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Abstract. The existence of lower dimensional KAM tori is shown for a class of
nearly integrable Hamiltonian systems where the second Melnikov’s conditions are
relazed, at the cost of the stronger reqularity of the perturbed nonlinear term. As
a consequence, it is proved that there exist many linearly stable invariant tori and
thus quasi-periodic solutions for nonlinear wave equations of non-local nonlinearity
and of higher spatial dimension.

1. Introduction and main results.
Let us begin with the non-linear wave (NLW) equation

Utt — Uy + V(2)u + h(z,u) =0 (1.1)

subject to Dirichlet boundary conditions. The existence of solutions, periodic in
time, for NLW equations has been studied by many authors. See [B-P, Br, L-S]
and the references theirin, for example. While finding quasi-periodic solutions,
the so-called small divisor difficulty arises. The KAM (Kolmogorov-Arnold-Moser)
theory is a very powerful tool to overcome the difficulty. This theory deals with
the existence of invariant tori for nearly integrable Hamiltonian systems. In order
to obtain the quasi-periodic solutions of a partial differential equation, we may
show the existence of the lower (finite) dimensional invariant tori for the infinitely
dimensional Hamiltonian system defined by the equation. Assume the hamiltonian
is of the form:

H=(w,y)+ Y 927+ R(x,y,232)

Jj=1

with tangential frequencies w = (wq, ..., w,) and normal frequencies Q = (Qq, ..., ).
When R = 0, there is a trivial invariant torus z = wt,y =0,z = Z = 0. The KAM
theory guarantees the persistence of the trivial invariant torus for sufficiently small
perturbation R, provided that the well-known Melnikov conditions are fulfilled:

(kyw)—Q; #0 (the first Melnikov’s)
forall k € Z" and 1 < j < oo, and
(kyw)+Q;, —Q;, #0 (the second Melnikov’s)
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for all k € Z™ and 1 < j1,j2 < 00,J1 # j2. See [E,K1,P1,W] for the details. This
KAM theorem can be applied to a wide array of Hamiltonian partial differential
equations of 1-dimensional spatial variable, including (1.1). Kuksin[K1,2] shows
that there are many quasi-periodic solutions of (1.1), assuming that the potential
V' depends on an n-dimensional external parameter in some non-degenerate way.
Wayne[W] obtains also the existence of the quasi-periodic solutions of (1.1), when
the potential V' is lying on the outside of the set of some “bad” potentials. In
[W], the set of all potentials is given some Gaussian measure and then the set of
“bad” potentials is of small measure. Bobenko & Kuksin[Bo-K] and Pdschel[P2]
investigate the case V(z) = m € (0,00). By the remark in [P2], the same result
holds also true for the parameter values —1 < m < 0. When m € (—o0, —1) \ Z,
it is shown in [Y1] that there are many hyperbolic-elliptic invariant tori. More
recently, the existence of invariant tori ( thus quasi-periodic solutions) of (1.1) are
shown for any prescribed potential' V(x) # 0 in [Y2] and for V(z) = 0 in [Y3]. In
[C-Y] and [Br-K-S], the equation (1.1) subject to periodic boundary conditions is
investigated.

For NLW equation (1.1) of spatial dimension 1, the multiplicity of normal fre-
quency §2; is 1 in Dirichlet boundary condition or 2 in periodic boundary condition.
Considering PDE’s with spatial dimension> 1, a significant new problem arises due
to the presence of clusters of normal frequencies of the Hamiltonian system defined
by the PDEs. In this case, the multiplicity of Q; goes to oo as |j| — oo; con-
sequently, the second Melnikov’s conditions is destroyed seriously, preventing the
application of the KAM theorems mentioned above to Hamiltonian partial differ-
ential equations of higher spatial dimension. Bourgain[Bol-4] developed another
profound approach, originally proposed by Craig-Wayne in [C-W], and success-
fully obtained the existence of quasi-periodic solutions of the nonlinear Schrédinger
(NLS) equations and NLW equations of higher dimension in space. This method is
called C-W-B method in some references. The techniques used in [C-W] and [Bol-4]
are based on not KAM theory, but rather on a generalization of Lyapunov-Schmidt
procedure and on techniques by Frohlich and Spencer[F-S].

The advantage of the KAM approach is, from one hand, to possibly simplify the
proof and, on the other hand, to allow the construction of local normal forms closed
to the considered torus, which could be useful for the better understanding of the
dynamics. For example, in generally, one can easy check the linear stability and
the vanishing Lyapunov exponents.

Naturally, we should ask that whether or not one can establish a new KAM
theorem for some nonlinear partial differential equations, such as NLW and NLS,
of higher spatial dimension.

In a private talk, the present author was told that Eliasson and Kuksin got a
new KAM theorem which could be applied to NLS equations. This is an excited
news! In the present paper,we will prove a variant of the KAM theorem due to
Kuksin[K1] and Péschel[P1]. In the variant, the requirements of the normal fre-
quencies Q;’s are weaker than those in [K1,P1], at the expense of stronger regularity
of nonlinearity. Consequently, we can show that there are many invariant tori which
are linearly stable, for the NLW equations of non-local nonlinear term and higher
spatial dimension:

uy — Au A+ V(z, Eu+ ¥(Tu)®) =0, in R x (0,27)¢ (1.2)

IThis potential V contains no parameter.
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and
Uy — Au+ Meu + U ((Pu)®) =0, in R x (0,27)? (1.3)

subject to Dirichlet boundary condition

u(t, z)|zeoi0,27) = 0 (1.4)

where A is d-Laplacian, the potential V' depends on parameter £ in some kind of
non-degenerate way, and M is a Fourier multiplier, i.e.,

MeeV=16) — ¢ oV=162) ¢ c R j e 78 L5
3 J J

and ¥ : u +— 1 % u is a convolution operator with a function 1, even in each entry
of x € R Assume the operator ¥ is smoothing of order? x = 577d/2:

WL ([0,27)) — HE(0,27)), 5= p+ o
[ Wul|ge < |[Yul|ge, ¥ p>d/2. '
The variant of the KAM theorem also applies to nonlinear Schrédinger equations
of higher spatial dimension:

V—1u; + Au+ ¥((Tu)?) =0, in R x (0,27)¢ (1.7)

subject to b. c. (1.4) where A = —A+M¢ or A= -A+V(z,§). Geng and You[G-
Y] also show the existence of stable invariant tori of (1.7) with the regularity « > 0.
The requirement of the regularity in [G-Y] is weaker than ours, but our result can
apply to nonlinear wave equations (1.2) and (1.3). In addition, Poschel[P3] shows
that there are many almost periodic solutions of (1.7) when d = 1. The non-local
condition is not satisfactory. It is an intereating problem that whether or not the
non-local condition can be removed.

The paper is organized as follows: In §.2, we formulate a general infinitely di-
mensional KAM theorem designed to deal with the presence of clusters of normal
frequencies of the Hamiltonian system. In §.3, we show how to apply the preceding
KAM theorem to NLW equation (1.3) with b. c. (1.4). Sect.4-8 are devoted to
the proof of the KAM theorem. In §.4, the homological equations are reduced and
solved; in §.5, the symplectic transform X1 is given out and the new perturbed
term Ry is estimated; in §.6, the iterative lemma is given out; in §.7, The KAM
theorem is proven by using the iterative lemma;in §.8, the measure estimates for
the parameter sets is given out. Some technical lemmas are provided in §.9 — 10.

2. A variant of the KAM theorem due to Kuksin and P6schel.

2.1. Some notations. Denote by (¢, ||-||) the usual space of the square summable
sequences, and by (L2, ]| - ||) the space of the square integrable functions. By | - |
the Euclidian norm. Let a > 0 and p > d/2. For a sequence u = (u; € C* : j € Z9)
with * = 1 or 2, we define its norm as follows:

2= > lilPPe* ;2. (2.1)
jezd

|||

2Here k = 577d/2 is not optimal. Since the variant of KAM theorem does not hold true for
x = 0, we do not pursue the optimal x > 0.
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Let £ be the set of all sequences satisfying (2.1). It is easy to see that £*? is
a Hilbert space with an inner product corresponding to (2.1). When a = 0, we
sometimes write /°7 = (P and || - ||o,, = || - |- Introduce the phase space:

P = (C*/2xZ"™) x C™ x P, (2.2)
where n is a given positive integer. We endow P with a symplectic structure
dr A dy + Z du; /\du?, (z,y,u) € P,
jEZ

where u = (u;) jeze with u; = (u},u?) € C?. Let

7yt = (R"/2nZ") x {0} x {0} C P.
Then 7" is an torus in P. Introduce a complex neighborhoods of 7" in P:
D(s,r) :={(z,y,u) € P : [Imz| < s, [y < 1% ||ullp <}

where r, s > 0 are constants.
Recall p=p+ k in (1.6). For p=p or p =P, let

PUP .= C" x C" x (P, Va > 0.

Then for 7 > 0 we define the weighted phase norms
1 1
AWl = X1+ Y]+ 21Ul

for W = (X,Y,U) € P*P. Let I C R™ be compact and of positive Lebesgue
measure. For a map W : D(s,r) x Il — P*P_ set

#HWlap,D(s,r)x11 i= sup AW (2, 8)ap
(x,£)€D(s,r)x1II

and

=~ ‘C~ = = = =
AWlep o i= B, 00 pn 10N (O Slep €= (600080

Denote by B(E“*’p*,ﬁa*’p*) the set of all bounded linear operators from ¢*+P* to
"7 and by ||| - |||a.,a* p..p+ the operator norm.

In the whole of this paper, by C or ¢ a universal constant, whose size may be
different in different place. If f < Cg, we write this inequality as f < g when we
dot not care the size of the constant C. Similarly, if f > Cg we write f > g.

2.2. The statement of the KAM theorem. For two vectors b,c € CF or R*, we
write (b,¢) = 2521 bjcj. Consider an infinitely dimensional Hamiltonian in the
parameter dependent normal form

No = (w°(&),y) + Z Qu?,  (z,y,u) €P

JEZ
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where u? = u?l + ué with u; = (uj,,u;,) and the phase space P is endowed with
the symplectic form
de Ndy+ Y duj, Adug,.
jEezZd
The tangent frequencies w° = (w9, -+ ,w?

) n

) and the normal frequencies Q° = (QF :
j € Z%) depend on n parameters £ € Il C R™, Il a given compact set of positive

Lebesgue measure. Let J = <_01 é) and

JIm = diag(J, ..., J), J,=diag(J,...,J), Jo =diag(...,J, ..., J,...).
—— —— —_———

m 9t [e'¢)
The Hamiltonian equation of motion of Ny are
P=02€), §=0, =IO ¢u

Hence, for each £ € Iy, there is an invariant n-dimensional torus 7;* = T™ x {0} x
{0} with frequencies w(§). The aim is to prove the persistence of the torus 7, for
“most” (in the sense of Lebesgue measure) values of parameter £ € Ily, under small
perturbations R of the Hamiltonian Ny. To this end the following assumptions are
required.

