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Abstract. We prove that for any n × n matrix, A, and z with
|z| ≥ ‖A‖, we have that ‖(z − A)−1‖ ≤ cot( π

4n
)dist(z, spec(A))−1.

We apply this result to the study of random orthogonal polynomi-
als on the unit circle.

1. Introduction

This paper concerns a sharp bound on the approximation of eigen-
values of general non-normal matrices that we found in a study of the
zeros of orthogonal polynomials. We begin with a brief discussion of
the motivating problem, which we return to in Section 7.

Given a probability measure dµ on C with
∫

|z|n dµ(z) < ∞ (1.1)

we define the monic orthogonal polynomials, Φn(z), by

Φn(z) = zn + lower order (1.2)
∫

zj Φn(z) dµ(z) = 0 j = 0, 1, . . . , n − 1 (1.3)

If

Pn = orthogonal projection in L2(C, dµ)

onto polynomials of degree n − 1 or less
(1.4)

then

Φn = (1 − Pn)zn (1.5)
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A key role is played by the operator

An = PnMzPn ↾ Ran(Pn) (1.6)

where Mz is the operator of multiplication by z and An is an operator
on the n-dimensional space Ran(Pn).

If z0 is a zero of Φn(z) of order k, then fz0 ≡ (z − z0)
−kΦn(z) is in

Ran(Pn) and

(An − z0)
kfz0 = 0 (A − z0)

k−1fz0 6= 0 (1.7)

which implies

Φn(z) = det(z − An) (1.8)

Also, Φn(z) is the minimal polynomial for An.
In the study of orthogonal polynomials on the real line (OPRL), a

key role is played by the fact that for any y ∈ Ran(Pn) with ‖y‖L2 = 1,

dist(z0, {zeros of Φn}) ≤ ‖(An − z0)y‖ (OPRL case) (1.9)

This holds because, in the OPRL case, An is self-adjoint. Indeed, for
any normal operator, B, (throughout ‖ · ‖ is a Hilbert space norm; for
n× n matrices, the usual matrix norm induced by the Euclidean inner
product)

dist(z0, spec(B)) = ‖(B − z0)
−1‖−1 (1.10)

and, of course, for any invertible operator C,

inf{‖Cy‖ | ‖y‖ = 1} = ‖C−1‖−1 (1.11)

We were motivated by seeking a replacement of (1.9) in a case where
An is non-normal. Indeed, we had a specific situation of orthogonal
polynomials on the unit circle (OPUC; see [17, 18]) where one has a
sequence zn ∈ ∂D = {z | |z| = 1} and corresponding unit trial vectors,
yn, so that

‖(An − zn)yn‖ ≤ C1e
−C2n (1.12)

for all n with C2 > 0. We would like to conclude that Φn(z) has zeros
near zn.

It is certainly not sufficient that ‖(An − zn)yn‖ → 0. For the case
dµ(z) = dθ/2π has Φn(z) = dist(1, spec(An)) = 1, but if yn = (1 + z +
· · · + zn−1)/

√
n, then ‖(An − 1)yn‖ = ‖Pn(z − 1)yn‖ = n−1/2‖Pn(z

n −
1)‖ = n−1/2‖1‖ = n−1/2. As we will see later, by a clever choice of yn,
one can even get trial vectors with ‖(An − 1)yn‖ = O(n−1).

Of course, by (1.11), we are really seeking some kind of bound re-
lating ‖(An − zn)−1‖ to dist(zn, spec(An)). At first sight, the prognosis
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for this does not seem hopeful. The n × n matrix,

Nn =




0 1 0
. . .

. . .

. . . 1
0 0


 (1.13)

has
‖(z − Nn)−1‖ ≥ |z|−n (1.14)

since (z−Nn)−1 =
∑n−1

j=0 z−j−1(Nn)j has z−n in the 1, n position. Thus,

as is well known, ‖(An − z)−1‖ for general n × n matrices An and
general z cannot be bounded by better than dist(z, spec(An))−n. In-
deed, the existence of such bounds by Henrici [4] is part of an exten-
sive literature on general variational bounds on eigenvalues. Trans-
lated to a variational bound, this would give dist(zn, {zeros of Φn}) ≤
C‖(An − zn)y‖1/n, which would not give anything useful from (1.12).

We note that as n → ∞, there can be difficulties even if z0 stays
away from spec(An). For, by (1.14),

‖(1 − 2Nn)−1‖ ≥ 2n−1 (1.15)

diverges as n → ∞ even though ‖2Nn‖ is bounded in n.
Despite these initial negative indications, we have found a linear

variational principle that lets us get information from (1.12). The key
realization is that zn and ‖An‖ are not general. Indeed,

|zn| = ‖An‖ = 1 (1.16)

It is not a new result that a linear bound holds in the generality
we discuss. In [11], Nikolski presents a general method for estimating
norms of inverses in terms of minimal polynomials (see the proof of
Lemma 3.2 of [11]) that is related to our argument in Subsection 6A.
His ideas yield a linear bound but not with the optimal constant we
find.

Our main theorem is

Theorem 1. Let Mn be the set of pairs (A, z) where A is an n × n
matrix, z ∈ C with

|z| ≥ ‖A‖ (1.17)

and

z /∈ spec(A) (1.18)

Then

c(n) ≡ sup
Mn

dist(z, spec(A))‖(A − z)−1‖ = cot

(
π

4n

)
(1.19)
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Of course, the remarkable fact, given (1.14), is that c(n) < ∞ when
we only use the first power of dist(z, spec(A)). It implies that so long
as (1.17) holds,

dist(z, spec(A)) ≤ c(n)‖(A − z)y‖ (1.20)

for any unit vector y. For this to be useful in the context of (1.12), we
need only mild growth conditions on c(n); see (1.21) below.

As an amusing aside, we note that

c(1) = 1 = 0 +
√

1

c(2) = 1 +
√

2

c(3) = 2 +
√

3

but the obvious extrapolation from this fails. Instead, because of prop-
erties of cot(x),

c(n) ≤ 4

π
n (1.21)

c(n)

n
is monotone increasing to

4

π
so, in fact, for n ≥ 3,

2 +
√

3

3
≤ c(n)

n
≤ 4

π

a spread of 2.3%.
We note that, by replacing A by A/z and z by 1, it suffices to prove

sup
‖A‖<1

dist(1, spec(A))‖(1 − A)−1‖ = cot

(
π

4n

)
(1.22)

and it is this that we will establish by proving three statements. We
will use the special n × n matrix

Mn =




1 2 . . . 2
0 1 . . . 2
...

