
CMV MATRICES: FIVE YEARS AFTER

BARRY SIMON*

Abstract. CMV matrices are the unitary analog of Jacobi ma-
trices; we review their general theory.

1. Introduction

The Arnold Principle: If a notion bears a personal name, then this name is not the

name of the inventor.

The Berry Principle: The Arnold Principle is applicable to itself.

— V. I. Arnold

On Teaching Mathematics, 1997 [8]
(Arnold says that Berry formulated these principles.)

In 1848, Jacobi [45] initiated the study of quadratic forms
J(x1, . . . , xn) =

∑n
k=1 bkx

2
k +2

∑n−1
k=1 akxkxk+1, that is, essentially n×n

matrices of the form

J =




b1 a1 0 . . . 0
a1 b2 a2 . . . 0
0 a2 b3 . . . 0
...

...
...

. . .
...

0 . . . . . . an−1 bn




(1.1)

and found that the eigenvalues of J were the zeros of the denominator
of the continued fraction

1

b1 − z − a2
1

b2 − z − a2
2

· · ·

(1.2)

In the era of the birth of the spectral theorem, Toeplitz [79], Hellinger–
Toeplitz [44], and especially Stone [75] realized that Jacobi matrices
were universal models of selfadjoint operators, A, with a cyclic vector,
ϕ0.
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2 B. SIMON

To avoid technicalities, consider the case where A is bounded,
and suppose initially that H is infinite-dimensional. By cyclicity,
{Akϕ0}∞k=0 are linearly independent, so by applying Gram–Schmidt to
ϕ0, Aϕ0, A

2ϕ0, . . . , we get polynomials pj(A) of degree exactly j with
positive leading coefficients so that

ϕj = pj(A)ϕ0 (1.3)

are an orthonormal basis for H. By construction,

ϕj ⊥ ϕ0, Aϕ0, . . . , A
j−1ϕ0

so
〈ϕj, Aϕk〉 = 0 j ≥ k + 2 (1.4)

Because A is selfadjoint, we see 〈ϕj, Aϕk〉 = 0 also if j ≤ k − 2. Thus,
the matrix 〈ϕj, Aϕk〉 has exactly the form (1.1) where aj > 0 (since
pj(A) has leading positive coefficient).

Put differently, for all A,ϕ0, there is a unitary U : H → ℓ2 (given
by Fourier components in the ϕj basis), so UAU−1 has the form J and
ϕ0 = (1, 0, 0, . . . )t. The Jacobi parameters, {an, bn}∞n=1, are intrinsic,
which shows there is exactly one J (with ϕ0 = (1, 0, 0, . . . )t) in the
unitary equivalence class of (A,ϕ0).

There is, of course, another way of describing unitary invariants for
(A,ϕ0): the spectral measure dµ defined by∫

xn dµ(x) = 〈ϕ0, A
nϕ0〉 (1.5)

There is a direct link from dµ to the Jacobi parameters: the pj(x) are
orthonormal polynomials associated to dµ, and the Jacobi parameters
are associated to the three-term recursion relation obeyed by the p’s:

xpj(x) = aj+1pj+1 + bj+1pj(x) + ajpj−1(x) (1.6)

(where p−1 ≡ 0).
Here we are interested in the analog of these structures for unitary

matrices. We begin by remarking that for a general normal opera-
tor, N , the right form of cyclicity is that {Nk(N∗)ℓϕ0}∞k,ℓ=0 is total.

Since A = A∗, only {Akϕ0}∞k=0 enters. Since U∗ = U−1, for unitaries
Uk(U∗)ℓ = Uk−ℓ and the right notion of cyclicity is that {Ukϕ0}∞k=−∞

is total.
Some parts of the above four-fold equivalence:

(1) unitary equivalence classes of (A,ϕ0)
(2) spectral measures, that is, probability measures dµ on R with

bounded support and infinite support
(3) Jacobi parameters
(4) Jacobi matrices
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are immediate for the unitary case. Namely, (1) ⇔ (2) holds since there
is a spectral theorem for unitaries, and so, a one-one correspondence
between unitary equivalence classes of (U, ϕ0) on infinite-dimensional
spaces and probability measures on ∂D (D = {z | |z| < 1}) with infinite
support.

More subtle is the analog of Jacobi parameters. Starting from such
a probability measure on ∂D, one can form the monic orthogonal poly-
nomials Φn(z) and find (see Szegő [77]; see also Section 1.5 of [69])
{αn}∞n=0 ∈ D∞, so

zΦn(z) = Φn+1(z) + ᾱnz
n Φn(1/z̄) (1.7)

While Verblunsky [81] defined the αn in a different (albeit equivalent)
way, he proved a theorem (called Verblusnky’s theorem in [69]; see also
[68]) that says this map dµ → {αn}∞n=0 is one-one and onto all of D∞,
so (1)–(3) for the unitary case have been well understood for sixty-five
years.

Surprisingly, (4) (i.e., the canonical matrix form for unitaries) is of
much more recent vintage. The key paper by Cantero, Moral, and
Velázquez [12] was submitted in April 2001 — so we are witnessing five
years of study in the area — it is reviewing these developments that
is the main scope of this review article. Spectral theory of differential
and difference operators has been an enduring theme of Des Evans’
research and I am pleased to dedicate this review to him.

There is an “obvious” matrix to try, namely, Gkℓ = 〈ϕk, zϕℓ〉 with
ϕk = Φk/‖Φk‖ the orthonormal polynomials. This GGT matrix (as it
is named in [69]; see Section 10 below) has two defects. First, {ϕk}∞k=0

is a basis if and only if
∑∞

n=0|αn|2 = ∞, and if it is not, Gkℓ is not
unitary and is not conjugate to multiplication by z (in that case, one
can look at the minimal dilation of G, which is discussed in [15, 69]).
Second, it obeys (1.4), but in general, 〈ϕj, U

∗ϕk〉 6= 0 for all j ≥ k+ 1,
that is, G is not of finite width measured from the diagonal. CMV [12]
has the following critical ideas:
(a) The basis χk obtained by orthonormalizing 1, z, z−1, z2, z−2, . . .

can be written in terms of ϕℓ(z), ϕℓ(1/z̄), and powers of z.
(b) The matrix Ckℓ = 〈χk, zχℓ〉 is unitary and five-diagonal.
(c) C can be factorized into C = LM where L is a direct sum of 2× 2

unitary matrices and M the direct sum of a single 1× 1 and 2× 2
matrices.

It turns out that these key ideas appeared about ten years earlier
in the numeric matrix literature (still, of course, much later than the
1930’s resolution of (1)–(3)). Intimately related to this history is what
we will call the AGR factorization in Section 11 — the ability to write G



4 B. SIMON

in the case of n× n matrices as a product Θ̃0 . . . Θ̃n−1
˜̃
Θn−1 of matrices

with a single 2 × 2 block placed in 1 and a finite matrix which is
diagonal, differing from 1 in a single place (see Section 11 for details).

In 1986, Ammar, Gragg, and Reichel [5] found the AGR factoriza-
tion for orthogonal matrices — here the αj are real and the Θ(αj) are
reflections, so the AGR factorization can be viewed as an iteration of
a Householder algorithm. In this paper, they also had a proof of the
LM factorization for this case. This proof (a variant of which appears
in Section 10), which works in general to go from the AGR factoriza-
tion of the GGT matrix to an LM factorization, was only given in the
orthogonal case since they did not yet have the AGR factorization for
general unitaries.

In 1988 (published 1991), AGR [6] extended the AGR factorization to
the general unitary case and realized the connection to Szegő recursion.
While they could have proven an LM factorization from this using the
method in [5], they did not and the general LM factorization only
appeared in [11].

In 1991, Bunse-Gerstner and Elsner [11] found the LM factorization
for a general finite unitary and noted it was a five-diagonal representa-
tion. Watkins [82] codified and cleaned up those results and emphasized
the connection to OPUC and found a proof of Szegő recursion from the
LM factorization. Virtually all the main results from [12] are already
in Watkins [82].

We will continue to use the name CMV matrices, in part because the
analytic revolution we discuss here was ushered in by their work and in
part because the name has been used now in many, many publications.

Here is a summary of the rest of this review. Section 2 presents
the basics, essentially notation and (a)–(c) above. Section 3 discusses
“other” CMV matrices. In particular, we consider two kinds of fi-
nite variants. In the selfadjoint case, restricting the matrix by taking
the first n rows and columns preserves selfadjointness but the analog
for unitaries does not, and we have both the nonunitary cutoff CMV
matrices obtained from the first n rows and columns and the unitary
finite CMV matrices which are models of finite unitary matrices with
a cyclic vector. Section 4 discusses CMV matrices for matrix-valued
measures — something that is new here. Section 5 discusses the effect
on Verblunsky coefficients of rank one multiplication perturbations,
and Section 6 the formula for the resolvent of the CMV matrices, the
analog of well-known Green’s function formulae for Jacobi matrices.
Sections 7 and 9 discuss perturbation results, and Section 8 a general
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theorem on the essential spectrum of CMV matrices. Section 10 dis-
cusses the AGR factorization discussed above as preparation for the
Killip–Nenciu discussion of five-diagonal models for β-distribution of
eigenvalues, the subject of Section 11. Section 12 discusses the defocus-
ing AL flows, which bear the same relation to CMV matrices as Toda
flows do to Jacobi matrices. Finally, Section 13 discusses a natural re-
duction of CMV matrices to a direct sum of two Jacobi matrices when
all Verblunsky coefficients are real.

We do not discuss the use of CMV matrices to compute the zeros
of OPUC. These zeros are the eigenvalues of the cutoff CMV matrix.
We note that this method of computing zeros was used in the recent
paper of Mart́ınez-Finkelshtein, McLaughlin, and Saff [57]. Numerical
aspects of CMV matrices deserve further study.

While this is primarily a review article, there are numerous new
results, including:
(1) an analysis of what matrices occur as cutoff CMV matrices (Sec-

tion 3)
(2) an analysis following Watkins [82] of the LM factorization without

recourse to Szegő recursion (Section 3)
(3) the basics of CMV matrices for matrix-valued measures (Section 4)
(4) a new proof of AGR factorization using intermediate bases (Sec-

tion 10)
(5) a new trace class estimate for GGT matrices that relies on AGR

factorization (Section 10)
(6) a reworked proof of the Killip–Nenciu [50] theorem on the mea-

sure that Haar measure on U(n) induces on Verblunsky coefficients
(Section 11)

(7) an argument of AGR is made explicit and streamlined to go from
AGR to LM factorization (Section 10)

It is a pleasure to thank M. Cantero, P. Deift, L. Golinskii,
F. Marcellán, A. Mart́ınez-Finkelshtein, L. Moral, I. Nenciu, P. Nevai,
L. Velázquez, and D. Watkins for useful input.

2. CMV Matrices: The Basics

In this section, we define the CMV basis, the CMV matrix, and the
LM factorization.

CMV matrices can be thought of in terms of unitary matrices or
OPUC. We start with the OPUC point of view. A measure dµ in
∂D is called nontrivial if it is not supported on a finite set; equiva-
lently, if every polynomial, which is not identically zero, is nonzero in
L2(∂D, dµ). Then one can define orthonormal polynomials, ϕn(z) (or
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ϕn(z, dµ)), by

(i) ϕn(z) = κnz
n + lower order; κn > 0 (2.1)

(ii) ϕn ⊥ {1, z, z2, . . . , zn−1} (2.2)

We define the monic polynomials Φn(z) by Φn(z) = ϕn(z)/κn.
The Szegő dual is defined by

P ∗
n(z) = zn Pn(1/z̄) (2.3)

that is,

Pn(z) =

n∑

j=0

cjz
j ⇒ P ∗

n(z) =

n∑

j=0

c̄n−jz
j (2.4)

The symbol ∗ is n-dependent and is sometimes applied to polynomials
of degree at most n, making the notation ambiguous!

