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Abstract. We prove exponential and dynamical localization for the Schröding-

er operator with a nonnegative Poisson random potential at the bottom of the
spectrum in any dimension. We also conclude that the eigenvalues in that

spectral region of localization have finite multiplicity. We prove similar local-

ization results in a prescribed energy interval at the bottom of the spectrum
provided the density of the Poisson process is large enough.
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2 FRANÇOIS GERMINET, PETER D. HISLOP, AND ABEL KLEIN

1. Introduction and main results

Consider an electron moving in an amorphous medium with randomly placed
identical impurities, each impurity creating a local potential. For a fixed config-
uration of the impurities, described by the countable set X ⊂ Rd giving their
locations, this motion is described by the Schrödinger equation −i∂tψt = HXψt

with the Hamiltonian

HX := −∆ + VX on L2(Rd), (1.1)

where the potential is given by

VX(x) :=
∑
ζ∈X

u(x− ζ), (1.2)

with u(x − ζ) being the single-site potential created by the impurity placed at ζ.
Since the impurities are randomly distributed, the configuration X is a random
countable subset of Rd, and hence it is modeled by a point process on Rd. Physical
considerations usually dictate that the process is homogeneous and ergodic with
respect to the translations by Rd, cf. the discussions in [LiGP, PF]. The canonical
point process with the desired properties is the homogeneous Poisson point process
on Rd.

The Poisson Hamiltonian is the random Schrödinger operator HX in (1.1) with
X a Poisson process on Rd with density % > 0. The potential VX is then a Pois-
son random potential. Poisson Hamiltonians may be the most natural random
Schrödinger operators in the continuum as the distribution of impurities in a vari-
ous samples of material is naturally modeled by a Poisson process. A mathematical
proof of the existence of localization has been a long-standing open problem (cf.
the survey [LMW]). The Poisson Hamiltonian has been long known to have Lif-
shitz tails [DV, CL, PF, Klo3, Sz, KloP, St1], a strong indication of localization at
the bottom of the spectrum. Up to now localization had been shown only in one
dimension [Sto], where it holds at all energies, as expected.

In this article we prove localization for nonnegative Poisson Hamiltonians at the
bottom of the spectrum in arbitrary dimension. We obtain both exponential (or
Anderson) localization and dynamical localization, as well as finite multiplicity of
eigenvalues.

The Poisson Hamiltonian HX is an Rd-ergodic family of random self-adjoint
operators. It follows from standard results (cf. [KiM, PF]) that there exists fixed
subsets of R so that the spectrum of HX, as well as the pure point, absolutely
continuous, and singular continuous components, are equal to these fixed sets with
probability one.

In the multi-dimensional continuum case, there are a wealth of results con-
cerning localization for Anderson-type Hamiltonians. These are Zd-ergodic ran-
dom Schrödinger operators as in (1.1) but for which the location of the impu-
rities is fixed at the vertices of the lattice Zd (i.e., X ≡ Zd), and the single-
site potentials are multiplied by random variables with bounded densities, e.g.,
[HM, CoH, Klo2, KiSS, Klo4, GK3, AENSS]. Localization was shown for a Zd-
ergodic random displacement model where the displacement probability distribu-
tion has a bounded density [Klo1]. In contrast, a lot less is known about Rd-ergodic
random Schrödinger operators (random amorphous media). There are localization
results for a class of Gaussian random potentials [FiLM, U, LMW]. Localization for
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Poisson models where the single-site potentials are multiplied by random variables
with bounded densities has also been studied [MS, CoH]. What all these results
have in common is the availability of random variables with densities which can be
exploited, in an averaging procedure, to produce an a priori Wegner estimate at
all scales (e.g., [HM, CoH, Klo2, CoHM, Ki, FiLM, CoHN, CoHKN, CoHK]).

But if these random variables with densities (or Holder continuous distributions
[CKM, St2]) are not available, as in the case of the Poisson Hamiltonians, it is a
totally different story, and up to recently there were no localization results if d ≥ 2.

This changed with Bourgain and Kenig’s remarkable proof of localization for the
Bernoulli-Anderson Hamiltonian, an Anderson-type Hamiltonian where the coef-
ficients of the single-site potentials are Bernoulli random variables [BoK]. They
established a Wegner estimate by a multiscale analysis using “free sites” and a new
quantitative version of unique continuation which gives a lower bound on eigen-
functions. Since they obtained weak probability estimates and had discrete random
variables, they also introduced a new method to prove Anderson localization from
estimates on the finite-volume resolvents given by a single-energy multiscale analy-
sis. The new method does not use the perturbation of singular spectra method nor
Kotani’s trick as in [CoH, SW], which requires random variables with bounded den-
sities. It is also not an energy-interval multiscale analysis as in [DrK, FrMSS, Kl],
which requires better probability estimates.

To prove localization for Poisson Hamiltonians we use the new ideas intro-
duced by Bourgain and Kenig [Bo, BoK]. To apply these ideas, developed for
the Bernoulli-Anderson Hamiltonian, in the case of the Poisson Hamiltonian, we
exploit the probabilistic properties of Poisson point processes.

In this article the single-site potential u is a nonnegative, nonzero L∞-function
on Rd with compact support, with

u−χΛδ− (0) ≤ u ≤ u+χΛδ+ (0) for some constants u±, δ± ∈]0,∞[ (1.3)

where ΛL(x) denotes the box of side L centered at x ∈ Rd. It follows that σ(HX) =
[0,+∞[ with probability one [KiM].

We need to introduce some notation. For a given set B, we denote by χB its
characteristic function, by P0(B) the collection of all countable subsets of B, and
by #B its cardinality. Given X ∈ P0(B) and A ⊂ B, we set XA := X ∩ A and
NX(A) := #XA. Given a Borel set A ⊂ Rd, we write |A| for its Lebesgue measure.
We let ΛL(x) := x +

(
−L

2 ,
L
2

)d
be the box of side L centered at x ∈ Rd. By Λ we

will always denote some box ΛL(x) , with ΛL denoting a box of side L. We set
χx := χΛ1(x), the characteristic function of the box of side 1 centered at x ∈ Rd.
We write 〈x〉 :=

√
1 + |x|2, T (x) := 〈x〉ν for some fixed ν > d

2 . By Ca,b,..., Ka,b,...,
etc., will always denote some finite constant depending only on a, b, . . ..

A Poisson process on a Borel set B ⊂ Rd with density (or intensity) % > 0 is
a map X from a probability space (Ω,P) to P0(B), such that for each Borel set
A ⊂ B with |A| < ∞ the random variable NX(A) has Poisson distribution with
mean %|A|, i.e.,

P{NX(A) = k} = (%|A|)k

k! e−%|A| for k = 0, 1, 2, . . . , (1.4)

and the random variables {NX(Aj)}n
j=1 are independent for disjoint Borel subsets

{Aj}n
j=1 (e.g., [K, R]).
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For Poisson random potentials the density % is a measure of the amount of
disorder in the medium. Our first result gives localization at fixed disorder at the
bottom of the spectrum.

Theorem 1.1. Let HX be a Poisson Hamiltonian on L2(Rd) with density % > 0.
Then there exist E0 = E0(%) > 0 and m = m(ρ) > 0 for which the following
holds P-a.e.: The operator HX has pure point spectrum in [0, E0] with exponentially
localized eigenfunctions with rate of decay m, i.e., if φ is an eigenfunction of HX

with eigenvalue E ∈ [0, E0] we have

‖χxφ‖ ≤ CX,φ e
−m|x|, for all x ∈ Rd. (1.5)

Moreover, there exist τ > 1 and s ∈]0, 1[ such that for all eigenfunctions ψ, φ
(possibly equal) with the same eigenvalue E ∈ [0, E0] we have

‖χxψ‖ ‖χyφ‖ ≤ CX‖T−1ψ‖‖T−1φ‖ e〈y〉
τ

e−|x−y|s , for all x, y ∈ Zd. (1.6)

In particular, the eigenvalues of HX in [0, E0] have finite multiplicity, and HX

exhibits dynamical localization in [0, E0], that is, for any p > 0 we have

sup
t
‖〈x〉pe−itHXχ[0,E0](HX)χ0‖22 <∞. (1.7)

The next theorem gives localization at high disorder in a fixed interval at the
bottom of the spectrum.

Theorem 1.2. Let HX be a Poisson Hamiltonian on L2(Rd) with density % > 0.
Given E0 > 0, there exist %0 = %0(E0) > 0 and m = m(E0) > 0 such that the
conclusions of Theorem 1.1 hold in the interval [0, E0] if % > %0 .

Theorems 1.1 and 1.2 are proved by a multiscale analysis as in [Bo, BoK], where
the Wegner estimate, which gives control on the finite volume resolvent, is obtained
by induction on the scale. In contrast, the usual proof of localization by a multi-
scale analysis [FrS, FrMSS, Sp, DrK, CoH, FK, GK1, Kl] uses an a priori Wegner
estimate valid for all scales. Exponential localization will then follow from this new
single-energy multiscale analysis as in [BoK, Section 7]. The decay of eigenfunction
correlations exhibited in (1.6) follows from a detailed analysis of [BoK, Section 7]
given in [GK5], using ideas from [GK4]. Dynamical localization and finite multi-
plicity of eigenvalues follow from (1.6). That (1.6) implies dynamical localization is
rather immediate. The finite multiplicity of the eigenvalues follows by estimating
‖χxχ{E}(HX)‖22‖χyχ{E}(HX)‖22 from (1.6) and summing over x ∈ Zd.