...
. . .

...
0 0 . . . 1


 (1.23)

given by

(Mn)kℓ =





2 if k < ℓ

1 if k = ℓ

0 if k > ℓ

Our three sub-results are

Theorem 2. ‖Mn‖ = cot(π/4n)
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Theorem 3. For each 0 < a < 1, there exist n × n matrices An(a)
with

‖An(a)‖ ≤ 1 spec(An) = {a} (1.24)

and

lim
a↑1

(1 − a)(1 − An(a))−1 = Mn (1.25)

Theorem 4. Let A be an upper triangular matrix with ‖A‖ ≤ 1 and

1 /∈ spec(A). Then

dist(1, spec(A))|(1 − A)−1
kℓ | ≤





2 if k < ℓ

1 if k = ℓ

0 if k > ℓ

(1.26)

Proof that Theorems 2–4 ⇒ Theorem 1. Any matrix has an orthonor-
mal basis in which it is upper triangular: One constructs such a Schur
basis by applying Gram-Schmidt to any algebraic basis in which A has
Jordan normal form. In such a basis, (1.26) says that

dist(1, spec(A))‖(1 − A)−1y‖ ≤ ‖Mny‖ ≤ ‖Mn‖ ‖y‖

so Theorem 2 implies LHS of (1.22) ≤ cot(π/4n).
On the other hand, using An(a) in dist(1, spec(A))‖(1−A)−1‖ implies

LHS of (1.22) ≥ cot(π/4n). We thus have (1.22) and, as noted, this
implies (1.19). �

To place Theorem 1 in context, we note that if |z| > ‖A‖,

‖(z − A)−1‖ ≤
∞∑

j=0

|z|−j−1‖A‖j = (|z| − ‖A‖)−1 (1.27)

So (1.19) provides a borderline between the dimension-independent
bound (1.27) for |z| > ‖A‖ and the exponential growth that may hap-
pen if |z| < ‖A‖, essentially the phenomenon of pseudospectra which
is well documented in [24]; see also [15].

The structure of this paper is as follows. In Section 2, we will prove
Theorem 4, the most significant result in this paper since it implies
c(n) < ∞ and, indeed, with no effort that c(n) ≤ 2n. Our initial
proofs of c(n) < ∞ were more involved — the fact that our final proof
is quite simple should not obscure the fact that c(n) < ∞ is a result
we find both surprising and deep.

In Section 3, we use upper triangular Toeplitz matrices to construct
An(a) and prove Theorem 3. Sections 4 and 5 prove Theorem 2; indeed,
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we also find that if

(Qn(a))kℓ =





1 if k < ℓ

a if k = ℓ

0 if k > ℓ

(1.28)

then

‖Qn(1)‖ =
1

2 sin( π
4n+2

)
(1.29)

which means we can compute ‖Qn(a)‖ for a = 0, 1
2
, 1. While the cal-

culation of ‖Mn‖ and ‖Qn(1)‖ is based on explicit formulae for all the
eigenvalues and eigenvectors of certain associated operators, we could
just pull them out of a hat. Instead, in Section 4, we discuss the moti-
vation that led to our guess of eigenvectors, and in Section 5 explicitly
prove Theorem 2.

Section 6 contains a number of remarks and extensions concerning
Theorem 1, most importantly to numerical range concerns. Section 7
contains the application to random OPUC.

Acknowledgments. This work was done while B. Simon was a vis-
itor at King’s College London. He would like to thank A. N. Press-
ley and E. B. Davies for the hospitality of King’s College, and the
London Mathematical Society for partial support. The calculations
of M. Stoiciu [20, 21] were an inspiration for our pursuing the esti-
mate we found. We appreciate useful correspondence/discussions with
M. Haase, N. Higham, R. Nagel, N. K. Nikolski, V. Totik, and L. N. Tre-
fethen.

2. The Key Bound

Our goal in this section is to prove Theorem 4. A is an upper trian-
gular n × n matrix. Let λ1, . . . , λn be its diagonal elements. Since

det(z − A) =
n∏

j=1

(z − λj) (2.1)

the λj’s are the eigenvalues of A counting algebraic multiplicity. In
particular,

sup
j

|1 − λj|−1 = dist(1, spec(A))−1 (2.2)

Define

C = (1 − A)−1 + (1 − A∗)−1 − 1 (2.3)

Proposition 2.1. Suppose ‖A‖ ≤ 1. Then
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(a)

Cjj = |1 − λj|−2(1 − |λj|2)
≤ 2|1 − λj |−1 (2.4)

(b)

C ≥ 0

(c)

|Cjk| ≤ |Cjj|1/2|Ckk|1/2 (2.5)

(d) If j < k, then (1 − A)−1
jk = Cjk.

Proof. (a) Since A is upper triangular,

[(1 − A)−1]jj = (1 − λj)
−1 (2.6)

so (2.4) comes from

(1 − λj)
−1 + (1 − λ̄j)

−1 − 1 = |1 − λj |−2(1 − |λj|2) (2.7)

and the fact that for |λ| ≤ 1,

|1 − λ|−1(1 − |λ|2) = (1 + |λ|)(1 − |λ|)(|1 − λ|−1)

≤ 2

since 1 − |λ| ≤ |1 − λ|.
(b) The operator analog of (2.7) is the direct computation

C = [(1 − A)−1]∗(1 − A∗A)(1 − A)−1 ≥ 0 (2.8)

since ‖A‖ ≤ 1 implies A∗A ≤ 1.

(c) This is true for any positive definite matrix.