Then there are constants {αn}∞n=0 in D, called Verblunsky coefficients,
(sometimes we will write αn(dµ)) so that

ρn ϕn+1(z) = zϕn(z) − ᾱnϕ
∗
n(z) (2.5)

where
ρn = (1 − |αn|2)1/2 (2.6)

Moreover, µ → {αn}∞n=0 sets up a one-one correspondence between
nontrivial measures on ∂D and points of D∞ (as we will show below).
(2.5) (called Szegő recursion after [77]) and this one-one correspondence
are discussed in [69, 70]; see also [68]. Applying ∗ for Pn+1 to (2.5), we
get

ρn ϕ
∗
n+1(z) = ϕ∗

n(z) − αnzϕn(z) (2.7)

If one defines (of course, ρ = (1 − |α|2)1/2)

A(α) =
1

ρ

(
z −ᾱ

−αz 1

)
(2.8)

then (2.5)/(2.7) can be written
(
ϕn+1

ϕ∗
n+1

)
= A(αn)

(
ϕn

ϕ∗
n

)
(2.9)

Since det(A) = z, we have

A(α)−1 =
1

ρz

(
1 ᾱ
αz z

)
(2.10)

and thus

ρn ϕn(z) =
ϕn+1(z) + ᾱnϕ

∗
n+1(z)

z
(2.11)

ρn ϕ
∗
n(z) = (ϕ∗

n+1(z) + αnϕn+1(z)) (2.12)
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Introduce the notation [y1, . . . , yk] for the span of the vectors
y1, . . . , yk and P[y1,...,yk] for the projection onto the space [y1, . . . , yk].
For x /∈ [y1, . . . , yk], define

[x; y1, . . . , yk] =
(1 − P[y1,...,yk])x

‖(1 − P[y1,...,yk])x‖
(2.13)

the normalized projection of x onto [y1, . . . , yk]
⊥, that is, the result of

adding x to a Gram–Schmidt procedure.
We define πn to be P[1,...,zn−1].
By the definition of ϕn and the fact that ∗ is anti-unitary on Ranπn

and takes zj to zn−j , we have

ϕn = [zn; 1, . . . , zn−1] ϕ∗
n = [1; z, . . . , zn] (2.14)

With this notation out of the way, we can define the CMV basis

{χn}∞n=0 and alternate CMV basis {xn}∞n=0 as the Laurent polynomials
(i.e., polynomials in z and z−1) obtained by applying Gram–Schmidt to
1, z, z−1, z2, z−2, . . . and 1, z−1, z, z−2, z2, . . . , that is, for k = 0, 1, . . . ,

χ2k = [z−k; 1, z, . . . , z−k+1, zk] χ2k−1 = [zk; 1, z, . . . , zk−1, z−k+1]
(2.15)

x2k = [zk; 1, z−1, . . . , zk−1, z−k] x2k−1 = [z−k; 1, z−1, . . . , z−k+1, zk−1]
(2.16)

So, in particular, as functions in L2(∂D, dµ),

xn = χ̄n (2.17)

and as Laurent polynomials,

xn(z) = χn(1/z̄) (2.18)

As realized by CMV [12], the {χn}∞n=0 and {xn}∞n=0 are always a basis
of L2(∂D, dµ) since the Laurent polynomials are dense on C(∂D), while
{ϕn}∞n=0 may or may not be a basis (it is known that this is a basis if
and only if

∑
n|αn|2 = ∞; see Theorem 1.5.7 of [69]). On the other

hand, the χ and x bases can be expressed in terms of ϕ and ϕ∗ by
(2.14) and the fact that multiplication by zℓ is unitary. For example,

x2k = z−k[z2k; zk, zk−1, . . . , z2k−1, 1]

= z−k[z2k; 1, . . . , z2k−1]

= z−kϕ2k(z)

The full set is

χ2k(z) = z−kϕ∗
2k(z) χ2k−1(z) = z−k+1ϕ2k−1(z) (2.19)

x2k(z) = z−kϕ2k(z) x2k−1(z) = z−kϕ∗
2k−1(z) (2.20)
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Since χ and x are bases, the matrices of multiplication by z in these
bases are unitary. So we have the unitary matrices

Cmℓ = 〈χm, zχℓ〉 (2.21)

C̃mℓ = 〈xm, zxℓ〉 (2.22)

called the CMV matrix and the alternate CMV matrix, respectively.
By (2.18), the unitarity of C and z̄ = z−1, we see

C̃mk = Ckm (2.23)

that is, C and C̃ are transposes of each other. We will see shortly that
C is five-diagonal, but this follows now by noting that both z and z−1

map [χ0, . . . , χk] into [χ0, . . . , χk+2].
CMV [12], Ammar–Gragg–Reichel [5], Bunse-Gerstner and Elsner

[11], and Watkins [82] also discussed the important factorization C =
LM as follows:

Lmk = 〈χm, zxk〉 Mmk = 〈xm, χk〉 (2.24)

Since {xk}∞k=1 is a basis, 〈f, g〉 =
∑∞

k=0〈f, xk〉〈xk, g〉, and thus

C = LM C̃ = ML (2.25)

The point of this factorization is that L and M have a simpler structure
than C. Indeed, L is a direct sum of 2 × 2 blocks and M of a single
1 × 1 block and then 2 × 2 blocks.

One can (and we will) see this based on calculations, but it is worth
seeing why it is true in terms of the structure of the CMV and alternate
CMV basis. Notice that χ2n−1 and χ2n span the two-dimensional space
[1, z, z−1, . . . , zn, z−n]∩ [1, z, z−1, . . . , zn−1, z−n+1]⊥ and so do x2n−1 and
x2n. This shows that M is a direct sum of 11×1 and 2 × 2 matrices.
Similarly, χ2n and χ2n+1 span [1, . . . , z−n, zn+1]∩ [1, . . . , z−n+1, zn]⊥, as
do zx2n and zx2n+1 (even for n = 0). Thus L has a 2×2 block structure.

In fact, we can use Szegő recursion in the form (2.5), (2.7), (2.11),
(2.12) to find the 2 × 2 matrices explicitly. For example, taking (2.12)
for n = 2m− 1, we get

ϕ∗
2m = ρ2n−1ϕ

∗
2m−1 − α2m−1ϕ2m

and multiplying by z−m yields (by (2.20)/(2.20)),

χ2m = −α2m−1x2m + ρ2m−1x2m−1

This plus similar calculations imply

Theorem 2.1 ([5, 11, 12, 82]). Let

Θ(α) =

(
ᾱ ρ
ρ −α

)
(2.26)
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Then C = LM and

L = Θ(α0) ⊕ Θ(α2) ⊕ Θ(α4) ⊕ · · · ⊕ Θ(α2m) ⊕ · · · (2.27)

and

M = 11×1 ⊕ Θ(α1) ⊕ Θ(α3) ⊕ · · · ⊕ Θ(α2m+1) ⊕ · · · (2.28)

Doing the multiplication yields

C =




ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
. . . . . . . . . . . . . . . . . .




(2.29)

C is five-diagonal, that is, only nonzero in those diagonals Ck k+j with
j = 0,±1,±2. Notice that half of the elements with j = ±2 are zero,
so it is only “barely” five-diagonal — and it cannot be tridiagonal or
even four-diagonal since

Proposition 2.2 ([13]). If {Ajk}1≤j, k<∞ is a semi-infinite unitary ma-

trix and

k − j /∈ {−1, . . . , n} ⇒ Ajk = 0

then A is a direct sum of finite blocks of size at most n+ 1.

This was proven for n = 1 in [10] and conjectured for n = 2 in a
draft of [69] before motivating [13].

While our construction has been for αn’s which come from a dµ and,
in particular, which obey

|αj(dµ)| < 1 (2.30)

Θ defines a unitary so long as |αn| ≤ 1. We thus define a CMV matrix

to be a matrix of the form (2.25)–(2.29) for any {αn}∞n=0 with |αn| ≤ 1.
If |αn| < 1 for all n, we call C a proper CMV matrix, and if |αn| = 1
for some n, we call it an improper CMV matrix.

To state the analog of Stone’s selfadjoint cyclic model theorem, we
need another definition. A cyclic unitary model is a unitary operator,
U, on a (separable) Hilbert space, H, with a distinguished unit vector,
v0, which is cyclic, that is, finite linear combinations of {Unv0}∞n=−∞

are dense in H. We call the model proper if dim(H) = ∞ and improper

if dim(H) <∞. It is easy to see that the model is improper if and only
if P (U) = 0 for some polynomial, P , which can be taken to have degree

dim(H) − 1. Two cyclic unitary models, (H, U, v0) and (H̃, Ũ , ṽ0), are
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called equivalent if and only if there is a unitary W from H onto H̃ so
that

Wv0 = ṽ0 WUW−1 = Ũ (2.31)

Theorem 2.3. There is a one-one correspondence between proper

cyclic unitary models and proper CMV matrices, C, in that δ0 =
(1, 0, 0, . . . )t is cyclic for any such C and every equivalence class con-

tains exactly one proper CMV model: (ℓ2, C, δ0).
Remarks. 1. There is behind this a four-fold equivalence:
(i) equivalence classes of proper cyclic unitary models
(ii) nontrivial probability measures on ∂D

(iii) Verblunsky coefficients {αn(dµ)}∞n=0 in D∞

(iv) proper CMV matrices.
The spectral theorem sets up a one-one correspondence between (i) and
(ii), while the definition of CMV matrices between (iii) and (iv). Szegő
recursion sets up a map from dµ to {αn(dµ)}∞n=1. As we will show, each
(ℓ2, C, δ0) is a cyclic model, so the key remaining fact is the uniqueness.

2. A corollary of this is Verblunsky’s theorem (also called “Favard’s
theorem for the unit circle”) that each {αn}∞n=0 ∈ D is the Verblunsky
coefficient for some dµ. See [69, 68] for further discussion and other
proofs.

Proof. As explained in Remark 1, we need only prove that any proper

CMV matrix has δ0 as a cyclic vector, and that if {α(0)
n }∞n=0 are the

Verblunsky coefficients for C and dµ the spectral measure for δ0, then

αn(dµ) = α(0)
n (2.32)

Let δn be the unit vector in ℓ2 with coefficient 1 in place n and 0 else-
where; index labelling for our vectors starts at 0. By direct calculations
using the LM representation,

Cn+1δ0 − ρ
(0)
0 ρ

(0)
1 . . . ρ

(0)
2n δ2n+1 ∈ [δ0, . . . , δ2n] (2.33)

(C∗)nδ0 − ρ
(0)
0 . . . ρ

(0)
2n−1δ2n ∈ [δ0, . . . , δ2n−1] (2.34)

It follows that δ0 is cyclic and

χn(dµ) = Wδn (2.35)

where W is the spectral representation from ℓ2 to L2(∂D, dµ). (2.35)
follows from (2.33)–(2.34), induction, and the Gram–Schmidt definition
of χ.

By (2.35) and

〈δ0, Cδ0〉 = ᾱ
(0)
0 〈χ0, zχ0〉 = α0(dµ)
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〈δ2n−2, Cδ2n−1〉 = ᾱ
(0)
2n−1ρ

(0)
2n−2 〈χ2n−2, zχ2n−1〉 = ᾱ2n−1ρ2n−2

〈δ2n, Cδ2n−1〉 = ᾱ
(0)
2n ρ

(0)
2n−1 〈χ2n, zχ2n−1〉 = ᾱ2n(dµ)ρ2n−1(dµ)

we obtain (2.32) by induction. �

3. Cutoff, Finite, Two-Sided, Periodic, and Floquet CMV

Matrices

In this section, we will discuss various matrices constructed from or
related to CMV matrices. Some are finite, and in that case, we will
also discuss the associated characteristic polynomial which turns out
to be equal or related to the basic ordinary or Laurent polynomials of
OPUC: the monic orthogonal and paraorthogonal polynomials and the
discriminant. The basic objects we will discuss are:
(i) Cutoff CMV matrices, that is, π̃nCπ̃n where π̃n is projection onto

the span of the first n of 1, z, z−1, . . . .
(ii) Finite CMV matrices, the upper n×n block of an improper CMV

matrix with αn−1 ∈ ∂D.
(iii) Two-sided CMV matrices defined for {αn}∞n=−∞ via extending L

and M in the obvious way to a two-sided form.
(iv) Periodic CMV matrices. The special case of two-sided CMV ma-

trices when αn+p = αn for some p.
(v) Floquet CMV matrices. Periodic CMV matrices have a direct in-

tegral decomposition whose fibers are p×p matrices that are finite
CMV matrices with a few changed matrix elements.

Cutoff CMV matrices. A cutoff CMV matrix is the restriction of a
proper CMV matrix to the upper n× n block, that is, top n rows and
leftmost n columns. We use C(n) to denote the cutoff matrix associated
to C. A glance at (2.29) shows that C(n) depends on {αj}n−1

j=0 . Here is
a key fact:

Proposition 3.1. Let Φn(z) be the monic orthogonal polynomial asso-

ciated to C (i.e., Φn = κ−1
n ϕn). Then

Φn(z) = det(z1 − C(n)) (3.1)

Proof. If πn is the projection onto [1, . . . , zn−1] and π̃n on the span of
the first n of 1, z, z−1, . . . , then πn and π̃n are unitarily equivalent under
a power of z. So if Mzf = zf , then πnMzπn and

π̃nMzπ̃n ≡ C(n) (3.2)

are unitarily equivalent, and thus, (3.1) is equivalent to

Φn(z) = det(z1 − πnMzπn) (3.3)
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Let zj be a zero of Φn of multiplicity kj and let Pj(z) = Φn(z)/(z −
zj)

kj . Then with A = πnMzπn, we have

(A− zj)
kjPj = 0 (A− zj)

kj−1Pj 6= 0

Thus, as zj runs through the distinct zeros, {(A − zj)
ℓPj | ℓ =

0, 1, . . . , kj − 1} gives us a Jordan basis in which A has a kj × kj block
for each zj of the form




zj 1 . . . . . . 0
0 zj 1 . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 . . . . . . 1
0 0 . . . . . . zj




and thus
det(z −A) =

∏
(z − zj)

kj = Φn(z) �

Corollary 3.2. The zeros of Φn(z) lie in D.

Remark. See Section 1.7 of [69] for six other proofs of this theorem.

Proof. Let A = πnMzπn. Then ‖A‖ ≤ 1, so obviously, eigenvalues lie
in D. If Aη = z0η with η ∈ Ranπn and z0 ∈ ∂D, then ‖Aη‖ = ‖η‖, so
πnzη = zη and thus as polynomials (z−z0)η = 0. Since the polynomials
are a division ring, η = 0, that is, there are no eigenvalues on ∂D. �

To classify cutoff CMV matrices, we need to understand how Θ(α)
arises from a 2 × 2 change of basis.

Lemma 3.3. Let f, g be two independent unit vectors with

〈f, g〉 = α (3.4)

Let ϕ1, ϕ2 be the result of applying Gram–Schmidt to f, g and ψ1, ψ2 to

g, f . Let M be the matrix of change of basis

ϕ1 = m11ψ1 +m12ψ2 (3.5)

ϕ2 = m21ψ1 +m22ψ2 (3.6)

Then α ∈ D and M = Θ(α).