Assumption A: (Multiplicity.) Give vy > 0. Let Oq be the vy-neighborhood of Il
in R™. Assume that3 for all £ € Oy,

Q0(&) =€) if il =jl.

Set
N ={lj|:j €2 CR,.

It is easy to see that the set A is countable. For 3 € N, let
Sy ={iez:1jl=3

and denote by 7* the cardinality of the set S,. it is well known that for d > 2
we have jf < 79727 where £ > 0 is a small constant, and it can be removed if
d > 5. By Assumption A, we can let Qg = Q0 if j € 2% and [j| = . And let
Q0 = (Q0: 5 e N) and AY = diag (Q0 : |j| = j). Notice that AY = QVE); where
E; is the unit matrix of order j%. Let u, be the vector consisting in the entries of
uj with [j| = . Thus u, is a vector of order 9. Then we can rewrite Ny as

NO = (wo(g)vy) + Z(Ajoujauj)'

JEN

Assumption B: (Non-degeneracy.) There are two absolute constant ci,co > 0
such that A

sup |det Ogw’(€)| > ¢1, sup |0{w] < ¢z, j=0,1.

00 OO

3This assumption can be relaxed to that the multiplicity of Q? is bounded by c|j|¢ with constant
c,¢ > 0. However, this general assumption is not necessary in finding quasi-periodic solutions of
NLS and NLW equations.



6 XIAOPING YUAN

Moreover, assume that both w°(€) and Q°(€) are real analytic in each entry &
(1 =1,....,n) of the variable vector £ € Oy.

Assumption C. (Bounded conditions of Normal frequencies.) Assume that there
exists constants cs,cq > 0 such that

infflg’ >3, sup \3§S~)9| <<kl
O(] OO

uniformly for all 3. In addition, assume there is a constant cs > 0 such that the
following spectra gap conditions hold true:

1Q0(6) — Q)| = esr™ %%, 1>, V£ € O,

Assumption D: (Regularity.) Give sg,ro, and 0 < €9 < 1. Let €, = €((4/3)™

and Sy, = efr{(%*d). Assume the perturbation R°(z,y,u;€&) can be decomposed into
o0
R =" R™(x,y,u;£),
m=0

and each term R°™ is defined on the domain D(so,r0) X Oq is analytic in the space
coordinates and also analytic in each entry & (I =1,...,n) of the parameter vector
& € O, and is real for real argument, as well as, for each & € Oy its Hamiltonian
vector field X gom := (Rgm, —RI™ J o RY™T defines a analytic map

Xpgom : D(sg,79) C P — PP,

Also assume that X gom s analytic in each entry of £ € Oy.

Theorem 2.1. Suppose H = Ny + R° satisfies assumptions A, B, C and D, and
smallness assumption:

c 1/3 _
7’0|XR0m|§,,,L,p,D(so,r0)><Oo < €m, 7‘0|XRO""|gm,p,D(so77-0)><(90 <€, , m= 07 17 2a

Then, for given a < 1, there is a Cantor set I1, C Iy with
Meas 11, > ( Meas IIp)(1 — O(«)),

a family of torus embedding ® : T xI1, — P and a map w, : II, — R™ where ®(-,§)
and w,(§) is analytic in each entry & of the parameter vector & = (&1, ...,&,) for
other arguments fized, such that for each & € 11, the map ® restricted to T"™ x {&} is
a analytic embedding of a rational torus with frequencies w.(§) for the Hamiltonian
H até.

Each embedding is analytic on D(so/2) := {x € C" : |Sz| < s0/2}, and

c 1/3
rol® = Polo,p,D(so/2)x11a < €05 7ol ® = Polgp, p(so/2)xmm, < 60"

|lwe —w| < cep,  |ws —wl]F < 86(1)/3,
where B is the trivial embedding T™ x Iy — T™ x {0} x {0}, and ¢ > 0 is a
constant depending on n,a, and | - |0’p’D(SO/2)XHQ is defined in the way similar
to 'r‘l . |a,p,D(s,r)><H-



A VARIANT OF KAM THEOREM 7

3. Application to nonlinear wave equations of higher dimension.

For technical simplicity, we consider (1.3) instead of (1.2). Essentially, our results
hold true for (1.4). We study equation (1.3) as an infinitely dimensional Hamil-
tonian system. Since the quasi-periodic solutions to be constructed are of small
amplitude, (1.3) may be considered as the linear equation u;; = Au with a small
nonlinear perturbation W((¥u)?) where A = —A + M. Let ¢;(z) and 1) (j € Z4)
be the eigenfunctions and eigenvalues of the operator A , respectively. By a simple
computation,

v2 oo
¢j(z) = WSIH(L@,
and
pg =13l + &, 13 =48+ + 2.
Then every solution of the linear system is the superposition of their harmonic
oscillations and of the form

ult,2) = Y qi(d;(@),  q(t) = yj cos(y/ut)

jezd

with amplitude y}) > 0. The solution u(t,z) is time-periodic, quasi-periodic or
almost periodic of the linear equation, depending on whether one, finitely many or
infinitely many modes are excited, respectively. In particular,

N, ={j€Z:0<|j| <ng},

where ng € U,S, = U,{y = |j| : j € Z} is given and n = > 0<,<no g%, The reason
why we choose this N, is just for convenience. Essentially, we can choose any finite
subset N, of Z¢. Consider the Fourier multiplier M¢ in (1.5). Let

{ fje[l,Q],jGNn
& = 0, otherwise .

Observe that (&5 : j € N,,) is a vector of dimension n. For convenience, we write
E=(& 7€ Ny) = (&,.-.&, -, & ). Note that the eigenvalues ,u? depends on &.
Let Iy = [1,2]™ and Op be the vp-neighborhood of Ty in R™. Write

{\/B2(&) :j e Nu} ={w](§): 1 <1< n}

and
{$j(x):j € Ny} ={a) : 1 <1<n}.

Let w? = (w9, ..., w?). Then
1 »n
n
ug(t, ) = Z y) coswit - Y ()
=1

is a quasi-periodic solution of the linear equation u;; = —Au for any £ € Il and
v = (y9,..,92) € R% . Upon restoring the nonlinearity ¥((¥u)?®) the quasi-
periodic solutions will not persist in their entirety due to resonance among the
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modes and the strong perturbing effect of ¥((Vu)3) for large amplitudes. In a
sufficiently small neighborhood of 4 = 0 in the space H?([0,27]), however, it will
be shown that there does persist the quasi-periodic solutions ug(t,x)’s which are
only slightly deformed for “most” & € Ilj.

We study the nonlinear NLW equation (1.3) as an infinite dimensional Hamil-
tonian system. Since the solutions to be constructed are of small amplitude, we
can rewrite (1.3) as

ugr — Au+ Meu+ e¥((Tu)?) =0, in R x (0,27)? (1.3%)

by re-scaling u = y/eu. To apply Theorem 2.1, we let € = €.
As the phase space one may take, for example, the product of the usual Sobolev
space H{ ([0, 27]%) x L2([0,27]¢) with coordinates u and v = u;. The Hamiltonian

is then

H= %@,w + %(Au,u) + 2/0 " u)t d (3.0)

where (-, -) denotes the usual scalar product in L2. Here the Hamiltonian structure
is du A dv. Note that the Dirichlet boundary condition (1.4) is equivalent to
z €T =R/ (27Z) and u(—z) = —u(x).

Let L2(T9) be the subspace of L?(T?) satisfying u(x) = —u(—=2), and fa0 be the
subspace of ¢, satisfies ¢; = —q_;. Let

F: oy — Lg, q— Fq= Z qje\/jl(j,a:)’ 4 = —q
jEZd

be the inverse discrete Fourier transform, which defines an isometry between the
two space, and F can be extended into a isometry from ¢5 to L2. It is obvious that
q € (9P C {y if and only if Fq € HP([0,27]¢) € L2(]0,27]%). Let

g =F 'U(Fq), V q € P,

Since 1 is even, we have W(Fq) € L if F(q) € L3.
Formally, letting

u=Y" G(t)e;(x) (3.1)

jEZA

and inserting it into (1.3*) and noting {¢; : j € Z%} is a real basis of L3 we get

d*g;

T T+ e(U(Pu)),65) =0, j L (3.2)
Let o
- q; .
6 =\ &, pi= =t J€ z. (3.3)
i
Then we get a Hamiltonian system
. oH . OH .
pi = gj=5—> JjEZ (3.4)

787%’
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where .
H(p.q) =5 > \/ud W] + ) + G(¥0) (3.5)
JEZL
with
G(q) = Z Gijk19i9; 9k (3.6)
ikl
6 —
Gijr = 7 (i uG )" / G prdrda. (3.7)
[0,27]@

Since ¢;(x) = sin(y, x), it is not difficult to verify that G,z = 0 unless i+j+k+l =0
for some combination of plus and minus signs. Hence the sum in (3.6) is restricted
to indices 4, j, k,l such that i £ j £ k£ 1 = 0. Let 9,G and Q?G are the first and
second derivatives of G, respectively. Then, obviously,

94G(q) = (04,G)ieza, 05G =4 Z Gijk19iq; 9k (3.8)
tidtjth=l
and ) )
0°G 0°G
92G(q) = ( ) ; =12 Gijki4ig; (3.9)
! 0090/ kpeze OaOu iiijgik—i-l ! ’

Lemma 3.1. For anya >0, p > d/2 and g € £*P, we have 0,G(q) € L% with

104G(@)]lap < €ldl

o (3.10)
moreover, 5‘3G(q) is a bounded linear operator from £*P to L*P with

185G (@)lla,a,pp < ellall? - (3.11)

Proof. Without loss of generality, we assume the sum in (3.8) is restricted to i +
j —k =1 and the sum in (3.9) is restricted to i — j = k — [. For convenience, let
|k| = 11if k is a zero vector. Let

11 RO
mk(l):”||||e< /) i+ U+l + k| 1) (3.12)

It is easy to verify that for any [ € Z¢ and p > d/2,

> W <1 (3.13)

i,keZd

For any w,v,w € %P, let S(u,v,w) = (S]);eze with

Sl = Z Gijkluiujwk. (314)
i—j+k=l
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By the Schwarz inequality,

1S (u, v, w)[|7,
2

= Z |l|2pe2a\l| Z Gijkluivjwk

1 i—jthk=l

2

= Ginllre | > Ll s S 19

1 ikezd i (1)P
< OGZ Z |Z+ k— l|2p62a‘i+k7”|’Ul'+k_l|2|i|2p€2a‘i||ui|2|k‘2p€2a|k||wk‘2

l i,kezd

< Cellull? plv]]2 w3 -

Note 9,G(q) = S(q, ¢, q). Thus, the proof of (3.10) is completed by (3.15). For any
u € %P, observing that

Yo Y Guuagu= Y, Gyuagu,

1 i—j=k—1 i—j+l=k

we get
(05G(a))u = S(g,q.w).
By (3.15),
107G(a))ullap < Cellgll pllulla.p-
This implies that (3.11) holds true. O

In Sect. 10, we will construct a family of operators Tj, : £o D 0P — &P C f,
which satisfy Lemma B.3. Now we introduce a Hamiltonian R:

R(q) = Ro(q) + Y Rm(q) := G(T)¥(q)) + Y (G(Tn¥(q)) — G(Tr—1¥(q)))
m=1 =

m=1

(3.16)

Lemma 3.2. For g € (7 with ||q|lo,, < 1, we have that
G(¥(q)) = R(q) (3.17)
||8qu(Q)H§m,p < €m, (3.18)

where €, = € (4/3)™ and ¢, = e/ (2r=d) (m=0,1,2,...)