(d) (1 − A∗)−1 is lower triangular and 1 is diagonal. �

Proof of Theorem 4. (1−A)−1 is upper triangular so [(1−A)−1]kℓ = 0
if k > ℓ. By (2.6) and (2.2),

|[(1 − A)−1]kk| = |1 − λk|−1 ≤ dist(1, spec(A))−1 (2.9)

By (a), (c), (d) of the proposition, if k < ℓ,

|[(1 − A)−1]kℓ| ≤ [|1 − λk|−2|1 − λℓ|−2(1 − |λk|2)(1 − |λℓ|2)]1/2

≤ 2[|1 − λk|−1|1 − λℓ|−1]1/2

≤ 2[dist(1, spec(A))]−1

by (2.2). �
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3. Upper Triangular Toeplitz Matrices

A Toeplitz matrix [1] is one that is constant along diagonals, that is,
Ajk is a function of j − k. An n × n upper triangular Toeplitz matrix
(UTTM) is thus of the form




a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2
...

...
...

. . .
...

0 0 0 · · · a0


 (3.1)

These concern us because Mn is of this form and because the operators,
An(a), of Theorem 3 will be of this form. In this section, after recalling
the basics of UTTM, we will prove Theorem 3. Then we will state some
results, essentially due to Schur [16], on the norms of UTTM that we
will need in Section 5 in one calculation of the norm of Mn.

Given any function, f , which is analytic near zero, we write Tn(f)
for the matrix in (3.1) if

f(z) = a0 + a1z + · · ·+ an−1z
n−1 + O(zn) (3.2)

f is called a symbol for Tn(f).
We note that

Tn(fg) = Tn(f)Tn(g) (3.3)

This can be seen by multiplying matrices and Taylor series or by ma-
nipulating projections on ℓ2 (see, e.g., Corollary 6.2.3 of [17]).

In addition, if f is analytic in {z | |z| < 1}, then

‖Tn(f)‖ ≤ sup
|z|<1

|f(z)| (3.4)

To see this well-known fact, associate an analytic function

v(z) = v0 + v1z + · · · (3.5)

to the vector ϕn(v) ∈ C
n by

ϕn(v) = (vn−1, vn−2, . . . , v0)
T (3.6)

and note that with ‖ · ‖2, the H2 norm,

‖ϕn(v)‖ = inf{‖v‖2 | ϕn = ϕn(v)} (3.7)

Tn(f)ϕn(v) = ϕn(fv) (3.8)

and

‖fv‖2 ≤ ‖f‖∞‖v‖2 (3.9)

If Nn is given by (1.13), then Tn(f) = f(Nn), so an alternate proof
of (3.4) may be based on von Neumann’s theorem; see Subsection 6E.
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Proof of Theorem 3. For a with 0 < a < 1, define

fa(z) =
z + a

1 + az
(3.10)

and define
An(a) = Tn(fa) (3.11)

Then fa(e
iθ) = eiθ (1 + aeiθ)/(1 + aeiθ) has |fa(e

iθ)| = 1, so
sup|z|<1|fa(z)| = 1 and thus, by (3.4),

‖An(a)‖ ≤ 1 (3.12)

By (3.1),
spec(An(a)) = {fa(0)} = {a} (3.13)

By (3.5),
(1 − An(a))−1 = Tn((1 − fa(z))−1) (3.14)

Now

(1 − a)(1 − fa(z))−1 =
z + a

1 − z
(3.15)

so

lim
a↑1

(1 − a)(1 − fa(z))−1 =
1 + z

1 − z
(3.16)

Thus,

lim
a↑1

(1 − a)(1 − An(a))−1 = Tn

(
1 + z

1 − z

)
= Mn (3.17)

since (1 + z)/(1 − z) = 1 + 2z + 2z2 + · · · . �

We now want to refine (3.4) to get equality for a suitable f . A key
role is played by

Lemma 3.1. Let α ∈ D and A an operator with α −1 /∈ spec(A).
Define

B = (A − α)(1 − αA)−1 (3.18)

Then

(1) ‖B‖ ≤ 1 ⇔ ‖A‖ ≤ 1 (3.19)

(2) ‖B‖ = 1 ⇔ ‖A‖ = 1 (3.20)

Proof. By a direct calculation,

1 − B∗B = (1 − αA∗)−1[(1 − |α|2)(1 − A∗A)](1 − αA)−1 (3.21)

(3.19) follows since 1 − B∗B ≥ 0 ⇔ 1 − A∗A ≥ 0, and (3.20) follows
since (3.21) implies

inf
‖ϕ‖=1

(ϕ, (1 − B∗B)ϕ) = 0 ⇔ inf
‖ϕ‖=1

(ϕ, (1 − A∗A)ϕ) = 0 �

Remark. This lemma is further discussed in Subsection 6E.
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Theorem 3.2. If A is an n×n UTTM with ‖A‖ ≤ 1, then there exists

an analytic function, f , on D such that

sup
|z|<1

|f(z)| ≤ 1 (3.22)

and

A = Tn(f) (3.23)

Proof. The proof is by induction on n. If n = 1, ‖A‖ ≤ 1 means
|a0| ≤ 1 and we can take f(z) ≡ a0. For general n, ‖A‖ ≤ 1 means
|a0| ≤ 1. If |a0| = 1, then A = a01 and we can take f(z) ≡ a0. If
a0 < 1, define B by (3.18) with α = a0. B is a UTTM with zero
diagonal terms, so

B =




0 B̃
. . .

0 0


 (3.24)

where ‖B̃‖ = ‖B‖ ≤ 1 by the lemma.

By the induction hypothesis, B̃ = Tn−1(g) where

sup
|z|<1

|g(z)| ≤ 1 (3.25)

Then (3.23) holds with

f =
a0 + zg

1 + a0zg
(3.26)

(3.25) and (3.26) imply (3.22). �

Remarks. 1. By iterating f → g, we see that one constructs f via the
Schur algorithm; see Section 1.3 of [17].

2. Combining this and (3.4), one obtains Schur’s celebrated result
that a0 + a1z + · · · + an−1z

n−1 is the start of the Taylor series of a
Schur function if and only if the matrix A of (3.1) obeys A∗A ≤ 1.
This result is intimately connected to Nehari’s theorem on the norm of
Hankel operators [8, 13]; see Partington [12].

3. This is classical; see [1, 10, 13].

To state the last result of this section, we need a definition:

Definition. A Blaschke factor is a function on D of the form

f(z, w) =
z − w

1 − wz
(3.27)

where w ∈ D. A (finite) Blaschke product is a function of the form

f(z) = ω

k∏

j=1

f(z, wk) (3.28)
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where ω ∈ ∂D. k is called the order of f . We allow k = 0, in which
case f(z) is a constant value in ∂D.