Proof. |α| < 1 by the Schwarz inequality and the independence of f
and g. Note that

‖g − 〈f, g〉f‖2 = ‖g‖2 + |〈f, g〉|2‖f‖2 − 2 Re[〈f, g〉〈g, f〉]
= 1 − |α|2 ≡ ρ2

so

ϕ2 = ρ−1(g − αf) (3.7)
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ψ2 = ρ−1(f − ᾱg) (3.8)

From this, a direct calculation shows that

m11 = 〈ψ1, ϕ1〉 = 〈g, f〉 = ᾱ

m12 = 〈ψ2, ϕ1〉 = ρ−1(1 − |α|2) = ρ

m21 = 〈ψ1, ϕ2〉 = ρ−1(1 − |α|2) = ρ

m22 = 〈ψ2, ϕ2〉 = ρ−2(α+ α|α|2 − 2α) = −α �

Remark. One can use this lemma to deduce the form of L and M in
the LM factorization without recourse to Szegő recursion, and then use
their form to deduce the Szegő recursion. This is precisely Watkins’
approach [82] to the factorization and Szegő recursion.

Given any matrix A and vector δ0, define

Vk = span(δ0, Aδ0, A
∗δ0, . . . , A

kδ0, (A
∗)kδ0) (3.9)

which has dimension 2k+ 1 if and only if the vectors are independent.
Here is a complete classification of cutoff CMV matrices analogous

to Theorem 2.3:

Theorem 3.4. Let A be an n × n cutoff CMV matrix with δ0 =
(1, 0, . . . , 0)t. Then:

(i) If n = 2k + 1, Vk has dimension n. If n = 2k, then span[Vk−1 ∪
{Akδ0}] has dimension n.

(ii) If n = 2k + 1, A∗ is an isometry on span(Vk−1 ∪ {(A)kδ0}) and

A is an isometry on span(Vk−1 ∪ {(A∗)kδ0}). If n = 2k, A∗ is an

isometry on span(Vk−2 ∪{Ak−1δ0, A
kδ0}) and A is an isometry on

Vk−1.

(iii) ‖A‖ ≤ 1.
(iv) A is not unitary.

Conversely, if A0, δ0 are a pair of an n × n matrix and vector δ0
obeying (i)–(iv), then there is a basis in which δ0 = (1, 0, . . . , 0)t and A
is a cutoff CMV matrix.

(A, δ0) determine the Verblunsky coefficients (α0, . . . , αn−1) uniquely.

In particular, two cutoff CMV matrices with distinct {αj}n
j=0 are not

unitarily equivalent by a unitary preserving δ0.

Proof. Suppose first thatA is a cutoff CMV matrix, that is, A = π̃nCπ̃n.
By definition of π̃n,

π̃nCjδ0 = Cjδ0 π̃n(C∗)ℓδ0 = (C∗)ℓδ0

for j = 0, 1, . . . , k and ℓ = 0, 1, . . . , k (resp., k− 1) if n = 2k+ 1 (resp.,
2k). It follows that for those values of j and ℓ,

Cjδ0 = Ajδ0 (C∗)ℓδ0 = (A∗)ℓδ0 (3.10)
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so that (i) holds.
This also shows that A∗Ajδ0 = Aj−1δ0 for j = 1, . . . , k, and from

this and (3.10), it follows that A∗ is unitary on span{Ajδ0}k
j=0 ∪

{(A∗)ℓδ0}k−1 (or k − 2)
ℓ=0 . Similarly, we get the unitarity result for A.

(iii) is obvious since ‖π̃n‖ = ‖C‖ = 1 and (iv) follows since there is a
vector ϕ in Ran(π̃n) with π̃nCϕ 6= Cϕ. This completes the proof of the
first paragraph of the theorem.

As a preliminary to the converse, we note that π̃n commutes with
either L or M, so a finite CMV matrix has the form LnMn where if
n = 2k + 1 is odd (1 = 1 × 1 identity matrix),

Ln = Θ(α0) ⊕ · · · ⊕ Θ(α2k−2) ⊕ α2k1 (3.11)

Mn = 1 ⊕ Θ(α1) ⊕ · · · ⊕ Θ(α2k−1) (3.12)

and if n = 2k is even,

Ln = Θ(α0) ⊕ · · · ⊕ Θ(α2k−2) (3.13)

Mn = 1 ⊕ Θ(α1) ⊕ · · · ⊕ Θ(α2k−3) ⊕ α2k−11 (3.14)

We will prove that when A obeys (i)–(iv), then A has an LnMn factor-
ization with parameter αj given intrinsically by A. This will not only
prove the converse but the uniqueness of the map from {αj}N−1

j=0 to
cutoff CMV matrices, and so it will complete the proof of the theorem.

We first consider the case n = 2k + 1 odd. Define χℓ to be the
basis obtained by Gram–Schmidt on δ0, Aδ0, A

∗δ0, . . . , A
kδ0, (A

∗)kδ0
(this is possible because (i) implies these vectors are linearly in-
dependent) and define xℓ to be the result of Gram–Schmidt on
δ0, A

∗δ0, Aδ0, . . . , (A
∗)kδ0, A

kδ0. Then if A is written in χℓ basis,

A = LM (3.15)

where
Mkℓ = 〈xk, χℓ〉 Lkℓ = 〈χk, Axℓ〉 (3.16)

We need to show that L,M have the form (3.11)/(3.12).
If Pm is the projection to the orthogonal complement of Vm−1 and

f = Pm−1(A
∗)mδ0/‖Pm−1(A

∗)mδ0‖ and g = Pm−1A
mδ0/‖Pm−1A

mδ0‖,
then {χℓ, xℓ}ℓ=m,m+1 are given by Lemma 3.3. So M has the form
1 ⊕ Θ(α1) ⊕ · · · ⊕ Θ(α2k−1) as required.

Let Wℓ be the projection onto the span of the first 2ℓ

of δ0, Aδ0, A
∗δ0, A

2δ0, . . . and W̃ℓ the span of the first 2ℓ of
δ0, A

∗δ0, Aδ0, (A
∗)2δ0, . . . . By hypothesis (ii), A is an isometry on

W̃1, W̃2, . . . , W̃k, and by the same hypothesis, AA∗ϕ = ϕ for ϕ =

δ0, A
∗δ0, . . . , (A

∗)kδ0. So it follows that A maps W̃ℓ to Wℓ for ℓ =
1, . . . , k. Thus, by Lemma 3.3, the 2k × 2k upper block of L is
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Θ(α0) ⊕ Θ(α2) ⊕ · · · ⊕ Θ(α2k−2). Since A and A∗ are contractions,
L must have 0’s in the bottom and rightmost column, except for the
lower corner. That corner value, call it α2k, must have |α2k| ≤ 1 by (iii)
and |α2k| < 1 by (iv). Thus, we have the required LM factorization if
n = 2k + 1.

Now let ℓ = 2k be even. Define χℓ as before, but define x̃ℓ by Gram–
Schmidt on Aδ0, δ0, A

2δ0, A
∗δ0, . . . , A

kδ0, (A
∗)k−1δ0. Then A written in

χℓ basis has the form (3.15) where

Mkℓ = 〈x̃k, Aχℓ〉 Lkℓ = 〈χk, x̃ℓ〉 (3.17)

We need to show that L,M have the form (3.13)/(3.14).

Define Wℓ to be the span of δ0, Aδ0, A
∗δ0, . . . , A

ℓδ0, (A
ℓ)∗δ0 and W̃ℓ

the span of Aδ0, δ0, . . . , (A
∗)ℓ−1δ0, A

ℓ+1δ0. As above, A is an isometry of

Wℓ to W̃ℓ, so M has the form 1⊕Θ(α1)⊕· · ·⊕Θ(α2k−3)⊕α2k−11 where
|α2k−1| < 1 by condition (iv). Similarly, L has a Θ(α0)⊕· · ·⊕Θ(α2k−2)
block structure. This proves (3.13)/(3.14) and completes the case n =
2k. �

Remark. This theorem sets up a one-one correspondence between
{αj}n−1

j=0 ∈ Dn and cutoff CMV matrices.

Finite CMV matrices. As discussed in Section 2, C, originally
defined for |αj| < 1, has an extension to |αj | ≤ 1 via the Θ formula
for L,M. Since |αj0| = 1 implies ρj0 = 0 and Θ(αj0) is diagonal, if
|αj0| = 1, C({αj}) leaves Cj0+1 (i.e., vectors ϕ with ϕk = 0 if k ≥ j0+1)
invariant and C ↾ C

j0+1 is a (j0 + 1) × (j0 + 1) unitary matrix. If
|α0|, . . . , |αn−2| < 1 and |αn−1| = 1, the corresponding n × n matrix
is called a finite n × n CMV matrix, Cn({α0, . . . , αn−2, αn−1}). Cn has
the form LnMn where (3.11)/(3.12) or (3.13)/(3.14) hold, and now
αn−1 ∈ ∂D.

If U is an n × n matrix and δ0 a cyclic vector in the sense that
{Umδ0}∞m=−∞ is total, δ0 cannot be orthogonal to any eigenvector. So U
has to have n distinct eigenvalues {λj}n

j=1 and the eigenvectors {ψj}n
j=1

obey |〈δ0, ψj〉|2 = aj 6= 0. The unitary invariants of the pair (U, δ0) are
the spectral measures

∑n
j=1 ajδλj

where {λj}n
j=1 are arbitrary distinct

points and the aj > 0 have the single restriction
∑n

j=1 aj = 1. Thus,

the number of real parameters is n + (n − 1) = 2n − 1. The number
of free parameters in an n × n finite CMV matrix is n − 1 complex
numbers in D and one in ∂D, that is, 2(n − 1) + 1 = 2n − 1. This
suggests that

Theorem 3.5. There is a one-one correspondence between unitary

equivalence classes of n × n unitary matrices with a cyclic vector and
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finite CMV matrices in that each equivalence class contains one CMV

matrix (fixed by δ0 = (1, 0, . . . , 0)t) and two CMV matrices with distinct

parameters are not unitarily equivalent by a unitary fixing (1, 0, . . . , 0)t.

The proof is identical to the proof of Theorem 3.4 except that A
nonunitary is replaced by A unitary so |αn−1| = 1. As noted in the
discussion after Lemma 3.3, this approach is close to that in Watkins
[82]. This theorem is related to results in Ammar–Gragg–Reichel [5]
and Killip–Nenciu [51]. The latter talk about matrices with CMV
shape having the CMV form.

Instead of the cutoff CMV matrix, πnMzπn, one can look at π̂nMzπ̂n

where π̂n is a not necessary selfadjoint projection. CMV [14] have
shown that finite CMV matrices have this form and that they are the
only normal operators of this form.

Two-sided CMV matrices. In a sense, CMV matrices are two-
sided. For example, if αn ≡ 0, C is unitarily equivalent to a two-sided
shift since Ckδ0 = δ2k−1 and C−kδ0 = δ2k. However, as structures, the
matrix is semi-infinite and there is a cyclic vector which is often not
true for two-sided matrices. Thus, there is an extension to “two-sided”
examples.

Let {αn}∞n=−∞ be a two-sided sequence of numbers in D. Let H =
ℓ2(Z), that is, two-sided sequences {un}∞n=−∞ with

∑∞
n=−∞|un|2 < ∞.

Let Θj(β) be Θ(β) acting on the two indices j and j + 1. Define

E({αj}∞j=−∞) = L̃({αj}∞j=−∞)M̃({αj}∞j=−∞) (3.18)

where

M̃ =

∞⊕

j=−∞

Θ2j−1(α2j−1)

L̃ =
∞⊕

j=−∞

Θ2j(α2j)

E is called the extended CMV matrix.
The extended CMV matrix was introduced in [69]. Earlier, Bour-

get, Howland, and Joye [10] had considered some doubly infinite five-
diagonal matrices which factor into a product of two direct sums of
2× 2 matrices, but the 2× 2 blocks were general unitaries rather than
Θ’s.

While E is natural and important for the periodic case, we will also
see that it arises in the theory of essential spectrum of C (see Section 8).

One reason for the name “extended CMV matrix” is:
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Proposition 3.6. If α−1 = −1, then E is a direct sum on ℓ2(−∞,−1]⊕
ℓ2[0,∞) and E ↾ ℓ2[0,∞) is the CMV matrix C({αj}∞j=0). Moreover,

E ↾ ℓ2(−∞,−1] is unitarily equivalent to C({ᾱ−j−2}∞j=0).

Remark. ℓ2[0,∞) means those u ∈ ℓ2(Z) with un = 0 if n < 0 and
ℓ2(−∞,−1] those with un = 0 if n > −1.

Proof. Θ(−1) = ( −1 0
0 1 ), so both L̃ and M̃ leave ℓ2[0,∞) and

ℓ2(−∞,−1] invariant. Thus, E does.

M̃ ↾ ℓ2[0,∞) = M and L̃ ↾ ℓ2[0,∞) = L, so E ↾ ℓ2[0,∞) is
C({αj}∞j=0).

For the restriction to ℓ2(−∞,−1], note first that ( 0 1
1 0 ) Θ(α) ( 0 1

1 0 ) =
Θ(−ᾱ). Thus, by labeling the basis backwards, E is unitarily equiva-
lent to something that looks very much like C({−ᾱ−j−2}∞j=0) except M
starts with −1, not 1. By the discussion in Section 5, there is a unitary
that flips the spin of this −1 and all the αj ’s. �

Changing α−1 from its value to α−1 = −1 is a perturbation of rank at
most two, so by the Kato–Rosenblum theorem [65], the a.c. spectrum
of E is that of a direct sum of two C’s. Since these a.c. spectra are
only restricted by simplicity, we see that the a.c. spectrum of E has
multiplicity at most 2, but is otherwise arbitrary: it can be partially
multiplicity 0, partially 1, and partially 2. In particular, E may not
have a cyclic vector.

It is a theorem of Simon [67] that the singular spectrum of E is
simple. This is an analog of a theorem of Kac [47, 48] and Gilbert
[37, 38] for Schrödinger operators.