Proof. For 6 € [0,1], let
q" = U(q) +0(T¥(q) — ¥(q)).
Note that for any a > 0 and p > p > d/2, we have

lalla.p > llallop > llalle,, q € €*P,
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and
050 4€ o

llallo.p < lallo

By the definition of ¥, we have

19 (@)llop < %@l < llallop-

In view of Lemma B.3 (10.13),

10(Tn ¥ (@) = T(@)llop < [1¥(a)ll05 < llallop-

Thus,

llg"[lo.p < lldllo.p-

Using Talylor’s formula, we get
G(Tn ¥ (q)) — G(¥(q))]
=(0,G(q"): (T — 1)¥(q))es |
<[104G(a")lea [T = DT (@)l
<[184G ()01 (T — 1) (a)]lo.p
<|lg*[[§ pem+11[¥(q)|lo5 <= Lemma 3.1, B.3(10.13)

SHqu,peerl < €my1 — 0, asm — oo.

This proves (3.17). We are position to show (3.18). Let ¢,, = T;,%(q) and n =
m — 1. By Lemma B.2, ||gm|lop < llamlls,..p < |ldllo,p- It will be shown in Lemma
B.4 in Sect. 10 that T}, V is self-adjoint in 5. Then

0gRo = Ty W (04,G(q0),
Og R = T 00y, G(qn) — Trn W0y, G(qm).-
Furthermore, by (3.10) and Lemma B.2(10.14),
184 Rollo.p < 19040 G (@0)lo.p < 1¥(0goGao)ll0.5
<1104, G(90)ll0p < ellaolli, < € = o,

and
10 Ronllsyn o = 1104 (G(Tn ¥ (q) = G(T ¥ () s,
= |10 0y, G(am) — T2 ¥y, G(an) 0
< (T — T) ¥04,, G (am) I, (3.19)
+ 1T ¥ (g, G(gm) — 94, G (@) ll o - (3.20)
Thus,

(3.19) < € |[¥0y,, G(gm)llo5 (< Lemma B.(10.12))
< EmHaqu(qm)HO’p <<= Deﬁnition Of \I/)

6, (= (3.10))

< 6771Hq7ﬂ

é 677THQ| g,p
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Let ¢* := ¢, + 0(¢m — ¢n) with 8 € [0,1]. We have

(3.20) < ||T ¥ ((9g,, G(@m) — 0, G(@n)) llenps Sim < Sn
< ||9(0,,,G(qm) — g, G(qn))|lop (<= Lemma B.3(10.14))
< |[¥(0y,, G(qm) — g, G(@n))l0.5

< 110q,, G(gm) — 04.,G(gn)l0,p (<= Definition of ¥)
= H@g*G(q*)(qm —@gn)llo,p (= Taylor’s formula )

< 102-G(@*)l0,0ppllam — @l
< ellg* (1§ /(T = T0) ¥ ()0,
< ellgll§ p||(To = To) ¥ (@),
< cemllalf /¥ (@)llo,p (< Lemma B.(10.12))

0,p

< 66m||q||g,p'
Consequently, if ||g|lo, < 1

10 o

e < Emllalld, < €m.

This completes the proof of this lemma. O

Observe that for 1 <1 < n, there is a j € N,, such that

wi (§) = VIil?+ &, (3.21)

QY = /ud =1 (3.22)

It follows from (3.21,22) that Assumptions A, B, C of Theorem 2.1 are fulfilled. Now
let us check Assumption D of Theorem 2.1. Write ¢ = (¢, ¢) with ¢ = (¢;);jen, and

7= (qj)j¢n,- Let

and for j € Z4\ N,

g5 = \/2(y) +yj) coszj, p; = 1/2(y] +y;)sina;, j € Np,y €[0,1]". (3.23)
Then, in view of (3.17), Hamiltonian (3.5) is transformed into
1 _
H = (w(&):y) + 5 >+ )+ RO(z,y.9) (3.24)
J¢Nn

where

RO(.’E,y,(j) = R(g(xay)vcﬁ = Z Rm(ﬂ(xay)aq)

m=0

with g(x,y) defined by (3.23). Observe that for |z| < so, |y| <ro <1,

|89L’Rm(xuyvq)‘v ‘ayRm(‘ra:% §)|7 ||85Rm($7y7 CY)|

ap < HaqR(Q)Ha,p-
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Let u= (u; : j ¢ N,) with u; = (p;,¢;) and
XRy = (02 R, =0y Ry, JooOuR), Ouy = (0p,, 0y, )-
It follows from Lemma 3.2 that the Assumption D is fulfilled and

ToIXRm|§m;P>D(8077‘0)><(90 < €Em-

Using the fact 49 = [j|* +&; and (3.6) and (3.7), we get that the vector field Xz,
is analytic in each entry of £ € Oy and

L
ro IXRm |<m7p7D(Soﬂ”o) x0y < Em-

By invoking Theorem 2.1, we get the invariant torus and thus quasi-periodic solu-
tions for (1.3).

Theorem 3.3. For any 0 < a < 1, there ia a set I, C Ily with
Meas (IT\ 11,,) < ¢

(here ¢ > 0 is an absolute constant ) such that for any & € 11, the NLW equation
(1.8)¢cn, possesses a smooth quasi-periodic solution u(t,x) of frequencies w, which
satisfies

lu(t, z) —uo(t, )| < Ve

and
|we —wo| <e.

Besides, the solution u(t,x) is linearly stable.

4. The linearized equation.

4.1. split and estimate for small perturbation. Recall that for 3 € N, the notation
7% denotes the number of the elements of the set {j € Z¢ : |j| = j}, and u, is
the vector consisting of u; with j € Z¢ and |j| = 5. Let E, be the unit matrix
of order 7¥. Let O be an open set in R™. Consider two infinitely dimensional
vectors u = (u;);eze and v = (v;);eza where both u; and v; are in C?. Define
(u,v) = > eza(uy,vj). Therefore, if write u = (u;),en and v = (v;),en where
both u, and v, are jf-dimensional vectors, then (u,v) = > sen(uy,vy). Let N be
an integrable Hamiltonian:

N = (w(§),y) + Z<QJ(£)E]U’]7U’]> + Z(ng(f)ujvuj>

IEN JEN

where B,,(w) is a real symmetric matrix of order j* for any w € O, and all of
the coefficients w(§),(2,(§) and B,,(§) are analytic in each entry & (j = 1,...,n)
of £ € O. Moreover, we assume |det8‘5—i§)\ >c¢ > 0 for all £ € O. If we write

A = diag(Q,(§)E, : ye N) and B = diag(B,, : y € N), then
N = (w(&),y) + (Au,u) + (Bu, u).

We now consider a perturbation H = N+R where R = R(x, Y, u; €) is a Hamiltonian
defined on D(s,r) and depends on the parameter £ € O. We assume that there are
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quantities ¢ = £(r,5,0) and £ = ££(r, s, O) which are dependent on 7, s, O such
that
TlXR|§7P7D(S,T)><O < 5, TlXle;p,D(s,T‘)XO < E:c, e < EL << 1 (41)

For u = (u;)jeza with uj = (uj,u3), write u' = (u});cza and u® = (u5);czq. Let

V=1(k, 1 2
R= " > > Rimgge’ T ®0ym @) (u?)®,
2|m|+|q1+q2|<2 keZ?,

with the Taylor-Fourier coefficients Riyq,q, Of R depending on ¢ € O, and being
analytic in each entry &; of &, such that the vector field X : P — PP is real,
analytic in (z,y,u) € D(s,r) and in each entry of £ € O. We will approximate
R by its partial Taylor-Fourier expansion R. For convenience we decompose R =
R + R' + R?, where R’’s (j = 0,1,2) comprises all terms with |¢q + g| = j, and
furthermore,

R’ = R* + (RY,y),
R' = (R",u),
R? = (R""u,u),

where R*, RY, R"* depend on x,&. Let D(s) = {& € C"/27Z"™ : |Sz| < s}. In
order to derive the linearized equation, we need some notations. For any operator
Y : fP — (5P C (P, we regard it as a matrix of infinite dimension. Denote by Y%’s
the elements of this matrix. For any ¢,7 € N, let Y, is the sub-matrix of ¥ with
Y.y = (Y7)}ij=,|j|=;- Denote by V,%J the elements of the sub-matrix Y,;. We split
the matrix Y as follows: Y =Y, + Y,, where R, is a quasi-diagonal matrix with
Y, = (Y,,: g€ N) and Y,,, is a non-diagonal matrix with Y,,; =Y —Y,. Denote by
Y, the elements of matrix Y,,. Thus, Y = 0 if [i| = |j| = 5. For any vector or
matrix Y dependent on x € D(s), let

1
Y] = G /n Y (x) dx.

Besides, we suppose that [R*] = 0 without loss of generality, since the Hamiltonian
dynamics will not be changed by adding (or removing) a constant to (or from) the
Hamiltonian function. Now we give some estimates of R.

Lemma 4.0.
TlXRlz,p,D(s,r)XO < TlXRli,p,D(s,r)XO < E*a (42)
777"|XR - XRIZ,p,D(sAnr)XO <n- ”‘lXRlz,p,D(s,r)XO < 776*7 (43)

for any 0 < n < 1, where * = the blank or L, for example, e* = ¢ or e~.
Proof. The proof is similar to that of formula (7) of [P1,129].

