
THE SPECTRUM OF RELATIVISTIC ATOMS ACCORDING TO
BETHE AND SALPETER AND BEYOND

HEINZ SIEDENTOP

Abstract. We review Evans’ contributions to the spectral theory of opera-
tors describing relativistic particle systems. We will concentrate on no-pair

operators and recent extensions of that work.

1. William Desmond Evans’ Papers on Relativistic Quantum
Mechanics

William Desmond Evans contributed to the spectral theory of operators describ-
ing relativistic particle systems as follows:

(1) W. D. Evans. A problem in relativistic quantum mechanics. Quart. J.
Math. Oxford Ser. (2), 17:345–358, 1966.

(2) W. D. Evans. Eigenfunction expansions associated with the Dirac relativis-
tic equations. Quart. J. Math. Oxford Ser. (2), 17:211–233, 1966.

(3) W. D. Evans. Eigenfunction expansions associated with the Dirac relativis-
tic equations. II. Quart. J. Math. Oxford Ser. (2), 18:239–262, 1967.

(4) W. D. Evans. The Dirac equations with a spherically symmetrical scalar
potential. Quart. J. Math. Oxford Ser. (2), 21:89–99, 1970.

(5) W. D. Evans. On the decomposition method and the spectrum of the Dirac
operator. Proc. London Math. Soc. (3), 21:651–673, 1970.

(6) W. D. Evans. On the unique self-adjoint extension of the Dirac operator
and the existence of the Green matrix. Proc. London Math. Soc. (3),
20:537–557, 1970.

(7) W. Desmond Evans. Spectral theory of the Dirac operator. Math. Z.,
121:1–23, 1971.

(8) W. D. Evans. On the length of gaps in the essential spectrum of a gener-
alised Dirac operator. Proc. Amer. Math. Soc., 35:137–146, 1972.

(9) William Desmond Evans, Peter Perry, and Heinz Siedentop. The spec-
trum of relativistic one-electron atoms according to Bethe and
Salpeter. Comm. Math. Phys., 178(3):733–746, 1996.

(10) William Desmond Evans, Roger T. Lewis, Heinz Siedentop, and Jan Philip
Solovej. Counting eigenvalues using coherent states with an application to
Dirac and Schrödinger operators in the semi-classical limit. Ark. Mat.,
34(2):265–283, 1996.

(11) A. A. Balinsky and W. D. Evans. On the virial theorem for the relativistic
operator of Brown and Ravenhall, and the absence of embedded eigenvalues.
Lett. Math. Phys., 44(3):233–248, 1998.

(12) V. I. Burenkov and W. D. Evans. On the evaluation of the norm of an
integral operator associated with the stability of one-electron atoms. Proc.
Roy. Soc. Edinburgh Sect. A, 128(5):993–1005, 1998.

(13) A. A. Balinsky and W. D. Evans. Stability of one-electron molecules in the
Brown-Ravenhall model. Comm. Math. Phys., 202(2):481–500, 1999.
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(14) A. Balinsky and W. D. Evans. On the stability of relativistic one-electron
molecules. J. Phys. A, 32(11):L129–L132, 1999.

(15) W. D. Evans and Roger T. Lewis. Eigenvalue estimates in the semi-classical
limit for Pauli and Dirac operators with a magnetic field. R. Soc. Lond.
Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):183–217, 1999.

(16) A. A. Balinsky and W. D. Evans. On the Brown-Ravenhall relativistic
Hamiltonian and the stability of matter. In Differential equations and math-
ematical physics (Birmingham, AL, 1999), volume 16 of AMS/IP Stud.
Adv. Math., pages 1–9. Amer. Math. Soc., Providence, RI, 2000.

(17) A. A. Balinsky and W. D. Evans. On the spectral properties of the Brown-
Ravenhall operator. J. Comput. Appl. Math., 148(1):239–255, 2002. On
the occasion of the 65th birthday of Professor Michael Eastham.

(18) A. A. Balinsky and W. D. Evans. On the zero modes of Weyl-Dirac op-
erators and their multiplicity. Bull. London Math. Soc., 34(2):236–242,
2002.

(19) A. A. Balinsky and W. D. Evans. Zero modes of Pauli and Weyl-Dirac op-
erators. In Advances in differential equations and mathematical physics
(Birmingham, AL, 2002), volume 327 of Contemp. Math., pages 1–9.
Amer. Math. Soc., Providence, RI, 2003.