Periodic CMV matrices. If {αj}∞j=0 is a sequence of Verblunsky
coefficients with

αj+p = αj (3.19)

for j ≥ 0, p fixed, and ≥ 1, then αj has a unique extension to j ∈ Z

obeying (3.19). The corresponding E is called a periodic CMV matrix.
The theory is simpler if p is even, which we henceforth assume. As
explained in [70], there are several ways to analyze odd p once one has
understood even p.

Associated to {αj}p−1
j=0 is a natural Laurent polynomial, called the

discriminant, ∆(z; {αj}p−1
j=0),

∆(z) = z−p/2Tr(A(αp−1, z)A(αp−2, z) . . . A(α0, z)) (3.20)

where

A(α, z) = ρ−1

(
z −ᾱ

−zα 1

)
(3.21)
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This is analyzed in Section 11.1 of [70]. ∆(z) is real on ∂D and has
positive leading coefficient. This means ∆(z) has p real parameters.
This suggests the map from {αj}p

j=0 (of real dimension 2p) to ∆ is
many to 1, with inverse images generically of dimension p (= 2p− p).
This is in fact true: the inverse images are tori of dimension d ≤ p (we
will see what d is in a moment). They are called isospectral tori.

For fixed {αj}p−1
j=0, ∆−1([−2, 2]) (which is the spectrum of E)

lies in ∂D and is naturally p closed intervals whose endpoints are
∆−1({−2, 2}). Generically (in α), the intervals are disjoint, that is,
their complement (called the gaps) is p nonempty open intervals. In
general, the number of open intervals in the gaps is d, the dimension
of the isospectral torus.

Floquet CMV matrices. If T : ℓ2(Z) → ℓ2(Z) by (Tu)n = un+p and

p is even, and if αn = αn+p, then TM̃T−1 = M̃ and T L̃T−1 = L̃, so

TET−1 = E (3.22)

(We will not consider odd p in detail, but we note in that case,

TM̃T−1 = L̃ and T L̃T−1 = M̃ so, since M̃t = M̃ and L̃t = L̃ (on
account of Θt = Θ where t is transpose), we have that TET−1 = E t.)

Since T and E commute, they can be “simultaneously” diagonalized,
in this case represented on a direct integral representation. One way
of making this explicit is to define, for each β ∈ ∂D, the space ℓ∞β ,
the sequences {un}∞n=−∞ obeying un+p = βun. This is clearly a space

of dimension p since {un}∞n=−∞ mapping to {un}p−1
n=0 (i.e., restriction)

maps ℓ∞β to Cp.
By (3.22), E , which maps bounded sequences to bounded sequences,

maps ℓ∞β to ℓ∞β , and so defines a finite-dimensional operator Ep(β) under
the explicit relation of ℓ∞β mentioned above. One sees

Ep(β) = LpMp(β) (3.23)

where

Lp = Θ0(α0) ⊕ · · · ⊕ Θp−2(αp−2) (3.24)

Mp(θ) = Θ1(α) ⊕ · · · ⊕ Θp−3(αp−3) ⊕ Θ
(β)
p−1(αp−1) (3.25)

where Θ
(β)
p−1(α) acts on δp−1 and δ0, and in that (ordered) basis has the

form (
ᾱ ρβ
ρβ̄ −α

)
(3.26)

Ep(β) is called the Floquet CMV matrix. To make precise the con-
nection to E , we define the unitary Fourier transform F : ℓ2(Z) →
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L2(∂D, dθ
2π

; Cp), the set of L2 functions on ∂D with values in Cp by

(Fu)k(β) =

∞∑

n=−∞

β−nuk+np (3.27)

Then

(FEF−1g)(β) = Ep(β)g(β) (3.28)

(For details, see Section 11.2 of [70].)
Finally, we note a general relation of the eigenvalues of Ep(β) and

the discriminant, ∆(z), of (3.19). For z0 ∈ ∂D is an eigenvalue of Ep(β)
if and only if there is (u1, u0)

t so that after a p-step transfer, we get

β(u1, u0)
t, that is, if and only if z

p/2
0 β is an eigenvalue of Tp(z0). This

is true if and only if z
−p/2
0 Tp(z0) has eigenvalues β and β−1 if and only

if ∆(z0) = β + β−1. It follows that

det(z − Ep(β)) =

( p−1∏

j=0

ρj

)[
zp/2[∆(z) − β − β−1]

]
(3.29)

for both sides are monic polynomials of degree p and they have the
same zeros.

4. CMV Matrices for Matrix-Valued Measures

Because of applications to perturbations of periodic Jacobi and CMV
matrices [16], interest in matrix-valued measures (say, k × k matrices)
has increased. Here we will provide the CMV basis and CMV matri-
ces in this matrix-valued situation; these results are new here. Since
adjoints of finite-dimensional matrices enter but we want to use ∗ for
Szegő reversed polynomials, in this section we use † for matrix adjoint.

Measures which are nontrivial in a suitable sense are described by
a sequence {αj}∞j=0 of Verblunsky coefficients that are k × k matrices
with ‖αj‖ < 1.

To jump to the punch line, we will see that C still has an LM
factorization, where Θ(α) is the 2k × 2k matrix

Θ(α) =

(
α† ρL

ρR −α

)
(4.1)

where

ρL = (1 − α†α)1/2 ρR = (1 − αα†)1/2 (4.2)

It is an interesting calculation to check that Θ is unitary, that is,
(
α ρR

ρL −α†

) (
α† ρL

ρR −α

)
=

(
1 0
0 1

)
(4.3)
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That αα† + (ρR)2 = 1 = (ρL)2 + α†α follows from (4.2). That αρL −
ρRα = ρLα† − α†ρR = 0 follows by expanding the square roots in (4.2)
in a Taylor series and using α(α†α)m = (αα†)mα.

To describe the model specifically, we have a k×k matrix-valued (nor-
malized, positive) measure which can be described as follows: dµt(θ)
is a positive scalar measure on ∂D and for a.e. (dµt(θ)) a matrix A(θ)
obeying

A(θ) ≥ 0 Tr(A(θ)) = 1 (4.4)

We write dµ(θ) = A(θ) dµt(θ). We assume dµ is normalized in the sense
that

∫
A(θ) dµt = 1. We will consider HR to be the k×k matrix-valued

functions, f , on ∂D with
∫

Tr(f(θ)†A(θ)f(θ)) dµt(θ) <∞ (4.5)

The measure dµ is called nontrivial if

dim[span{Bℓz
ℓ}n−1

ℓ=0 ] = nk2 (4.6)

for each n. Equivalently, for each n and {Bℓ}n−1
ℓ=0 in L(Ck), we have∑n−1

ℓ=0 Bℓz
ℓ = 0 in HR implies B0 = B1 = · · · = Bn−1 = 0. Also

equivalent is that 〈ϕ,A(θ)ϕ〉 dµt(θ) is nontrivial for each ϕ ∈ Ck\{0}.
Similarly, we define HL to be f ’s with

∫
Tr(f(θ)A(θ)f †(θ)) dµt(θ) <∞ (4.7)

It is easy to see that nontriviality implies (4.6) holds also in HL.
We define two “inner products,” sesquilinear forms from HR and HL

to L(Ck), the k × k matrices:

〈〈f, g〉〉R =

∫
f †(θ) dµ(θ)g(θ) (4.8)

〈〈f, g〉〉L =

∫
g(θ) dµ(θ)f †(θ) (4.9)

The right side of (4.8) is shorthand for
∫
f †(θ)A(θ)g(θ) dµt(θ)

so the LHS of (4.5) is Tr(〈〈f, g〉〉R). The symbols L,R (for left and
right) come from

〈〈f, gB〉〉R = 〈〈f, g〉〉B (4.10)

〈〈f, Bg〉〉L = B〈〈f, g〉〉 (4.11)

for constant k × k matrices, B.
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The normalized matrix OPUC, ϕR
n , ϕ

L
n, are polynomials in z of degree

n with matrix coefficients with

〈〈ϕR
n , ϕ

R
m〉〉R = δnm1 〈〈ϕL

n, ϕ
L
m〉〉R = δnm1 (4.12)

This determines ϕ uniquely up to a unitary right (resp., left) prefactor.
We will pick this prefactor by demanding

ϕR,L
n (z) = κR,L

n zn + lower order (4.13)

κL
n+1(κ

L
n)−1 > 0 (κR

n )−1κR
n+1 > 0 (4.14)

With this choice of normalization, one has a sequence of k×k matrices,
{αn}∞n=0, and the recursion relations

zϕL
n = ρL

nϕ
L
n+1 + α†

n(ϕR
n )∗ (4.15)

zϕR
n = ϕR

n+1ρ
R
n + (ϕL

n)∗α†
n (4.16)

(ϕL
n)∗ = (ϕL

n+1)
∗ρL

n + zϕR
nαn (4.17)

(ϕR
n )∗ = ρR

nϕ
∗
n+1 + αnzϕ

L
n (4.18)

where ρR
n , ρ

L
n are given by (4.2) and P ∗

n(z) = znPn(1/z̄)†. For construc-
tion of ϕL,R

n and proof of (4.15)–(4.18), see [7] or [69, Section 2.13]
following Delsarte et al. [17] and Geronimo [29].

It will help to also have the following, which can be derived from
(4.15)–(4.18):

ϕL
n+1 = ρL

nzϕ
L
n − α†

n(ϕR
n+1)

∗ (4.19)

(ϕR
n+1)

∗ = ρR
n (ϕR

n )∗ − αnϕ
L
n+1 (4.20)

Following (2.19) and (2.20), we define the CMV and alternate CMV
basis by

χ2k(z) = z−k(ϕR
2k(z))

∗ χ2k−1(z) = z−k+1ϕL
2k−1(z) (4.21)

x2k(z) = z−kϕL
2k(z) x2k−1(z) = z−k(ϕR

2k−1(z))
∗ (4.22)

Proposition 4.1. {χℓ(z)}∞ℓ=0 and {xℓ(z)}∞ℓ=0 are 〈〈· , ·〉〉L orthonormal,

that is,

〈〈χℓ, χm〉〉L = δℓm 〈〈xℓ, xm〉〉L = δℓm (4.23)

Moreover, χℓ is in the module span of the first ℓ of 1, z, z−1, . . . and xℓ

of 1, z−1, z, . . . .

Remark. By module span of {fj(z)}m
j=1 of scalar functions, f , we mean

elements in HL of the form
∑m

j=1Bjfj(z) where B1, B2, . . . are fixed
k × k matrices.
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Proof. (4.23) for ℓ = m holds by (4.12) and (4.21), (4.22) if we note
that

〈〈P ∗
n , Q

∗
n〉〉L = 〈〈Qn, Pn〉〉R (4.24)

It is obvious from the definition of χℓ and xℓ that they lie in the proper
span. To get (4.23) for ℓ < m, we need to know that χℓ is orthogonal
to the first ℓ−1 of 1, z, z−1, . . . and xℓ to the first ℓ−1 of 1, z, z−1, . . . .
For cases where χℓ or xℓ is given by ϕL, this follows from 〈〈zk, ϕL

ℓ 〉〉 = 0
for 0 ≤ k < ℓ and when it is a (ϕR

ℓ )∗ from (4.24) which says

〈〈zk, (ϕR
ℓ )∗〉〉L = 〈〈ϕR

ℓ , z
ℓ−k〉〉 = 0

for 0 ≤ ℓ− k < ℓ. �

By a (left-) module basis for HL, we mean a sequence {fj}∞j=0 or-

thonormal in 〈〈· , ·〉〉L, that is, 〈〈fj, fℓ〉〉L = δjℓ so that as {Bj}N
j=0 runs

through all N -tuples of k×k matrices,
∑N

j=0Bjfj is a sequence of sub-
spaces whose union is dense in HL. For any such basis, any η ∈ HL

has a unique convergent expansion,

η =
∞∑

j=0

〈〈fj , η〉〉fj (4.25)

{χj}∞j=0 and {xj}∞j=0 are both module bases. That means, if Cjℓ is
defined by

Cjℓ = 〈χj , zχℓ〉 (4.26)

then the matrix, obtained by using the k × j blocks, Cjℓ, is unitary.
Moreover,

Cjℓ =
∑

m

LjmMmℓ (4.27)

where

Ljℓ = 〈χj, zxℓ〉 Mjℓ = 〈xj , χℓ〉 (4.28)

In (4.19), set n = 2k − 1 and multiply by z−k to get

x2k = −α†
nχ2k + ρL

nχ2k−1 (4.29)

where a bottom row of Θ is clear. In this way, using (4.15), (4.18),
(4.19), and (4.20), one obtains:

Theorem 4.2. With Θj(α) given by (4.1) acting on C2k corresponding

to δj, δj+1, we have

M = 11×1 ⊕ Θ1(α1) ⊕ Θ3(α3) ⊕ · · ·
L = Θ0(α0) ⊕ Θ2(α2) ⊕ Θ4(α4) ⊕ · · ·
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The analog of (2.29) is

C =




α†
0 ρL

0α
†
1 ρL

0ρ
L
1 0 0 . . .

ρR
0 −α0α

†
1 −α0ρ

L
1 0 0 . . .

0 ρR
1 α

†
2 −α1α

†
2 ρL

2α
†
3 ρL

2ρ
L
3 . . .

0 ρR
1 ρ

R
2 −α1ρ

R
2 −α2α

†
3 −α2ρ

L
3 . . .