Lemma 4.1. Under the smallness assumption on R, the following estimates hold
true:
0:R* | p(syxo < 7%, |0:R* |Gy o < rPe” (4.4)

IRY|psyxo <& |RY[Goywo < &° (4.5)
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HRuHc,p;D(s)xO < re, ||Ru”§£,p;D(S)><O < re” (4'6>
B oy < < IR ppieo < & (17)

Proof. Consider R"*. Observe that R*"" = 0,0, R|,=o with 0,; = (8u;,8u?) and

uj = (uj,u?). By the generalized Cauchy inequality (See Lemma A.3 in [P1]),

1
H|Ruu|||0,§,p,p;D(s)><(9 < ;HauR”g,p,D(s,r)XO < rlXRlc,p,D(s,r)XO <e.

The remaining proof is simple. We omit the details. O

It follows from Lemma 4.2 that R*" is a bounded linear operator from ¢ to £°P
for any z € D(s). Write R* = (R;; : i,j € Z9) where R;;’s are 2 x 2 complex

matrix. In fact,
R 8u7;8u§R 81@8”}]%
Y7\ 020, R 0,20.:2R )"

We see that R}; = Rj; where t means the transpose of matrix. Therefore, R** is a
symmetric operator. Besides, R"" is real for real . Recall R;; is a 2 x 2 matrix.
Denote by |R;;| the maximum norm of matrix.

Lemma 4.2. For |i| > |j|, we have
|Rij|p(s)x0s [ Rjil D(syx0 < e~<lilg| | j|e. (4.8)
|Rij|Bs)x00 [Riil Bsyxo < e <i|7j|Pe”. (4.9)

Proof. Let u = (uy)peze with u; = [j|7P(1/v/2,1v/2) and uy, = 0 for k # j. Then

[lull, = 1. In terms of the definition of the operator norm ||| - |||o,c, p.p and (4.7),
we have

Z €2§|”|l|2p| Z leuk|2 < |||Ruu”|(2),c,p,p < 527

lezd kezd
that is,

S M|y Pl < 2,
lezd

in particular, for |i| > |j],
|Rij| < e~ )i| 7| |Pe.

The remaining proof is similar. This completes the proof. [

Lemma 4.3. For jc N,

sup ||Ryy|la < 471/ 2e72¢, (4.10)
D(s)xO
sup ||RJJH2£ < ](dil)/2€7§j5£~ (4.11)

D(s)xO
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Proof. Observe a well-known fact in matrix theory:

lil=lil=2

||RJJ||§ Smi)j(Z |R;j| - max |R;j|
|4

Note that the cardinality of the set {j : [j| = 7} is bounded by j?=2+€ < y4-1 By
Lemma 4.2, we have

IRyl < [ 1+ max |Ry;| < j=1/%e
L2 =i

The proof of the another estimate is the same.

Let Y : f5 — {3 be a matrix of infinity order. Write Y = (Yj; : i,jZ%). For
M >0, let Ty Y : £ — €5 be a matrix of infinity order whose matrix elements are

defined by
Yij. lil <M and |j| <M

TaY)s =
(Tar¥)yy {0, li| > M or |j| > M.

IfY = (Y; : j € Z% be a vector in fa. Let T Y = ((TY); : j € Z¢) is a vector in

{5 defined by ’
Y, ljl<M

TyY);, =
(Tark); {o, 5] > M.

Lemma 4.4. For0<n<1and0<o <1, let M =4|lnno™|/s. Then

(1= Yar)R||cj2.p.0(5)x0 < rea”™ %, |[(1 = Tar) R[S, psyxo < nProe”.

Proof. By (4.6) and the definition of T,

(1 ="Ca0) B¢ /20005 x0 < €M 2||R[¢ p.p(syx0 < remo™

The remaining inequality is proven similarly. O

Lemma 4.5. For0<n <1, let M =4|lnno™|/s. Then
I[I(1— TM)RML”|0,</2,p,p,D(s)x(9 < 0n57727
|H(1 - TM)Ruu|||€,§/2,p,p,D(s)><O < UTLUQEE'

Proof. By (4.8) and the definition of T,

(L =Ta)R")ijlpsyxos (1= Tar)R*™)jilps)xo
< eM/Ae= /Dl 7P| j P < e~ B/Dslil 5|72 4P (en0™).

By the same argument as in the proof of Lemma A.2 in Appendix A, we complete
the proof of the first inequality of this lemma. The remaining proof is similar. [
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Lemma 4.6. Suppose that r = ron with a absolute constant ro > 0 defined in
Theorem 2.1. Let

Ry = <(1 — TM)RU, u) + <(1 — TM)R“"u, u}.
Then

L L
T]TlXR]\/[|§/2,p,D(S—O’,7]7‘)XO <ne, T]TlXRJ\/I|§/2,p,D(s—U,T]7")><O <mET.

Proof. This is a easy corollary of Lemmas 4.4 and 4.5. [
For K > 0 and a function f(z) = >, zn f(k)eV=1®E2) define a function 'k f
by
Cxf)(x) =Y flkeV1*o,

|k|<K

Lemma 4.7. Let K = |lnn|/o and Rx = (R— Ry) — Tk (R — Ra). We have
rlXRKlg,p,D(s—a,r)XO < g,
TlXRK|§p7D(S—U7"’)XO < nsﬁ

Proof. Write Rx = R% + (RY%,y) + (R%,u) + (R¥*u,u). Note that the terms R,
RY, and so on, are analytic in z € D(s). Then by Cauchy’s formula, we have
|R% (k)| < esI¥l supp(s) [27], and so on. Observe that |k[ > K in those Fourier

coefficients @(k)’s. We can get

X Rk lS p.D(s—omyx0 < e 7 r|XRlep,0(s,r)x0 < ME”

where * = the blank or £. O
Finally, let R = ' (R — Rps). Then

R =R+ Ry + Rk.

Also write
R=R"+ (RY,y) + (R*,u) + (R""u,u).

By Lemma 4.6 and 4.7 we see that Lemmas 4.0, 4.1,4.2/4.3 hold still true after
replacing R by R.

4.2. Derivation of homological equations. The KAM theorem is proven by the
usual Newton-type iteration procedure which involves an infinite sequence of coor-
dinate changes. Each coordinate change is obtained as the time-1 map X% ;=1 of
a Hamiltonian vector field Xp. Its generating Hamiltonian F' solves the linearized
equation

{F,N} =R —[[R]]

where {-, -} is Poisson bracket with respect to the symplectic structure dz A dy +
du A du? and [[R]] is defined as

[RI] = ([R*): ) + ([Rg"u, u).
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It is easy to see that

Rl= Y. Romyy™uiul

0<|m|<1,li|=l3]

which is of the same form as N. We are now in position to find a solution of this
equation and give some estimates for the solution. To this end, we suppose that F’
is of the same form as R — [[R]], that is, F = F° + F' + F?, where

FO=F"+ (FY,y),

F' = (F*,u),

F? = (F"%,u),
with F*, F'¥, F"*" depending on z,{. We furthermore suppose that [[F]] = 0 where
the definition of [[F]] is the same as [[R]]. Set A4,,(§) = Q,(§)E, + B,,(§), A=
diag(A4,, : e N).

As in [K1, p.62], now the linearized equation is reduced to the following equa-
tions:

OF? [0w = R*(x,§), (4.12)

OFY /9w = RY(x, ) — [RY)(€), (4.13)

OF" /0w — AJso F* = R"(x,€), (4.14)

OF" [0w + F"" JooA — AJ o F*"" = R""(z,£) — [Ry"](£) (4.15%)

where 9/0w = (w, 8%), for example, OFY /0w = (w, BBF; ). Observe that both A and
J are quasi-diagonal. We can split (4.15%*) into the following systems:

8F£“/8w + BT Ay — Ay L ES =Ry ['Rfjju] =0,2,7< M. (4.15)
Recall Xr : D(s,r) C P — PSP is real analytic in (x,y,u) € D(s,r) and each
entry of £ € O.

4.83. Solutions of the homological equations.
Proposition 1. ( Solution of (4.12).) Assume that uniformly on £ € O,

(b, w(€))] > ﬁ forall0 £k ez |k| < K (4.16)
where a > 0 and 7 > n. Then on D(s—0) x O with 0 < o < s, the equation (4.12)
has a solution F*(x,&) which is analytic in x € D(s— o) for £ fized and analytic in
each &;,(j = 1,...,n) for other variables fized, and which is real for real argument,
such that

rle r2et

T x| L
|81F |D(3_o-)><o < m, |3mF |D(S—(7)><O < W (417)

Proof. Expanding 0,R? into Fourier series

ORE = Y GRE(k)eV IR,
0#£keZ" ,|k|<K
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Since 0, R is analytic in « € D(s), we get that the Fourier coefficients W(k)’s
decay exponentially in k, that is,

0.RE (k)] < [0.R | psyxoe " < e=*Flp2e, (4.18)

where we have used (4.4), since Lemma 4.1 holds true not only for R but also for R.
Expanding 9, F* into Fourier series as that of 9,R* and putting them into (4.12),
we get

R (k)
0P (x,6) = Y F=eV
0£keZm, |k|<K —1(k,w)

By (4.16), (4.18) as well as Lemma A.1, we get that for z € D(s — o),
2

2
ree r
0. F*(x < — kT67|k|0<7 T,
orF* (@€)< 2 5 I —o

Applying O, to both sides of (4.12) and using a method similar to the above, we
can get
T L TQEL
|0 F™ (2, )|~ < o2 O

Proposition 2. ( Solution of (4.13).) Assume (4.16) holds true. Then on D(s —
o) x O with 0 < o < s, the equation (4.13) has a solution FY(x,&) which is analytic
inx € D(s— o) for ¢ fived and analytic in each &, (j = 1,...,n) for other variables
fized, and which is real for real argument, such that

L

€ y| L
|Fy|D(sfcr)><(9 < ma |Fy|D(sfo')><O < W
Proof. The proof is the same as that of Prop. 1. We omit it. O

We are now in position to find the solution of (4.14). Recall that A = diag(A4,, :
g€ N) with A, = QO E, + B,, . We assume that B,, is symmetric and min, Q, >
c¢>0and ||By,ll2 < 6(1)/3. Let

AJJ =K+ QleJJ =FE,+ BJ]'

Then flﬂ and Bﬂ are symmetric and 4,, = Q]flﬂ. In addition, we will assume that
||B,,|l2 < €07~ Tt is easy to see that A, is positively definite and ||A,,||> < 1+Ce.
Write R" = (R,),en With R, = (R})j|=,; Similarly, write I = (F}),en. Then
(4.14) can be written as a system of equations:

OF,/0w—A,,J,)F,=R,, jeN,)< M. (4.19)
Multiplying both sides of the above equation by a scalar €/2? and letting
eV2PF, = F), e92PR, =R, (4.20)

Then

OF, /0w —Q,A, JJF, =R,, 7<M. (4.21)
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Let R = (ﬁJ)JeN and F = (Fg)ge/\ﬂ

Letting F, = flj_jlﬂﬁ‘] and R, = AJ_Jl/Qﬁj and A,, = \/—114%2(]]/131/2, then, by
noting €2, is a scalar, we get

OF,/0w + V-10,A,,F, = R,, (4.22)

Since A,, is (real) symmetric and J, is skew-symmetric, we get A,, is hermitian.