2. The Energy According to Bethe and Salpeter

2.1. The Brown-Ravenhall Operator. The Coulomb-Dirac operator is

(1) Dg := α · p +mβ − g| · |−1,

where p := −i∇, m is the electron rest mass, g = Zα, α ≈ 1/137 (Sommerfeld fine
structure constant), and Z is the atomic number. The four 4× 4 Dirac matrices α
and beta are given through the three Pauli matrices σ as

αν :=
(

0 σν

σν 0

)
for ν = 1, 2, 3 and

β =
(

1 0
0 −1

)
.

The Pauli matrices in turn are defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The operatorDg is well-defined on S(R3)⊗C4 ⊂ H := L2(R3)⊗C4 and essentially
self-adjoint for g ∈ (−

√
3/2,

√
3/2) (Landgren and Rejto [20] and Landgren et al.

[21]).
We define Λg := χ(0,∞)(Dg), Fg := Λg(S(R3)⊗ C4), Hg := Λg(H).
Brown and Ravenhall [4] – see also Bethe and Salpeter [3] – introduce the oper-

ator Bg. It is the unique self-adjoint operator generated by

Eg : F0 → R(2)
ψ 7→ (ψ,Dgψ).(3)

The basic fact allowing for this claim is

Theorem 1 (Evans et al. [8]). If 0 ≤ g ≤ gB
c := 2/(π/2+2/π), then Eg is bounded

from below. If g > gB
c , then E is unbounded from below.

This allows us to define the Brown-Ravenhall operator

(4) Bg = Λ0DgΛ0

in the Hilbert space H0 by form methods.
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Physically speaking, the negative energy states constitute the Dirac sea of for-
bidden electron states.

We remark that the value gB
c of the coupling constant corresponds to atomic

numbers Z up to 124.
We mention some additional facts about the operator Bg and generalizations

beyond the one-center one-electron Coulomb potential.
Evans et al. [8]: σess(Bg) = [m,∞).
Evans et al. [8]: σs.c.(Bg) = ∅.
Tix [29, 30] and Burenkov and Evans [6]: Positivity of Bg.
Griesemer et al. [10]: The n-th eigenvalue of Bg is less than or equal to the
n-th eigenvalue of Dg.

Balinsky and Evans [1]: Many center case with one electron.
Hoever and Siedentop [11]: Stability of matter beyond 2/π.
Jakubaßa-Amundsen [16] and Morozov and Vugalter [22]: The location

of the essential spectrum for the atomic and ionic Brown-Ravenhall opera-
tor (HWZ theorem).

Morozov and Vugalter [22]: Conditions on the finiteness of the discrete
spectrum.

2.2. Reducing to Two Components. Spinors ψ ∈ H0 (4 components) in the
positive spectral subspace of the free Dirac operator can be parameterized by 2-
component spinors u:

(5) ψ =

 E(p)+m√
2E(p)(E(p)+m)

u
σ·p√

2E(p)(E(p)+m)
u


with E(p) :=

√
m2 + p2, and N(p) =

√
2E(p)(E(p) +m).

The energy functional Eg – viewed as a function of 2-spinors – becomes

(6) Bg(u) := (u, bgu)

where

(7) bg := E(p)− g
E(p) +m

N(p)
1
| · |

E(p) +m

N(p)
− g

σ · p
N(p)

1
| · |

σ · p
N(p)

is unitarily equivalent to Bg (Evans et al. [8]).

2.3. A Different View of the Brown-Ravenhall Operator. We can take a
slightly different perspective using the Foldy-Wouthuysen transform (Foldy and
Wouthuysen [9])

(8) UFW(p) =
D0 + E(p)β

N(p)
.

It block diagonalizes the free Dirac operator

(9) UFW(p)D0UFW(p)∗ =


E(p) 0 0 0

0 E(p) 0 0
0 0 −E(p) 0
0 0 0 −E(p)

 .

Then the Brown-Ravenhall operator is the projection of the Foldy-Wouthuysen
transformed Dirac operator onto the upper two components, i.e.,

(10) Bg = β+UFW(p)DgUFW(p)∗β+,

where β± := (1 ± β)/2 is projection onto the upper, respectively lower, two com-
ponents.
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3. Beyond Bethe and Salpeter

Physically the eigenvalues of the Dirac operator describe one-particle systems
well. The eigenvalues of the Brown-Ravenhall operator are too low.