0 0 0 ρR
3 α

†
4 −α3α

†
4




(4.30)

We note for later purposes that for this matrix case, the GGT matrix,
which we will discuss in Section 10, has the form

Gkℓ =





−αk−1ρ
L
kρ

L
k+1 . . . ρ

L
ℓ−1α

†
ℓ 0 ≤ k ≤ ℓ

ρR
ℓ k = ℓ+ 2

0 k ≥ ℓ+ 2

(4.31)

that is,

G =




α†
0 ρL

0α
†
1 ρL

0ρ
L
1α

†
2 ρL

0ρ
L
1ρ

L
2α

†
3

ρR
0 −α0α

†
1 −α0ρ

L
1α

†
2 −α0ρ

L
1ρ

L
2α

†
3

0 ρR
1 −α1α

†
2 −α1ρ

L
2α

†
3

. . . . . . . . . . . .


 (4.32)

5. Rank One Covariances

For selfadjoint matrices, the most elementary rank one perturbations
are diagonal, that is, J 7→ J + λ(δn, · )δn, where δn is the vector with 1
in position n and 0 elsewhere. The impact of such a change on Jacobi
parameters is trivial: am → am, bm → bm + λδnm (if we label vectors
in the selfadjoint case starting at n = 1). One of our goals is to find
the analog for CMV matrices, where we will see that the impact on
Verblunsky coefficients is more subtle.

We will also address a related issue: In the spectral theory of OPUC,
the family of measures, dµλ with αn(dµλ) = λαn for a fixed {αn}∞n=0,
called an Aleksandrov family, plays an important role analogous to
a change of boundary condition in ODE’s. If ϕn are the normalized
OPUC, the GGT matrix,

Gkℓ({αn}∞n=0) = 〈ϕk, zϕℓ〉 (5.1)

has the property that G({λαn}∞n=0) − G({αn}∞n=0) is rank one (see [69,
page 259]). But for the CMV basis, C({λαn}∞n=0)−C({αn}∞n=0) is easily
seen to be infinite rank (if the α’s are not mainly 0). However, we
will see here that for a suitable Uλ (depending on λ but not on α!),
UλC({λαn}∞n=0)U

−1
λ − C({αn}∞n=0) is rank one.

We need to begin by figuring out what are natural rank one pertur-
bations. The key realization is that the proper format is multiplicative:
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Let P be a rank one projection and Wθ = eiθP = (1−P )+ eiθP . Then
Wθ −1 = (eiθ −1)P is rank one, and for any U , UWθ is a rank one per-
turbation of U . It will be convenient to parametrize by λ = eiθ ∈ ∂D.
Thus, we define

W (m)(λ) = 1 + (eiθ − 1)(δm, · δm) (5.2)

and given any CMV matrix C, we let

Cm(λ) = CW (m)(λ) (5.3)

We will use Cm(λ; {αk}) where we want to make the α-dependence
explicit. Notice that

Cm
ℓk(λ) =

{
Cℓk if k 6= m

λCℓk if k = m
(5.4)

that is, we multiply column m by λ.
Part of the result we are heading towards is that

αℓ(Cm(λ)) =

{
αℓ(C) ℓ < m

λ−1αℓ(C) ℓ ≥ m
(5.5)

In particular, C0(λ̄) realizes the fact that C({λαk}∞k=0) is unitarily equiv-
alent to a rank one perturbation of C({αk}∞k=0). (5.5) for the important
case m = 0 is due to Simon [69, Theorem 4.2.9] and for the general
case to Simon [72]. We will sketch the various proofs.

While we will eventually provide explicit unitaries that show
Cm(λ; {αj}∞j=0) is unitarily equivalent to C (right side of (5.5)), we
begin with a direct proof of (5.5) in case m = 0.

Theorem 5.1. Cm=0(λ; {αj}∞j=0) has Verblunsky coefficients

{λ−1αj}∞j=0.

Remark. If M(λ) = λ1 ⊕ Θ(α1) ⊕ Θ(α3) ⊕ · · · , that is, the 1 in the
upper left corner is replaced by λ, then LM(λ) = CW (0)(λ).

Sketch. (See Theorems 4.2.9 and Subsection 1.4.16 of [69].) By defini-
tion,

Cm=0
λ − C = (λ− 1)CP0 (5.6)

where P0 = 〈δ0, · 〉δ0. Define, for z ∈ D, Fλ and the fλ by

Fλ(z) = 〈δ0, (Cm=0
λ − z)(Cm=0

λ + z)−1δ0〉 (5.7)

=
1 + zfλ(z)

1 − zfλ(z)
(5.8)
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Using the second resolvent formula and (5.6) implies (see Subsec-
tion 1.4.16 of [69]) that

fλ(z) = λ−1f(z) (5.9)

The Schur algorithm and Geronimus theorem (see Chapter 3 of [69])
then imply (5.5) for m = 0. �

For discussion of the movement of eigenvalues under the perturba-
tions of Theorem 5.1, see [6, 13, 25] and Theorem 3.2.17 of [69].

The key to an explicit unitary equivalence is the following. Let

ν(λ) =

(
1 0
0 λ

)
ν̃(λ) =

(
λ 0
0 1

)
(5.10)

Then, by a simple calculation,

ν(λ)Θ(λ−1α)ν(λ) = λΘ(α) (5.11)

ν̃(λ)−1Θ(λ−1α)ν̃(λ)−1 = λ−1Θ(α) (5.12)

Note that (5.11) does not use ν(λ) and ν(λ)−1 but ν(λ) in both places.
Similarly, (5.12) has ν̃(λ)−1 in both places. In the full calculation, one
does not use

ULMU−1 = (ULU−1)(UMU−1)

but rather
ULMU−1 = (ULU)(U−1MU−1) (5.13)

We need a notation for diagonal matrices. D(12k(1λ)∞) indicates
the diagonal matrix with entries 1 2k times, then alternating 1’s and
λ’s. Thus,

W (m)(λ) = D(1mλ1∞) (5.14)

Using (5.14), (5.13), (5.11), and (5.12), a direct calculation (see Sec-
tion 5 of [72]) shows:

Theorem 5.2. For n = 0, 1, 2, . . . , define

U2k−1 = D(12k(1λ)∞) (5.15)

U2k = D(λ2k(1λ)∞) (5.16)

Tn,λ({αj}∞j=0) = βj (5.17)

where

βj =

{
αj j < n

λαj j ≥ n
(5.18)

Then

UnC(Tn,λ−1({αj}∞j=0))U
−1
n = C({αj}∞j=0)W

(n)(λ) (5.19)

In particular, (5.5) holds.
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Remarks. 1. It is important that δ0 is an eigenvector of Un since
Verblunsky coefficients involve a unitary and a cyclic vector. (5.19)
also shows that CW (n)(λ) has δ0 as a cyclic vector.

2. One can also ask about Verblunsky coefficients of
W (n)(λ)C({αj}∞j=0). Since Verblunsky coefficients are invariant under
unitaries that have δ0 as an eigenvector and

W (n)C = W (n)CW (n)(W (n))−1

the Verblunsky coefficients of CW (n) and W (n)C are the same.

(5.11), (5.12), and (5.13) imply a result about extended CMV ma-

trices. For λ ∈ ∂D, let W̃ (λ) be the two-sided diagonal matrix with
d2j = 1, d2j+1 = λ. Then

Theorem 5.3. Let λ ∈ ∂D. Then W̃ (λ)E({αn}∞n=−∞)W̃ (λ)−1 =
E({λαn}∞n=−∞).

Remark. In particular, spectral properties of E({αn}∞n=−∞) and
E({λαn}∞n=−∞) are identical and αn → λαn preserves isospectral tori
in the periodic case.

6. Resolvents of CMV Matrices

In this section, we will present formulae for the resolvent of C anal-
ogous to the Green’s function formula for Jacobi matrices (see The-
orem 4.4.3 of [69]). These formulae appeared first in Section 4.4 of
[69]. Similar formulae for GGT matrices appeared earlier in Geronimo–
Teplyaev [33] (see also [31, 32]).

Clearly, we need an analog of Jost solutions. For OPUC, these were
found by Golinskii–Nevai [41] who proved

Theorem 6.1. Fix z ∈ D. Let ϕn be the normalized OPUC for a prob-

ability measure dµ on ∂D, and ψn the normalized OPUC for Verblunsky

coefficients −αn(dµ) (so-called second kind polynomials). Then

∞∑

n=0

|ψn(z) + F (z)ϕn(z)|2 + |ψ∗
n(z) − F (z)ϕ∗

n(z)|2 <∞ (6.1)

where F is the Carathéodory function:

F (z) ≡
∫

eiθ + z

eiθ − z
dµ(θ) (6.2)

Remarks. 1. This is an analog of Weyl’s formula; see (1.2.53) of [69].

2. See [41] or [69, Section 3.2] for a proof.
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With this in mind, we define

yn =

{
z−ℓψ2ℓ n = 2ℓ

−z−ℓψ∗
2ℓ−1 n = 2ℓ− 1

(6.3)

Υn =

{
−z−ℓψ∗

2ℓ n = 2ℓ

z−ℓ+1ψ2ℓ−1 n = 2ℓ− 1
(6.4)

pn = yn + F (z)xn (6.5)

πn = Υn + F (z)χn (6.6)

Then Theorem 4.4.1 of [69] says:

Theorem 6.2. We have that for z ∈ D,

[(C − z)−1]kℓ =

{
(2z)−1χℓ(z)pk(z) k > ℓ or k = ℓ = 2n− 1

(2z)−1πℓ(z)xk(z) ℓ > k or k = ℓ = 2n
(6.7)

As a special case, since δn = χn(C)δ0 and |χn(e
iθ)| = |ϕn(e

iθ)|, we
obtain from a spectral representation

∫ |ϕn(e
iθ)|2

eiθ − z
dµ(θ) = (2zn+1)−1ϕn(z)[−ψ∗

n(z) + F (z)ϕ∗
n(z)] (6.8)

As shown in remarks to Theorem 9.2.4 of [70], this is equivalent

to a formula of Khrushchev [49] for
∫

eiθ+z
eiθ−z

|ϕn(e
iθ)|2 dµ(θ). For an

application of Theorem 6.2, see Stoiciu [74].

7. Ip Perturbations

In this section, we give some elementary estimates of Golinskii–
Simon [42] on the Ip norm of C({αn}∞n=0) − C({βn}∞n=0). (For defin-
ition and background on Schatten p-classes, see Gohberg–Krein [39]
and Simon [71].)

In this section, we will use these estimates to write the Szegő function
in terms of Fredholm determinants of the CMV matrices and to discuss
scattering theory. Further applications appear in Section 9.

A diagonal matrix, A, has Ip norm (
∑

j |ajj|p)1/p) and ‖A‖p is in-
variant under multiplication by a unitary. So if A has only a nonva-
nishing kth principal diagonal, A has Ip norm (

∑
j|aj j+k|p)1/p. Since

(a1/p + b1/p + c1/p) ≤ (a + b + c)1/p31−1/p (by Hölder’s inequality), we
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see for tridiagonal matrices that

‖A− B‖p ≤ 31−1/p

( ∑

i,j

|aij − bij |p
)1/p

(7.1)

This lets us estimate ‖L({αn}∞n=0) − L({βn}∞n=0)‖p, and similarly for
M. Using unitarity of L and M, ‖LM−L′M′‖p ≤ ‖(L− L′)M‖p +
‖L′(M−M′)‖p ≤ ‖L − L′‖p + ‖M−M′‖p. So using (a1/p + b1/p) ≤
21−1/p(a+ b)1/p, we find

Theorem 7.1 (= Theorem 4.3.2 of [69]). Let {αn}∞n=0, {βn}∞n=0 be two

sequences in D
∞

and let ρn = (1 − |αn|2)1/2, σn = (1 − |βn|2)1/2. Then

‖C({αn}∞n=0) − C({βn}∞n=0)‖p ≤ 61−1/p

( ∞∑

n=0

|αn − βn|p + |ρn − σn|p
)1/p

(7.2)

Remark. [69] has the constants 2 for 1 ≤ p ≤ 2 and 2 · 31−1/2p for
2 ≤ p ≤ ∞, but the proof there actually shows 21−1/p and 21−1/p 31−1/2p.
This improves the constant in (7.2).

To rephrase in terms of |αn − βn| only, we first note that

sup
|z|≤R

∣∣∣∣
d

dz
(1 − |z|2)1/2

∣∣∣∣ ≤ (1 −R2)−1/2

and ||z| − |w|| ≤ |z − w| to see that

sup
|z|,|w|≤R

|(1 − |z|2)1/2 − (1 − |w|2)1/2| ≤ (1 −R2)−1/2|z − w| (7.3)

We need to note that |√a−
√
b | ≤

√
|a− b| and ||α|2−|β|2| ≤ 2|α−β|,

so

|(1 − |z|2)1/2 − (1 − |w|2)1/2| ≤
√

2 |z − w|1/2 (7.4)

Thus,

Theorem 7.2. Let {αn}∞n=0 and {βn}∞n=0 be two sequences in D
∞

and

let ρn = (1 − |αn|2)1/2, σn = (1 − |βn|2)1/2. Then

(a) If supn|αn| ≤ R < 1 and supn|βn| ≤ R, then

‖C({αn}∞n=0)−C({βn}∞n=0)‖p ≤ 61−1/p[1+(1−R2)−p/2]1/p

( ∞∑

n=0

|αn−βn|p
)1/p

(7.5)
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(b) In general, for 1 ≤ p ≤ ∞,

‖C({αn}∞n=0)−C({βn}∞n=0)‖p ≤ 61−1/p

( ∞∑

n=0

|αn−βn|p+2p/2|αn−βn|p/2

)1/p

(7.6)

One thing made possible by CMV matrices is scattering theory be-
cause all CMV matrices act on the same space (ℓ2({0, 1, 2, . . .})). This
is an important tool made possible by the CMV matrix. Thus,

Theorem 7.3. Suppose supn|αn| ≤ R ≤ 1, supn|βn| ≤ R < 1, and

∞∑

n=0

|αn − βn| <∞ (7.7)

Then, if Pac(·) is the projection onto the absolutely continuous subspace

of an operator and C = C({αn}∞n=0), C̃ = C({βn}∞n=0), then

lim
n→±∞

CnC̃−nPac(C̃)

exists and is a partial isometry with range Pac(C). In particular, C ↾

Pac(C) and C̃ ↾ Pac(C̃) are unitarily equivalent.