Since B,,(¢) is analytic in &(j = 1,...,n), it is easy to see that A,, = A, (£)
is analytic in &;. Therefore we have the following lemma which will be used in
estimating the measure of some non-resonance sets.

Lemma 4.8. Assume B,(§) is real symmetric and

- —d.1/3 ~ -
Sup [ By, (O)ll2 < o7 “ SUp (106 By, (E)ll2 < 5 ‘e, Sup [eY| < €5 L o<

Let Ay = {\; : |j| = 3} be the collection of all eigenvalues offljflﬂ and A = UjenA,.
Then for any \; € A, it is a function of € € O and is analytic in each entry* &’s
(l=1,..,n)of £ € O. Moreover,

N (©) £ <7 %0, |l =1
and

sup |0¢A; ()] < C;7 lil=20<C< 1L

Proof. By the assumption, we can write
QJAJJ = \/jlﬁj‘]] + BJ]’

with

d 1/3 —d

SlépHBJ]HQ <e€oJ % Slép”aEBﬂ”Q <€ J

Note that the eigenvalues of \/flflij are j:flj’s. The proof is finished by the
combination of Lemmas A.3,4,5 in Section 9. O

Proposition 3. Suppose that for any k € Z™ and 3 > 0, A\j € A, and { € O, the
following inequality holds true:

[(k,w(€)) £ M| > a/(54K|7), k| < K,7< M, ( 1*" Melnikov’s ) (4.23)
where we take |0 as 1 for convenience. Then equation (4.14) has a solution F*(z, &)
which is analytic in x € D(s — o) for & fized and analytic in each &;,(j = 1,...,n)
for other variables fized, and which is real for real argument, such that

||FUHC/2,D(570)><O < g—da—lo.—r—nra (424)

||Fu|‘5/2,D(sfa)><O < laTto Al (4.25)

4The function ); is not necessarily analytic in the whole of £. See [Ka] for a example.
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Proof. By (4.23), we get
(k) By +2,4,) " ]2 < g% k[ Ja, 3 < M, K| < K.

Expand 7_€J and Fj into Fourier series and putting then into (4.22), we get

Fy= > ((kw)E,+QA4) 'R R, (k)eV"1ke) g < M. (4.26)
k|<K

Since R, is analytic in € D(s), we have ||7/€j(k')\|2 < e‘sz'supD(s)XO IR, ]2
Therefore, for x € D(s — o),

|Fy(@)]]2 < a™'y? sup IRz > k[Te ™ < y%ato™™™™ sup [|R,|l2.
D(s)x hczn D(s)xO

Notice that HAJJUQHQ =1+ o(1). Tt follows that

1B @)l2 < [1Ey(@)]l2, [1Ry(@)]]2 < [IRy(@)]]2.

We get ~ :
1By (@)]]2 < sfa™lo™™" sup ||Rylfa-

D(s)xO

Recalling that

Hence,
|E (@)l < s%a” ™™™ sup [|R,][o-

D(s)xO

Finally, noting a simple fact

suptPe = = (3/a)Pe™" for any B,a > 0,
0<t

we have

F(@)]]ej2.p = \/Ze<JfPIIF )12

<M

<a le7™™™™ sup Z (2de=s7)(e25952P||R,|13)
D(s)xO <M

<lalo™™ sup \/Ze%m?pn&@

D(s)xO <M

:gidailgi‘rin sup | ‘RuHc,p

D(s)xO
Sg_dofla_" n,rg’
where (4.6) is used in the last inequality, since Lemma 4.1 holds true not only for R
but also for R. Differentiating (4.22) with respect to £ and repeating the procedure
above, we can prove (4.25). O
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Finally we turn to the solutions of the homological equation (4.15). Recall that,
we have let ~ ~ ~
Ay =E,;+ Q;lBJJ = E,+ By,

Thus A,, = Q,4,,. Note that Q, is a scalar. Therefore, the equation (4.15) can be
written as

OF,, /0w + Q,F,,J,A,, — QA,J,F, =R,(z,¢), (4.27)
where we omit the superscript “* of F** and R"“. Let
Ay =V-1A)2 1A% (4.28)

Notice that B,, is real symmetric and ||B,,||2 < €. It is easy to see that both A,,
and A;, are hermitian and positive and

HAJJ”% HA_;]1||27 HA]]”?? HA_]_]1||2 =1+o(1). (4-29)

Lemma 4.9. Let M and N be m x n and n X | matrices, respectively. Denote by
|| - leo the mazimum norm of matriz. Then

[IM]loo < [[M]l2; [[MN]|oo < n|[M||oo|[N]|oo-

Proof. The proof is rather simple.
Let

F,=A PR A2 R,y = A VPR, A2 (4.30)
Then (4.27) is changed into
OF,, /0w — V=1, F,,A), + V=1Q,A, F,, = R,y (2,€), [R,)] =0, 1,5 <M (4.31)

Recall that we have denoted by A, the collection of the eigenvalues of ijl]j. Write
A, = {); : |j| = s}. By abuse use of notation, we also by A, the diagonal matrix
diag(A, : 7] = 7). Then there is a unitary matrix @,, such that

2,4, = Q) 05Q;;- (4.32)
Let . )
EZJ = Q“FUQ;W Ezg = QuRng;}- (433)
Then (4.31) is changed into
OF,, /0w —vV—-1(E, Ay — AF,) =R, (,€), [R,] =0,2,) <M (4.34)

Recall that both £, and R,, are ¥ x jf-matrices. Denote by F Z and Eg the

elements of the matrix F,, and R,,, respectively. Expanding Ezg and Eg into

Fourier series and putting them into (4.31) we get

E5(k) = V=1

R (k | = [j| =< M0kl <K
R oo Te

(k’w):l:/\ii)‘j’ |Z|7é|‘7|717]§M7|k|§K
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In order to that (4.35) is solvable, we need the 2" Melnikov’s conditions:®
Assume that for any £ € O, A\;, A\j € A;, we have
i = [jl =< M,0# k| < K

4.36
[i] # 1j],2,5 < M, |k| < K. (4.36)

(kv w) £ A £ M| > 0/ (%R, {

We assume |i| > |j| without loss of generality. By Lemma 4.2 and Cauchy’s theorem,
we get

IR (k)| < e Flse=1Pype, |i] > |j].

Note that (4.30,33) and the fact @Q,, is unitary and of order of < =2 with some
constant 0 < ¢ < 1. Using Lemma 4.9, we have

R (k)| < [RJ (k)| (251 < e Wloemsnd=1ympype i > || (4.37)
Using (4.32,33,34) we get

—|k|s|1.|T
|F’L](k)| < € |k| 5e—<126d—4z—

Eay

" PP, lil = g lil gl < Mkl < K (4.38)

Moreover, the function

Fi@e= Y Fike ko
kezn,|k|<K

is well-defined on a small domain D(s — o) x O and on this domain

F (@, 6)| < ———e 54844y i > |js|i], || < M (4.39)

= aa—n—H'

where Lemma A.1 is used. Using Lemma 4.9 and (4.30,33), we get

B3 (2,€)] € ———e~s"0=87 P2 |i| > |j]:|i], [j] < M (4.40)

a-nJrT

Note that E;(k), w, A; and A; are analytically dependent on §;(j = 1,...,n).
Applying ¢, to (4.34) and using the same method as the above, we get

c
£ _ _8 — . e
|F”( HIF < 70[02(7“”)6 $0d=8,=P P 13| > |4; |d], 4] < M. (4.41)

Using Lemma A.2 in Appendix A, we have the follow lemma.

Proposition 4. Assume that the non-resonant conditions (4.5) and (5.12) hold
true. Then there is an operator F""(x,£) defined on D(s — o) x O solves (4.4%)

and
€

HE (2, )lo,¢/2.p0 < JSTT R g (4.42)

and

L

L
IE @ Olos 200 < T20 5,277

(4.43)

5These conditions are weaker than the usual second Melnikov’s ones as in [P1], but similar to
ones in [B,B-B,B-G]J.
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5. Symplectic change of variables.

In this section, our procedure is standard and almost the same as that of Section
3 in [P1,p.128-132]. Here we give out the outline of the procedure. See [P1] for the
details.

Coordinate transformation. By Propositions 1-4, we get a Hamiltonian F' on
D(s — o,r) where

F = F 4 (FY,y) + (F* u) + (F""u, u)

and give estimates of F'*, FY F* and F"*. Let X be the vector field corresponding
to the Hamiltonian F', that is,

Xp = (=0, F,0,F, Joo0u F),

here 9,F is the usual ¢?-gradient. It follows from Prop.1,2,3 and 4 that for
(%%U»E) ED(S-O’,T) Xé.eoa

1 1
7"|XF|§/2,p = |8yF| + ﬁ‘axF‘ + ;HJooauFHdQ,p

1 xr 1 u 1 UU
=IFY) + S10uF7| + oo Pl + 1T F "l 2,

SIFY]+ 5107+ IE L+ ~IE ool el
1
< ao-n+7'§12d—8 " &
where we have used 0 < ¢ < 1 and ||u||, < r. That is,
rlXFlg/Q,p,D(s—U,T')XO < Q€7 (51)
where 1
Q= o 2(nF7)12d—8 " (5.2)
Similarly, we have
7‘|XF|§L/2,p,D(sfo',r)><O < QEL' (53>

As in [P1,p.129], we introduce the operator norm

LW|
L = su 774 =P
e 1

Using (5.1), (5.3) and the generalized Cauchy’s inequality (See Lemma A.3 of
[P1,p.147]) and the observation that every point in D(s — 20,7/2) has at least
| - |p.~-distance o /2 to the boundary of D(s — o,r), we get

sup AIDXElls2p <07 W XEle2pD(s—0mxo <0 Qe (5.4)
D(s—20,r/2,5/2)xO

sup T”DXFHS/QJJ < 0.71 TlXFlf/Zp,D(s—o',r)xO < Uﬁngﬁa (55)
D(s—20,r/2,6/2)xO
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where DX is the differential of Xp. Assume that 0~ 'Qe and ¢~ 'Qe* are small
enough. (These assumptions will be fulfilled in the following KAM iterations. Also
see (5.12).) Arbitrarily fix £ € O. By (5.1), the flow X% of the vector field Xp
exists on D(s — 30,7/4) for t € [—1,1] and takes the domain into D(s — 20,1/2),
and by Lemma A.4 of [P1, p.147], we have

rlX%‘ - idl(/Q,p,D(s—?)O’,T‘/‘l)Xo < rlXFlg/Q,p,D(s—a,r)x(’) < Q€ (56)

and . .
TlXF - Zdlc/2,p,D(s—Bzf,'r"/4) xO

< exp(IIDXEle/2.p,0(-20,0/2)%0) = +|XFIE)2,5. (50 x0 (5.7)
< exp(o1Qe)Qer < Qe
for ¢t € [—1,1]. Furthermore, by the generalized Cauchy’s inequality,
r”DXf-T’ - I“c/Q,p,D(s—éla,r/S)XO < 0_1Q€7 (58)

and
L -1 L
”‘”DX%' - I||</2,p,D(sf4a,r/8)><(9 <o IQE ) (59)
The new error term. Subjecting H = N + R to the symplectic transformation

® = X!|;—1 we get the new Hamiltonian scale Hy := Ho® = HoX}. on D(s—50,nr
where 0 < n < 1/8. By Taylor’s formula

Hy =(N+R+(R-R))oXp
=(N+R+ Ry + Rx + (R—R))o X}

1
:Nf{F,N}Jr/ {t{F,N},F}o Xt dt
0
1
+R+/ {R,F}OX% dt+(RM+RK+(R—R))OX11:.
0

Recall that F' solves the linearized equation
{F,N} =R —[[R]}.