Bourgain and Kenig’s methods [BoK] were developed for the Bernoulli-Anderson
Hamiltonian. Let εZd = {εζ}ζ∈Zd denote independent identically distributed Ber-
noulli random variables, εζ = 0 or 1 with equal probability. The Bernoulli-Anderson
random potential is V (x) =

∑
ζ∈Zd εζu(x − ζ), and the Hamiltonian has the form

(1.1). To see the connection with the Poisson Hamiltonian, let us introduce the
Bernoulli-Poisson Hamiltonian. We consider a configuration Y ∈ P0(Rd), and
let εY = {εζ}ζ∈Y be the corresponding collection of independent identically dis-
tributed Bernoulli random variables. We define the Bernoulli-Poisson Hamiltonian
by H(Y,εY ) := −∆ +

∑
ζ∈Y εζu(x − ζ). In this notation, the Bernoulli-Anderson

Hamiltonian is H(Zd,εZd ). If Y is a Poisson process on Rd with density 2%, then
X = {ζ ∈ Y; εζ = 1} is a Poisson process on Rd with density %, and it follows
that HX = H(Y,εY). Thus the Poisson Hamiltonian HX can be rewritten as the
Bernoulli-Poisson Hamiltonian H(Y,εY).
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A very important difference between the Bernoulli-Anderson Hamiltonian and
the Bernoulli-Poisson Hamiltonian is that, while for the former the impurities are
placed on the fixed configuration Zd, for the latter the configuration of the impu-
rities is random, being given by a Poisson process on Rd. The randomness of the
configuration must be taken care of in the multiscale analysis. Another difference
is that the probability space for the Bernoulli-Anderson Hamiltonian is defined by
a countable number of independent discrete (Bernoulli) random variables, but the
probability space of a Poisson process is not so simple, leading to measurability
questions absent in the case of the Bernoulli-Anderson Hamiltonian. The latter
are of particular importance in this work as the Bourgain-Kenig multiscale analysis
requires some detailed knowledge about the location of the impurities, as well as
information on “free sites”, and relies on conditional probabilities.

In order to control and keep track of the random location of the impurities, and
also handle the measurability questions that appear for the Poisson process, we
perform a finite volume reduction in each scale as part of the multiscale analysis,
which estimates the probabilities of good boxes. We exploit properties of Poisson
processes to construct, inside a box ΛL, a scale dependent class of ΛL-acceptable
configurations of high probability for the Poisson process Y (Definition 3.4 and
Lemma 3.5). We introduce an equivalence relation for ΛL-acceptable configura-
tions and, showing that we can move an impurity a little bit without spoiling the
goodness of boxes (Lemma 3.3), we conclude that goodness of boxes is a property of
equivalence classes of acceptable configurations (Lemma 3.6). Basic configurations
and events in a given box are introduced in terms of these equivalence classes of
acceptable configurations, and the multiscale analysis is performed for basic events.
Thus we will have a new step in the multiscale analysis: basic configurations and
events in a given box will have to be rewritten in terms of basic configurations and
events in a bigger box (Lemma 3.13). The Wegner estimate at scale L is proved in
Lemma 5.10 using [BoK, Lemma 5.1′].

Theorems 1.1 and 1.2 were announced in [GHK1]. Random Schrödinger opera-
tors with an attractive Poisson random potential, i.e., HX = −∆ − VX with VX a
Poisson random potential as in this paper, so σ(HX) = R with probability one, are
studied in [GHK2], where we modify the methods of this paper to prove localization
at low energies.

This paper is organized as follows. In Section 2 we describe the construction of a
Poisson process X from a marked Poisson process (Y, εY), and review some useful
deviation estimates for Poisson random variables. Section 3 is devoted to finite
volume considerations and the control of Poisson configurations: We introduce finite
volume operators, perform the finite volume reduction, study the effect of changing
scales, and introduce localizing events. In Section 4 we prove a priori finite volume
estimates that give the starting hypothesis for the multiscale analysis. Section 5
contains the multiscale analysis for Poisson Hamiltonians. Finally, the proofs of
Theorems 1.1 and 1.2 are completed in Section 6.

2. Preliminaries

2.1. Marked Poisson process. We may assume that a Poisson process X on Rd

with density % is constructed from a marked Poisson process as follows: Consider a
Poisson process Y on Rd with density 2%, and to each ζ ∈ Y associate a Bernoulli
random variable εζ , either 0 or 1 with equal probability, with εY = {εζ}ζ∈Y



6 FRANÇOIS GERMINET, PETER D. HISLOP, AND ABEL KLEIN

independent random variables. Then (Y, εY) is a Poisson process with density
2ρ on the product space Rd × {0, 1}, the marked Poisson process; its underlying
probability space will still be denoted by (Ω,P). (We use the notation (Y, εY ) :=
{(ζ, εζ); ζ ∈ Y } ∈ P0(Rd × {0, 1}). A Poisson process on Rd × {0, 1} with density
µ > 0 is a map Z̃ from a probability space to P0(Rd×{0, 1}), such that for each Borel
set Ã ⊂ Rd×{0, 1} with |Ã| := 1

2 (|{x ∈ Rd; (x, 0) ∈ Ã}|+ |{x ∈ Rd; (x, 1) ∈ Ã}|) <
∞, the random variable NZ̃(Ã) has Poisson distribution with mean µ|Ã|, and the
random variables {NZ̃(Ãj)}n

j=1 are independent for disjoint Borel subsets {Ãj}n
j=1.

Define maps X ,X ′ : P0(Rd × {0, 1}) → P0(Rd) by

X (Z̃) := {ζ ∈ Rd; (ζ, 1) ∈ Z̃}, X ′(Z̃) := {ζ ∈ Rd; (ζ, 0) ∈ Z̃}, (2.1)

for all Z̃ ∈ P0(Rd × {0, 1}). Then the maps X,X′ : Ω → P0(Rd), given by

X := X (Y, εY), X′ := X ′(Y, εY), (2.2)

i.e., X(ω) = X (Y(ω), εY(ω)(ω)), X′(ω) = X ′(Y(ω), εY(ω)(ω)), are Poisson pro-
cesses on Rd with density %. (See [K, Section 5.2], [R, Example 2.4.2].) In particu-
lar, note that

NX(A) +NX′(A) = NY(A) for all Borel sets A ⊂ Rd. (2.3)

If X is a Poisson process on Rd with density %, then XA is a Poisson process
on A with density % for each Borel set A ⊂ Rd, with {XAj

}n
j=1 being independent

Poisson processes for disjoint Borel subsets {Aj}n
j=1. Similar considerations apply

to X′ and to the marked Poisson process (Y, εY), with XA,X′
A,YA, εYA

satisfying
(2.2).

2.2. Poisson random variables. For a Poisson random variable N with mean µ
we have (e.g., [K, Eq. (1.12)])

P{N ≥ k} =
∫ µ

0

dλ
λk−1

(k − 1)!
e−λ, for k = 1, 2, . . ., (2.4)

and hence also

P{N < k} =
∫ ∞

µ

dλ
λk−1

(k − 1)!
e−λ, for k = 1, 2, . . .. (2.5)

From (2.4) we get useful upper and lower bounds:

µk

k!
e−µ < P{N ≥ k} < µk

k!
, for k = 1, 2, . . .. (2.6)

When k > eµ > 1, we can use a lower bound from Stirling’s formula [Ro] to get

P{N ≥ k} < 1√
2πk

(eµ
k

)k

. (2.7)

In particular, if eµ > 1 and a > e2 we get the large deviation estimate

P{N ≥ aµ} < e−aµ. (2.8)

From (2.5) we get

P{N < k} < Cke−
µ
2 , with Ck =

∫ ∞

0

dλ
λk−1

(k − 1)!
e−

λ
2 for k = 1, 2, . . .. (2.9)
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3. Finite volume and Poisson configurations

From now on HX will always denote a Poisson Hamiltonian on L2(Rd) with
density % > 0, as in (1.1)-(1.3). We recall that (Ω,P) is the underlying probability
space on which the Poisson processes X and X′, with density %, and Y, with density
2%, are defined, as well as the Bernoulli random variables εY, and we have (2.2).
All events will be defined with respect to this probability space. We will use the
notation t for disjoint unions: C = A tB means C = A ∪B with A ∩B = ∅.

Given two disjoint configurations X,Y ∈ P0(Rd) and tY = {tζ}ζ∈Y ∈ [0, 1]Y , we
set

HX,(Y,tY ) := −∆ + VX,(Y,tY ), where VX,(Y,tY )(x) := VX(x) +
∑
ζ∈Y

tζu(x− ζ). (3.1)

In particular, given εY ∈ {0, 1}Y we have, recalling (2.1), that

HX,(Y,εY ) = HXtX (Y,εY ). (3.2)

We also write H(Y,tY ) := H∅,(Y,tY ) and

Hω := HX(ω) = H(Y(ω),εY(ω)(ω)). (3.3)

3.1. Finite volume operators. Finite volume operators are defined as follows:
Given a box Λ = ΛL(x) in Rd and a configuration X ∈ P0(Rd), we set

HX,Λ := −∆Λ + VX,Λ on L2(Λ), (3.4)

where ∆Λ is the Laplacian on Λ with Dirichlet boundary condition, and

VX,Λ := χΛVXΛ with VXΛ as in (1.2). (3.5)

The finite volume resolvent is RX,Λ(z) := (HX,Λ − z)−1.
We have ∆Λ = ∇Λ · ∇Λ, where ∇Λ is the gradient with Dirichlet boundary

condition. We sometimes identify L2(Λ) with χΛL2(Rd) and, when necessary, will
use subscripts Λ and Rd to distinguish between the norms and inner products of
L2(Λ) and L2(Rd). Note that in general we do not have VX,Λ = χΛVX,Λ′ for Λ ⊂ Λ′,
where Λ′ may be a finite box or Rd. But we always have

χΛ̂VX,Λ = χΛ̂VX,Λ′ , (3.6)

where
Λ̂ = Λ̂L(x) := ΛL−δ+(x) with δ+ as in (1.3), (3.7)

which suffices for the multiscale analysis.
The multiscale analysis estimates probabilities of desired properties of finite vol-

ume resolvents at energies E ∈ R. (By Lp± we mean Lp±δ for some small δ > 0,
fixed independently of the scale.)