Remarks. 1. This follows from the fact that C − C̃ is trace class and
from the Kato–Birman theorem [65].

2. If {αn}∞n=0 corresponds to

dµ = f(θ)
dθ

2π
+ dµδ (7.8)

and {βn}∞n=0 corresponds to

dν = g(θ)
dθ

2π
+ dνδ (7.9)

then this theorem implies that up to sets of dθ-measure 0,

{θ | f(θ) 6= 0} = {θ | g(θ) 6= 0} (7.10)

(also see Theorem 9.3).

3. For the case βn ≡ 0, this holds if only
∑∞

n=0|αn|2 < ∞; see [70,
Section 10.7].

Finally, following Simon [69, Section 4.2], we want to state the con-
nection of C to the Szegő function, defined for |z| < 1 by

D(z) = lim
n→∞

ϕ∗
n(z)−1 (7.11)
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which exists and is nonzero if (and only if)
∞∑

j=0

|αj|2 <∞ (7.12)

(see Section 2.4 of [69]). We will let C0 be the free CMV matrix corre-
sponding to dµ = dθ

2π
; equivalently, αn ≡ 0.

Theorem 7.4. Suppose
∞∑

n=0

|αn| <∞ (7.13)

Then C − C0 is trace class and

D(z)−1D(0) = det

(
1 − zC̄
1 − zC̄0

)
(7.14)

If (7.12) holds, then C − C0 is Hilbert–Schmidt, and

D(z)−1D(0) = det2

(
1 − zC̄
1 − zC̄0

)
e−zw1 (7.15)

where

w1 = α0 −
∞∑

j=1

αjᾱj−1 (7.16)

Remarks. 1. Alas, (4.2.53) of [69] has a sign error: it is e−zw1 as we
have here, not ezw1 as appears there!

2. By det( 1−zC̄
1−zC̄0

), we mean det((1 − zC̄)(1 − zC̄0)
−1). Since

(1 − zC̄)(1 − zC̄0)
−1 = 1 − z(C̄ − C̄0)(1 − zC̄0)

−1

we see that this is 1+ trace class (resp., Hilbert–Schmidt) if C − C0 is
trace class (resp., Hilbert–Schmidt).

3. For a proof, see Section 4.2 (Theorem 4.2.14) of [69].

4. C̄ is the complex conjugate of C, that is, (C̄)ij = (Cij).

3. det(·) is defined on operators of the form 1+A with A trace class,
and then det2 on 1 + A with A Hilbert–Schmidt by

det(1 + A) = det2((1 + A)e−A) (7.17)

When A is trace class,

det(1 + A) = det2(1 + A)eTr(A) (7.18)

If (7.13) holds, −zw1 = Tr((1 − zC̄)/(1 − zC̄0)) and (7.14)/(7.15) are
consistent by (7.18). See [39] or [71] for a discussion of det(·) and
det2(·).
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5. The connection for one-dimensional Schrödinger operators of the
Jost function and Fredholm determinants goes back to Jost–Pais [46].
For Jacobi matrices, under the name “perturbation determinant,” they
were used by Killip–Simon [52].

8. Essential Spectra

The discrete spectrum of an operator is the set of isolated points of
finite multiplicity. The complement of the discrete spectrum in the
spectrum is called the essential spectrum. Since a CMV matrix has a
cyclic vector, the essential spectrum is just the set of nonisolated points
in the support of the spectral measure, dµ, often called the derived set

of supp(dµ). Last–Simon [54] have a general result for the essential
spectrum of a CMV matrix C({αn}∞n=0).

Definition. A right limit of {αn}∞n=0 is any two-sided sequence

{βn}∞n=−∞ in D
Z

for which there exists nℓ → ∞ so limℓ→∞ αnℓ+j = βj

for each j ∈ Z. R({αn}∞n=0) is the set of right limits of {αn}∞n=0.

Since D
Z

is compact, R is nonempty. Indeed, if β̃0 is any limit point
of αn, there is a right limit with β0 = β̃0.

Theorem 8.1 (Last–Simon [54]). For any {αn}∞n=0 ∈ D
∞

, we have

σess(C({αn}∞n=0)) =
⋃

β∈R({αn}∞n=0
)

σ(E({βn}∞n=0)) (8.1)

Remarks. 1. The proof [54] uses a Weyl trial sequence argument. The
key is that because C has finite width, for any λ0 ∈ σess(C) and ε, there
exist L, nj → ∞ and ϕj supported in (nj − L, nj + L) with ‖ϕj‖ = 1
and

lim sup
j→∞

‖(C − λ0)ϕj‖ ≤ ε (8.2)

2. Right limits of Verblunsky coefficients were considered earlier by
Golinskii–Nevai [41], motivated by earlier work on Schrödinger opera-
tors by Last–Simon [53]. This work was in the context of a.c. spectrum
(see Theorem 10.9.11(ii) of [70]).

3. [54] used the same methods to study Jacobi and Schrödinger op-
erators. Earlier results of the form (7.1) for Schrödinger operators (but
not for CMV matrices) are due to Georgescu–Iftimovici [28], Măntoiu
[56], and Rabinovich [63]. These rely on what I regard as elaborate
machines (connected with C∗-algebras or with Fredholm operators) al-
though, no doubt, their authors regard them as very natural.

One can combine this with Theorem 5.3 to obtain



32 B. SIMON

Theorem 8.2. Let {αj}∞j=0 and {βj}∞j=0 be two sequences of Verblunsky

coefficients. Suppose there exist λj ∈ ∂D so that

(i) βjλj − αj → 0 (8.3)

(ii) λj+1λ̄j → 1 (8.4)

Then

σess(C({αj}∞j=0)) = σess(C({βj}∞j=0)) (8.5)

Proof. Let {γj}∞j=−∞ be a right limit of {βj}∞j=0. By passing to a
subsequence, we can suppose λnj

→ λ∞ and βnj+k → γk. Since
λnj+kλ

−1
nj

→ 1, we see that αnj+k → λ∞γk. By Theorem 5.3,

σ(E({γk}∞k=−∞)) = σ(E({λ∞γk}∞k=−∞)). It follows (using symmetry)
that (8.5) holds. �

Remark. This proof is from [54], but the result appears earlier as The-
orem 4.3.8 in [69], motivated by a special case of Barrios–López [9].

Example 8.3. (This is due to Golinskii [40]; the method of proof is due
to [54]. See the discussion in [54] for earlier related results.) Suppose
|αn| → 1 as n → ∞. Then σess(C({αn})∞n=0) is the set of limit points
of {−ᾱj+1αj}∞j=0. For any limit point has E({βj}∞j=0) diagonal (since

(1 − |βj|2)1/2 ≡ 0) with diagonal values −β̄j+1βj, and by compactness,
any limit point of −ᾱj+1αj occurs as some −β̄1β0. In particular, this
(plus an extra argument) implies σess(E) = {λ0} if and only if |αn| → 1
and ᾱn+1αn → −λ0. See [40] and [54] for a discussion of when σess(C)
is a finite set. �

It is well known (see Example 1.6.12 of [69] and Example 11.1.4 of
[70]) that if αn ≡ a ∈ D, then σess(C) = ∆|a| = {z ∈ ∂D | |arg z| ≥
2 arcsin(|a|)}, which increases as |a| decreases. It follows:

Example 8.4. (Theorem 7.8 of [54]; one direction was proven in [14],
which motivated Theorem 7.8 of [54].) Suppose

αj+1

αj

→ 1 lim inf|αj| = a (8.6)

Then
σess(C({αn}∞n=0)) = ∆a (8.7)

For
αj+1

αj
→ 1 implies that each limit is of the form βj ≡ b for some

b ∈ D, so

σess(C) =
⋃

b=limits of αj

∆|b| = ∆a

since ∆|b| ⊆ ∆a if |b| ≥ a. �
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9. Spectral Consequences

Section 4.3 of [69] describes joint work of Golinskii–Simon [42] that
uses CMV matrices to obtain spectral results that relate properties of
{αn}∞n=0 to the associated measures. Here, in brief, are some of their
main results:

Theorem 9.1 (≡ Theorem 4.3.5 of [69]; subsumed in Theorem 8.2).
If |αn − βn| → 0, then σess(C({αn}∞n=0)) = σess(C({βn}∞n=0)).

Remark. Of course, Theorem 9.1 also follows from Theorem 8.1.

Proof. By (7.6) and a limiting argument, C({αn}∞n=0) − C({βn}∞n=0) is
compact. The result follows from Weyl’s theorem on the invariance of
essential spectrum under compact perturbation. �

Theorem 9.2 (≡ Theorem 4.3.4 of [69]). If lim sup|αn(dµ)| = 1, then

dµ is purely singular.

Remark. This result is called Rakhmanov’s lemma, after [64]. The
proof is motivated by earlier results for Jacobi matrices of Dombrowski
[18] and Simon–Spencer [73].

Proof. Let α̂n be defined by

α̂n =

{
1 if αn = 0
αn

|αn|
if αn 6= 0

Since lim sup|αn| = 1, we can find a sequence nj → ∞, so

∞∑

j=0

|αnj
− α̂nj

|1/2 <∞

Let

βn =

{
α̂n if n = nj for some j

αn otherwise

Then C({βn}∞n=0) − C({αn}∞n=0) is trace class by (7.6). By the Kato–
Birman theorem [65],

σac(C({αn}∞n=0)) = σac(C({βn}∞n=0))

Since |α̂n| = 1, C({βn}∞n=0) is a direct sum of finite matrices of size
nj+1 − nj , and so it has no a.c. spectrum. �

Theorem 9.3 (≡ Theorem 4.3.6 of [69]). If {αn}∞n=0 and {βn}∞n=0 are

the Verblunsky coefficients of dµ and dν given by (7.8) and (7.9), and

(7.7) holds, then (7.10) holds.
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Proof. If lim sup|αn| < 1, then lim sup|βn| < 1, and by Theorem 7.3,
(7.10) holds. If lim sup|αn| = lim sup|βn| = 1, then σac(C({αn}∞n=0)) =
σac(C({βn}∞n=0)) = ∅ by Theorem 9.2. �

10. The AGR Factorization of GGT Matrices

This section is primarily preparatory for the next and discusses GGT
matrix representations (for Geronimus [34], Gragg [43], and Teplyaev
[78]) associated to a measure on ∂D:

Gkℓ({αn}M
n=0) = 〈ϕk, zϕℓ〉 (10.1)

and discussed in Section 4.1 of [69]. If µ is nontrivial, M in (10.1) is ∞
and αn ∈ D for all n. If µ is supported on exactly N points, M = N−1
and α0, . . . , αN−2 ∈ D, αN−1 ∈ ∂D. There is an explicit calculation (see
Proposition 1.5.9 of [69]):

Gkℓ =





−ᾱℓαk−1

∏ℓ−1
m=k ρm 0 ≤ k ≤ ℓ

ρℓ k = ℓ+ 1

0 k ≥ ℓ+ 2

(10.2)

We present a remarkable factorization of GGT matrices due to Am-
mar, Gragg, and Reichel [6], use it to provide a result about cosets in
U(N)/U(N − 1), and then present an alternate proof of Theorems 9.2
and 9.3 using GGT rather than CMV matrices. For the special case of
orthogonal matrices (all αj ∈ (−1, 1)), AGR found this factorization
earlier [5].

We defined Θj(α) before (3.18) as a 2× 2 matrix acting on the span

of δj, δj+1. We define Θ̃(αj) to be this matrix viewed as an operator on

CN by 1j ⊕ Θj(α) ⊕ 1N−j−2.
˜̃
ΘN−1(α) is the matrix 1N−1 ⊕ ᾱ.

Theorem 10.1 (AGR factorization). For any finite N ×N GGT ma-

trix,

G({α}N−1
n=0 ) = Θ̃0(α0) . . . Θ̃N−2(αN−2)

˜̃
ΘN−1(αN−1) (10.3)

For N = ∞,

G({αn}∞n=0) = s-lim
M→∞

Θ̃0(α0) . . . Θ̃M(αM) (10.4)

Remarks. 1. (10.4) follows from (10.3) by a simple limiting argument.
We will only prove (10.3) below.

2. We will give three proofs which illustrate slightly different aspects
of the formula.
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3. As explained in Killip–Nenciu [50], the Householder algorithm
lets one write any unitary as a product of N − 1 reflections; in many
ways, the representation (10.4) is more useful.

First Proof. By a direct calculation using (10.2),

G({αn}N−1
n=0 ) = Θ0(α0)[11×1 ⊕ G({αn+1}N−2

n=0 )] (10.5)

(10.3) follows by induction. �

Second Proof (that of AGR [6]). We will prove first that any unitary
(upper) Hessenberg matrix H (i.e., Hkℓ = 0 if k ≥ ℓ+ 1) with positive
subdiagonal (i.e., Hℓ+1,ℓ > 0 for all ℓ) has the form (10.3) for suitable
α0, α1, . . . , αN−2 ∈ D and αN−1 ∈ ∂D. The first column of H has the
form (ᾱ0, ρ0, 0, . . . , 0)t for some α0 ∈ D. Then Θ0(α0)

−1H is of the
form 11×1⊕H(1), where H(1) is a unitary (N−1)× (N−1) Hessenberg
matrix with positive subdiagonal. By induction, H has the form (10.3).
One proves that {αn}N−1

n=0 are the Verblunsky coefficients of the GGT
matrix, either by using (10.2) or by deriving recursion relations. �

For the third proof, we need a lemma that is an expression of Szegő
recursion.