Thus,
Hy =Ny + Ry

where
Ny = N +[[R]]

t
R+:RMoX}ﬁRKoxé+(R—R)oX;+RKox}w+/ {R(t), F}o XL dt
0

with
R(t) =R+ t(R—[[R]])-

Hence, the new perturbing vector field is

t
XR+ = (X};)*(XR — Xgr+ Ry + Ri) -‘r/ (X%>*[Xn(t),XF] dt,
0
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where (X%)* is the pull-back of X% and [-,-] is the commutator of vector fields.
We are now in position to estimate the new perturbing vector field X Ry Let
Y : D(s—o,r) C P — P be a vector field on D(s — o,7), depending on the
parameter £ € O. Let U = D(s — 5o,nr) x O and V = D(s — 40,2nr) x O
and W = D(s — 20,4nr) x O. By (5.9) and the “proof of estimate (12)” of [P1,
p.131-132], we have that for any a > 0,

nr|(X§“)*Y|a,p,U < nrlyla,p,V (5-10)
and
nrl(XltL?)*Y|§,p,U < nr|Y|aL,p,V + 07772 m"Yla,p:W ’ nTlXFIaL,p,V' (5-11)
We assume that
eQ/on® < eQ/o’n? < 1. (5.12)

These assumptions will be fulfilled in the KAM iterative lemma later. By (4.3) and
(5.10,11),

el (XE)* (X = Xe)lo/2p0 < 0l X — Xrlej2pv <ne (5.13)

and
3
wl(XR) (X = XnlE 0 <0 + 5 Qef < et (5.14)

Let D; = D(s —lo,r/l) x O (I = 1,2,...). Recall that (4.2) holds still true after
replacing R by R. By (4.2) and (5.4,5) and using the generalized Cauchy estimate,
following [P1,p.130-131] we get

THXR(t)aXF]lc/Q,p,Dg < U_l rlXng/Q,p,Dl : TlXF|§/2,p,D1
< U_l TlXRlc/Z,p,Dl : rlXFlc/Q,p,Dl (5-15)
<o 'Qe? < ne

and

A Xrw), XEll 52,00,
< U_l TlXR|§/2,p,D1 TlXF|§/2,p,D1 + J_l TlXR|§/2,p,D1 TlXFICE/Q,p,Dl (516)

<o 'eEQe + 07 1eQer < 775L
Finally, we have
77T|Y|§/2,p,Dz < 77_2 T|Y|</2,p,Dm 77T|Y|§L/2,p,Dl < 77_2 T|Y|§/2,p,Dl’ (5-17>

for any vector field Y on D;’s (I =1,2,...). Collecting all terms above and Lemma
4.6 and 4.7, we then arrive ate the estimates

c c
nrlXRJr|</27p7D(s—50,m')X0 <7ne, WTlXR+|§/2,p,D(s—50,nr)><O <nET. (5.18)

The new normal form. This is Ny = N + [[R]]. Recall

N = (w(&),y) + (Au,u) + (Bu,u)
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and
[[R]] = ([R¥], y) + ([R§"]u, w).

Let
wy =w+ [RY] (5.19)

and
By =B +[RM™]. (5.20)

Then

Ny = (wi,y) + (Au,u) + (Biru, u). (5.21)

6. Iterative lemma.

6.1. Iterative constants. As usual, the KAM theorem is proven by the Newton-type
iteration procedure which involves an infinite sequence of coordinate changes. In
order to make our iteration procedure run, we need the following iterative constants:

1. co=¢€, 6m =€) (4/3)™, m=1,2,..;

2. apg =0, a = a/m?, m=1,2,..;

3. =l m=0,1,2,.;

4. e90=0,em=(1"24---+m2)/2 Z;’;lj*Q, (thus, e,, < 1/2 for all m € N);

5. 80 =35, Sm = So(1 —em), m=1,2, ..., (thus, s, > so/2 for all m € N);

6. om = (Sm — $Sm+1)/10, m = 1,2, ..., (thus, s, — loy, > $me1 for 1 <1 <6 and
o =0(m?));

T. Gm = e @R — 1/144d (Recall k = 577d/2);

8. 1o =", "m ="Nmro, m=1,2,..;

9. My, = 2| In(o0m)|/Sms;

10. Ky = [1Innm|/om;

1. vy = ap/(2M2AKTHL);

12. Ty = [1,2]%, and II,, (m = 1,2,...) are defined in Section 8. O,,’s are the
Vm-neighborhood of II,,, in R™.

6.2. Iterative Lemma. Consider a family of Hamiltonian functions H; (0 <1< m):
1 =
Hy = (@i(€),9) + D (Qug,u)) + 5 Y (B (Ouywy) + ) R (w,y,u58), (6.1)
IEN IEN >l

where the following conditions are imposed:
(I.1). the parameter sets IIo D --- D ---II; D - - - II,,, with

Meas I1; > ( Meas TIo)(1 — a; /(1 + 1)?); (6.2)
The map & — wi(&) is analytic in each entry of £ € Oy, (O, is the v;-neighborhood
of I; in R™.) and

0
det i}

9¢

inf
(@]}

> (1—e)e, suplaéwzl <eer, j=0,1. (6.3)
O

(1.2). Béj is real symmetric matriz of order 3* and analytic in each entry &, (k =
1,..,n) of £ € Oy, and

d

_ —d_ 1/3
s(191p|\B§j||2 < 537 %;eq, s(191p||B§]||2£ <7 6160/ , forany g€ N. (6.4)
1 l
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In addition, BY, = 0.
(1.3). For p > 1 and 0 < [ < m, the perturbation Rlp(:my,u; &) is analytic in
the space coordinate domain D(sy,r,) and also analytic in each entry &, (k =
1,...,n) of the parameter vector & € Oy, and is real for real argument; moreover,
its Hamzltoman vector field X 1, := (Rff’, —RY. J R defines on D(sp,1p) a
analytic map

XRZKJ : D(Sl,’l"l) CP — PP, (65)

In addition, the vector field X ., is analytic in the domain D(sy,r,) with small
norms

T@|XRZW|§K37P7D(SM'”)XOZ < €p, |XRl|§p,p, D(s1,m)x 0 < 623/3' (6'6>

Then there is is an absolute positive constant €* enough small such that, if
0 < e < €%, there is a set ll,,41 C I, and a change of variables @41 :
Dimi1 = D(Smi1,"ms1) X Omi1 — D(Sm,Tm) being real®, analytic in (z,y,u) €
D(Sm41,Tm+1) and each entry & € Opy1, as well as following estimates holds true:

Tml(berl Zdlcm/Q P, D1 < 61/2 (67>

and
Tm|®m+1 dlgm/2,p, Dim+1 < 61/4 (68)

Furthermore, the new Hamiltonian H,,+1 := Hp, 0 @ppqq of the form

Hm+1 Wm+1a + Z Q u]vuj Z(B;;L—Huﬁuj) + Z Rm+lp (69>
IEN JEN p>m+1

satisfies all the above conditions (1.1,2,3) with | being replaced by m + 1.

6.3. Proof of The Iterative Lemma.

As stated as in the iterative lemma, we have got a family of Hamiltonian functions
Hps (I =0,1,...,m) which satisfy the conditions (I.1,2,3). We now consider the
Hamiltonian H,,.That is,

1
Hy = (wm,y) + Z(Q?uj,u]) + 5 Z Uy, Uy) + Z Lme (6.10)

IEN JEN o>m

which satisfy the conditions (m.1,2,3). First, let us consider

= 1 m Hmm
Hm = (wm,y) + Z(Q?ujvuj) =+ 5 Z(Bjju]’u]) + R (611)
IEN IEN
instead of H,,. Let s = Spy», 1 = Ny ¥ = Ty = NmTo, € = 6m7 et = 6%3’

0= 0ms S =Sn, w=wnm, A= diag () : ye N), B = dlag( : 7€ N), and
R=Rm™"m .= R,,. Clearly, € < e*. Let

IT = 1I,,41 := {¢ € II,, : non-resonant conditions (4.16,23,36) hold. }  (6.12)

6The word “real” means ®.,41(z,&) = Prmt1(Z, &) for any (2,€) € Dipt1.
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Set
1

Q=Q,=———+—.
aoa ") Gh2d—8

Then 1 12d—8
eQO/(O—?nn?n) « m2(n+7+1)6%_m/a < 637{4 <1,

if & <« €p. This implies that (5.12) holds true.

By means of the arguments in Section 5, we got that there is a Hamiltonian
F,, defined on” D(s,, — 40.m,7m/8) X O,y1 and a symplectic change of variables
(I)m+1 = X%m|t:1 Wlth8

P | P 1 — idl?nL/27p7Dm+1 < Qmem < 6%2 (6.13)
and
rol @it = 1E o pp o <00 Qumey® < i/t (6.14)
T'm”D‘I’m-&-l —id $m/2,p, D1 < Qmem < 6%2 (6.15)
rm”D(I)erl - idllfnL/2,p,'Dm+1 < U;lemeir{g < 611744 (6.16)
9such that
H+ = Hm o (I)m+1 = Nm+1 + R'rn—i—l (617)
where!© )
Nm+1 = N+ = (wm+1,y) + <AU,U> + §<Bm+1u,u> (618)
Wimt1 = Wi + [RY)] (6.19)
BTl = B™ 4 [(RY%),], or B;;LH = B} + [(Rm)y] (6.20)
and!!
T’m+1|XRm+1|§m+1,p,Dm+1 < Nm€m = €m+1, (621)

: L/3 /3 (6.22)

7‘7”+1|XRWL+1|§m+1apaD7n+l < nmem < €m+1.
Verification of the condition ((m + 1).1). According the condition (m.1) we have
infp,, | det Ogwp| > (1 — €, )c1. Using |R%|g(sm)xom < e’ (See (4.5)), we have

that |0¢[RY,]| < el”. Thus,

|det Dewmi| > (1 —em)er — Cell3 > (1 — epyi)en. (6.23)
In addition, we will verify in Section 9 that
Meas I, 411 > Meas Iy(1 — o/ (m + 1)?). (6.24)
"Note Dmt1 = D(8m+1,1”m+1) X g1 C D(Sm — 40‘m,Tm/8) X Om41-
8See (5.6-9).
9(6.13,14) has fulfilled (6.7,8).