Definition 3.1. Consider an energy E ∈ R, a rate of decay m > 0, and a config-
uration X ∈ P0(Rd). A box ΛL is said to be (X,E,m)-good if

‖RX,ΛL
(E)‖ ≤ eL1−

(3.8)

and

‖χxRX,ΛL
(E)χy‖ ≤ e−m|x−y|, for all x, y ∈ ΛL with |x− y| ≥ L

10 . (3.9)

The box ΛL is (ω,E,m)-good if it is (X(ω), E,m)-good.
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Note that [BoK, Lemmas 2.14] requires condition (3.9) as stated above for its
proof.

But goodness of boxes does not suffice for the induction step in the multiscale
analysis given in [Bo, BoK], which also needs an adequate supply of free sites to
obtain a Wegner estimate at each scale. Given two disjoint configurations X,Y ∈
P0(Rd) and tY = {tζ}ζ∈Y ∈ [0, 1]Y , we recall (3.1) and define the corresponding
finite volume operators HX,(Y,tY ),Λ as in (3.4) and (3.5) using XΛ, YΛ and tYΛ , i.e.,

HX,(Y,tY ),Λ := −∆Λ + VX,(Y,tY ),Λ, where VX,(Y,tY ),Λ := χΛVXΛ,(YΛ,tYΛ ), (3.10)

with RX,(Y,tY ),Λ(z) being the corresponding finite volume resolvent.

Definition 3.2. Consider an energy E ∈ R, a rate of decay m > 0, and two
configurations X,Y ∈ P0(Rd). A box ΛL is said to be (X,Y,E,m)-good if X∩Y = ∅
and we have (3.8) and (3.9) with RX,(Y,tY ),ΛL

(E) for all tY ∈ [0, 1]Y . In this
case Y consists of (X,E)-free sites for the box ΛL. (In particular, the box ΛL is
(X t X (Y, εY ), E,m)-good for all εY ∈ {0, 1}Y .)

3.2. Finite volume reduction of Poisson configurations. The multiscale anal-
ysis will require some detailed knowledge about the location of the impurities, that
is, about the Poisson process configuration, as well as information on “free sites”.
To do so and also handle the measurability questions that appear for the Poisson
process we will perform a finite volume reduction as part of the multiscale analy-
sis. The key is that we can move a Poisson point a little bit without spoiling the
goodness of boxes, using the following lemma.

Lemma 3.3. Let Λ be a box in Rd, 0 ≤W ∈ L1
loc(Λ), 0 ≤ w ∈ L∞(Λ) with compact

support. Given ζ ∈ Λ(w) = {ζ ∈ Λ; suppw(·−ζ) ⊂ Λ}, let Hζ = −∆Λ+W+w(·−ζ)
on L2(Λ), with Rζ(z) = (Hζ − z)−1 its resolvent.
(i) Suppose that for some ζ ∈ Λ(w), E ≥ 0, and γ ≥ 1 we have ‖Rζ(E)‖ ≤ γ, and
let

0 < η ≤ min
{(

4
√

1 + E ‖w‖∞ γ
)−2

, 1
4

}
. (3.11)

Then for all ζ ′ ∈ Λ(w) with |ζ ′ − ζ| ≤ η we have

‖Rζ′(E)‖ ≤ e
√

ηγ (3.12)

and

‖χxRζ′(E)χy‖ ≤ ‖χxRζ(E)χy‖+
√
η γ, for all x, y ∈ Λ. (3.13)

(ii) Suppose that for some ζ ∈ Λ(w), E ≥ 0, and β ≥ 2 we have dist(E, σ(Hζ)) ≤
β−1, i.e., ‖Rζ(E)‖ ≥ β, and let η be as in (3.11) with β substituted for γ. Then
for all ζ ′ ∈ Λ(w) with |ζ ′ − ζ| ≤ η we have

‖Rζ′(E)‖ ≥ e−
√

ηβ, i.e., dist(E, σ(Hζ′)) ≤ e
√

ηβ−1. (3.14)

Proof. We set R = Rζ(E), R′ = Rζ′(E), u = w(·−ζ), u′ = w(·−ζ ′), and ξ = ζ ′−ζ
with |ξ| ≤ η. We let U(a) denote translation by a in L2(Rd): (U(a)ϕ)(x) = ϕ(x−a),
and pick φ ∈ C∞

c (Λ) such that 0 ≤ φ ≤ 1 and φ ≡ 1 in some open subset of Λ
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which contains the supports of u and u′. It follows from the resolvent identity that

‖R′‖Λ − ‖R‖Λ ≤ ‖R′(u′ − u)R‖Λ = ‖χΛR
′φ(u′ − u)φRχΛ‖Rd

= ‖χΛR
′φ(U(ξ)uU(ξ)∗ − u)φRχΛ‖Rd (3.15)

≤ ‖χΛR
′φ(U(ξ)− 1)uU(ξ)∗φRχΛ‖Rd + ‖χΛR

′φu(U(ξ)∗ − 1)φRχΛ‖Rd

≤ η (‖u∇φR′χΛ‖Rd ‖φRχΛ‖Rd + ‖φR′χΛ‖Rd ‖u∇φRχΛ‖Rd)

= η (‖u∇ΛφR
′‖Λ ‖φR‖Λ + ‖φR′‖Λ ‖u∇ΛφR‖Λ)

≤ η ‖u‖∞ (‖∇ΛR
′‖Λ ‖R‖Λ + ‖R′‖Λ ‖∇ΛR‖Λ)

≤ 2
√

1 + E ‖u‖∞ ηmax{‖R‖Λ , 1}max{‖R′‖Λ , 1},
where we used∥∥∇ΛR

]
∥∥2

Λ
≤

∥∥R]
∥∥

Λ
+ E

∥∥R]
∥∥2

Λ
≤ (1 + E) max{

∥∥R]
∥∥2

Λ
, 1} for R] = R,R′. (3.16)

To prove part (i), if ‖R‖Λ ≤ γ with γ ≥ 1, it follows from (3.15) and (3.11) that

‖R′‖Λ − ‖R‖Λ ≤ ‖R′(u′ − u)R‖Λ ≤
1
2

√
ηmax{‖R′‖Λ , 1}. (3.17)

To prove (3.12), we may assume that ‖R′‖Λ ≥ 1, since otherwise the result is
trivial. The estimate (3.12) now follows immediately from (3.17) and (3.11). Using

the resolvent identity, (3.17), (3.12), and 1
2e

1
2 < 1 we get (3.13).

Part (ii) follows from part (i) as follows. Let β ≥ 2 and suppose (3.14) does not
hold, i.e., ‖R′‖Λ < e−

√
ηβ. Since e−

√
ηβ ≥ e−

1
2 2 > 1, we may apply (3.12) to get a

contradiction to ‖R‖Λ ≥ β, namely ‖R‖Λ < e
√

η
(
e−

√
ηβ

)
= β. �

Lemma 3.3 lets us move one Poisson point a little bit, namely by η, and maintain
good bounds on the resolvent. Since we will want to preserve the “goodness” of the
box Λ = ΛL, we will use Lemma 3.3 with γ = eL1−

(as in (3.8)), and take η � e−L.

To fix ideas we set η = e−L106d

. To move all Poisson points in ΛL we will need to
control the number of Poisson points in the box. Moreover, we will have to know
the location of these Poisson points with good precision. That this can be done at
very little cost in probability is the subject of the next lemma.

Definition 3.4. Let ηL := e−L106d

for L > 0. Given a box Λ = ΛL(x), set

JΛ := {j ∈ x+ ηLZd; ΛηL
(j) ⊂ Λ}. (3.18)

A configuration X ∈ P0(Rd) is said to be Λ-acceptable if

NX(Λ) < 16%Ld, (3.19)

NX(ΛηL
(j)) ≤ 1, for all j ∈ JΛ, (3.20)

and

NX(Λ\ tj∈JΛ ΛηL(1−ηL)(j)) = 0; (3.21)

it is Λ-acceptable ′ if it satisfies (3.19),(3.20), and the less restrictive

NX(Λ\ tj∈JΛ ΛηL
(j)) = 0. (3.22)

We set

Q(0)
Λ : = {X ∈ P0(Rd); X is Λ-acceptable}, (3.23)

Q(0′)
Λ : = {X ∈ P0(Rd); X is Λ-acceptable ′}, (3.24)



10 FRANÇOIS GERMINET, PETER D. HISLOP, AND ABEL KLEIN

and consider the event (recall that Y is the Poisson process with density 2%)

Ω(0)
Λ := {Y ∈ Q(0)

Λ }. (3.25)

Note that Ω(0)
Λ ⊂ {X ∈ Q(0)

Λ } in view of (2.3) and Q(0)
Λ ⊂ Q(0′)

Λ . We require
condition (3.21) for acceptable configurations to avoid ambiguities when changing
scales (cf. Lemma 3.13), but we will then need Lemma 3.6 for acceptable ′ config-
urations.

We now impose a condition on % and L that will be always satisfied when we do
the multiscale analysis:

L−(0+) ≤ % ≤ eLd

. (3.26)
From now on we assume (3.26).

Lemma 3.5. There exists a scale L = L(d) <∞, such that if L ≥ L we have

P{Ω(0)
ΛL
} ≥ 1− e−Ld−

. (3.27)

Proof. Using (2.8) and (2.6) we get

P{Ω(0)
ΛL
} ≥ 1− e−16%Ld

− 4d%(Ld−1 + Ld)ηL − 2%2Ldηd
L, (3.28)

and hence (3.27) follows for large L using (3.26). �

Lemma 3.5 tells us that inside the box Λ, outside an event of negligible probabil-
ity in the multiscale analysis, we only need to consider Λ-acceptable configurations
of the Poisson process Y.

Given a box Λ = ΛL(x), we define an equivalence relation for configurations by

X
Λ∼ Z ⇐⇒ NX(ΛηL

(j)) = NZ(ΛηL
(j)) for all j ∈ JΛ. (3.29)

This induces an equivalence relation in both Q(0′)
Λ and Q(0)

Λ ; the equivalence class
of X in Q(0′)

Λ will be denoted by [X]′Λ. If X ∈ Q(0)
Λ , then [X]Λ = [X]′Λ ∩ Q

(0)
Λ is its

equivalence class in Q(0)
Λ . Note that [X]′Λ = [XΛ]′Λ. We also write

[A]Λ :=
⋃

X∈A

[X]Λ for subsets A ⊂ Q(0)
Λ . (3.30)

The following lemma is an immediate consequence of Lemma 3.3(i); it tells us
that “goodness” of boxes is a property of equivalence classes of acceptable ′ config-
urations: changing configurations inside an equivalence class takes good boxes into
just-as-good (jgood) boxes.