The idea to improve the situation is to replace UFW by a unitary transform
U block-diagonalizing Dg (Douglas and Kroll [7], Jansen and Heß [17]) and to
approximate U in powers of g.

3.1. The Jansen-Heß Operator. Douglas and Kroll [7], corrected later by Jansen
and Heß [17], derived an operator that takes further relativistic corrections into ac-
count. Formally, the Jansen-Heß operator is given as

(11) Jg := Bg + g2K̃

with

(12) K̃ = −1
2
(W ◦ P + P ◦W ),

(13) P =
σ · p
N(p)

◦ 1
|x|
◦ E(p) +m

N(p)
− E(p) +m

N(p)
◦ 1
|x|
◦ σ · p
N(p)

,

and

(14) W :=
∫ ∞

0

dte−tE(p)Pe−tE(p),

i.e.,

(15) K̃ =
∫ ∞

0

e−tE(p)Pe−tE(p)P + Pe−tE(p)Pe−tE(p)dt.

The energy corresponding to this symmetric operator is

(16) Jg(u) := (u, Jgu) = Bg(u) + g2(u, K̃u).

We introduce the constants

(17) gc := 4π
π2 + 4−

√
−π4 + 24π2 − 16

(π2 − 4)2

and

(18) dg := 1− g − 4
√

2(3 +
√

2)g2.

Then, for the form Jg : S(R3)⊗C4 → R, Jg(ψ) := (ψ, Jgψ) and the corresponding
self-adjoint operator – also denoted by Jg – we have

Theorem 2 (Brummelhuis et al. [5]).
(1) If g ∈ [0, gc], then Jg is bounded from below.
(2) If g > gc, then Jg is unbounded from below.
(3) If g ∈ [0, gB

c ], then Jg(u) ≥ dgm‖u‖2.

Note:
• The critical coupling constant is gc ≈ 1.006077340.
• The theorem covers all known elements up 137.
• The energy is even bounded below for g slightly bigger than 1.

Additional facts on Jg and its extension to the multi-particle case have been ob-
tained by Jakubaßa-Amundsen [13, 15, 14] and Iantchenko and Jakubaßa-Amundsen
[12], e.g.,

• σess(Jg) = [m,∞).
• σs.c.(Jg) = ∅.
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3.2. Systematic Block-Diagonalization. The idea which we are going to pur-
sue is the following: expose the electronic (positive) energies of Dg by a unitary
transform Ũ(g) block-diagonalizing

(19) Hg = Ũ(g)DgŨ(g)−1 =
(
h+ 0
0 h−

)
where the operators h± act on two-component spinors, h+ > 0, h− < 0.

Douglas-Kroll-Heß [7] proposed a block-diagonalization method (see also Barysz
and Sadlej [2], Jansen and Hess [17], Kutzelnigg [19], Wolf et al [31], Reiher and
Wolf [25, 26]) in order to approximate the operator h+ as a polynomial in g. The
hope is, that these polynomials approximate the energy better as their degree grows.
This, however, is not clear a priori, not even speaking of convergence properties as
the degree increases to infinity. The following will address this question based on
work of Siedentop and Stockmeyer [27, 28].

We write the Dirac operator as

(20) Dg = ΛgDgΛg + Λ⊥g DgΛ⊥g

and find a unitary transform Ũ(g) such that

(21) Ũ(g)ΛgŨ(g)−1 = β+.

Writing Ũ = U(g) ◦ UFW Kato’s choice [18] of U(g) is

(22) U(g) = [1 + (Λ0 − Λ⊥0 )(Λg − Λ0)](1− (Λg − Λ0)2)−1/2.

We will adopt it but emphasize that it is – by no means – the only possible choice.
The operators U(g) will turn out to be a well defined family of unitary operators.
In fact, we will be able to show that U(g) is analytic in g and fulfills

(23) U(g)ΛgU
−1(g) = Λ0.

This can be shown for a wide variety of potentials. In particular, for point nuclei it
is valid across the periodic table from hydrogen up to at least neptunium, i.e., up
to atomic numbers Z = 93.

This result has two important consequences:
(1) We get the block diagonal operator

(24) Hg := β+UFWU(g)DgU
−1(g)U−1

FWβ+ + β−UFWU(g)DgU
−1(g)U−1

FWβ−.