10See (5.19,20,21).
HINote ¢m41 < 6m/2 and nr = 9mTm < rm41 and [ Xa,p <|Xlp,p ifa<b
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Hence, the condition ((m + 1).1) is verified for the tangential frequency wy,41.

Verification of the condition ((m 4+ 1).2). By the condition (m.2) and Lemma 4.3,
it follows from (6.20) that

HBJT?—HH? < ||B;?||2 + ||[RJJ]||2

B O _ B (6.25)
< eme€on) 44 §m2d6mj d < i dem+1eo.

Similarly, we have

IBPHIS < 5 %emriey’™. (6.26)

The combination of (6.25) and (6.26) verifies the condition ((m + 1).2). This also
fulfills the assumptions in Lemma 4.8.

Verification of the condition ((m + 1).3). Let us consider
Hm+1 = Hm o (pm—i-l- (627)

According to (6.10,11) and (6.17) we get

Hppr = Nopg1 + Ring1 + Z R™ 0@, 1. (6.28)
p>m+1
Observe that
XR7’LK’O<I>,H+1 = (@m+1)*XR7np D(I)m+1XRmm o CI)erl. (629)

By (6.15), we have
Tm”D(Derl“(m’P’ Dm+1 < 1. (630)

Furthermore, by means of (6.6) with { = m, we get that for p > m + 1

rol X gme 0@ 1 |50 DD (Smg1 Tmgn) S T XRmﬁ’oém“|€@,P,D(Svmrm) (6.31)

= rm||D‘I’y_n+1||<m,p,Dm+1 ’ 7‘@|Xme o, D(smorm) < €p-

Similarly, by means of (6.8)with with [ = m and (6.16), we get
|Xermo<1>m+1|§g DD (smi1 1) < e’ p=m+1. (6.32)

Let
Rm+D(m+1) _ Rm+1 + Rmm+1) i1, (6.33)
RV — R o &, 1 0 > m+ 2. (6.34)
y (6.28),

Hpii =Ny + Y RUTDP (6.35)

p>m—+1

By combination of (6.21,22) and (6.31,32), we conclude that (6.6) holds true with
Il = m+ 1. It is plain that (6.5) holds true with I = m + 1. This complete the
verification of (1.3) with | = m + 1. Therefore, the proof of the iterative lemma is
complete. [J
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7. Proof of the theorem 2.1.
The proof is similar to that of [P1]. Here we give an outline. By Assumptions
A B, C, D and the smallness assumption in Theorem 2.1, the conditions (I.1,2,3)
in the iterative lemma in Section 6.2 are fulfilled with [ = 0. Hence the iterative
lemma applies to H. Inductively, we get what as follows:
(i). Domains: for m =0,1,2, ...,

D = D(SmsTm) X Omy  Dma1 C Dy
(ii). Coordinate changes:
\I/m = (I)l O-+-0 (I)m+1 N Dm+1 — D(So,ro)7;

(iif). Hamiltonian functions H,, (m = 0,1,...) satisfy the conditions (I.1,2,3) with
replaced by m;
Let oo = N°_oI11, Doo = NDyy,. By the same argument as in [P1, pp.134], we
conclude that ¥™, DU™ H,, X 1, converges uniformly on the domain D, and
Xg oW¥® =DU>- X, where

) 1
Hoo i= T Hy = (we(€),) + 3 (AJuy,w)) + 5 > (B (€)ug, uy)
JEN IEN

here B;’jo = lim,;,— oo B;? and X,,, is the constant vector field w, on the torus T".
Thus, TV x {0} x {0} is an embedding torus with rotational frequencies w. () €
wy« () of the Hamiltonian H.. Returning the original Hamiltonian H, it has
an embedding torus ®>°(T" x {0} x {0}) with frequencies w.(§). This proves the
Theorem. O

8. Verification of Non-resonant conditions—estimate of measure.

In estimating the measure of the resonant zones it is not necessary to distinguish
between the various perturbations w; and €2; of the frequencies, since only the size
of the perturbation matters. Therefore, now we write w and €2 for all of them, and
by Assumptions B and C as well as (6.3) and Lemma 4.8 we have that the map
& — w(&) is analytic in each entry of £ € O here O is a v-neighborhood of I, and
there are two absolute constants cy, co, c3, ¢4, ¢ > 0 such that

P ,
igf det 8—2} > ¢y, sgp|8gwl| < ¢y, 7=0,1, (8.1)
I%f /\j >c3 >0, sup ‘85/\” < k1. (82)
(@]
and
inf A = X = ci] =417 e >0, i > |]. (8.3)

Lemma 8.1. Under the condition (8.1), there is a subset Z* of I with Lebesgue
measure Meas=' < « such that for any & € 11\ E', the non-resonant condition
(4.16) is fulfilled, i.e.,

|(k, w(€))] > % for all k € Z" with 0 # k| < K
where a > 0 and 7 > n.

Proof. The proof is standard in KAM theory. We omit it. [
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Lemma 8.2. Under the condition (8.1) and (8.2), there is a subset =% of 11 with
Meas Z? < « such that for any & € 11\ 22, the non-resonant condition (4.23) is
fulfilled, i.e.,
e .
[(k,w(€) £ A;(8)] > T k| < K,j<M

where a« > 0 and 7 > n and \; € A2,

Proof. Let
—_ « —_ _
J Ik <KJ|<M
and
= _ « = =
Zt; = {new):|(kn) £ X (w () < W}, == U =,
J |k|<K,jezd
By (8.1) and (8.2),
sup |9, A (w ™ ()| < 1 (8.4)
w(II)
and
inf \j(w™'(n)) >c>0. (8.5)

w(IT)

Again by (8.1), we have MeasZ2 < Meas=2. Observe that the set é%,j is empty
when £k =0 and 0 < a < 1, in view of (8.5). In the following argument, suppose
that k # 0. Write k = (k1, ..., k,). Suppose k1 # 0 without loss of generality. By
Lemma (8.4),

|00 (k1)) £ A (W™ ()| = [k % 0y, 2 (@™ ()] > 1/2.

It follows that R o
Meas =22 . <« ———.
k.j jd‘kr

Hence,

— = = (6%
Meas 22 < Meas =2 < Meas U :i’j < E TR <o O
k| <K,|j|<M kezn jezd

Lemma 8.3. Under the condition (8.1) and (8.2), there is a subset Z3 of 11 with
Meas Z3 < « such that for any & € I1\ 23, the non-resonant condition (4.36) is
fulfilled, i.e.,

lil=1il=0<M,0# |kl <K

Proof. Let

- 1
ey = £ T (@) MO 10 < S )

12See Lemma 4.8 for the definition of A.
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and

=3 _ =3
- = —k,i,5°

|k|<K,|il,|j|<M

where k # 0 when |i| = |j|. Tt follows from (8.3) that the set Ei” is empty when
k =0 and [i| # |j|. Therefore assume k = (k1,...ky,) # 0. Suppose k1 # 0 without
loss of generality. Let

SR = {n € w(IT) « () £ Xi(w ™ () £ X (@ ()] < —— . }

1+ |k|7 2dyd
=3 U =3
= k1,50

|kI< K il,|j|<M

and

where k # 0 when |i| = [j]. By (8.1), we have MeasZ? < MeasZ®. By 8.4, we have
[0y (kym) £ Xi(w™H (1) £ A (W™ ()] = [k £ Oy Ai £ 9, Ny 2> 1/2.
It follows that

2oL
Meas Zj ; ; < 7 iy
Hence
Meas =2 < Meas U :ij< E WE Wi W<a. O
’ )
0<|k|<K,|i|,|j|I<M kezd €24 jeZd J

Lemma 8.4. There is a subset I, C II with
Meas Iy > ( Meas IT)(1 — Ca). (8.6)

And there is a positive vy such that for any € € O, a vy -neighborhood of 11, , all
resonant conditions in Lemmas 8.1,2,3 hold true.

Proof. Let Il =TI\ (2} UZ2 UZ3). Then (8,6) holds true clearly. Let
vy =a/2M* KT,
Since vy < v, we get O C O. Let
F(&) = (k,w(&)) £ Xi(€) £ A;(€), [k] < K, il [7] < M.
Then, by (8.1) and (8.2),
sgp [0 f(&)] < |klea +2¢4 < K.

Since O is the vi-neighborhood of II;, we get that for any £ € Oy, there is a
&o € 11 such that |€ — &| < v4. Thus,

7€) = F(&0)| < sup |9 f(O)IIE — &0l < Kvy < s

Consequently, for £ € O, and |k| < K, |i|,|j| < M, we have
a a a

|f(£)| 2 |f(§())‘ - |f(£) - f(£0)| > |’L|d|j|d‘]€|T - 2M2dK7— Z 2‘Z|d|j|d|k“7—

This implies that the non-resonant conditions in Lemma 8.3 hold true for £ € O..
The remaining proof is similar to that above. [
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9. Appendix A. Some Technical lemmas.

Lemma A.1. For > 0,v > 0,the following inequality holds true:

1
3 ek < (D) (1)
kezd e H

Proof. This Lemma can be found in [B-M-S].