Lemma 3.6. Fix E0 > 0 and consider an energy E ∈ [0, E0]. Suppose the box
Λ = ΛL (with L large) is (X,E,m)-good for some X ∈ Q(0′)

ΛL
. Then for all Z ∈ [X]′Λ

the box Λ is (Z,E,m)-jgood (for just-as-good), that is,

‖RZ,Λ(E)‖ ≤ eL1−+η
1
4
L ∼ eL1−

(3.31)

and

‖χxRZ,Λ(E)χy‖ ≤ e−m|x−y| + η
1
4
L ∼ e−m|x−y|, for x, y ∈ Λ with |x− y| ≥ L

10 .
(3.32)

Moreover, if X,Z,X t Z ∈ Q(0′)
Λ and the box Λ is (X,Z,E,m)-good, then for

all X1 ∈ [X]′Λ and Z1 ∈ [Z]′Λ we have X1 t Z1 ∈ [X t Z]′Λ, and the box Λ is
(X1, Z1, E,m)-jgood as in (3.31) and (3.32).
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Proof. Lemma 3.3(i) gives

‖RX′,Λ(E)‖ ≤ eL1−+16%Ld√ηL , (3.33)

and, for all x, y ∈ Λ with |x− y| ≥ L
10 ,

‖χxRX′,Λ(E)χy‖ ≤ e−m|x−y| + 16%Ld√ηL eL1−+16%Ld√ηL . (3.34)

Using (3.26), we get (3.31) and (3.32) for large L.
The remaining statement is immediate. �

Remark 3.7. Proceeding as in Lemma 3.6, we find that changing configurations
inside an equivalence class takes jgood boxes into what we may call just-as-just-as-
good (jjgood) boxes, and so on. Since we will only carry this procedure a bounded
number of times, the bound independent of the scale, we will simply call them all
jgood boxes.

Similarly, we get the following consequence of Lemma 3.3(ii).

Lemma 3.8. Fix E0 > 0 and consider an energy E ∈ [0, E0] and a box Λ = ΛL

(with L large). Suppose dist(E, σ(HX,Λ)) ≤ τL for some X ∈ Q(0′)
ΛL

, where
√
ηL �

τL < 1
2 . Then

dist(E, σ(HY,Λ)) ≤ eη
1
4
L τL, for all Y ∈ [X]′Λ. (3.35)

In view of (3.19)-(3.20) we have

Q(0)
Λ /

Λ∼ = {[J ]Λ; J ∈ JΛ}, where JΛ := {J ⊂ JΛ; #J < 16%Ld}, (3.36)

and we can write Q(0)
Λ and Ω(0)

Λ as

Q(0)
Λ =

⊔
J∈JΛ

[J ]Λ and Ω(0)
Λ =

⊔
J∈JΛ

{Y ∈ [J ]Λ}. (3.37)

3.3. Basic events. The multiscale analysis will require “free sites” and sub-events
of {Y ∈ [J ]Λ}.

Definition 3.9. Given Λ = ΛL(x), a Λ-bconfset (basic configuration set) is a subset
of Q(0)

Λ of the form

CΛ,B,S :=
⊔

εS∈{0,1}S

[B ∪ X (S, εS)]Λ =
⊔

S′⊂S

[B ∪ S′]Λ, (3.38)

where we always implicitly assume B t S ∈ JΛ. CΛ,B,S is a Λ-dense bconfset if S
satisfies the density condition (cf. (3.7))

#(S ∩ Λ̂L1−) ≥ Ld−, for all boxes ΛL1− ⊂ ΛL. (3.39)

We also set
CΛ,B := CΛ,B,∅ = [B]Λ. (3.40)

Definition 3.10. Given Λ = ΛL(x), a Λ-bevent (basic event) is a subset of Ω(0)
Λ of

the form

CΛ,B,B′,S := {Y ∈ [B tB′ t S]Λ} ∩ {X ∈ CΛ,B,S} ∩ {X′ ∈ CΛ,B′,S}, (3.41)
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where we always implicitly assume B tB′ t S ∈ JΛ. In other words, the Λ-bevent
CΛ,B,B′,S consists of all ω ∈ Ω(0)

Λ satisfying

NX(ω)(ΛηL
(j)) = 1 if j ∈ B,

NX′(ω)(ΛηL
(j)) = 1 if j ∈ B′,

NY(ω)(ΛηL
(j)) = 1 if j ∈ S,

NY(ω)(ΛηL
(j)) = 0 if j ∈ JΛ\(B tB′ t S).

(3.42)

CΛ,B,B′,S is a Λ-dense bevent if S satisfies the density condition (3.39). In addition,
we set

CΛ,B,B′ := CΛ,B,B′,∅ = {X ∈ CΛ,B} ∩ {X′ ∈ CΛ,B′}. (3.43)

The number of possible bconfsets and bevents in a given box is always finite.
We always have

CΛ,B,B′,S ⊂ {X ∈ CΛ,B,S} ∩ Ω(0)
Λ , (3.44)

CΛ,B,B′,S ⊂ CΛ,∅,∅,BtB′tS = {Y ∈ [B tB′ t S]Λ}. (3.45)

Note also that it follows from (3.25), (3.36) and (3.43) that

Ω(0)
Λ =

⊔
{(B,B′); BtB′∈JΛ}

CΛ,B,B′ (3.46)

Moreover, for each S1 ⊂ S we have

CΛ,B,S =
⊔

S2⊂S1

CΛ,BtS2,S\S1 , (3.47)

CΛ,B,B′,S =
⊔

S2⊂S1

CΛ,BtS2,B′t(S1\S2),S\S1 . (3.48)

In view of Lemma 3.6, we make the following definition.

Definition 3.11. Consider an energy E ∈ R, m > 0, and a box Λ = ΛL(x). The
Λ-bevent CΛ,B,B′,S and the Λ-bconfset CΛ,B,S are (Λ, E,m)-good if the box Λ is
(B,S,E,m)-good. (Note that Λ is then (ω,E,m)-jgood for every ω ∈ CΛ,B,B′,S .)
Those (Λ, E,m)-good bevents and bconfsets that are also Λ-dense will be called
(Λ, E,m)-adapted.

3.4. Changing scales. Since the finite volume reduction is scale dependent, it
introduces new considerations in the multiscale analysis for Poisson Hamiltonians.
Given Λ` ⊂ Λ, the multiscale analysis will require us to redraw Λ`-bevents and
bconfsets in terms of (Λ,Λ`)-bevents and bconfsets as follows.

Definition 3.12. Given Λ` ⊂ Λ, a configuration J ∈ JΛ is called Λ`-compatible if

J ∩ Λ` ∈ J Λ`

Λ :=
⊔

A∈JΛ`

JΛ(A) ⊂ JΛ, (3.49)

where
JΛ(A) := {J ⊂ JΛ ∩ Λ`; J ∈ [A]Λ`

} for A ⊂ JΛ`
. (3.50)

If B t S is Λ`-compatible, the Λ-bconfset CΛ,B,S is also called Λ`-compatible, and
we define the (Λ,Λ`)-bconfset

CΛ`

Λ,B,S := {X ∈ P0(Rd); XΛ`
∈ CΛ,B∩Λ`,S∩Λ`

} ⊂ Q(0′)
Λ`

. (3.51)
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If B tB′ t S is Λ`-compatible, the Λ-bevent CΛ,B,B′,S is also called Λ`-compatible,
and we define the (Λ,Λ`)-bevent

CΛ`

Λ,B,B′,S := {YΛ`
∈ [(B tB′ t S) ∩ Λ`]Λ} ∩ {XΛ`

∈ CΛ`

Λ,B,S} ∩ {X
′
Λ`
∈ CΛ`

Λ,B′,S}.
(3.52)

Moreover, we say that a Λ`-compatible Λ-bconfset CΛ,B,S or a Λ-bevent CΛ,B,B′,S

is (Λ,Λ`)-dense if S ∩Λ` satisfies the density condition (3.39) in Λ`; (Λ,Λ`, E,m)-
jgood if the box Λ` is (B,S,E,m)-jgood; (Λ,Λ`, E,m)-adapted if both (Λ,Λ`)-dense
and (Λ,Λ`, E,m)-jgood. (Note that whenever we define a property of a Λ-bconfset
or bevent on a subbox Λ` ⊂ Λ we will always implicitly assume Λ`-compatibility.)

Lemma 3.13. Let Λ` ⊂ Λ. Then for all Λ`-bconfsets CΛ`,B,S and Λ`-bevents
CΛ`,B,B′,S we have

CΛ`,B,S ∩Q(0)
Λ ⊂

⋃
B1∈JΛ(B), S1∈JΛ(S)

CΛ`

Λ,B1,S1
, (3.53)

CΛ`,B,B′,S ∩ Ω(0)
Λ ⊂

⊔
B1∈JΛ(B),B′

1∈JΛ(B′),S1∈JΛ(S)

CΛ`

Λ,B1,B′
1,S1

. (3.54)

Moreover, if CΛ`,B,S or CΛ`,B,B′,S is Λ`-dense, or (Λ`, E,m)-jgood, or (Λ`, E,m)-
adapted, then then each CΛ`

Λ,B1,S1
or CΛ`

Λ,B1,B′
1,S1

is (Λ,Λ`)-dense, or (Λ,Λ`, E,m)-
jgood, or (Λ,Λ`, E,m)-adapted.