Theorem 3.3. An n × n UTTM, A, has ‖A‖ = c if and only if A =
Tn(f) for an f so that c−1f is a Blaschke product of order k ≤ n − 1.

Proof. (See as alternates: [10, 13].) Without loss, we can take c = 1.
The proof is by induction on n. If n = 1, k must be 0, and the theorem
says |a0| = 1 if and only if f(0) = ω ∈ ∂D, which is true.

It is not hard to see that if f and f1 are related by

f1(z) = z−1 f(z) − f(0)

1 − f(0) f(z)

then f is a Blaschke product of order k ≥ 1 if and only if f1 is a
Blaschke product of order k − 1.

Given A a UTTM with ‖A‖ ≤ 1, |a0| = 1 if and only if A = Tn(a0),
that is, A is given by a Blaschke product of order 0. If |a0| < 1, we
define B by (3.18). ‖B‖ = 1 if and only if ‖A‖ = 1. B̃ given by

(3.25) is related to A by A = Tn(f) if and only if B̃ = Tn−1(f1). Thus,
by induction, ‖A‖ = 1 if and only if f is a Blaschke product of order
k ≤ n − 1. �

4. Inverse of Differential/Difference Operators

In this section and the next, we will find explicit formulae for the
norms of Mn and Qn ≡ Qn(1) given by (1.28). Indeed, we will find all

the eigenvalues and eigenvectors for |Mn| and |Qn| where |A| =
√

A∗A.
A key to our finding this was understanding a kind of continuum limit
of Mn: Let K be the Volterra-type operator on H = L2([0, 1], dx) with
integral kernel

K(x, y) =

{
1 0 ≤ x ≤ y ≤ 1

0 0 ≤ y < x < 1

In some formal sense, K is a limit of either Mn or Qn, but in a precise
sense, Mn is a restriction of K:

Proposition 4.1. Let πn be the projection of H onto the space of

functions constant on each interval [ j
n
, j+1

n
), j = 0, 1, . . . , n − 1. Then

πnKπn (4.1)

is unitarily equivalent to 1
2
Mn/n. In particular,

‖Mn‖ ≤ 2n‖K‖ (4.2)

lim
n→∞

‖Mn‖
n

= 2‖K‖ (4.3)
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Proof. Let {f (n)
j }n−1

j=0 be the functions

f
(n)
j (x) =

{√
n j

n
≤ x < j+1

n

0 otherwise
(4.4)

which form an orthonormal basis for Ran(πn). Since

n〈f (n)
j , Kf

(n)
k 〉 = 1

2
(Mn)jk (4.5)

we have the claimed unitary equivalence. (4.2) is immediate from
‖πnKπn‖ ≤ ‖K‖. (4.3) follows if we note s-limn→∞ πn = 1, so
lim ‖πnKπn‖ = ‖K‖. �

Notice that

(Kf)(x) =

∫ 1

x

f(y) dy (4.6)

so
d

dx
(Kf) = f Kf(1) = 0 (4.7)

and K is an inverse of a derivative. That means K∗K will be the
inverse of a second-order operator. Indeed,

(K∗K)(x, y) =

∫ 1

0

K(z, x) K(z, y) dz

=

∫ min(x,y)

0

dz

= min(x, y) (4.8)

which, as is well known, is the integral kernel of the inverse of − d2

dx2

with u(0) = 0, u′(1) = 1 boundary conditions.
We can therefore write down a complete orthonormal basis of eigen-

functions for K∗K:

ϕn(x) = sin(1
2
(2n − 1)πx) n = 1, 2, . . . (4.9)

(K∗K)ϕn =
4

(2n − 1)2π2
(4.10)

so

‖K‖ = ‖K∗K‖1/2 =
2

π
(4.11)

By (4.2), (4.3), we have

Corollary 4.2.

‖Mn‖ ≤ 4n

π
(4.12)
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lim
n→∞

‖Mn‖
n

=
4

π
(4.13)

Of course, we will see this when we have proven Theorem 2, but it
is interesting to have it now.

While Mn is related to differential operators via (4.5), we can com-
pute the norm of Qn by realizing it as the inverse of a difference oper-
ator. Specifically, let Nn be given by (1.13). Then

(1 − Nn)−1 = 1 + Nn + N2
n + · · ·+ Nn−1

n = Qn (4.14)

Theorem 4.3. Let

Dn = (1 − Nn)(1 − Nn)∗ (4.15)

Then Dn has a complete set of eigenvectors:

v
(ℓ)
j = sin

(
π(2ℓ + 1)j

2n + 1

)
j = 1, . . . , n; ℓ = 0, . . . , n − 1 (4.16)

Dnv(ℓ) = 4 sin2

(
π(2ℓ + 1)

2(2n + 1)

)
v(ℓ) (4.17)

‖Qn‖ = (min eigenvalue of Dn)−1/2

=

[
2 sin

(
π

4n + 2

)]−1

(4.18)

Proof. By a direct calculation,

Dn =




2 −1 0
−1 2 −1

0 −1 2
. . .

2 −1 0
−1 2 −1

0 −1 1




(4.19)

is a discrete Laplacian with Dirichlet boundary condition at 0 and
Neumann at n. Since

− sin(q(j + 1)) + 2 sin(qj) − sin(q(j − 1)) = 4 sin2

(
q

2

)
sin(qj)

(4.16)/(4.17) hold so long as q is such that sin(q(n+1)) = sin(qn), that
is,

1
2
[q(n + 1) + qn] = (ℓ + 1

2
)π

or q = (2ℓ + 1)π/(2n + 1). �
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Remark. For OPUC with dµ = dθ/2π, in the basis 1, z, . . . , zn−1, An is
given by the matrix, Nn, of (1.13), and so ‖(1−Nn)−1‖ = ‖Qn‖ ∼ 2n/π.
Thus, there are unit vectors, yn, in this case with ‖(1−An)yn‖ ∼ π/2n.