Lemma A.2. Suppose that an operator Y =Y (x,£) : £%P — (*P s analytically
dependent on x € D(s.) = {x € C" : |Sw| < s.} and each entry &'(1 =1,....n) of
& € I1, and suppose that following estimates hold true

Vi | D(s.ywts [Viil pgsyrr < €< iP i P [jPes,  [i] > 14, *)

and
Vil Bsnyserrs Vil Bsnysm < €= ilPla 7P15Pes, il > 1], (**)

where constants s, 3, €, and £ are positive. Then we have

—2d— L —2d—-8_L
sup  ||[Y [[lo,c/2,p5 <> Pe., sup  |[[Y[[5s/2pp < bl
D(S*)XH D(S*)XH

Proof. Let w; = e/2ll[i|P. Let J; = {j € Z%: |j| < |i|} and J* = {j € Z% : |j]| >
li|}. Let I/ = {i € Z*: |i| > |j|} and I; = {i € Z% : |i| < |j|}. For any u € ¢, with
[|lu||, = 1, we have

1Y ull2), = D wil D Yiju,l?

i€z jezd

2
<y (Zlﬁjllwl +Z|mj||uj>
Ji Ji

€7
2 2
<Y (z IYZ-J-IIujI> P (z IYijIIuﬂ)
i€Za Ji =y Ji

where Y;;’s are the matrix elements of Y. Note that {j € Z¢ : [j| = j}F < j41
where f = is the cardinality of the set. By assumption (*), we have

Z |Yij|e<|i‘/2|i|p|j|7p < Ze—c\i\/zm,@s* <« Zldwqeﬂl/zg* < §72d7ﬁ€*7
Ji Ji leN
where Lemma A.1 is used in the last inequality. Similarly,

D Yigle 2 lip | P < 724 e
IJ

S Wagles 2|77 < 72 Pe,
I;
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and 4
D W le2 5P| < 72 e
Ji

By Holder inequality, we have

(1)< 3 eslilipe (Z IYijlecli/2|i|pjp> (Z |Y”|e<il/2jp|uj|2>
i Ji ”
<20y ey (Vi lem 2 Py
i Ji

<P O Iagle 2P (11 g )

R
< (C—Zd—ﬁg*)2 Z |j|2p|uj|2 — (g_Qd_BE*)QH'UH;Q; — §_4d_255i-
J

We are now in position to estimate (2). Again by Holder inequality we have
(2) <D wi > |Yigles 2 [P 72 Y [Viglem 2 P[]y |

« 2B wa Z Vi le= SV 15172 iP |u; |2
i Ji

S Sl SN 1 U Vi NPT O
J I;

< 2P ST S Wl 2P| 1P
J I

< §—4d—26€z Z |j|2p‘uj|2 — §_4d_265i'
J

Consequently, we get that for any (z.£) € D(s.) x II,

1Y (z,&)ulls/2,p < §72d7’6€*, for |lull, = 1.
That is,
sup ‘HY‘HO,</2,p,p < szdfﬁ

D(s,)xII

Ex.

Using the same arguments as above for ¢, Y, with j = 1,...,n and using (**), we

can get the estimates for |||Y|||§</2 p.p- This completes the proof. [

Lemma A.3. Suppose thatY = X +Z where both X and Z are hermitian matrices
of order m, and the eigenvalues of Y and X are Ay > ... > Ay, and pi1 > ... > oy,
respectively. Then

(A=l <1 Z]|2, 1=1,....,m.

Proof. The proof can be found in most text books on matrix theory.
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Lemma A.4. Consider an n x n complex matriz function Y (§) which depends on
the real parameter £ € R. Let Y (§) be a matriz function satisfying conditions:

(i) Y (&) is self-adjoint for every £ € R; i.e., Y (&) = (Y (£))*, where star denotes the

conjugate transpose matriz;

(i) Y (&) is an analytic function of the real variable .
Then there exist scalar functions p1(€), -, un(§) and a matriz-valued function
U(&), which are analytic for real & and possess the following properties for every
£eR:

Y(§) = U(§)diag(pa(§), -+, un(§))U(),  UEU(E))" = E.

Proof. See [pp.394-396, G-L-R]. O
It is worth to point out that this lemma does not hold true for ¢ € RF with
k> 1. See [Ka.

Lemma A.5. Under the same assumptions as in Lemma A.4, we have

d
|ﬂ;(§)| < HY/(§)H2, l=1,...,m, here "= dif

Proof. See [Ka, p.125]. O

10. Appendix B. Theorem on regularity of linear operator.

In order to overcome the difficulty arising from the delicate small divisors of
the form (k,w) + X\; — A; with |i| # [j|, we have to raise up the regularity of
the linear operator R"** coming from the second term (R““u,u) of the perturbed
Hamiltonian. We start with some natation and definitions. For x = (x1, ..., x4), we
denote D; = 8/dx;, D*¥ = D} o DE? o ... 0 Dsd, |k| = Z;l:l k;. We define the
complex strips U, for all a > 0 as follows:

Uy = {z € C2r2)*:|Sz| < a,j =1, ...,d}.
For a function u : U, — C and integers p* > 0, we introduce the seminorms

[ulap- = sup |Dku(z)|
z€U,, |k|=p

When a = 0, we write |ulo,+ as |ul,. Let CP"(T) be the set of all functions
defined on 7' with sup,cq j=p DFu(z)| < co. For p* > 0, the Banach spaces

A(a,CP") are then defined as spaces of real holomorphic functions u on U, (u
being real means u(z) = wu(Z)), with period 27 in each variable and such that
|ulqp < oo. Take a function § € C§°(R), vanishing outside a compact set and
identically equal to 1 in a neighborhood of 0, and let s be its Fourier transform.
Moreover, we can require s(z) is even function. When = = (z1,...,74) € R%, by a
slight abuse of notation, we denote s(x) = s(x1) - - s(zq). For a > 0 we introduce
the families of linear operators S, : CP(T%) — A(a, C?), by means of the convolution

St = sa%u, 54(2) = a"%s(a”12):

saFu(z) = a*d/Rd s (y - Z) uy) dy, u e CP(TY).

a

It is clear that S,u is an entire real holomorphic function on C? and has period 27
since u has period 2.
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Lemma B.1. There exists a constant C = C(p,d) > 1 depending only on positive
integers p and d such that, for all 0 < o < a,

|(Sa — Sa)u|o7p* < C|u|p*ap*7p*v 0<p.<p"

|(Sa — 1)U|p* < C|u‘p*ap*7p*

and for a € N with |a| < p.,

DoHBy(Rr)

S VT8 < Ol a7,

sup |D*Squ(x) — Z

|| <a 181<p.—lal
in particular, for |a| = p.,

[Sattlap. = sup [D*Squ(z)| < (14 C)fulp,.

|S2|<a

Proof. This lemma is the so-called Jackson’s analytic approximation theorem. The
proof consists in a direct check based on standard tools from calculus and some
simple properties of Fourier transform. Refer to [Z].

Remark. If u depends on some parameter £ € II C R™ and if the Lipschitz semi-
norm of w and its x—derivatives are uniformly bounded by |u|£ then all estimates
in Lemma 8.1 hold true with | - | replaced by |- |*. The proof in [Z] is still valid
here only if | - | is replaced by | - |~.
Let
HP (T%) = {u € LA(T%) : |l

2 < 00}

b =2 li
J
Define F : (¢ — H? (T?) by

qu 1) ge .

By means of Parseval equality, F : ¢~ — H? (T?) is isometric.

Lemma B.2. If u € H? (T%) with p* > d/2, then u € CP ~42(T%) and there is
an absolute constant C such that |u[p«_q/2 <

Proof. Formally, for k € RY with |k| = p* — d/2 and u € HP(T?),

DFu ="y " a(j)(V=1j)*e’ 10",

J

Then
> sup [a(j)(vV=15)FeV=T00 | <N " a()||P

- d
j zeT j

< (Z [ai)PLiPP) Y2 - (o 115D <

J

so u € CP ~42(T?) and |uly-_q/2 < Cllul|p-
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Let us now take ¢ € 7. Then u(z) = F(q) € H? . It is plain that (4(j)),eze =
¢. By Lemma B.2, we have u € C?" ~4(T%) and |u|,-_4 < C||u|p-. By Lemma 7.1,
for any 0 < 7 < o, the functions S;u,S,u are entire real holomorphic functions
on C? and has period 27; moreover, letting p* = p — d/2 and p, = p and recalling
p — p =k and using Lemmas B.1 and B.2 we have the following estimates hold:

(S5 — S2)ulrp < [ulp—aj20™ @D < |Jul [po"~@/2), (10.1)

and
(7 = Dulp < Julp_q/om™™ Y < ||ul[o"~ /2, (10.2)
|Sot]op < |ulp. (10.3)

Note that (S, — S;)u is analytic in the strip |Sz| < 7. By means of Cauchy’s
formula and (10.1) we get

151715 u(5) — Sou(f)] < e~ |jul|po (@2,
It follows that

> 1i1Pe S u(g) — Soui)? < [Jul 2o (10.4)
jezd

Note that ||u||; = [|F(q)|l5 = ||al|p, since F : ¢ — HP(T9) is isometric. Let

—

45 (j) = Soul(j), ¢o = (QU(j))jeZd-

Then (10.4) implies that ¢, — ¢, € 7P and

1o = arllrp < llullpo"™ =42 = |lg||po"= /2. (10.5)
By (10.2), we have
o — ally < llgllo™~ 2. (10.6)
Using (10.3), we get
golop < llallp- (10.7)

For any 0 < o, we define an operator T, : /7 — (%P by means of
Toq=qs, q€LP.

In view of (10.7), the operator is well defined and bounded. It is plain that T, =
F~1oS,0F, and it is linear since S, and F are linear. We can now rewrite (10.5-7)
as

|HT0 - TT|||0,T,17,p < o4/, (108)
1T = 1llo,0p.p < ™42 (10.9)
1 T5lo,0.pp < 1. (10.10)

Now, given a decreasing sequence ¢, = eﬁl(%‘l_d) 10(m=0,1,2,..)13, we get a

family of bounded linear operators T, := T, from ¢P to {*P.

13See Section 6.1 for ¢, and €.
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Lemma B.3. There are a family of operators Ty, : £OP — (<P (m = 0,1,...) such
that

T = Tosallosonsp < € < emon, (10.12)
T = 1llo,0.5.p < €mt1 (10.13)
[ Tnlllo.opp <1, VO< 0 <G (10.14)

Proof. This lemma is a direct result of (10.8,9,10). O
Lemma B.4. The composition T, o ¥ of Ty, and U is self-adjoint in log.4

Proof. Let S,, := S,,,. Then the operator T}, o U is self-adjoint in fog if and only
if the operator S, := S, o W is is self-adjoint in LZ. It is easy to verify that

Sm o U(u) = (sg*x0) *xu, a= Gpy.

For any u,v € L3, (We can assume u,v are real without loss of generality.), then

(Smu, v) :/0 Trv(z)(saﬂ/})*u(z) dz
2 27
_ /0 /0 o(2)(sa70) (= — tu(t) dtd=
:/O u(t)/o (sa*V)(z — t)v(2) dzdt
- 27 . 27 _ . dodt
= [t [ w2 a:

2T
- / () (5aF0) % v(2) dz
0
= <u7 va>,
where the fact s,(—x) = s(z) and ¢(—x) = 1p(x) are used in the fourth equality.
Note the operator S is bounded. The proof is complete. [J
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