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1 Introduction

Consider a Hamiltonian system in R2n

_z = J@zH(z; t) , z = (x; p) , J =

264 0 I

�I 0

375 (1)

and denote by (fHt ) the �ow it determines; we assume that the symplectomor-
phisms fHt are globally de�ned for each t 2 R. Set f = fH1 ; if for every �xed
point z of f the Jacobian matrix of f satis�es

det(Df(z)� I) 6= 0 (2)

one says that the 1-periodic solutions of (1) are non-degenerate. (Nota bene:
condition (2) is very strong; for instance if H is time-independent it is never
satis�ed!). Set now z(t) = fHt (z) and consider the linearized Hamiltonian
system along t 7�! z(t); its time-evolution is governed by the linear di¤erential
equation

_u = JD2H(z; t)u (3)

whose �ow (st) consists of the symplectic matrices st = DfHt (z). The path
� : t 7�! st, t 2 [0; 1] thus lies in the symplectic group Sp(n); it starts
from the identity and ends at the �monodromy matrix� s = Df(z); if the
non-degeneracy condition (2) holds one associates to � an integer iCZ(�), the
Conley-Zehnder index [2] of the path �. The vocation of that index is (loosely
speaking) to give an algebraic count of the number of points tj in the interval
[0; 1] for which st belongs to the �caustic�

Sp0(n) = fs 2 Sp(n) : det(s� I) = 0g;

that index is �natural�in the sense that it is invariant under homotopy as long
as the endpoint of the path stays in one of the sets Sp+(n) : det(s� I) > 0 or
Sp�(n) : det(s� I) < 0.

The aim of this paper is twofold:

� We �rst set out to prove a formula for the Conley-Zehnder index of the
product of two symplectic paths starting from the identity; we will show
that if � and �0 are symplectic paths starting from the identity and ending
at s and s0, respectively then

iCZ(��
0) = iCZ(�) + iCZ(�

0) + 1
2
sign(Ms +Ms0) (4)

where Ms is the �symplectic Cayley transform�of s de�ned by

Ms =
1
2
J(s+ I)(s� I)�1.
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For that purpose we will use an index de�ned on twice the Maslov bundle,
de�ned by Leray [12] and extended by the �rst author [7,8] to the non-
transversal case; that index is characterized by two simple properties, one
cohomological and the other topological. (Dazord [4] has proposed a similar
extension in a more general framework). As a by-product of the proof of
(4) we will obtain a natural extension of the Conley-Zehnder index to paths
whose endpoints are in Sp0(n). The interest of that extension is more than
just academic: as noted above all non-trivial periodic solutions of (1) are
precisely degenerate when H is time-independent, hence this is indeed the
generic situation.

� Formula (4) will allow us to identify the phase appearing in the Weyl rep-
resentation of metaplectic operators with the Conley-Zehnder index of a
certain symplectic path modulo 4. In fact, the �rst author has shown in a
recent paper [10] that if S 2 Mp(n) has projection s in Sp(n)n Sp0(n) then
the operator

S =
�
1
2�

�n i�(s)q
j det(s� I)j

Z
e
i
2
hMsz;ziT (z)d2nz

where
T (z0) = e

�i(hx0;Dxi�hp0;xi) , Dx = �i@x,
is the Heisenberg-Weyl operator lies in the metaplectic group Mp(n) (and
has projection s) provided that the integer �(s) is chosen so that

1

�
arg det(s� I) � ��(s) + n mod 2:

This formula identi�es �(s) with iCZ(�)modulo 2, where � is any continuous
path in Sp(n) joining I to s. We will prove that we actually have

�(s) = iCZ(�) mod 4 (5)

for a natural choice of the path �. This formula might have, as a practi-
cal consequence, a better understanding of trace-formulae in semiclassical
mechanics where the Weyl representation of certain metaplectic operators
plays a crucial role (see [14] and the references therein for recent advances).