Proof. If CΛ`,B,S is a Λ`-bconfset, then {CΛ`

Λ,B1,S1
}B1∈JΛ(B), S1∈JΛ(S) form a collec-

tion of (not necessarily disjoint) (Λ,Λ`)-bconfsets, and we have (3.53). The same
argument yields (3.54), but now the (Λ,Λ`)-bevents are disjoint. (There are no
ambiguities since ηL �

√
η` and we have condition (3.21) at both scales.) The rest

follows, using also Lemma 3.6. �

3.5. Localizing events.

Definition 3.14. Consider an energy E ∈ R, a rate of decay m > 0, and a box
Λ. We call ΩΛ a (Λ, E,m)-localized event if there exist disjoint (Λ, E,m)-adapted
bevents {CΛ,Bi,B′

i,Si
}i=1,2,...,I such that

ΩΛ =
I⊔

i=1

CΛ,Bi,B′
i,Si

. (3.55)

If ΩΛ is a (Λ, E,m)-localized event, note that ΩΛ ⊂ Ω(0)
Λ by its definition, and

hence, recalling (3.48) and (3.43) , we can rewrite ΩΛ in the form

ΩΛ =
J⊔

j=1

CΛ,Aj ,A′
j
, (3.56)

where the {CΛ,Aj ,A′
j
}j=1,2,...,J are disjoint (Λ, E,m)-good bevents.

We will need (Λ, E,m)-localized events of scale appropriate probability.

Definition 3.15. Fix p > 0. Given an energy E ∈ R and a rate of decay m > 0,
a scale L is (E,m)-localizing if for some box Λ = ΛL (and hence for all) we have a
(Λ, E,m)-localized event ΩΛ such that

P{ΩΛ} > 1− L−p. (3.57)

In Section 6 we will also need “just localizing” events and scales.
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Definition 3.16. Consider an energy E ∈ R, a rate of decay m > 0, and a box Λ.
We call ΩΛ a (Λ, E,m)-jlocalized event if there exist disjoint (Λ, E,m)-good bevents
{CΛ,Aj ,A′

j
}j=1,2,...,J such that

ΩΛ =
J⊔

j=1

CΛ,Aj ,A′
j
. (3.58)

A scale L is (E,m)-jlocalizing if for some box Λ = ΛL (and hence for all) we have
a (Λ, E,m)-jlocalized event ΩΛ such that

P{ΩΛ} > 1− L−p. (3.59)

An (E,m)-localizing scale L is (E,m)-jlocalizing in view of (3.56).

4. “A priori” finite volume estimates

Given an energy E, to start the multiscale analysis we will need, as in [Bo, BoK],
an a priori estimate on the probability that a box ΛL is good with an adequate
supply of free sites, for some sufficiently large scale L. The multiscale analysis will
then show that such a probabilistic estimate also holds at all large scales.

4.1. Fixed disorder.

Proposition 4.1. Let HX be a Poisson Hamiltonian on L2(Rd) with density % > 0,
and fix p > 0. Then there exist a constant Cu > 0 and a scale L0 = L0(d, u, %, p) <
∞, such that for all scales L ≥ L0 we have (3.26), and, setting

δL = 1+((p+d+1)%−1 logL)
1
d , EL = CuδL

−2(d+1), and mL = 1
2

√
EL, (4.1)

the scale L is (E,mL)-localizing for all energies E ∈ [0, EL].

The proof will be based on the following lemma.

Lemma 4.2. Let HX be a Hamiltonian as in (1.1)-(1.3). Given δ0 > 0 and
L > δ0 + δ+, let Λ = ΛL(x) and set

J := {j ∈ x+ δ0Zd ∩ Λ; ΛδL
(j) ⊂ Λ̂)}, Je := J ∩ (x+ 2δ0Zd). (4.2)

Then there exist constants Cu > 0 and δ̃u ≥ δ−, such that if δ0 > δ̃u, then for all
X,Y ∈ P0(Rd) and tY ∈ [0, 1]Y , such that X ∩ Y = ∅ and

NX(Λδ0(j)) ≥ 1 for all j ∈ Je, (4.3)

we have
HX,(Y,tY ),Λ ≥ 2Cuδ0

−2(d+1) on L2(Λ). (4.4)

Setting E0 = Cuδ
−2(d+1)
0 , it follows that for all E ∈ [0, E0] we get

‖RX,(Y,tY ),Λ(E)‖ ≤ E−1
0 (4.5)

and

‖χyRX,(Y,tY ),Λ(E)χy′‖ ≤ 2E−1
0 e−

√
E0|y−y′|, for y, y′ ∈ Λ with |y − y′| ≥ 4

√
d.
(4.6)
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Proof. Given configurations X and Y such that X∩Y = ∅ and X satisfies (4.3), we
pick ζj ∈ XΛδ0 (j) for each j ∈ Je, and set X1 := {ζj , j ∈ Je}, X2 = (X \X1) t Y .
We claim that for all tX2 we have

HX1,(X2,tX2 ),Λ ≥ HX1,Λ ≥ 2Cuδ0
−2(d+1) on L2(Λ), (4.7)

where Cu > 0. Although the first inequality is obvious, the second is not, since

|{VX1 6= 0}| ≤ Ldδd
+δ

d
0 < Ld if δ0 > δ+. (4.8)

To overcome this lack of a strictly positive bound from below for VX1 on Λ, we use
the averaging procedure introduced in [BoK]. Requiring δ0 > δ−, we have

V X1(y) :=
1

(6δ0)d

∫
Λ6δ0 (0)

daVX1(y − a) ≥ cu δ0
−dχΛ(y) with cu > 0, (4.9)

by the definition of X1 plus the lower bound in (1.3), and hence

HX1,Λ := −∆Λ + χΛV X1 ≥ cuδ0
−d on L2(Λ). (4.10)

Thus, if ϕ ∈ C∞
c (Λ) with ‖ϕ‖ = 1, we have

〈ϕ,HX1,Λϕ〉Λ = 〈ϕ,HX1,Λϕ〉Λ + 〈ϕ,
(
VX1 − V X1

)
ϕ〉Λ

≥ cuδ0
−d + 〈ϕ,

(
VX1 − V X1

)
ϕ〉Rd (4.11)

≥ cuδ0
−d + 〈ϕ, VX1ϕ〉Rd − 1

(6δ0)d

∫
Λ6δ0 (0)

da 〈ϕ(·+ a), VX1ϕ(·+ a)〉

≥ cuδ0
−d − 1

(6δ0)d

∫
Λ6δ0 (0)

da |〈ϕ, VX1ϕ〉 − 〈ϕ(·+ a), VX1ϕ(·+ a)〉|

≥ cuδ0
−d − c′uδ0 ‖∇Λϕ‖Λ ≥ cuδ0

−d − c′uδ0 (〈ϕ,HX1,Λϕ〉)
1
2
Λ ,

where we used

‖ϕ(·+ a)− ϕ‖Rd =
∥∥(ea·∇ − 1)ϕ

∥∥
Rd ≤ |a| ‖∇ϕ‖Rd = |a| ‖∇Λϕ‖Λ . (4.12)

It follows that there is δ̃u ≥ δ−, such that for δ0 > δ̃u we have

〈ϕ,HX1,Λϕ〉Λ ≥ c′′u δ0
−2(d+1), (4.13)

and hence we get (4.7), which implies (4.4).
If we now set E0 = Cuδ

−2(d+1)
0 , then for all E ∈ [0, E0] we get (4.5) immediately

from (4.4), and (4.6) follows from (4.4) by the Combes-Thomas estimate (we use
the precise estimate in [GK2, Eq. (19)]). �

Proof of Proposition 4.1. Given % > 0, p > 0, let Cu and δ̃u be the constant from
Lemma 4.2, and for scales L > 1 let δL, EL, and mL be as in (4.1). Given a box
Λ = ΛL(x), let J, Je be as in Lemma 4.2 with δ0 = δL, and set Λ(e) =

⋃
j∈Je

ΛδL
(j).

We require

% ≤ (p+d+1)δ̃−d
u logL, which implies δL ≥ 1+ δ̃u, and L > δL+δ+. (4.14)

We let ĴΛ denote the collection of all (B,B′, S) ∈ JΛ such that

B tB′ t S ∈ JΛ, B tB′ ⊂ Λ(e), S ∩ Λ(e) = ∅; (4.15)

NB(ΛδL
(j)) ≥ 1 for all j ∈ Je; (4.16)

NS(ΛδL
(j)) ≥ 1 for all j ∈ J \ Je. (4.17)
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If (B,B′, S) ∈ ĴΛ, it is a consequence of (4.17) that the density condition (3.39)
holds for S in Λ if

% ≥ cp,dL
−(0+), where cp,d > 0, (4.18)

and then it follows from (4.16) and Lemma 4.2 that CΛ,B,B′,S is a (Λ, E,mL)-
adapted bevent for all E ∈ [0, EL] if we also have

% ≥ cp,d,uL
− d

d+3 , where cp,d,u > 0. (4.19)

Moreover, if (Bi, B
′
i, Si) ∈ ĴΛ, i = 1, 2, and (B1, B

′
1, S1) 6= (B2, B

′
2, S2), then

CΛ,B1,B′
1,S1 ∩ CΛ,B2,B′

2,S2 = ∅. We conclude that

ΩΛ =
⊔

(B,B′,S)∈ĴΛ

CΛ,B,B′,S (4.20)

is a (Λ, E,mL)-localizing event E ∈ [0, EL] if (4.14), (4.18) and (4.19) are satisfied,
which can be assured by requiring that L > L1(d, u, %, p).

To establish (3.57), let δ′L := δL − 1 = ((p+ d+ 1)%−1 logL)
1
d , and consider the

event
Ω(‡)

Λ := {NX(Λδ′L
(j)) ≥ 1 for all j ∈ J}. (4.21)

Clearly

P{Ω(‡)
Λ } ≥ 1−

(
L
δL

)d

e−%(δ′L)d

≥ 1− L−p−1. (4.22)

Since δL − δ′L = 1 ≥ ηL, we must have

Ω(‡)
Λ ∩ Ω(0)

Λ ⊂ ΩΛ, (4.23)

and hence (3.57) follows from (4.22) and (3.27) for L > L0(d, u, %, p) satisfying
(3.26). �

4.2. Fixed interval at the bottom of the spectrum and high disorder.
Proposition 4.1 can also be formulated for a fixed interval at the bottom of the
spectrum and high disorder.