5. The Norm of Mn

In this section, we will give two distinct but related proofs of Theo-
rem 2. Both depend on a generating function relation:

Theorem 5.1. For θ ∈ (0, π) and z ∈ D, define

Sθ(z) =

∞∑

j=0

sin((2j + 1)θ)zj (5.1)

Cθ(z) =

∞∑

j=0

cos((2j + 1)θ)zj (5.2)

Then
1 + z

1 − z
Cθ(z) = cot(θ)Sθ(z) (5.3)

Proof. Let ω = eiθ so, summing the geometric series,

Sθ(z) = (2i)−1
∞∑

j=0

(ω2j+1zj − ω̄2j+1zj)

= (2i)−1

[
ω

1 − zω2
− ω̄

1 − zω̄2

]
(5.4)

=
sin(θ)(1 + z)

(1 − zω2)(1 − zω̄2)
(5.5)

For Cω(z), the calculation is similar; in (5.4), (2i)−1 is replaced by (2)−1

and the minus sign becomes a plus:

Cω(z) =
cos(θ)(1 − z)

(1 − zω2)(1 − zω̄2)
(5.6)

(5.5) and (5.6) imply (5.3). �

Our first proof of Theorem 2 depends on looking at the Hankel matrix
[12, 13]

M̃n =




2 2 . . . 2 1
2 2 . . . 1 0
...

...
. . .

...
...

1 0 . . . 0 0


 (5.7)

If Wn is the unitary permutation matrix

(Wv)j = vn+1−j (5.8)
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then
Mn = M̃nW M̃n = MnW (5.9)

and so
‖Mn‖ = ‖M̃n‖ (5.10)

Here is our first proof of Theorem 2:

Theorem 5.2. Let

c
(n;ℓ)
j = cos

((
2ℓ+

1

2

)
π

2n
(2j−1)

)
j = 1, 2, . . . , n; ℓ = 0, . . . , n−1

(5.11)
Then

M̃nc(n;ℓ) = cot

((
2ℓ +

1

2

)
π

2n

)
c(n;ℓ) (5.12)

Thus,

‖Mn‖ = ‖M̃n‖ = cot

(
π

4n

)
(5.13)

Proof. Let

c
(n;θ)
j = cos(θ(2j − 1)) j = 1, 2, . . . , n (5.14)

and

s
(n;θ)
j = sin(θ(2j − 1)) j = 1, . . . , n (5.15)

Then (5.3) implies that

MnWc(n;θ) = cot(θ)Ws(n;θ) (5.16)

by looking at coefficients of 1, z, . . . , zn−1. The W comes from
(3.6)/(3.8). If

θ =
π

2
+ 2ℓπ ℓ = 0, . . . , n − 1 (5.17)

then
Ws(n;θ) = c(n;θ) (5.18)

and (5.16) becomes (5.12).

Since M̃ is self-adjoint, (5.13) follows from (5.12) either by noting
that max|cot((2ℓ + 1

2
) π

2n
)| = cot( π

4n
) or by noting that c(n;θ=π/4n) is a

positive eigenvector of a positive self-adjoint matrix, so its eigenvalue
is the norm by the Perron-Frobenius theorem. �

Our second proof relies on the following known result (see Milovanić
et al. [5], page 272, and references therein; this result is called the
Eneström-Kakeya theorem; see also Pólya-Szegő [14], problem 22 on
pp. 107 and 301, who also mention Hurwitz):
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Lemma 5.3. Suppose

0 < a0 < a1 < · · · < an (5.19)

Then

P (z) = a0 + a1z + · · ·+ anzn (5.20)

has all its zeros in D.

Theorem 5.4. Let

S(n)(z) =

n−1∑

j=0

sin

(
(2j + 1)

π

4n

)
zj (5.21)

C(n)(z) =

n−1∑

j=0

cos

(
(2j + 1)

π

4n

)
zj (5.22)

Then

b(n)(z) =
S(n)(z)

C(n)(z)
(5.23)

is a Blaschke product of order n − 1. Moreover,

cot

(
π

4n

)
bn(z) = 1 + 2

n−1∑

j=1

zj + O(zn) (5.24)

and

‖Mn‖ = cot

(
π

4n

)
(5.25)

Proof. The coefficients of S(n) obey (5.19) so, by the lemma, S(n) has

all its zeros in D. Moreover, by (5.18), C(n)(z) = zn S(n)(1/z̄), which
implies (5.23) is a Blaschke product.

(5.24) is just a translation of (5.3). (5.24) implies (5.25) by Theo-
rem 3.3. �

6. Some Remarks and Extensions

In this section,we make some remarks that shed light on or extend
Theorem 1, our main result.

A. An alternate proof. We give a simple proof of a weakened version
of Theorem 4 but which suffices for applications like those in Section 7.
This argument is related to ones in Section 3 of Nikolski [11].

Theorem 6.1. If ‖A‖ ≤ 1 and 1 /∈ spec(A), then

dist(1, spec(A))‖(1 − A)−1‖ ≤ 2m (6.1)

where m is the degree of the minimal polynomial for A.
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Proof. We prove the result for ‖A‖ < 1. The general result follows by
taking limits. We make repeated use of Lemma 3.1 which implies that
if, for λ ∈ D, and we define

B(λ) =

(
A − λ

1 − λA

)(
1 − λ

1 − λ

)
(6.2)

then

‖B(λ)‖ ≤ 1 (6.3)

By algebra,

(1 − x)−1

[
1 − x − λ

1 − λx

(
1 − λ

1 − λ

)]
=

1

1 − λ

[
1 + λ

(
x − λ

1 − xλ

)]
(6.4)

so, by Lemma 3.1 again,

‖(1 − A)−1(1 − B(λ))‖ ≤ |1 − λ|−1(1 + |λ|) (6.5)

Now let
∏m

j=1(x − λj) be the minimal polynomial for A. Then

m∏

j=1

B(λj) = 0

so

(1 − A)−1 = (1 − A)−1

[
1 −

m∏

j=1

Bj(λ)

]

=

m∑

j=1

(1 − A)−1[1 − Bj(λ)]

m∏

k=j+1

Bk(λ) (6.6)

(the empty product for j = m is interpreted as the identity operator)
which, by (6.3) and (6.5), implies

LHS of (6.1) ≤
m∑

j=1

dist(1, spec(A))|1 − λj|−1(1 + |λj|)

≤ 2m

since 1+|λj| ≤ 2 and λj ∈ spec(A) so dist(1, spec(A))|1−λj|−1 ≤ 1. �

Remarks. 1. The factor (1 − λ)/(1 − λ) is taken in (6.2) so fλ(z) =
(z − λ)(1 − λz)−1(1 − λ)(1 − λ)−1 has 1 − fλ(1) = 0.