A caveat : the statement of our two main results, formulae (4) and (5), is
deceptively simple. The proofs of these formulae are however quite technical;
they require the full power of the machinery of the Leray index [12] one of
us has developed elsewhere [6�8]. One might of course hope that other more
powerful methods would lead to the same results in a more straightforward
and economical way. Such an eventuality is of course welcome, but as far as
we can see the only alternative approach would be to use the path intersection
theory developed by Robbin and Salamon [15] (these authors in e¤ect express
the Conley-Zehnder in terms of the symplectic intersection index they de�ne).
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However, as was shown in [9] the Leray and the Robbin-Salamon indices are
equivalent and easily deduced from each other; in that sense the Leray index
thus appears as a fundamental �master index� in Lagrangian an symplectic
path intersection theory. We observe that Cushman and Duistermaat [3] and
Duistermaat [5] also have addressed the question of the index of the iteration
of periodic orbits; the methods these authors use are di¤erent from ours, and
might perhaps be adapted to yield formula (4).

This paper is structured as follows:

� In Section 2 we review previous results [7,8] on Lagrangian and symplectic
Maslov indices generalizing those of Leray [12]. An excellent comparative
study of the indices used here with other indices appearing in the literature
can be found in Cappell et al. [1].

� In Section 3 we recall the axiomatic presentation of the Conley-Zehnder
index following Hofer et al. [11]. We thereafter study the properties of the
symplectic Cayley transform that will be needed in the rest of the Section.
We then de�ne an integer-values function � on the universal covering of
Sp(n), which is identi�ed with the Conley-Zehnder index.

� In Section 4 we apply the previous results to the study of the phase of the
Weyl representation of metaplectic operators.

Notations

We will denote by � the standard symplectic form on R2n = Rnx � Rnp :

�(z; z0) = hp; x0i � hp0; xi if z = (x; p), z0 = (x0p0)

that is, in matrix form

�(z; z0) = hJz; z0i , J =

264 0 I

�I 0

375 .
The real symplectic group Sp(n) consists of all linear automorphisms s of R2n
such that �(sz; sz0) = �(z; z0) for all z; z0. Equivalently:

s 2 Sp(n)() sTJs = sJsT = J .

Sp(n) is a connected Lie group and �1[Sp(n)] � (Z;+). We denote by Lag(n)
the Lagrangian Grassmannian of (R2n; �), that is: ` 2 Lag(n) if and only ` is
a n-plane in R2n on which � vanishes identically. We will write `X = Rnx � 0
and `P = 0� Rnp :

If (E; !) is a symplectic space the coverings of order q = 2; :::;1 of Sp(E; !)
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and Lag(E; !) are denoted �q : Spq(E; !) �! Sp(E; !) and �q : Lagq(E; !) �!
Lag(E; !).

2 Wall-Kashiwara and Leray Indices

2.1 The Wall-Kashiwara index

Let (`; `0; `00) be a triple of elements of Lag(E; !); by de�nition [1,13,17] the
Wall-Kashiwara index �(`; `0; `00) is the signature of the quadratic form

Q(z; z0; z00) = �(z; z0) + �(z0; z00) + �(z00; z0)

on `� `0 � `00. The index � is antisymmetric:

�(`; `0; `00) = ��(`0; `; `00) = ��(`; `00; `0) = ��(`00; `0; `);

it is a symplectic invariant:

�(s`; s`0; s`00) = �(`; `0; `00) for s 2 Sp(E; !)

and it has the following essential cocycle property:

�(`; `0; `00)� �(`0; `00; `000) + �(`0; `00; `000)� �(`0; `00; `000) = 0. (6)

Moreover its values modulo 2 are given by the formula:

�(`; `0; `00) � n+ dim ` \ `0 + dim `0 \ `00 + dim `00 \ ` mod 2. (7)

Let (E; !) = (E 0 �E 00; !0 � !00); identifying Lag(E 0; !0)� Lag(E 00; !00) with a
subset of Lag(E; !) we have the additivity formula

�(`1 � `2; `01 � `02; `001 � `002) = � 0(`1; `01; `001) + � 00(`2; `02; `002) (8)

where � 0 and � 00 are theWall-Kashiwara indices on Lag(E 0; !0) and Lag(E 00; !00).

The following Lemma will be helpful in our study of the Conley-Zehnder index:

Lemma 1 (i) If ` \ `00 = 0 then �(`; `0; `00) is the signature of the quadratic
form

Q0(z0) = !(Pr``00 z
0; z0) = !(z0;Pr`00` z

0)

on `0, where Pr``00 is the projection onto ` along `00 and Pr`00` = I � Pr``00 is
the projection on `00 along `. (ii) Let (`; `0; `00) be a triple of Lagrangian planes
such that an ` = ` \ `0 + ` \ `00. Then �(`; `0; `00) = 0.