Proposition 4.3. Let HX be a Poisson Hamiltonian on L2(Rd) with density % > 0,
and fix p > 0. Given E0 > 0, there exist a constant Cd,u,p,E0 > 0 and a scale
L0 = L0(d, u,E0, p) <∞, such that if L ≥ L0 and % ≥ Cd,u,p,E0 logL satisfy (3.26),
setting m = 1

2

√
E0, the scale L is (E,m)-localizing for all energies E ∈ [0, E0].

Proof. Given E0 > 0 and p > 0, let K0 = min{k ∈ N; k ≥ 2u−1
− E0}, Λ = ΛL(x),

fix δ0 = 1
6δ−, and let J, Je,Λ(e) be as in Proposition 4.1 (with δ0 instead of δL).

Given X,Y ∈ P0(Rd) and tY ∈ [0, 1]Y , such that X ∩ Y = ∅ and

NX(Λδ0(j)) ≥ K0 for all j ∈ Je, (4.24)

we have
HX,(Y,tY ),Λ ≥ 2E0 on L2(Λ), (4.25)

and (4.5) and (4.6) follows as in Lemma 4.2.
To prove (4.25), fix X1 ⊂ X such that has exactly K0 points in each box Λδ0(j)

for all j ∈ Je and none outside these boxes, that is,

NX1(Λδ0(j)) = K0 for all j ∈ Je and NX1(Rd \ Λ(e)) = 0. (4.26)

By our choice of δ0 and (1.3) we get

VX1(y) ≥ K0u−χΛ(y) ≥ 2E0χΛ(y), (4.27)
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and hence, setting X2 = X \X1, for all tX2 ∈ [0, 1]X2 we have

HX1,(X2,tX2 ),Λ ≥ HX1,Λ ≥ 2E0, (4.28)

and (4.25) follows.
We now modify the argument in the proof of Proposition 4.1. Let ĴΛ denote the

collection of all (B,B′, S) ∈ JΛ such that

B tB′ t S ∈ JΛ, B tB′ ⊂ Λ(e), S ∩ Λ(e) = ∅; (4.29)

NB(Λδ0(j)) ≥ K0 for all j ∈ Je; (4.30)

NS(Λδ0(j)) ≥ 1 for all j ∈ J \ Je. (4.31)

If (B,B′, S) ∈ ĴΛ, the density condition (3.39) for S in Λ follows from (4.31), and
it follows from (4.30) and (4.25) that CΛ,B,B′,S is a (Λ, E,m)-adapted bevent with
m = 1

2

√
E0 for all E ∈ [0, E0] if L ≥ L1(u,E0). We conclude that

ΩΛ =
⊔

(B,B′,S)∈ĴΛ

CΛ,B,B′,S (4.32)

is a (Λ, E,m)-localizing event for all E ∈ [0, E0].
To establish (3.57), let δ1 := 1

2δ0 and consider the event

Ω(‡)
Λ := {NX(Λδ1(j)) ≥ K0 for all j ∈ J}. (4.33)

We have, using (2.9),

P{Ω(‡)
Λ } ≥ 1−

(
L
δ0

)d

CK0e
− 1

2 %δd
1 = 1− Cu,E0,dL

de−cu,d% ≥ 1− L−p−1 (4.34)

for % ≥ Cd,u,p,E0 logL if L ≥ L2(u,E0, d, p)
Since δ0 − δ1 = 1

12δ− ≥ ηL for L ≥ L3(u), for L ≥ L4(u,E0, d, p) we must have

Ω(‡)
Λ ∩ Ω(0)

Λ ⊂ ΩΛ, (4.35)

and hence (3.57) follows from (4.34) and (3.27) for L > L0(d, u,E0, p) with % ≥
Cd,u,p,E0 logL. �

5. The multiscale analysis with a Wegner estimate

We can now state our version of [BoK, Proposition A′] for Poisson Hamiltonians.

Proposition 5.1. Let HX be a Poisson Hamiltonian on L2(Rd) with density % > 0.
Fix an energy E0 > 0. Pick p = 3

8d−, ρ1 = 3
4− and ρ2 = 0+, more precisely, pick

p, ρ1, ρ2 such that
8
11 <

d
d+p < ρ1 <

3
4 , ρ2 = ρn1

1 with n1 ∈ N and p < d(ρ1
2 − ρ2). (5.1)

Let E ∈ [0, E0], and suppose L is (E,m0)-localizing for all L ∈ [Lρ1ρ2
0 , Lρ1

0 ], where

m0 ≥ L−τ0
0 with τ0 = 0+ < ρ2, (5.2)

the condition (3.26) is satisfied at scale Lρ1ρ2
0 , and the scale L0 is also sufficiently

large (depending on d,E0, p, ρ1, ρ2, τ0) . Then L is (E, m0
2 )-localizing for all L ≥ L0

(actually, for all L ≥ Lρ1ρ2
0 ).

The proof will require several lemmas and definitions.
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Lemma 5.2. Fix p′ = p− and let Λ` ⊂ Λ = ΛL with ` � L. If the scale ` is
(E,m)-localizing, then there exists a (Λ,Λ`, E,m)-localized event ΩΛ`

Λ , i.e.,

ΩΛ`

Λ =
IL,`⊔
i=1

CΛ`

Λ,Bi,B′
i,Si

(5.3)

for some disjoint (Λ,Λ`, E,m)-adapted bevents {CΛ`

Λ,Bi,B′
i,Si

}i=1,2,...,IL,`
, such that

P{ΩΛ`

Λ } > 1− `−p′ . (5.4)

Proof. Given disjoint Λ`-bevents, the corresponding (Λ,Λ`)-bevents in (3.54) are
also disjoint events. Since the scale ` is (E,m)-localizing, there is a (Λ`, E,m)-
localized event ΩΛ`

satisfying (3.57). From Lemma 3.13 we get

ΩΛ`
∩ Ω(0)

Λ ⊂ ΩΛ`

Λ , (5.5)

where ΩΛ`

Λ is as in (5.3). The estimate (5.4) then follows from (3.57) and (3.27). �

Definition 5.3. Given scales ` ≤ L, a standard `-covering of a box ΛL(x) is a
collection of boxes Λ` of the form

G(`)
ΛL(x) = {Λ`(r)}r∈G(`)

ΛL(x)
, (5.6)

where

G(`)
ΛL(x) := {x+ α`Zd} ∩ ΛL(x) with α ∈] 35 ,

4
5 ] ∩ {L−`

2`n ; n ∈ N}. (5.7)

Lemma 5.4. If `� L there is always a standard `-covering G(`)
ΛL(x) of a box ΛL(x),

and we have

ΛL(x) =
⋃

r∈G(`)
ΛL(x)

Λ`(r), (5.8)

for each y ∈ ΛL(x) there is r ∈ G(`)
ΛL(x) with Λ 2`

5
(y) ∩ ΛL(x) ⊂ Λ`(r), (5.9)

Λ `
5
(r) ∩ Λ`(r′) = ∅ if r 6= r′, (5.10)

#G(`)
ΛL(x) ≤ ( 5

3
L
` )d ≤ ( 2L

` )d. (5.11)

Moreover we have the following nesting property: Given y ∈ x + α`Zd and n ∈ N
such that Λ(2nα+1)`(y) ⊂ Λ, it follows that

Λ(2nα+1)`(y) =
⋃

r∈{x+α`Zd}∩Λ(2nα+1)`(y)

Λ`(r), (5.12)

and {Λ`(r)}r∈{x+α`Zd}∩Λ(2nα+1)`(y) is a standard `-covering of the box Λ(2nα+1)`(y).

Proof. The lemma can be easily checked using (5.7). In particular, α > 3
5 ensures

(5.9), α ≤ 4
5 ensures (5.10), and the existence of n ∈ N such that 2nα` = L − `

ensures the nesting property (5.8). �

In the following we fix E ∈ [0, E0], assume (5.1), and set Λ = ΛL, `1 = Lρ1 ,
and `2 = Lρ2 . We also assume the induction hypotheses: for each box Λ` ⊂ Λ
with ` ∈ [`2, `1] there is a (Λ`, E,m0)-localized event ΩΛ`

with (3.57), and hence
it follows from Lemma 5.2 that there is a (Λ,Λ`, E,m0)-localized event ΩΛ`

Λ with
(5.4), and we have (5.2) with m0 and L.
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Remark 5.5. The rate of decay m in (3.9), which by hypothesis is m0 as in (5.2)
for all scales L ∈ [Lρ1ρ2

0 , Lρ1
0 ], will vary along the multiscale analysis, i.e., the

construction gives a rate of decay mL at scale L. The control of this variation can
be done as usual, as commented in [BoK] (but we need a condition like (5.2)), so we
always have mL ≥ m0

2 , e.g., [DrK, FK, GK1, Kl]). We will ignore this variation
as in [BoK] and simply write m for mL. We will omit m from the notation in the
rest of this section. The exponent 1− in (3.8) does not vary.

We now define an event that incorporates [BoK, property (∗)].

Definition 5.6. Given a box Λ`1 , for each n = 0, 1, . . . , n1 let Ln =: `ρ
n
1

1 (note
L0 = `1, Ln1 = `2), and let Rn = {ΛLn

(r)}r∈Rn
be a standard Ln-covering of Λ`1

as in (5.6). For a given number K2, a configuration set X is said to be (Λ`1 , E)-
notsobad if there is ΥB = ∪r∈R′

n1
Λ3`2(r), where R′n1

⊂ Rn1 with #R′n1
≤ K2,

such that for all x ∈ Λ`1 \ ΥB there is an (X,E)-jgood box ΛLn
(r), with r ∈ Rn

for some n ∈ {1, . . . , n1} and Λ(x, 2Ln

5 ) ∩ Λ`1 ⊂ ΛLn
(r). If Λ`1 ⊂ Λ, a (Λ,Λ`1)-

bconfset CΛ`1
Λ,B or bevent CΛ`1

Λ,B,B′ is (Λ,Λ`1 , E)-notsobad if the configuration set B
is (Λ`1 , E)-notsobad.

