ ∼ Ξβ(2, λ). By the very construction of C(x) in Subsection 2.2,

P
β,λ
N (C(x) is large) 6 p(β, λ) (1 + o(1)) .

The lower bound is slightly more delicate. It relies on a coupling with yet another Galton-

Watson process Zf
+, which lives on free multi-indices Fx of C(x). Specifically, as before

set Fx = {α∗
1, α

∗
2, . . .}. Recall the definition of random variables ηf (α∗

k) in (2.23). On the
event

{#Sx < c log N} = {#Fx < c log N} ,
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the sequence {ηf (α∗
k)} can be coupled with an i.i.d sequence {η∗k}, such that

∀ α∗
k ∈ Fx ηf (α∗

k) > η∗k,

whereas the distribution of η∗ is given by: First sample |I| from Γβ(2, λ), and then sample

η∗ from Bin
(

N − c log N, 1− e−|I|/N
)

.
Let pN (β, λ) be the survival probability of the Galton-Watson process with the offspring

distribution specified by η above. Clearly,

lim
N→∞

pN (β, λ) = p(β, λ). (3.41)

On the other hand, by Lemma 2.1,

P
β,λ
N (C(x) is large) = 1− P

β,λ
N (#Sx

6 c log N) > 1− P
β,λ
N

(

Zf
+ dies out

)

,

up to o(1) probabilities. In view of (3.41) this gives a complementary lower bound and,
consequently,

P
β,λ
N (C(x) is large) = p(β, λ) (1 + o(1)) . (3.42)

Size of M. It is a straightforward exercise to deduce from (3.42), Lemma 2.1 and from

the FKG properties of P
β,λ
N (·) that in the LRO regime

P
β,λ
N

(

∃x ∈ G
β
N s.t. C(x) is large

)

= 1−O

(

1

Nκ

)

,

for every κ > 0. Furthermore, it is equally straightforward to deduce from Lemma 2.2
that

P
β,λ
N

(

∃ unique large cluster
∣

∣ ∃ large cluster
)

= 1−O

(

1

Nκ

)

.

Let us denote such unique large cluster as C∗. Of course,

P
β,λ
N (x ∈ C

∗) = P
β,λ
N (C(x) = C

∗) = P
β,λ
N (C(x) is large)

(

1−O

(

1

Nκ

))

,

does not depend on x ∈ G
β
N . In particular, up to O

(

1
Nκ

)

-quantities,

E
β,λ
N (M) = E

β,λ
N

(

N
∑

i=1

∫ β

0
1I{(i.t)∈C∗} dt

)

= E
β,λ
N

(

N
∑

i=1

∫ β

0
1I{C((i,t)) is large} dt

)

=

N
∑

i=1

∫ β

0
P

β,λ
N (C((i, t)) is large) dt = Nβp(β, λ) (1 + o(1)) ,

(3.43)

where we have used (3.42) in the last step. Accordingly, define ρ(β, λ) = Nβp(β, λ). Let
us compute,

E
β,λ
N

(

M2
)

=

N
∑

i=1

N
∑

j=1

∫ β

0

∫ β

0
P

β,λ
N ((i, t) ∈ C

∗ ; (j, s) ∈ C
∗) dt ds.

However, for i 6= j and any t, s ∈ [0, β),

P
β,λ
N ((i, t) ∈ C

∗ ; (j, s) ∈ C
∗) = P

β,λ
N ((i, t)←→ (j, s)) (1 + o(1)) = p(β, λ)2 (1 + o(1)) ,

as it follows from the proof of Theorem A in Subsection 3.3 below. Therefore,

E
β,λ
N

(

M2
)

6 β2N + N2β2p(β, λ)2 (1 + o(1)) .
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As a result,

Varβ,λ
N

(

M

N

)

= o(1),

and both (1.13) and (1.15) follow.

3.3. LRO: Proof of Theorem A. Define x = (i, t) and y = (j, s), then for i 6= j

P
β,λ
N ((i, t)←→ (j, s)) = P

β,λ
N (C(x) ∩ C(y) 6= ∅)

By (3.36),

P
β,λ
N

(

C(x) ∩ C(y) 6= ∅
∣

∣C(y) is small
)

6 P
β,λ
N

(

j ∈ Sx
∣

∣#Sx
6 c log N

)

= O

(

log N

N

)

Hence,

P
β,λ
N (C(x) ∩ C(y) 6= ∅; both C(x) and C(y) are small)

6 P
β,λ
N

(

C(x) ∩ C(y) 6= ∅
∣

∣ C(x) is small
)

= O

(

log N

N

)

(3.44)

Note that if C(x) ∩ C(y) 6= ∅, then, up to a o
(

1
Nκ

)

-probability, either both C(x) and C(y)
are large or both C(x) and C(y) are small. Thus, in view of (3.44),

P
β,λ
N (C(x) ∩ C(y) 6= ∅)

= P
β,λ
N (C(x) ∩ C(y) 6= ∅; both C(x) and C(y) are large) + O

(

log N

N

)

.

On the other hand we already know from Lemma 2.2 that two large clusters merge with
high (1− o

(

1
Nκ

)

) probability. Therefore,

P
β,λ
N (C(x) ∩ C(y) 6= ∅) = P

β,λ
N ( both C(x) and C(y) are large) + O

(

log N

N

)

.

The asymptotic formula (3.42) implies that up to o(1)-terms,

P
β,λ
N ( both C(x) and C(y) are large) = 2p(β, λ)−1+ P

β,λ
N ( both C(x) and C(y) are small) .

Since both { C(x) is small} and { C(x) is small} are decreasing events, by the FKG prop-

erties of P
β,λ
N (·),

P
β,λ
N ( both C(x) and C(y) are small) > (1− p(β, λ))2 (1 + o(1)) .

To get a complimentary upper bound, notice that

P
β,λ
N

(

Sx ∩ Sy 6= ∅
∣

∣ both C(x) and C(y) are small
)

6 P
β,λ
N

(

Sx ∩ Sy \ {j} 6= ∅
∣

∣#Sx
6 c log N ;#Sy

6 c log N
)

6 2c log NP
β,λ
N

(

i ∈ Sy
∣

∣#Sy 6 c log N
)

= O

(

(log N)2

N

)

,

as it follows from (3.36) and GN -permutation invariance. Thus,

P
β,λ
N ( both C(x) and C(y) are small)

= P
β,λ
N ( both C(x) and C(y) are small;Sx ∩ Sy = ∅) + O

(

(log N)2

N

)

6 P
β,λ
N

(

C(x) is small
∣

∣Sx ∩ Sy = ∅;C(y) is small
)

P
β,λ
N (C(y) is small) + O

(

(log N)2

N

)
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However,

P
β,λ
N

(

C(x) is small
∣

∣Sx ∩ Sy = ∅;C(y) is small
)

6 P
β̃,λ
N−c log N (C(x) is small)

where β̃ = β N
N−c log N .

As N tends to ∞, the right hand side above converges to 1 − p(β, λ). Thereby, we are
able to conclude,

P
β,λ
N ( both C(x) and C(y) are small) = (1− p(β, λ))2(1 + o(1))

and (1.8) follows. �
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