(2) Analyticity of U(g) allows controlled approximations.

3.3. Convergence of the Douglas-Kroll-Heß Method. We decompose the
Hamiltonian as

(25) Hg = HN
g +RN

g

where HN
g is the Taylor polynomial of order N and RN

g is the remainder. We call
HN

g the generalized Douglas-Kroll-Heß Hamiltonian of order N .
We assume on Dg = D0 + gV and Ũ(g): There exists a constant gc such that

for all g ∈ (0, gc) the following holds:
(1) The operator D0+gV has a distinguished self-adjoint extension in the sense

of Nenciu [23].
(2) 0 /∈ σ(Dg).
(3) The operator D−1

0 −D−1
g is compact.

(4) The potential V is relative operator bounded with respect to D0.
(5) The operator family |D0|1/2Ũ(g)|D0|−1/2 is bounded for each g and is an-

alytic in g.
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Conditions (1), (2), (3), and (4) are fulfilled for all reasonable “physical” poten-
tials, in particular screened or unscreened electric potentials of point or extended
nuclei with atomic number less than 137.

The Condition (5) is also of general nature. For our choice (22) of the unitary
transform U and choosing V (x) = −1/|x| we can guarantee it presently up to gc =
0.3775, i.e., Z < 52 (tellurium).

Under these conditions we obtain the following convergence result on the Douglas-
Kroll-Heß Approximations.

Theorem 3. The following holds for all g ∈ (0, gc) under the above hypotheses:
(1) Pick λ ∈ (−m,m) but λ not in the spectrum of Hg. Then, for large enough

N , λ is not in the spectrum of HN
g and 1/(λ−HN

g ) → 1/(λ−Hg) in norm.
(2) Pick the coupling constant g ∈ (0, gc) and pick any two energies a, b ∈

(−m,m), a < b, which are not eigenvalues of Dg. Then the spectral pro-
jection onto (a, b) of HN

g converges in norm to the spectral projection onto
the same interval of Hg, i.e.,

(26) lim
N→∞

‖χ(a,b)(HN
g )− χ(a,b)(Hg)‖ = 0

(3) σess(Dg) = σess(Hg) = (−∞,−m] ∪ [m,∞).
(4) Pick a, b ∈ (−m,m), a < b. Then, for large enough N , the only possible

spectral points of HN
g in the interval (a, b) are finitely many eigenvalues

(counting multiplicity).
(5) Pick again a, b ∈ (−m,m), a < b, and suppose that Dg has N eigenvalues

– counting multiplicity – in (a, b). Then, for large enough N , the approxi-
mating operators HN

g have also exactly N eigenvalues in (a, b).

Proof of Claims 1 and 2: Firstly, we address the self-adjointness. Condition 4
implies that |D0|−1/2V |D0|−1/2 is bounded. Thus |D0|−1/2Hg|D0|−1/2 is analytic,
since |D0|1/2Ũ(g)|D0|−1/2 is analytic by Condition 5. This means that the rest RN

g

is small, i.e.,

(27) lim
N→∞

‖|D0|−1/2RN
g |D0|−1/2‖ = 0.

The convergence of the spectra of operators is then a consequence of norm resolvent
convergence of the approximating sequence HN

g of operators.
Secondly, we address the convergence of 1/HN

g : it is enough to show that

(28) lim
N−∞

‖(Ũ(g)−1HN
g Ũ(g) + i)−1 − (Dg + i)−1‖ = 0.

To prove (28) we write Ũ(g)−1HN
g Ũ(g) = Dg − R̂N

g where R̂N
g = Ũ(g)−1RN

g Ũ(g)
and we note that

(29)
1

Ũ−1
g HN

g Ũ(g) + i
=
|Dg|1/2

Dg + i

(
1 + |Dg|−1/2R̂N

g |Dg|−1/2 |Dg|
Dg + i

)−1

|Dg|−1/2.

Now, |D0|
1
2 |Dg|−

1
2 is bounded because of Condition 4. Thus, |Dg|−

1
2 R̂N

g |Dg|−
1
2

tends to zero in norm for large N . Because of (29), this implies (28) which in turn
implies the Claims 1 and 2 (Reed and Simon [24, Theorem VIII.23]).