(See e.g. [13] for a proof).
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2.2 The Leray index

Let Lag1(E; !) be the universal covering of Lag(E; !). The Leray index is
the unique mapping

� : (Lag1(E; !))
2 �! Z

having the two following properties [7,8]:

� � is locally constant on each set f(`1; `01) : dim ` \ `0 = kg (0 � k � n);
� For all `1, `01, `001 in Lag1(E; !) with projections `, `

0, `00 we have

�(`1; `
0
1)� �(`1; `001) + �(`01; `001) = �(`; `0; `00): (9)

The Leray index has in addition the following properties:

�(`1; `
0
1) � n+ dim ` \ `0 mod 2 (10)

(n = 1
2
dimE) and

�(�r`1; �
r0`01) = �(`1; `

0
1) + 2(r � r0) (11)

for all integers r and r0; here � denotes the generator of �1[Lag(E; !)] �
(Z;+) whose image in Z is +1. From the dimensional additivity property
(8) of � immediately follows that if `1;1 � `2;1 and `01;1 � `02;1 are in

Lag1(E
0; !0)� Lag1(E 00; !00) � Lag1(E; !)

then

�(`1;1 � `2;1; `01;1 � `02;1) = �0(`1;1; `01;1) + �00(`2;1; `02;1) (12)

where �0 and �00 are the Leray indices on Lag1(E
0; !0) and Lag1(E

00; !00),
respectively.

When (E; !) is the standard symplectic space (R2n; �) one identi�es Lag(E; !) =
Lag(n) with the set

W(n;C) = fw 2 U(n;C) : w = wTg

of symmetric unitary matrices by associating to to ` = u`P (u 2 U(n;C))
the matrix w = uuT (�Souriau mapping�[16]); the Maslov bundle Lag1(n) is
identi�ed with

W1(n;C) = f(w; �) : w 2W(n;C), detw = ei�g

the projection �Lag : `1 7�! ` becoming (w; �) 7�! w. The Leray index is
then calculated as follows:
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� If ` \ `0 = 0 then

�(`1; `
0
1) =

1

�

h
� � �0 + iTrLog(�w(w0)�1

i
(13)

(the transversality condition `\ `0 = 0 is equivalent to �w(w0)�1 having no
negative eigenvalue);

� If ` \ `0 6= 0 one chooses any `00 such that ` \ `00 = `0 \ `00 = 0 and one
then calculates �(`1; `01) using the formula (9), the values of �(`1; `

00
1) and

�(`01; `
00
1) being given by (13). (The cocycle property (6) of � guarantees

that the result does not depend on the choice of `00.)

2.3 The relative Maslov indices on Sp(E; !)

We begin by recalling the de�nition of the Maslov index for loops in Sp(n).
Let 
 be a continuous mapping [0; 1] �! Sp(n) such that 
(0) = 
(1), and
set 
(t) = st. Then Ut = (stst)

�1=2st is the orthogonal part in the polar
decomposition of st:

Ut 2 Sp(n) \O(2n;R).
Let us denote by ut the image �(Ut) of Ut in U(n;C):

�(Ut) = A+ iB if U =

264A �B
B A

375
and set �(st) = detut. The Maslov index of 
 is by de�nition the degree of
the loop t 7�! �(st) in S1:

m(
) = deg[t 7�! det(�(Ut))] , 0 � t � 1.

Let � be the generator of �1[Sp(E; !)] � (Z;+) whose image in Z is +1; if 

is homotopic to �r then

m(
) = m(�r) = 2r. (14)

The de�nition of the Maslov index can be extended to arbitrary paths in
Sp(E; !) using the properties of the Leray index. This is done as follows: let
` = �Lag(`1) 2 Lag(E; !); we de�ne the Maslov index of s1 2 Sp1(E; !)
relative to ` by

�`(s1) = �(s1`1; `1); (15)

one shows (see [7,8]) that the right-hand side only depends on the projection
` of `1, justifying the notation.
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Here are three fundamental properties of the relative Maslov index; we will
need all of them to study the Conley-Zehnder index:

� Product : For all s1, s01 in Sp1(E; !) we have

�`(s1s
0
1) = �`(s1) + �`(s

0
1) + �(`; s`; ss

0`); (16)

� Action of �1[Sp(n)]: We have

�`(�
rs1) = �`(s1) + 4r (17)

for all r 2 Z;
� Topological property: The mapping (s1; `) 7�! �`(s1) is locally constant
on each of the sets

f(s1; `) : dim s` \ ` = kg � Sp1(E; !)� Lag(E; !) (18)

(0 � k � n).