2. In place of the algebra (6.4), one can compute that the
sup|z|<1 LHS of (6.4) is |1− λ|−1[1 + |λ|] and use von Neumann’s theo-
rem as discussed in Subsection E below.
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B. Minimal polynomials. While the constant 2 in (6.1) is worse
than 4/π in (1.19)/(1.21), (6.1) appears to be stronger in that m, not
n, appears, but we can also strengthen (1.19) in this way:

Theorem 6.2. If ‖A‖ ≤ 1, 1 /∈ spec(A), and m is the degree of the

minimal polynomial for A, then

dist(1, spec(A))‖(1 − A)−1‖ ≤ cot

(
π

4m

)
(6.7)

Proof. Let ‖y‖ = 1. Since Amy is a linear combination of {Ajy}m−1
j=0 ,

the cyclic subspace, Vy, has dim(Vy) ≡ my ≤ m. Since A ↾ Vy is an
operator of a space of dimension my, we have

dist(1, spec(A))‖(1 − A)−1y‖ ≤ c(my) = cot

(
π

4my

)

≤ cot

(
π

4m

)
�

C. Numerical range. For any bounded operator, A, on a Hilbert
space, the numerical range, Num(A), is defined by

Num(A) = {〈ϕ, Aϕ〉 | ‖ϕ‖ = 1} (6.8)

It is a bounded convex set (see [3, p. 150]), and when A is a finite
matrix, also closed. Theorem 1 can be improved to read:

Theorem 6.3. Let M̃n be the set of pairs (A, z) where A is an n × n
matrix, z ∈ C with

z /∈ spec(A) z /∈ Num(A)int (6.9)

Then

supfMn

dist(z, spec(A))‖(A − z)−1‖ = cot

(
π

4n

)
(6.10)

Remarks. 1. Since Num(A) ⊂ {z | |z| ≤ ‖A‖}, Mn ⊂ M̃n, and this is
a strict improvement of (1.19).

2. We need only prove

dist(z, spec(A))‖(A − z)−1‖ ≤ cot

(
π

4n

)

since the equality then follows from Mn ⊂ M̃n.
3. By replacing A by eiθ(A − z) for suitable θ and z, we need only

prove

Re(A) ≥ 0, 0 /∈ spec(A) ⇒ dist(0, spec(A))‖A−1‖ ≤ cot

(
π

4n

)
(6.11)
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for by convexity of Num(A), if z /∈ Num(A)int, there is a half-plane, P ,
with Num(A) ⊂ P and z ∈ ∂P . It is (6.11) we will prove below.

First Proof of Theorem 6.3. Let

C = A−1 + (A∗)−1 (6.12)

= (A∗)−12 Re(A)(A)−1 ≥ 0 (6.13)

Thus,

|Cjk| ≤ |Cjj|1/2|Ckk|1/2 (6.14)

Now just follow the proof of Theorem 4 in Section 2. �

Second Proof of Theorem 6.3. We use Cayley transforms. For 0 < s,
define

B(s) = (1 − sA)(1 + sA)−1 (6.15)

Since

‖(1 + sA)ϕ‖2 − ‖(1 − sA)ϕ‖2 = 4s Re(ϕ, Aϕ) ≥ 0

we have that

‖B(s)‖ ≤ 1 (6.16)

Because

1 − B(s) = 2sA(1 + sA)−1 (6.17)

we have for s small that

dist(1, spec(B(s))) = 2s dist(0, spec(A)) + O(s2) (6.18)

Thus, by Theorem 1,

2s dist(0, spec(A))‖(1 − B(s))−1‖ ≤ cot

(
π

4n

)
+ O(s) (6.19)

By (6.17),

(1 − B(s))−1 = (2s)−1[A−1 + s]

so

‖A−1‖ ≤ |s| + 2s‖(1 − B(s))−1‖ (6.20)

This plus (6.18) implies (6.11) as s ↓ 0. �
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D. Bounded powers. We note that there is also a result if

sup
m≥0

‖Am‖ = c < ∞ (6.21)

We suspect the 3/2 power in the following is not optimal. We note
that one can also use this method if ‖Am‖ is polynomially bounded in
m.

Theorem 6.4. If (6.21) holds, then

‖(1 − A)−1‖ ≤ c(3n)3/2dist(1, spec(A))−3/2 (6.22)

Proof. By the argument of Section 1 (using (1.11)), this is equivalent
to

dist(1, spec(A)) ≤ 3n(c‖(1 − A)y‖)2/3 (6.23)

for all unit vectors y.
Define for 1 < r,

〈f, g〉r =

∞∑

m=0

r−2m〈Amf, Amg〉 (6.24)

By (6.21),

‖f‖ ≤ ‖f‖r ≤ cr(r2 − 1)−1/2‖f‖ (6.25)

By (6.24),

‖Af‖2
r ≤ r2‖f‖2

r (6.26)

so
‖A‖r ≤ r (6.27)

so if C = r−1A, then
‖C‖r ≤ 1 (6.28)

Clearly, for ‖y‖ = 1 ≤ ‖y‖r,

‖Cy − y‖r ≤ |r−1 − 1| ‖y‖r + r−1‖(A − 1)y‖r

≤ |r−1 − 1| ‖y‖r + c(r2 − 1)−1/2‖(A − 1)y‖
≤ ((r − 1) + c[2(r − 1)]−1/2‖(A − 1)y‖)‖y‖r (6.29)

It follows by Theorem 1 and the fact that spec(A) is independent of
‖ · ‖r that

dist(1, r−1spec(A)) ≤ 4n

π
{c‖(A− 1)y‖(2(r− 1))−1/2 + (r− 1)} (6.30)

and thus

dist(1, spec(A)) ≤ (r − 1) +
4π

n
{c‖(A − 1)y‖(2(r − 1))−1/2 + (r − 1)}

(6.31)
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Choosing r = 1+ 1
2
(c‖(A−1)y‖)2/3 and using 1

2
+ 6n

π
≤ 3n, we obtain

(6.23). �

E. Von Neumann’s theorem. Lemma 3.1 is a special case of a theo-
rem of von Neumann. The now standard proof of this result uses Nagy
dilations [23]; we have found a simple alternative that relies on

Lemma 6.5. For any A, with ‖A‖ < 1 and A = U |A|, and U unitary,

there exists an operator-valued function, g, analytic in a neighborhood

of D so that g(eiθ) is unitary and g(0) = A.