Lemma 5.7. For sufficiently large K2, depending only on d, p, ρ1, n1, for all boxes
Λ`1 ⊂ Λ, with `1 large enough, there exist disjoint (Λ,Λ`1 , E)-notsobad bevents
{CΛ`1

Λ,Bm,B′
m
}m=1,2,...,M such that

P{ΩΛ`1 ,(∗)
Λ } > 1− `−5d

1 , with ΩΛ`1 ,(∗)
Λ =

M⊔
m=1

CΛ`1
Λ,Bm,B′

m
, (5.13)

and hence

ΩΛ`1 ,(∗\)
Λ := ΩΛ`1 ,(∗)

Λ \ ΩΛ`1
Λ =

Q⊔
q=1

CΛ`1
Λ,Fq,F ′

q
, (5.14)

where {CΛ`1
Λ,Fq,F ′

q
}q=1,2,...,Q are disjoint (Λ,Λ`1 , E)-notsobad bevents.

Proof. Given ΛLn−1(r) ∈ Rn−1, we set

Rn(r) := {ΛLn
(s) ∈ Rn; ΛLn

(s) ∩ ΛLn−1(r) 6= ∅} and

Rn(r) := {s ∈ Rn; ΛLn(s) ∈ Rn(r)}.
(5.15)

We have ΛLn−1(r) ⊂
⋃

s∈Rn(r) ΛLn
(s) and, similarly to (5.11), #Rn(r) ≤ ( 3Ln−1

Ln
)d.

Fix a number K ′, and define the event ΩΛ`1 ,(∗′)
Λ as consisting of ω ∈ Ω such that,

for all n = 1, . . . , n1 and all r ∈ Rn−1, we have ω ∈ ΩΛLn (s)
Λ for all s ∈ Rn(r), with

the possible exception of at most K ′ disjoint boxes ΛLn
(s) with s ∈ Rn(r). The

probability of its complementary event can be estimated from (5.4) as in [BoK, Eq.
(6.12)]:

P
{

Ω \ Ω(∗′)
Λ`1

}
≤

n1∑
n=1

( 2`1
Ln−1

)d( 3Ln−1
Ln

)K′dL−K′p′

n (5.16)

≤ 2d3K′dn1`
−ρ−1

1 (K′(ρ1(p
′+d)−d)+d(K′−1))

1 ≤ `−6d
1 ,

which holds for all large `1 after choosing K ′ sufficiently large using (5.1).
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Given ω ∈ ΩΛ`1 ,(∗′)
Λ , then for each n = 1, . . . , n1 and r ∈ Rn−1 we can find

s1, s2, . . . , sK′′ ∈ Rn(r), with K ′′ ≤ K ′ − 1, such that ω ∈ ΩΛLn (s)
Λ if s ∈ Rn(r) and

s /∈
⋃K′′

j=1 Λ3Ln
(sj). (Here we need boxes of side 3Ln because we only ruled out the

existence of K ′ disjoint boxes of side Ln.) Since each box Λ3Ln
(sj) is contained in

the union of at most C ′′ boxes in Rn, we conclude that for each ω ∈ ΩΛ`1 ,(∗′)
Λ there

are t1, t2, . . . , tK′′′ ∈ Rn1 , with K ′′′ ≤ K2 = (C ′′(K ′ − 1))n1 , such that , setting
Υ =

⋃K′′′

tj=1 Λ3`2(tj), for all x ∈ Λ`1\Υ we have ω ∈ ΩΛLn (s)
Λ for some n = 1, 2, . . . , n1

and s ∈ Rn, with and Λ(x, 2Ln

5 ) ∩ Λ`1 ⊂ ΛLn
(s).

Recalling (3.46), we have

ΩΛ`1 ,(∗′)
Λ ∩ Ω(0)

Λ ⊂ ΩΛ`1 ,(∗)
Λ :=

⊔
{(F,F ′); FtF ′∈J

Λ`1
Λ , C

Λ`1
Λ,F,F ′∩Ω

Λ`1
,(∗′)

Λ 6=∅}

CΛ`1
Λ,F,F ′ . (5.17)

It follows from Lemma 3.6 that each CΛ,F,F ′ in the disjoint union must be a
(Λ,Λ`1 , E)-notsobad bevent. Thus (5.13) follows from (5.16) and (3.27). We obtain
(5.14) from (5.13) and (3.56). �

Definition 5.8. Let R = {Λ`1(r)}r∈R be a standard `1-covering of Λ and fix
K1 ∈ N. A Λ-bevent CΛ,B,B′,S, is called (Λ, E)-prepared if S satisfies the density
condition

#(S ∩ Λ̂`) ≥ `d−, for all boxes Λ` ⊂ Λ with `1 � ` ≤ L, (5.18)

and there is R′ ⊂ R with #(R \ R′) ≤ K1, such that if r ∈ R′ then CΛ`1 (r)

Λ,B,B′,S is a

(Λ,Λ`1(r), E)-adapted bevent, and if r ∈ R \R′ then S ∩ Λ`1(r) = ∅ and CΛ`1 (r)

Λ,B,B′ is
a (Λ,Λ`1(r), E)-notsobad bevent.

Lemma 5.9. Let R = {Λ`1(r)}r∈R be a standard `1-covering of Λ. For sufficiently
large K1, depending only on d, p, ρ1, n1, if L is taken large enough, there exist
disjoint (Λ, E)-prepared bevents {CΛ,Bm,B′

m,Sm}m=1,2,...,MΛ , such that

P{Ω(1)
Λ } > 1− 2L−2d, with Ω(1)

Λ =
MΛ⊔
m=1

CΛ,Bm,B′
m,Sm

. (5.19)

Proof. Fix K1, recall (5.3) and (5.14), and define the event Ω(1)
Λ by the disjoint

union

Ω(1)
Λ :=

⊔
R′⊂R

#(R\R′)≤K1

Ω(1)
Λ (R′), where

Ω(1)
Λ (R′) =

{ ⋂
r∈R′

ΩΛ`1 (r)

Λ

}⋂  ⋂
r∈R\R′

ΩΛ`1 (r),(∗\)
Λ

 .

(5.20)

Using the probability estimates in (5.3) and (5.13), and taking K1 sufficiently large
(independently of the scale), we get

P{Ω(1)
Λ } > 1− 2L−2d, for all j = 1, 2, . . . , 2K1. (5.21)

This can be seen as follows. First, from (5.13) and (5.14) we have

P
{

ΩΛ`1 (r)

Λ ∪ ΩΛ`1 (r),(∗\)
Λ

}
≥ P

{
ΩΛ`1 (r),(∗)

Λ

}
> 1− L−5ρ1d, (5.22)
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and hence

P

{ ⋂
r∈R

{
ΩΛ`1 (r)

Λ ∪ ΩΛ`1 (r),(∗\)
Λ

}}
> 1−

(
2L
`1

)d

L−5ρ1d

≥ 1− 2dL−(6ρ1−1)d > 1− L−2d,

(5.23)

for large L, using also (5.1). On the other hand, letting K1 = C ′(K ′−1), it follows
from (5.3) and (5.1) that

P
{

there are K ′ disjoint boxes Λ`1(r) ∈ R with ω /∈ ΩΛ`1 (r)

Λ

}
≤ ( 2L

`1
)dK′

`−p′K′

1 ≤ 2dK′
L−K′(ρ1(p

′+d)−d) ≤ L−2d
(5.24)

if K1 > 2dC′

ρ1(p′+d)−d and L is large enough. Here C ′ is chosen such that the
complementary has at most K1 (not necessarily disjoint) boxes Λ`1(r) ∈ R with
ω /∈ ΩΛ`1 (r)

Λ . The estimate (5.21) follows from (5.23) and (5.24).
Moreover, it follows from (5.3) and (5.14) that each Ω(1)

Λ (R′) is a disjoint union
of (non-empty) events of the form

DR′ =

{ ⋂
r∈R′

CΛ`1 (r)

Λ,Br,B′
r,Sr

}⋂  ⋂
r∈R\R′

CΛ`1 (r)

Λ,Fr,F ′
r

 , (5.25)

where CΛ`1 (r)

Λ,Br,B′
r,Sr

is a (Λ,Λ`1(r), E)-adapted bevent for each r ∈ R′, and CΛ`1 (r)

Λ,Fr,F ′
r

is a (Λ,Λ`1 , E)-notsobad bevent for each r ∈ R \R′.
It remains to show that DR′ can be written as a disjoint union of (Λ, E)-prepared

bevents. To do so let, as in [BoK], let

SR′ := {s ∈ JΛ; s ∈ Λ`1(r) ⇒ r ∈ R′ and s ∈ Sr}. (5.26)

Since (5.10) yields ⋃
r∈R′

Sr ∩ Λ `1
5

(r) ⊂ SR′ , (5.27)

and #(R \R′) ≤ K1, it follows as in [BoK, Eq. (6.18)] that SR′ satisfies the density
condition (5.18) in Λ. It follows from (3.48) and (5.26) that we can rewrite the
event DR′ in (5.25) as a disjoint union

DR′ =
⊔
j∈J

CΛ,Aj ,A′
j ,SR′ , (5.28)

where {CΛ,Aj ,A′
j ,SR′}j∈J are (Λ, E)-prepared bevents. �

We can now prove a Wegner estimate at scale L using [BoK, Lemma 5.1′].