The two �rst properties readily follow from, respectively, (9) and (11). The
third follows from the fact that the Leray index is locally constant on the sets
f(`1; `01) : dim ` \ `0 = kg. Note that (17) implies that

�`(�
r) = 4r = 2m(�r)

hence the restriction of any of the �` to loops 
 in Sp(E; !) is twice the Maslov
index m(
) de�ned above; it is therefore sometimes advantageous to use the
index m` de�ned by

m`(s1) =
1
2
(�`(s1) + n+ dim(s` \ `)) (19)

where n = 1
2
dimE. We will callm`(s1) the reduced (relative) Maslov index. In

view of the congruence (10) it is an integer; the properties of m` are obtained
mutatis mutandis from those of �`; for instance property (16) becomes

m`(s1s
0
1) = m`(s1) +m`(s

0
1) + Inert(`; s`; ss

0`)

where Inert is the index of inertia of a triple (`; `0; `00) de�ned by

Inert(`; `0; `00) = 1
2
(�(`; `0; `00) + n+dim `\ `0� dim `0 \ `00+dim `00 \ `); (20)

in view of (7) it is an integer. (When the Lagrangian planes `, `0, `00 are pairwise
transverse it follows from the �rst part of Lemma 1 that Inert(`; `0; `00) coincides
with the index of inertia de�ned by Leray [12]: see [7,8]).

It follows from the cocycle property of � that the Maslov indices corresponding
to two choices ` and `0 are related by the formula

�`(s1)� �`0(s1) = �(s`; `; `0)� �(s`; s`0; `0); (21)
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similarly

m`(s1)�m`0(s1) = Inert(s`; `; `
0)� Inert(s`; s`0; `0) (22)

Assume that (E; !) = (E 0�E 00; !0�!00) and `0 2 Lag(E 0; !0), `00 2 Lag(E 00; !00);
the additivity property (12) of the Leray index implies that if s01 2 Sp1(E 0; !0),
s001 2 Sp1(E 00; !00) then

�`0�`00(s
0
1 � s001) = �`0(s01) + �`2(s

00
1) (23)

where Sp1(E
0; !0)� Sp1(E 00; !00) is identi�ed in the obvious way with a sub-

group of Sp1(E; !); a similar property holds for the reduced relative Maslov
index m`.

3 Extension of iCZ and Product Formula

3.1 Review of the Conley-Zehnder index

Let � be a continuous path [0; 1] �! Sp(n) such that �(0) = I and det(�(1)�
I) 6= 0. The sets

Sp0(n) = fs 2 Sp(n) : det(s� I) = 0g
Sp+(n) = fs 2 Sp(n) : det(s� I) > 0g
Sp�(n) = fs 2 Sp(n) : det(s� I) < 0g

partition Sp(n), and Sp+(n) and Sp�(n) are moreover arcwise connected; the
symplectic matrices s+ = �I and

s� =

264L 0

0 L�1

375 , L = diag[2;�1; :::;�1]

belong to Sp+(n) and Sp�(n), respectively (see [2,11]).

Let us denote by C�(2n;R) the space of all paths � : [0; 1] �! Sp(n) with
�(0) = I and �(1) 2 Sp�(n). Any such path can be extended into a pathe� : [0; 2] �! Sp(n) such that e�(t) 2 Sp�(n) for 1 � t � 2 and e�(2) = s+

or e�(2) = s�. Let � be the mapping Sp(n) �! S1, �(st) = detut, used in
the de�nition of the Maslov index for symplectic loops. The Conley-Zehnder
index of � is by de�nition the winding number of the loop (� � ~�)2 in S1:

iCZ(�) = deg[t 7�! (�(~�(t)))2, 0 � t � 2].
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It turns out that iCZ(�) is invariant under homotopy as long as the endpoint
s = �(1) remains in Sp�(n); in particular it does not change under homotopies
with �xed endpoints so we may view iCZ as de�ned on the subset

Sp�1(n) = fs1 2 Sp1(n) : det(s� I) 6= 0g

of the universal covering group Sp1(n). With this convention one proves [11]
that the Conley-Zehnder index is the unique mapping iCZ : Sp�1(n) �! Z
having the following properties:

(CZ1) Antisymmetry: For every s1 we have

iCZ(s
�1
1 ) = �iCZ(s1)

where s�11 is the homotopy class of the path t 7�! s�1t ;
(CZ2) Continuity: Let � be a symplectic path representing s1 and �0 a path
joining s to an element s0 belonging to the same component Sp�(n) as s.
Let s01 be the homotopy class of � � �0. We have

iCZ(s1) = iCZ(s
0
1);

(CZ3) Action of �1[Sp(n)]:

iCZ(�
rs1) = iCZ(s1) + 2r

for every r 2 Z.