Proof. Let

g(z) = U

[
z + |A|
1 + z|A|

]
(6.32)

The factor in [. . . ] is unitary if z = eiθ, since

(eiθ + |A|)∗(eiθ + |A|) = 1 + A∗A + 2 cos θ|A|
= (1 + eiθ|A|)∗(1 + eiθ|A|) �

Theorem 6.6 (von Neumann [25]). Let f : D → D. If ‖A‖ < 1, define

f(A) by

f(z) =

∞∑

n=0

anzn f(A) ≡
∞∑

n=0

anAn (6.33)

Then

‖f(A)‖ ≤ 1 (6.34)

Proof of von Neumann’s theorem, given the lemma. Suppose first
that A obeys the hypotheses of the lemma. By a limiting argument,
suppose f is analytic in a neighborhood of D. Applying the maximum
principle to f(g(z)), we see

‖f(A)‖ = ‖f(g(0))‖ ≤ sup
θ

‖f(g(eiθ))‖

= sup
θ

|f(eiθ)| ≤ 1 (6.35)

where (6.35) uses the spectral theorem for the unitary g(eiθ).

For general A, if Ã = A⊕0 on H⊕H, then Ã = U |Ã| with U unitary
and we obtain ‖f(Ã)‖ ≤ 1. But f(Ã) = f(A) ⊕ 0. �

Remarks. 1. In general, A = V |A| with V a partial isometry. We can
extend this to a unitary U so long as dim(Ran(V )⊥) = dim(ker(V )⊥).
This is automatic in the finite-dimensional case and also if dim(H) = ∞
for A ⊕ 0 since then both spaces are infinite-dimensional.
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2. This proof is close to one of Nelson [9] who also uses the maxi-
mum principle and polar decomposition, but uses a different method
for interpolating the self-adjoint part (see also Nikolski [10]).

7. Zeros of Random OPUC

In this section, we apply Theorem 1 to obtain results on cer-
tain OPUC. We begin by recalling the recursion relations for OPUC
[17, 18, 19]. For each non-trivial probability measure, dµ, on ∂D, there
is a sequence of complex numbers, {αn(dµ)}∞n=0, called Verblunsky co-
efficients so that

Φn+1(z) = zΦn(z) − ᾱnΦ∗
n(z) (7.1)

where
Φ∗

n(z) = zn Φn(1/z̄) (7.2)

The αn obey |αn| < 1 and Verblunsky’s theorem [17, 19] says that
µ 7→ {αn(dµ)}∞n=0 is a bicontinuous bijection from the non-trivial mea-
sures on ∂D with the topology of vague convergence to D∞ with the
product topology.

For each ρ in (0, 1), we define the ρ-model to be the set of random
Verblunsky coefficients where αn are independent, identically distrib-
uted random variables, each uniformly distributed in {z | |z| ≤ ρ}.
A point in the model space of α’s will be denoted ω; Φn(z; ω) will be

the corresponding OPUC and {z(n)
j (ω)}n

j=1 the zeros of Φn counting
multiplicity. Our results here depend heavily on earlier results of Sto-
iciu [20, 21], who studied a closely related problem (see below). In
turn, Stoiciu relied, in part, on earlier work on eigenvalues of random
Schrödinger operators [7, 6].

We will prove the following three theorems:

Theorem 7.1. Let 0 < ρ < 1. Let k ∈ {1, 2, . . .}. Then for a.e. ω in

the ρ-model,

lim sup
n→∞

#{j | |z(n)
j (ω)| < 1 − n−k}
[log(n)]2

< ∞ (7.3)

Thus, the overwhelming bulk of zeros are polynomially close to ∂D.
If we look at a small slice of argument, we can say more:

Theorem 7.2. Let 0 < ρ < 1. Let θ0 ∈ [0, 2π) and a < b real. Let

η < 1. Then with probability 1, for large n, there are no zeros in

{z | arg z ∈ (θ0 + 2πa
n

, θ0 + 2πb
n

); |z| < 1 − exp(−nη)}.
Finally and most importantly, we can describe the statistical distri-

bution of the arguments:
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Theorem 7.3. Let 0 < ρ < 1. Let θ0 ∈ [0, 2π). Let a1 < b1 ≤
a2 < b2 ≤ · · · ≤ aℓ < bℓ and let k1, . . . , kℓ be in {0, 1, 2, . . .}. Then as

n → ∞,

Prob

(
#

(
j

∣∣∣∣ arg z
(n)
j (ω) ∈

(
θ0+

2πam

n
, θ0+

2πbn

n

))
= km for m = 1, . . . , ℓ

(7.4)
converges to

ℓ∏

m=1

(bm − am)km

km!
e−(bm−am) (7.5)

This says the zeros are asymptotically Poisson distributed. As we
stated, our proofs rely on ideas of Stoiciu, essentially using Theorem 1
to complete his program. To state the results of his that we use, we
need a definition.

For β ∈ ∂D, the paraorthogonal polynomials (POPUC) are defined
by

Φ(β)
n (z) = Φn−1(z) − β̄Φ∗

n−1(z) (7.6)

These have zeros on ∂D. Indeed, they are eigenvalues of a rank one
unitary perturbation of the operator An of (1.6). We extend the ρ-
model to include an additional set of independent parameters {βj}∞j=0

in ∂D, each uniformly distributed on ∂D. z̃
(n)
j (ω) denotes the zeros of

Φ
(βn)
n (z; ω). Stoiciu [20, 21] completely analyzed these POPUC zeros.

We will need three of his results:

Theorem 7.4 (= Theorem 6.1.3 of [21] = Theorem 6.3 of [20]). Let I
be an interval in ∂D. Then

Prob(2 or more z̃
(n)
j (ω) lie in I) ≤ 1

2

(
n|I|
2π

)2

(7.7)

where |I| is the dθ measure of I.