Proof of Claim 3: It follows immediately from Weyl’s theorem on the invariance
of the essential spectra of operators under compact perturbations.

Proof of Claim 4: By possibly slightly enlarging the interval (a, b) we can always
assume a, b /∈ σ(Dg), since (−m,m) ∩ σess(Dg) = ∅. This allows us to make use of
the first claim.

Now assume that there exists λ ∈ (a, b) such that no matter how big we choose
N0 there is always an N ≥ N0 such λ ∈ σess(HN

g ). Because of Claim 1, λ must be
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different from 0. Then, according to Weyl, we can find for each N an orthonormal
sequence of vectors ψN

m , m = 1, 2, ... such that

(30) lim
m→∞

‖(1/HN
g − 1/λ)ψN

m‖ = 0.

But

(31) ‖(1/HN
g − 1/λ)ψN

m‖ ≥ ‖(1/Hg − 1/λ)ψN
m‖ − ‖(1/HN

g − 1/Hg)ψN
m‖.

Since λ /∈ σess(Hg) we can find an ε > 0 and a subsequence ψmµ
such that ‖(1/Hg−

1/λ)ψN
mµ
‖ ≥ ε for all µ. Pick N so big that ‖1/Hg − 1/Hg‖ < ε/2. Thus the right

hand side of (31) is bigger than ε/2 which is definitely positive, contradicting (30).
Thus, for large N , σess(HN

g ) ∩ (a, b) = ∅.
Proof of Claim 5: By possibly slightly shrinking the interval (a, b) we can assume

that a, b /∈ σ(Dg) since it is discrete in (−m,m). Now, let us suppose the claim
were not true. Then it would be possible to find a subsequence of operators such
that the dimensions of the ranges of the two projections, dn := dimPn(H) and
d := dimP (H), differ by at least one.(For brevity, we introduced Pn := χ(a,b)(Hn

g )
and P := χ(a,b)(Hg). Let us first suppose that dn > d. Then PnP (H) is a proper
linear subspace of P (H). Thus there exists a normalized ψ ∈ Pn(H) such that
ψ ⊥ PNP (H). Then

(32) ‖Pn − P‖ ≥ ‖((Pn − P )ψ‖ = ‖ψ‖ = 1.

But the same inequality would also hold, if dn < d. Thus ‖Pn−P‖ cannot converge
to zero contradicting (26) utterly. This concludes the proof of all of our assertions.

We remark:
Block-Diagonalization: The block-diagonalization of the Hamiltonian can

be done up to any order in the coupling constant g and is correct up to the
order of the approximation degree N .

Identical Main Terms: The first two terms reproduce the Brown-Ravenhall
operator and the Jansen-Heß operator, i.e., H1

g = Bg, H2
g = Jg.

3.4. Open Questions. We close this overview with a list of open problems for the
models described above.

Brown-Ravenhall Operator:
• Is stability of matter up to αZ = 2/(π/2 + 2/π) and α ≈ 1/137 true?
• Prove the HWZ theorem for all particle numbers. (Note added in

proof: This question has recently been answered by Jakubaßa-Amundsen
[16] and Morozov and Vugalter [22].)

• Determine the structure of the essential spectrum.
• Prove any bound on the excess charge.
• Find the Scott correction.
• Find criteria for no-binding for positive ions.

Jansen-Heß Operator:
• Is Jg positive up to gc?
• Find any range of α and Z such that stability of matter holds.
• Answer all the above questions in the Brown-Ravenhall context (ap-

propriately modified to the Jansen-Heß context).
Generalized Douglas-Kroll-Heß Operator:

• Find optimal ranges (α and Z) for the validity of the convergence.
• Show compactness of resolvent differences for all HN

g .
• Show for even N the ground state energy is overestimated and for odd
N underestimated.

• Extend the procedure to self-consistent fields.
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[29] C. Tix. Lower bound for the ground state energy of the no-pair Hamiltonian. Phys. Lett. B,

405(3-4):293–296, 1997.

[30] C. Tix. Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall. Bull.
London Math. Soc., 30(3):283–290, 1998.

[31] Alexander Wolf, Markus Reiher, and Bernd Hess. The generalized Douglas-Kroll transforma-

tion. J. Chem. Phys., 117(20):9215–9226, 2002.

Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße

39, 80333 München, Germany

E-mail address: h.s@lmu.de