Lemma 10.2. We have that

〈ϕ∗
j , zϕj〉 = ᾱj (10.6)

〈ϕj+1, zϕj〉 = ρj (10.7)

〈ϕj+1, ϕ
∗
j+1〉 = −ᾱj (10.8)

〈ϕ∗
j , ϕ

∗
j+1〉 = ρj (10.9)

Remark. This says that a certain change of basis on a two-dimensional
space is Θ(αj).

Proof. ϕj+1 ⊥ ϕ∗
j since deg(ϕ∗

n) ≤ j. Moreover, by (2.5) and (2.12),

zϕj = ρjϕj+1 + ᾱjϕ
∗
j

ϕ∗
j+1 = −αjϕj+1 + ρjϕj

from which (10.6)–(10.9) are immediate. �

Third Proof of Theorem 10.1. This is an analog of the proof of LM
factorization in Section 2. There C is the matrix of overlap of the
orthonormal bases {zχℓ}∞ℓ=0 and {χℓ}∞ℓ=0. The LM factorization comes
from inserting the basis {zxℓ}∞ℓ=0. Here we have the bases

e(0) = (zϕ0, . . . , zϕN−1) (10.10)

e(N) = (ϕ0, . . . , ϕN−1)
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and G is an overlap matrix. We introduce N − 1 intermediate bases:

e(1) = (zϕ0, . . . , zϕN−2, ϕ
∗
N−1)

e(2) = (zϕ0, . . . , zϕN−3, ϕ
∗
N−2, ϕN−1)

· · ·
e(j) = (zϕ0, . . . , zϕN−j−1, ϕ

∗
N−j, ϕN−j+1, . . . , ϕN−1)

· · ·
where e(N) is given by (10.10) since ϕ∗

0 = 1 = ϕ0.
Thus

Gkℓ = 〈e(N)
k , e

(0)
ℓ 〉

=
∑

m1...mN−1

〈e(N)
k , e(N−1)

m1
〉 . . . 〈e(N−j)

mj
, e(N−j−1)

mj+1
〉 . . . 〈e(1)mN−1

, e
(0)
ℓ 〉

(10.11)
is a product ofN matrices. N−1 have a change from zϕj , ϕ

∗
j+1 to ϕ∗

j , ϕj

whose overlap matrix, by (10.6)–(10.9), is Θ̃(αj) and the extreme right

has a change from zϕN−1 to ϕ∗
N−1, which is

˜̃
Θ(αN−1) since in L2(∂D),

zϕN−1 − ᾱN−1ϕ
∗
N−1 = 0

Thus, (10.11) is (10.3). �

As a first application, we want to show that each finite unitary has
an LM factorization without recourse to orthogonal polynomials. By
taking limits, one obtains an LM factorization in general. This cal-
culation fleshes out an argument given by AGR [5] in the orthogonal
case by using induction to make the proof more transparent:

Theorem 10.3. Let U be a unitary matrix on CN with (1, 0, . . . 0)t as

cyclic vector. Then there exists a unitary V on C
N with V (1, 0, . . . 0)t =

(1, 0, . . . , 0)t so that V UV −1 has an LM factorization.

Remark. By LM factorization, we mean L = Θ̃(α0)⊕ Θ̃(α2)⊕· · · and

M = 11×1 ⊕ Θ̃(α1) ⊕ Θ̃(α3) ⊕ · · · , with a
˜̃
Θ(αN−1) at the end of L if

N is odd and of M is N is even.

Proof. We use induction on N . N = 1, which says U = (
˜̃
Θ(α0)(1),

is trivial. By the GGT representation and AGR factorization, we can
find W (with W (1, 0, . . . , 0)t = (1, 0, . . . , 0)t) so

WUW−1 = Θ̃0(α0)Θ̃1(α1) . . .
˜̃
ΘN−1(αN−1)

Let

U1 = Θ̃0(α1) . . .
˜̃
ΘN−2(αN−1) (10.12)
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on CN−1. By induction and adding 11×1 ⊕ · · · everywhere, we can find
L1, M1, and V1 so

(1 ⊕ V1)WUW−1(1 + V1)
−1 = Θ̃0(α0)[1 ⊕ L1][1 ⊕M1] (10.13)

Define
V = [1 ⊕M1][1 ⊕ V1]W

(note V maps (1 0 . . .0)t to itself). We have

V UV −1 = {[1 ⊕M1]Θ̃0(α0)}{[1 ⊕L1]}
which precisely has the form LM. �

As a second application, we want to provide an explicit map that
will be critical in the next section. Fix δ0 ∈ Cn and U ∈ U(n), the
n × n unitary matrices. Let U(n − 1) = {U ∈ U(n) | Uδ0 = δ0}. The
symbol U(n−1) is accurate since each such U defines and is defined by
a unitary on {δ0}⊥ ∼= C

n−1. Let SC
2n−1 = U(n)/U(n − 1), the group

theoretic quotient. By mapping

π : U ∈ U(n) → Uδ0 (10.14)

we see that SC2n−1 ∼= {z ∈ Cn | |z| = 1}, the sphere of real dimension
2n− 1. Here is the result we will need:

Theorem 10.4. There exists continuous maps g1 and g2 defined on

{z ∈ SC2n−1 | z 6= δ0} with g1 mapping to U(n) and g2 to SC2n−3 =
{z ∈ SC2n−1 | 〈δ0, z〉 = 0} so that

(i)
π[g1(z)] = z (10.15)

(ii) V (U) ≡ g1(π(U))−1U ∈ U(n− 1) for all U /∈ U(n− 1)
(iii) If δ0 is cyclic for U with Verblunsky coefficients αj(U, δ0), then

g2(π(U)) is cyclic for V (U) ↾ Cn−1 and

αj(V (U), g2(π(U))) = αj+1(U, δ0) (10.16)

(iv)

〈δ0, Uδ0〉 = α0(U, δ0) (10.17)

if δ0 is cyclic for U.

Proof. If z 6= δ0, a(z) = 〈δ0, z〉 ∈ D and so

g2(z) =
z − 〈δ0, z〉δ0

‖z − 〈δ0, z〉δ0‖
is well defined and in SC2n−3. In particular, if p(z) = (1 − a(z)2)1/2 =
‖z − 〈δ0, z〉δ0‖, we have

z = p(z)g2(z) + a(z) δ0 (10.18)
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Define g1(z) by

g1(z)w =





w if w ⊥ δ0, g2(z)

z if w = δ0

−a(z)g2(z) + p(z)δ0 if w = g2(z)

and otherwise linear. Then g1(z) is unitary since Θ(a(z)) is unitary.
(i) is obvious from g1(z)δ0 = z. (ii) is a restatement of (i). (iii) follows
from the fact that g2(z) corresponds to δ1 in a δj = χj(z) basis and
the AGR factorization. (iv) is a consequence of zϕ0 − ᾱ0ϕ

∗
0 = ϕ1, so

〈ϕ0, zϕ0〉 = ᾱ0〈ϕ0, ϕ
∗
0〉 = ᾱ0. �

We want to close this section by noting that the AGR factoriza-
tion implies an estimate on the GGT matrices that is not obvious
from (10.2). Indeed, in Section 4.1 of [69], an unnecessary condition,
lim inf|αn| > 0, is made because the estimate below is not obvious.

In essence, the AGR factorization plays the role for estimates of
GGT matrices that the LM factorization does for CMV matrices. In
some ways, it is more critical because CMV matrices are five-diagonal
with matrix elements which are quadratic in α and ρ, so one can easily
get estimates like (7.2) (but with a worse constant) without using the
LM factorization. Since GGT matrices are not finite width and have
matrix elements that are products of arbitrary orders, direct estimates
from (10.2) are much harder.

Theorem 10.5. Let {αn}∞n=0 and {βn}∞n=0 be two sequences in D
∞

and

let σn = (1 − |βn|2)1/2. Then

‖G({αn}∞n=0) − G({βn}∞n=0)‖1 ≤ 2
∞∑

n=0

(|αn − βn| + |σn − ρn|) (10.19)

Proof. By (10.4) and standard trace class techniques [71], we need only
prove for finite sequences that

‖Θ̃0(α0) . . . Θ̃N(αN)−Θ̃0(β0) . . .ΘN (βN)‖1 ≤ 2
N∑

n=0

(|αn−βn|+|σn−ρn|)

(10.20)

Since ‖Θ̃j(αj) − Θ̃j(βj)‖1 ≤ 2(|αj − βj| + |σj − ρj|), and ‖Θ̃(α)‖ = 1,
writing the difference of products as a telescoping sum yields (10.20).

�

Notice also that AGR factorization shows that if |αj| = 1, G decou-
ples. This fact and (10.19) provide an alternate proof of Rakhmanov’s
lemma (Theorem 9.2) by the same decoupling argument, but using G
in place of C. If

∑∞
n=0|αn|2 = ∞, one also gets a proof of Theorem 9.3,
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using G in place of C and (10.19). If
∑∞

n=0|αn|2 <∞, one must use the
extended GGT matrix, F , of Section 4.1 of [69] (see also Constantinescu
[15]). It is easy to prove that if

∑|αn|2 < ∞ and
∑|αn − βn| < ∞,

then F({αn}∞n=0)−F({βn}∞n=0) is trace class since the difference of F ’s
differs from the difference of G’s by a rank one operator, which is always
trace class!

11. CUE, Haar Measure, and the Killip–Nenciu Theorem

In [50], Killip and Nenciu proved the following result:

Theorem 11.1. Let dµ be a normalized Haar measure on U(n), the

n × n unitary matrices. Then, for a.e. U, δ0 = (1, 0, . . . , 0)t is cyclic,

and the measure induced on Dn−1×∂D by U → αj(U0, δ0) is the product

measure:
{n−2∏

j=0

[
n− j − 1

π
(1 − |αj|2)n−j−2 d2αj

]}
dθ(αn−1)

2π
(11.1)

where θ(αn−1) is defined by

αn−1 = eiθ(αn−1) (11.2)

and d2α is a two-dimensional Lebesgue measure on D.

Remark. By the “induced measure,” we mean the measure dν on Dn−1×
∂D given by ν(B) = µ(A−1[B]), where A(U) = (α1(U), . . . , αn−1(U)).

This is really a result about Verblunsky coefficients, not CMV ma-
trices, and both their proof and ours use the GGT, not the CMV,
matrices. We provide this here because, first, Killip–Nenciu proved
this result to provide a five-diagonal model for CUE (see below), and
because the result was proven as part of the ferment stirred up by the
CMV discovery. In this section, we will provide a partially new proof
of Theorem 11.1 that is perhaps more natural from a group theoretic
point of view, and then describe and sketch their somewhat shorter
argument!

To understand where the factors in (11.1) come from:

Lemma 11.2. Let dµSC2n−1 be the measure on the 2n−1 real dimension

manifold {z ∈ Cn | |z| = 1}, which is normalized and invariant under

rotations. Map SC2n−1 Q−→ D by z 7→ z1, the first component, and let

dν be the measure on D given by ν(B) = µSC2n−1(Q−1[B]). Then

dν(w) =
n− 1

π
(1 − |w|2)n−2 d2w (11.3)
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Proof. Since d2w = 1
2
dθ d|w|2,

∫

D

dν(w) =
2π(n− 1)

π

1

2

∫ 1

0

(1 − x)n−2 dx = 1

so dν is normalized. Thus, we will not worry about constants. Using
x1 + ix2, x3 + ix4, . . . for the n complex variables, the measure δ(1 −
|x|2)dx1 . . . dx2n is

dx1 . . . dx2n−1

2(1 − ∑2n−1
j=1 x2

j )
1/2

Integrating out x3, . . . , x2n−1 for fixed x1, x2 with ρ = (1 − |x1|2 −
|x2|2)1/2, the measure is

1

2

∫

|y|≤(1−ρ2)1/2

d2n−3y

(1 − ρ2 − y2)1/2

Scaling x = y/(1 − ρ2)1/2, we find

1

2
(1 − ρ2)2n−4/2

∫

|x|≤1

d2n−3x

(1 − x2)1/2

so the measure is C(1 − w2)n−2 d2w, proving (11.3). �

Theorem 11.4 below must be well known to experts on homogeneous
spaces.

Lemma 11.3. Let dν1, dν2 be two probability measures on compact

spaces X and Y , and let dν be a probability measure on X×Y. Suppose

(i) π∗
1(dν) = dν1, that is, if π1(x, y) = x, then ν1(B) = ν(π−1

1 [B]).
(ii) For any continuous f on X,

∫
X
f dν = Cf dν2, that is,

∫
f(x)g(y) dν = Cf

∫
g(y) dν2 (11.4)

for all continuous g on Y.

Then dν = dν1 ⊗ dν2.

Proof. Taking g = 1 in (11.4),

Cf =

∫
f(x) dν =

∫
f(x) dν1(x)

by (i). Thus,
∫
f(x)g(y) dν =

(∫
f(x) dν1(x)

)(∫
g(y) dν2(y)

)

so dν = dν1 ⊗ dν2 integrated on product functions which are total in
C(X × Y ). �
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Theorem 11.4. Let G be a compact group and H a closed subgroup.