We observe that these three properties are characteristic of the Conley-Zehnder
index in the sense that any other function i0CZ : Sp

�
1(n) �! Z satisfying then

must be identical to iCZ. Set in fact � = iCZ � i0CZ. In view of (CZ3) we have
�(�rs1) = �(s1) for all r 2 Z hence � is de�ned on Sp�(n) = Sp+(n)[Sp�(n)
so that �(s1) = �(s) where s = s1, the endpoint of the path t 7�! st. Property
(CZ2) implies that this function Sp�(n) �! Z is constant on both Sp+(n)
and Sp�(n). We next observe that since det s = 1 we have det(s�1 � I) =
det(s� I) so that s and s�1 always belong to the same set Sp+(n) or Sp�(n)
if det(s � I) 6= 0. Property (CZ1) then implies that � must be zero on both
Sp+(n) or Sp�(n).

Two other noteworthy properties of the Conley-Zehnder are:

(CZ4) Normalization: Let J1 be the standard symplectic matrix in Sp(1).
If s1 is the path t �! e�tJ1 (0 � t � 1) joining I to �I in Sp(1) then
iCZ;1(s1;1) = 1 (iCZ;1 the Conley-Zehnder index on Sp(1));

(CZ5) Dimensional additivity: if s1;1 2 Sp�1(n1), s2;1 2 Sp�1(n2), n1 + n2 =
n, then

iCZ(s1;1 � s2;1) = iCZ,1(s1;1) + iCZ,2(s2;1)
where iCZ,j is the Conley-Zehnder index on Sp(nj), j = 1; 2.
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3.2 Symplectic Cayley transform

If s 2 Sp�(n) we call the matrix

Ms =
1
2
J(s+ I)(s� I)�1 (24)

the �symplectic Cayley transform of s�. Equivalently:

Ms =
1
2
J + J(s� I)�1: (25)

It is straightforward to check thatMs always is a symmetric matrix:Ms =M
T
s

(it su¢ ces for this to use the equality sTJs = sJsT = J).

The symplectic Cayley transform has in addition the following properties,
which are interesting by themselves:

Lemma 2 (i) We have

(Ms +Ms0)
�1 = �(s0 � I)(ss0 � I)�1(s� I)J (26)

and the symplectic Cayley transform of the product ss0 is (when de�ned) given
by the formula

Mss0 =Ms + (s
T � I)�1J(Ms +Ms0)

�1J(s� I)�1. (27)

(ii) The symplectic Cayley transform of s and s�1 are related by

Ms�1 = �Ms. (28)

PROOF. (i) We begin by noting that (25) implies that

Ms +Ms0 = J(I + (s� I)�1 + (s0 � I)�1) (29)

hence the identity (26). In fact, writing ss0 � I = s(s0 � I) + s� I, we have

(s0 � I)(ss0 � I)�1(s� I) = (s0 � I)(s(s0 � I) + s� I)�1(s� I)
= ((s� I)�1s(s0 � I)(s0 � I)�1 + (s0 � I)�1)�1

= ((s� I)�1s+ (s0 � I)�1)
= I + (s� I)�1 + (s0 � I)�1;

the equality (26) follows in view of (29). Let us prove (27); equivalently

Ms +M =Mss0 (30)

where M is the matrix de�ned by

M = (sT � I)�1J(Ms +Ms0)
�1J(s� I)�1
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that is, in view of (26),

M = (sT � I)�1J(s0 � I)(ss0 � I)�1.

Using the obvious relations sT = �Js�1J and (�s�1 + I)�1 = s(s � I)�1 we
have

M = (sT � I)�1J(s0 � I)(ss0 � I)�1

= �J(�s�1 + I)�1(s0 � I)(ss0 � I)�1

= �Js(s� I)�1(s0 � I)(ss0 � I)�1

that is, writing s = s� I + I,

M = �J(s0 � I)(ss0 � I)�1 � J(s� I)�1(s0 � I)(ss0 � I)�1.