Lemma 5.10. Let CΛ,B,B′,S be a (Λ, E)-prepared bevent, and consider a box ΛL0 ⊂
Λ with L0 = (2nα+1)`1 for some n ∈ N , `1 � L0 ≤ L, such that ΛL0 is constructed
as in (5.12) from a standard `1-covering of Λ. Then, for sufficiently large L there
exist disjoint subsets {Si}i=1,2,...,I of S0 := S ∩ Λ0, such that∥∥RBtSi,ΛL0

(E)
∥∥ < eC1L

4
3 ρ1 log L, for all i = 1, 2, . . . , I, (5.29)
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and we have the conditional probability estimate

P{ΩΛ0
Λ,B,B′,S

∣∣∣ CΛ,B,B′,S} > 1− C2L
−d(

ρ1
2 −ρ2)+, with

ΩΛ0
Λ,B,B′,S =

I⊔
i=1

CΛ,BtSi,B′t(S0\Si),S\S0 ,
(5.30)

where the constants C1, C2 do not depend on the scale L. In particular, we get

P
{{

‖RX,Λ(E)‖ < eC1L
4
3 ρ1 log L

}
∩ Ω(0)

Λ

}
> 1− L−p. (5.31)

Proof. Let CΛ,B,B′,S be a (Λ, E)-prepared cylinder event, consider ΛL0 ⊂ Λ as
above, and set B0 = B ∩ ΛL0 , B

′
0 = B′ ∩ ΛL0 , and S0 = S ∩ ΛL0 . Let

HεS0
:= HB,(S,εS),ΛL0

= HB0,(S0,εS0 ),ΛL0
= −∆ΛL0

+ VB0 +
∑
s∈S0

εs(ω)u(x− s),

(5.32)
where εS0 = {εs}s∈S0 are independent Bernoulli random variables, with PεS0

denot-
ing the corresponding probability measure. All the hypotheses of [BoK, Lemma 5.1′]
are satisfied by the random operator H(εS0) in the box ΛL0 . In particular it follows
from the density condition (5.18) that S0 is a collection of “free sites ” satisfying
the condition in [BoK, Eq. (5.29)] inside the box ΛL0 . (The fact that we have a
configuration B0 ∪ B′

0 ∪ S0 ⊂ JΛ instead of a subconfiguration of Zd is not impor-
tant; only the density condition [BoK, Eq. (5.29)] and the fact that CΛ,B0,B′

0,S0 is
(ΛL0 , E)-prepared matter, the specific location of the single-site potentials plays no
role in the analysis.)

Thus it follows from [BoK, Lemma 5.1′] that (L large)

PεS0

{∥∥RεS0
(E)

∥∥ < eC1`
4
3
1 log `1

}
> 1− C2`

d
2`
− d

2 +
1 , (5.33)

where the constants C1, C2 do not depend on the scale L. In other words, there is
a subset Q ⊂ {0, 1}S0 such that

P{εS0 ∈ Q} > 1− C2`
d
2`
− d

2 +
1 , and∥∥∥RB∪X (S0,εS0 ),ΛL0

(E)
∥∥∥ < eC1`

4
3
1 log `1 for all εS0 ∈ Q.

(5.34)

We now conclude from (5.34), recalling the definitions of `1 and `2, that there
exist disjoint Λ-bevents {CΛ,BtSi,B′t(S0\Si),S\S0}i=1,2,...,I , with each Si ⊂ S0, such
that we have (5.29) and (5.30).

Since the event Ω(1)
Λ in (5.19) is a disjoint union of such (Λ, E)-prepared bevents,

we have, using also Lemma 3.3 as in the derivation of (3.31) (and changing C1

slightly), that

P
{{

‖RX,Λ(E)‖ < eC1L
4
3 ρ1 log L

}
∩ Ω(0)

Λ

∣∣∣∣ Ω(1)
Λ

}
> 1− C2L

−d(
ρ1
2 −ρ2)+, (5.35)

and hence, using the probability estimate in (5.19), we have

P
{{

‖RX,Λ(E)‖ < e2C1L
4
3 ρ1 log L

}
∩ Ω(1)

Λ

}
> 1− 2C2L

−d(
ρ1
2 −ρ2)+. (5.36)

The desired (5.31) follows using (5.1). �
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We are now ready to finish the proof of Proposition 5.1.

Proof of Proposition 5.1. Fix E ∈ [0, E0]. It suffices to prove that if L′ is E-
localizing for all L′ ∈ [Lρ2 , Lρ1 ] = [`2, `1], and the scale L is sufficiently large, then
L is E-localizing.

Let CΛ,B,B′,S be a (Λ, E)-prepared bevent, so there is R′ ⊂ R0 with #(R0 \
R′) ≤ K1, such that if r ∈ R′ then CΛ`1 (r)

Λ,B,B′,S is a (Λ,Λ`1(r), E)-adapted bevent,

and if r ∈ R0 \ R′ then S ∩ Λ`1(r) = ∅ and CΛ`1 (r)

Λ,B,B′ is a (Λ,Λ`1(r), E)-notsobad
bevent. Recalling (5.12), we pick n0 ∈ N such that `0 := (2n0α + 1)`1 ∼ L1−.
By geometrical considerations, we can find boxes Λ(j) = Λ(2mjn0α+1)`1(sj) ⊂ Λ,
j = 1, 2, . . . , J , where J ≤ K1, with mj ∈ {1, 2, . . . , 2K1} and sj ∈ G(`1)

Λ for each
j = 1, 2, . . . , J , such that dist(Λ(j),Λ(j′)) ≥ `0 if j 6= j′, and for each r ∈ R0 \ R′
there is jr ∈ {1, 2, . . . , J} such that Λ `0

5
(r) ∩ Λ ⊂ Λ(jr).

Since each Λ(j) is of the form given in (5.12), we can apply Lemma 5.10 to
each Λ(j). Since the Λ(j) are disjoint, we can use independence of events based in
different Λ(j)’s, and we may apply Lemma 5.10 (or its proof) to all Λ(j). Setting
S0 =

⋃J
j=1 S ∩ Λ(j) and S̃ = S \ S0, we conclude that there exist disjoint subsets

{Sq}q=1,2,...,Q of S0, such that for each q = 1, 2, . . . , Q and all tS̃ ∈ [0, 1]S̃ we have∥∥∥RBtSq,(S̃,tS̃),Λ(j)(E)
∥∥∥ < eC1L

4
3 ρ1 log L, for all j = 1, 2 . . . , J, (5.37)

and we have the conditional probability estimate

P{Ω′
Λ,B,B′,S

∣∣ CΛ,B,B′,S} > 1− 2K1C2L
−d(

ρ1
2 −ρ2)+ with

Ω′
Λ,B,B′,S =

Q⊔
i=q

CΛ,BtSq,B′t(S0\Sq),S̃ .
(5.38)

By construction, each configuration in CΛ,BtSq,S̃ satisfies the hypotheses of [BoK,
Lemma 2.14] (see also [BoK, (2.22) and (2.23)]), and hence, recalling also (5.1),
we can conclude that CΛ,BtSq,S̃ is a (Λ, E)-good bconfset. Since it is clear that
S̃ satisfies the density condition (3.39) in Λ, each CΛ,BtSq,B′t(S0\Sq),S̃ is a (Λ, E)-
adapted bevent.

Recalling Lemma 5.9 and the event Ω(1)
Λ in (5.19), we conclude the existence

of disjoint (Λ, E)-adapted bevents {CΛ,Bi,B′
i,Si

}i=1,2,...,I , and hence of the (Λ, E)-
localized event

ΩΛ =
I⊔

i=1

CΛ,Bi,B′
i,Si

, (5.39)

such that
P{ΩΛ|Ω(1)

Λ } > 1− 2K1C2L
−d(

ρ1
2 −ρ2)+. (5.40)

Using the probability estimate in (5.19) and (5.1), we get that

P{ΩΛ} > 1− L−p, (5.41)

and hence the scale L is E-localizing.
Proposition 5.1 is proven. �
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6. The proofs of Theorems 1.1 and 1.2

In view of Propositions 4.1, 4.3, and 5.1, Theorems 1.1 and 1.2 are a conse-
quence of the following proposition, whose hypothesis follows from the conclusion
of Proposition 5.1. We recall Definition 3.16.

Proposition 6.1. Fix p = 3
8d− and an energy E0 > 0, and suppose there is a scale

L0 and m > 0 such that L is (E,m)-jlocalizing for all L ≥ L0 and E ∈ [0, E0]. Then
the following holds P-a.e.: The operator HX has pure point spectrum in [0, E0] with
exponentially localized eigenfunctions (exponential localization) with rate of decay
m
2 , i.e., if φ is an eigenfunction of HX with eigenvalue E ∈ [0, E0] we have

‖χxφ‖ ≤ CX,φ e
−m

2 |x|, for all x ∈ Rd. (6.1)

Moreover, there exist τ > 1 and s ∈]0, 1[ such that for eigenfunctions ψ, φ (possibly
equal) with the same eigenvalue E ∈ [0, E0] we have

‖χxψ‖ ‖χyφ‖ ≤ CX‖T−1ψ‖‖T−1φ‖ e〈y〉
τ

e−|x−y|s , for all x, y ∈ Zd. (6.2)

In particular, the eigenvalues of HX in [0, E0] have finite multiplicity, and HX

exhibits dynamical localization in [0, E0], that is, for any p > 0 we have

sup
t
‖〈x〉pe−itHXχ[0,E0](HX)χ0‖22 <∞. (6.3)

Proof. The fact that the hypothesis of Proposition 6.1 imply exponential localiza-
tion in the interval [0, E0] is proved in [BoK, Section 7]. Although their proof
is written for the Bernoulli-Anderson Hamiltonian, it also applies to the Poisson
Hamiltonian by proceeding as in the proof of Proposition 5.1. When [BoK, Sec-
tion 7] states that a box Λ is good at energy E, we should interpret it as the
occurrence of the (Λ, E,m)-jlocalized event ΩΛ as in (3.58), with probability sat-
isfying the estimate (3.59), whose existence is guaranteed by the hypothesis of
Proposition 6.1. We should rewrite such an event as in Lemma 5.2 when necessary,
with p′ = 3

8d− < p. With these modifications, plus the use of Lemmas 3.6 and 3.8
when necessary, the analysis of [BoK, Section 7] yields exponential localization for
Poisson Hamiltonians.

The decay of eigenfunction correlations given in (6.2) follows for the Bernoulli-
Anderson Hamiltonian from a careful analysis of [BoK, Section 7] given in [GK5],
and hence it also holds for the Poisson Hamiltonian by the same considerations as
above. Finite multiplicity and dynamical localization then follow as in [GK5]. �
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