Let dνG, dνH be normalized Haar measures and π : G → G/H. Let

dνG/H be the measure induced by dνG on G/H, that is,

νG/H(B) = νG(π−1[B])

Let O be an open set in G/H and f : O → G a continuous cross-

section, that is, π[f(x)] = x for all x ∈ O. Coordinatize π−1[O] by

O ×H via

(x, h) 7→ f(x)h (11.5)

Then, on π−1[O],

dνG(x, h) = dνG/H(x) dνH(h) (11.6)

Proof. The existence of a cross-section implies that under the coordi-
nates (11.5), π−1[O] ∼= O × H . Clearly, π∗

1(dµG) = dµG/H ↾ O, by
construction of dµG/H . On the other hand,

∫
O
f dµG/H is a measure on

H invariant under right multiplication by any h ∈ H, so this is Cf dµH.
Therefore, Lemma11.3 applies and (11.6) holds. �

Proof of Theorem 11.1. We use induction on n. n = 1, that is, that for
U(1), U = (eiθ0) has Haar measure dθ0

2π
, is immediate.

Note that U ∈ U(n) has δ0 as a cyclic vector if and only if U has sim-
ple spectrum, and for each eigenvector ϕk of U, we have 〈ϕk, δ0〉 6= 0.
As is well known, {U | U has a degenerate eigenvalue} has codimen-
sion 3 and so zero Haar measure. Similarly, 〈ϕk, δ0〉 = 0 on a set of
codimension 2 and so zero Haar measure. Thus, Cn = {E | δ0 is cyclic
for U} has full Haar measure.

Let O = {η ∈ SC2n−1 | η 6= δ0}. Then f(x) = g1(z) given in
Theorem 10.4 is a cross-section, and so dµU(n) = dµSC2n−1 ⊗ dµU(n−1)

by Theorem 11.4.
By Theorem 10.4, g−1

1 (π1[Cn]) is (z, V (U)) and V (U) has Verblunsky
coefficients {αj+1(U)}n−2

j=0 . Thus, by induction, dµU(n−1) on these α’s is
the product (11.6) without the α0 factor.

By (10.18) and Lemma 11.3, the α0 distribution generated by
dµSC2n−1 is the α0 factor in (11.1). �

The proof in [50] differs in two ways: First, in place of the AGR fac-
torization, Killip–Nenciu use a (Householder) factorization as a phase
factor times a product of reflections. Instead of using induction on sym-
metric spaces as we do, they use an alternate that would work with the
AGR factorization also. Starting with ϕ0 = δ0, we let ψ0 = Uϕ. There
is a unique vector, ϕ1 (what we called g2(π(U)) in Theorem 10.4), in
the span of ϕ and ψ0, so that 〈ψ0, ϕ1〉 > 0 and 〈ϕ1, δ0〉 = 0. ϕ1 is cyclic
for V (U) and so, by induction, we obtain ψ0, ψ1, . . . , ψn−1 an ON basis
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with |〈δj, ψj〉| < 1. It is not hard to see that, via the AGR factoriza-
tion, this sets up a one-one map of ON basis with |〈δj, ψj〉| < 1 and U ’s
with δ0 cyclic for U. Haar measure induces on the ψ’s a measure as fol-
lows: ψ0 is uniformly distributed on SC2n−1; ψ1 uniformly on the copy
of SC2n−3 of unit vectors orthogonal to ψ1; ψ2 uniformly on SC2n−5,
etc. Since 〈δj , ψj〉 = ᾱj , we obtain the measure (11.1).

Since det(Θ̃j(αj)) = −1, det
(˜̃
ΘN−1(αN−1)

)
= ᾱN−1, we see

det(G({αn}N−1
n=0 ) = (−1)N−1ᾱN−1

Thus, SU(n) = {U ∈ U(n) | det(U)} is precisely these U with αN−1 =
(−1)N−1. The same inductive argument thus proves:

Theorem 11.5. Let dµ be normalized Haar measure on SU(n). Then

for a.e. U, δ0 = (1, 0, . . . , 0)t is cyclic and the measure induced on Dn−1

by U → αj(U, δ0) (with αn−1(U, δ0) ≡ (−1)n−1) is the product measure

given by (11.1) with the final dθ term dropped.

SO[n] is the n× n real unitary matrices (i.e., orthogonal matrices).
If δ0 is cyclic, they have Verblunsky coefficients which are easily seen
to lie in (−1, 1). Conversely, it is easy to see that if αj ∈ (−1, 1) for
j = 0, . . . , n − 2, there is an orthogonal matrix with those αj ’s. A
similar analysis lets us compute the distribution on (−1, 1)n−1 induced
by Haar measure on SO[n]. We need only replace Lemma 11.3 by

Lemma 11.6. Let dηn−1 be the measure on the n−1-dimensional unit

sphere in R
n. The induced measure on x1 is

Γ(n
2
)(1 − |x1|2)(n−3)/2 dx1√

π Γ(n−1
2

)

Proof. That the measure is C(1−|x1|2)(n−3/2) dx1 follows from the same
calculation as in Lemma 11.3. The normalization is the inverse of the
beta function 22−nΓ(n − 1)/Γ(n−1

2
) which, as noted by [50] (there is a

( )−1 missing on the leftmost term in their (3.14)), can be written, using
the duplication formula for beta functions, as Γ(n

2
)/
√
π Γ(n−1

2
). �

We thus have

Theorem 11.7 ([50]). The measure on (−1, 1)n−1 induced by Haar

measure on SO[n] mapped to the real Verblunsky coefficients is

Γ(n
2
)

πn/2

n−1∏

k=0

(1 − α2
k)

(n−k−3)/2 dαk
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The CUE eigenvalue distribution [20, 21, 22] is the one for U ∈
U[n] induced by Haar measure. Weyl’s integration formula (see, e.g.,
[66]) says that if λ1, . . . , λn with λj = eiθj are the eigenvalues, this is

C
∏

i<j |λi−λj |2
∏n

j=1
dθj

2π
. Theorem 11.1 says that CMV matrices with

distribution of α’s given by (11.1) has the same distribution, and so
gives a model for CUE by five-diagonal matrices. [50] find a similar

model for the “β-distributions” given by Cβ

∏
i=j |λi − λj |β dθj

2π
; see also

Forrester–Rains [25].

12. CMV and the AL Flow

One of the great discoveries of the 1970’s ([19, 24, 26, 58, 80]
and dozens of other papers) is that lurking within one-dimensional
Schrödinger operators and Jacobi matrices is a completely integrable
system (resp., KdV and Toda flows), natural “invariant” tori, and a
natural symplectic structure in which the Schrödinger operator or Ja-
cobi matrix is the dynamical half of a Lax pair.

Such structures occur also for Verblunsky coefficients, and the dy-
namical half of the Lax pair is the CMV matrix. While the CMV part
obviously requires CMV matrices, the other parts do not, and it is
surprising that it was only in 2003–04 that they were found. We will
settle here for describing the two most basic structures, leaving further
results to mentioning the followup papers: Geronimo–Gesztesy–Holden
[30], Gesztesy–Zinchenko [36], Killip–Nenciu [51], Li [55], and Nenciu
[61].

On D, introduce the symplectic form given by the Poisson bracket
(where, as usual, ∂

∂z
and ∂

∂z̄
are 1

2
[ ∂
∂x

∓ i ∂
∂y

]),

{f, g} = iρ2

[
∂f

∂z̄

∂g

∂z
− ∂f

∂z

∂g

∂z̄

]
(12.1)

The ρ2 is natural as we will see below. Extend this to D
p (coordinatized

by (α0, . . . , αp−1) by

{f, g} = i

p−1∑

j=0

ρ2
j

[
∂f

∂ᾱj

∂g

∂αj
− ∂f

∂αj

∂g

∂ᾱj

]
(12.2)

Because of the ρ2,
{ p−1∏

j=0

ρ2
j , g

}
= −

p−1∏

j=0

ρ2
j

( p+1∑

j=0

∂g

∂θj

)

and functions of ρ0 . . . ρp−1 generate simultaneous rotations of all
phases. Nenciu–Simon [62] proved the following:
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Theorem 12.1 ([62]). Let p be even and let ∆(z, {αj}p−1
j=0) be the dis-

criminants (see (3.20)) for the periodic sequence with αj+kp = αj for

j = 0, . . . , p − 1; k = 0, 1, 2, . . . . Then, with respect to the symplectic

form (12.2),

{∆(w),∆(z)} = 0 (12.3)

for all w, z ∈ C\{0}.
Note: See [55, 51] for a discussion of symplectic forms on unitary

matrices.

Since ∆(1/w̄) = ∆(w), and the leading coefficient is real, ∆(z) has

p real coefficients, that is, ∆(z) =
∑p/2

j=−p/2 ajz
j with a−j = āj, then

ap/2,Re ap/2−1, Im ap/2−1, . . . ,Re a1, Im a1, a0 are the p real functions of

{αj}p−1
j=0 which Poisson commute. They are independent at a.e. points

(in α) and define invariant tori. Each one generates flows that are
completely integrable. The simplest is

−iα̇j = ρ2
j(αj+1 + αj−1) (12.4)

which has been known as a completely integrable system for a long time
under the name “defocusing Ablowitz–Ladik flow” (after [1, 2, 3]).

Nenciu has proven a beautiful result:

Theorem 12.2 ([59, 60, 61]). The flows generated by the coefficients

of ∆ can be put into Lax pair form with the dynamical element being

the Floquet CMV matrix.

For details as well as extensions to some infinite CMV matrices, see
the references above.

The flow generated by
∏p−1

j=0 ρ
2
j realizes the αj → λαj invariance of

the isospectral tori. The flow (12.4) is generated by Re(a1). The Im(ak)
generate flows that preserve the set of {αj}p−1

j=0 where all αj are real (as
a set, not pointwise). The simplest of these, generated by Im(a1), is

α̇n = ρ2
n(αn+1 − αn−1) (12.5)

called the Schur flow. Via the Geronimus relations of the next section,
these generate a flow on Jacobi parameters that is essentially the Toda
flow. For further discussion, see [4, 23, 27, 59].

13. CMV Matrices and the Geronimus Relations

In a celebrated paper, Szegő [76] found a connection between or-
thogonal polynomials for measures on [−2, 2] (he had [−1, 1]; I use the
scaling common in the Schrödinger operator community) and OPUC.
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Given a measure dγ on [−2, 2], one defines the unique measure dξ on
∂D which is invariant under z → z̄ and obeys

∫
g(x) dγ(x) =

∫
g(2 cos θ) dξ(θ) (13.1)

What Szegő showed is that the orthonormal polynomials pn for dγ and
the OPUC for ϕn for dξ are related by

pn

(
z +

1

z

)
= Cnz

−n(ϕ2n(z) + ϕ∗
2n(z)) (13.2)

The normalization constants Cn (see (13.1.14) in [70]) → 1 as n →
∞ if

∑∞
n=0|αn|2 < ∞. Motivated by this, Geronimus [35] found a

relation between the Verblunsky coefficients, αn, for dξ and the Jacobi
parameters {an}∞n=1, {bn}∞n=1 for dγ (see Theorem 13.1.7 of [70]):

a2
n+1 = (1 − α2n−1)(1 − α2

2n)(1 + α2n+1) (13.3a)

bn+1 = (1 − α2n−1)α2n − (1 + α2n−1)α2n−2 (13.3b)

In [50], Killip–Nenciu found a direct proof of (13.3) by finding a
beautiful relation between CMV and some Jacobi matrices. We will
sketch the idea, leaving the detailed calculations to [50] or the peda-
gogic presentation in Section 13.2 of [70].

A measure is invariant under z → z̄ if and only if all {αn}∞n=0 are
real. Θ(α) with α real is selfadjoint and unitary with determinant −1,
hence eigenvalues ±1, that is, a reflection on C2. Thus,

αn = ᾱn all n⇒ M2 = L2 = 1

Since χn(z) = xn(1/z̄), we see that if µ is invariant and (Mf)(z) =
f(z̄), then

〈χj,Mχℓ〉 = Mjℓ

C + C∗ is selfadjoint and maps {f | Mf = f} to itself. Let us see in
a natural basis that its restriction to this invariant subspace is a Jacobi
matrix.

If α is real and

S(α) =
1√
2

(√
1 − α −

√
1 + α√

1 + α
√

1 − α

)

then

S(α)Θ(α)S(α)−1 =

(
−1 0
0 1

)
(13.4)

Define

S = 11×1 ⊕ S(α1) ⊕ S(α3) ⊕ · · ·
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so

SMS−1 = R =




1
−1

1
−1

. . .




and define
B = SLS−1

Then
S(C + C−1)S−1 = RB + BR

which commutes with R.
B is seven-diagonal as a product of three tridiagonal matrices. More-

over, since B commutes with R, its odd-even matrix elements vanish.
It follows that

RB + BR = Je ⊕ Jo

where Je acts on {δ2n}∞n=0 and Jo on {δ2n+1}∞n=0, and each is a Jacobi
matrix. A calculation shows that the Jacobi parameters of Je are given
by (13.3) and that the spectral measures are related by (13.1). One
can also analyze Jo which is related to another mapping of Szegő [76]
and one gets two more Jacobi matrices by looking at C+C−1 restricted
to the spaces where L = 1 or L = −1.
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[77] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23,

American Mathematical Society, Providence, RI, 1939; 3rd edition, 1967.
[78] A. V. Teplyaev, The pure point spectrum of random orthogonal polynomials

on the circle, Soviet Math. Dokl. 44 (1992), 407–411; Russian original in
Dokl. Akad. Nauk SSSR 320 (1991), 49–53.

[79] O. Toeplitz, Zur Theorie der quadratischen Formen von unendlich vielen

Veränderlichen, Nachr. Akad. Wiss. Gottingen, Math. Phys. Kl., Heft 5,
(1910), 489–506.

[80] P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math. 37 (1976),
45–81.

[81] S. Verblunsky, On positive harmonic functions: A contribution to the algebra

of Fourier series, Proc. London Math. Soc. (2) 38 (1935), 125–157.
[82] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev. 35

(1993), 430–471.