For the next theorem, we need the fact that there is an explicit
realization of An and the associated rank one perturbations as n × n
complex CMV matrices (see [2, 17, 18, 19]), Cn, whose eigenvalues are

the zn
j , and C̃(βn)

n whose eigenvalues are the z̃n
j , so that

‖(Cn − C(βn)
n )ϕ‖ ≤ |ϕn−1| + |ϕn| (7.8)

The next theorem uses the components so (7.8) holds.

Theorem 7.5 (= Theorem 1.1.2 of [21] = Theorem 2.2 of [20]). There

exists a constant D2 (depending only on ρ) so that for every eigenvector



24 E. B. DAVIES AND B. SIMON

ϕ(j,ω;n) of C̃(βn)
n , we have for

|m − m(ϕ(j,ω;n))| ≥ D2(log n) (7.9)

that

|ϕ(j,ω;n)
m | ≤ Cωe−4|m−m(ϕ(j,ω;n))|/D2 (7.10)

where Cω is an a.e. finite constant and

m(ϕ) = first k so |ϕk| = max
m

|ϕm| (7.11)

We will also need the results that Stoiciu proves along the way that
for each C0,

{ω | Cω < C0} ≡ ΩC0 (7.12)

is invariant under rotation of the measures dµω, and that for each C0

fixed and all ω ∈ ΩC0 ,

#(j | m(ϕ(j,ω;n)) = m0) ≤ D3(log n) (7.13)

where D3 is only C0-dependent and is independent of ω, m0, and n.
(7.13) comes from the fact that, by (7.10), for D3 only depending on
C0, ∑

|m−m(ϕ)|≥ 1
4
D3(log n)

|ϕm|2 ≤ 1
2

(7.14)

so, by (7.11), for ϕ’s with m(ϕ) = m0,
1
2
D3(log n)|ϕm0 |2 ≥ 1

2
(7.15)

which, given ∑

ϕ

|ϕm0 |2 = 1 (7.16)

implies (7.13).
The last of Stoiciu’s results we will need is

Theorem 7.6 (= Theorem 1.0.6 of [21] = Theorem 1.1 of [20]). For

θ0 ∈ [0, 2π) and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aℓ < bℓ and k1, . . . , kℓ in

{0, 1, 2, . . .}, we have, as n → ∞, that (7.4) with z
(n)
j replaced by z̃

(n)
j

converges to (7.5).

With this background out of the way, we begin the proofs of the new
Theorems 7.1–7.3 with

Theorem 7.7. Fix ρ ∈ (0, 1). Then for a.e. ω, there exists Nω so if

n ≥ Nω, then

min
j 6=k

|z̃(n)
j − z̃

(n)
k | ≥ 2n−4 (7.17)

Remark. n−3−ε will work in place of n−4.
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Proof. For each n, cover ∂D by two sets of intervals of size 4n−4: one
set non-overlapping, except at the end, starting with [0, 4n−4] and the
other set starting with [2n−4, 6n−4]. If (7.17) fails for some n, then there
are two zeros within one of these intervals. By (7.7), the probability
of two zeros in one of these intervals is O((nn−4)2) = O(n−6). The
number of intervals at order n is O(n4). Since

∑∞
n=1 n4n−6 < ∞, the

sum of the probabilities of two zeros in an interval is summable. By
the Borel-Cantelli lemma [22] for a.e. ω, only finitely many intervals
have two zeros. Hence, for large n, (7.17) holds. �

Proof of Theorem 7.1. Obviously, if (7.3) holds for some k, it holds for
all smaller k, so we will prove it for k ≥ 4. We also need only prove it on
any ΩC0 given by (7.12) since ∪ΩC0 has probability 1 by Theorem 7.5.
Consider those ϕ(j,ω;n) with

|m(ϕ(j,ω;n)) − n| ≥ K(log n) (7.18)

By (7.13), the number of j for which (7.18) fails is O((log n)2).
By (7.10) and (7.8) and the fact that ϕ is a unit eigenfunction, then

‖(Cn − z̃
(n)
j )ϕ(j,ω;n)‖ ≤ 2Cωn−4K/D2 (7.19)

so picking K large enough and n large enough that 4
π
2Cωn−1 < 1, we

have

‖(Cn − z̃
(n)
j )ϕ(j,ω;n)‖ ≤ π

4n
n−k (7.20)

Thus, by Theorem 1 and ‖Cn‖ = 1 = |z̃(n)
j |, we see that for each j

obeying (7.18), there is a z
(n)
j so

|z(n)
j − z̃

(n)
j | ≤ n−k (7.21)

By Theorem 7.7 and k ≥ 4, the z
(n)
j are distinct for n large, so we have

n − O((logn)2) zeros with |z(n)
j | ≥ 1 − n−k. This is (7.3). �

Proof of Theorem 7.2. In place of (7.18), we look for ϕ’s so

|m(ϕ(j,ω;n)) − n| ≥ D2

2
n1−η (7.22)

For such j’s, using the above arguments, there are zeros z
(n)
j with

|z(n)
j − z̃

(n)
j | ≤ Cω exp(−2nη) (7.23)

�

As in Stoiciu [20, 21], the distribution of z̃
(n)
j for which (7.22) fails

is rotation invariant. Since the number is O(n1−η log n) out of O(n)
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zeros, the probability of any of these had zeros lying in {z | arg z ∈
(θ0 + 2πa

n
, θ0 + 2πb

n
)} goes to zero as n → ∞.

Proof of Theorem 7.3. By the last proof, the zeros of Φn with the given

arguments lie within O(e−nη

) of those of Φ
(β)
n and, by Theorem 7.7,

these zeros are distinct. Theorem 7.6 completes the proof if one gets
upper and lower bounds by slightly increasing/decreasing the intervals
on an O(1/n) scale. �

We close with the remark about improving these theorems. While
(7.13) is the best one can hope for as a uniform bound, with overwhelm-
ing probability the number should be bounded. Thus, we expect in
Theorem 7.1 that one can obtain O((log n)−1) in place of O((log n)−2).
It is possible in Theorem 7.2 that one can improve O(e−nη

) for all η ∈ 1
to O(e−An) for some A.
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