Replacing Ms by its value (25) we have

Ms +M =

J(1
2
I + (s� I)�1 � (s0 � I)(ss0 � I)�1 � (s� I)�1(s0 � I)(ss0 � I)�1);

noting that

(s� I)�1 � (s� I)�1(s0 � I)(ss0 � I)�1 =
(s� I)�1(ss0 � I � s0 + I)(ss0 � I)�1)

that is

(s� I)�1 � (s� I)�1(s0 � I)(ss0 � I)�1 = (s� I)�1(ss0 � s0)(ss0 � I)�1

= s0(ss0 � I)�1)

we get

Ms +M = J(1
2
I � (s0 � I)(ss0 � I)�1 + s0(ss0 � I)�1)

= J(1
2
I + (ss0 � I)�1)

=Mss0

which we set out to prove. (ii) Formula (28) follows from the sequence of
equalities

Ms�1 =
1
2
J + J(s�1 � I)�1

= 1
2
J � Js(s� I)�1

= 1
2
J � J(s� I + I)(s� I)�1

= �1
2
J � J(s� I)�1

= �Ms.
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3.3 The index �(s1)

We de�ne on R2n � R2n a symplectic form �	 by

�	(z1; z2; z
0
1; z

0
2) = �(z1; z

0
1)� �(z2; z02)

and denote by Sp	(2n) and Lag	(2n) the symplectic group and Lagrangian
Grassmannian of (R2n � R2n; �	). Let �	 be the Leray index on Lag	1(2n)
and �	L the Maslov index on Sp

	
1(2n) relative to L 2 Lag	(2n).

For s1 2 Sp1(n) we de�ne

�(s1) =
1
2
�	((I � s)1�1;�1) (31)

where (I � s)1 is the homotopy class in Sp	(2n) of the path

t 7�! f(z; stz) : z 2 R2ng , 0 � t � 1

and � = f(z; z) : z 2 R2ng the diagonal of R2n � R2n. Setting s	t = I � st we
have s	t 2 Sp	(2n) hence formulae (31) is equivalent to

�(s1) =
1
2
�	�(s

	
1) (32)

where �	� is the relative Maslov index on Sp
	
1(2n) corresponding to the choice

� 2 Lag	(2n).

Note that replacing n by 2n in the congruence (10) we have

�	((I � s)1�1;�1) � dim((I � s)� \�) mod 2

� dimKer(s� I) mod 2

and hence
�(s1) � 1

2
dimKer(s� I) mod 1.

Since the eigenvalue 1 of s has even multiplicity �(s1) is thus always an
integer.

The index � has the following three important properties; the third is essential
for the calculation of the index of repeated periodic orbits (it clearly shows
that � is not in general additive):

Proposition 3 (i) For all s1 2 Sp1(n) we have

�(s�11 ) = ��(s1) , �(I1) = 0 (33)

(I1 the identity of the group Sp1(n)). (ii) For all r 2 Z we have

�(�rs1) = �(s1) + 2r , �(�r) = 2r (34)
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(iii) Let s1 be the homotopy class of a path � in Sp(n) joining the identity
to s 2 Sp�(n), and let s0 2 Sp(n) be in the same connected component Sp�(n)
as s. Then �(s01) = �(s1) where s01 is the homotopy class in Sp(n) of the
concatenation of � and a path joining s to s0 in Sp0(n). (iv) The restriction
of the index � to Sp�1(n) is the Conley�Zehnder index:

�(s1) = iCZ(s1) if det(s� I) 6= 0:

PROOF. (i) Formulae (33) immediately follows from the equality (s	1)
�1 =

(I � s�1)1 and the antisymmetry of �	�. (ii) The second formula (34) follows
from the �rst using (33). To prove the �rst formula (34) it su¢ ces to observe
that to the generator � of �1[Sp(n)] corresponds the generator I1 � � of
�1[Sp

	(2n)]; in view of property (17) of the Maslov index it follows that

�(�rs1) =
1
2
�	�((I1 � �)rs	1)

= 1
2
(�	�(s

	
1) + 4r)

= �(s1) + 2r.

(iii) Assume in fact that s and s0 belong to, say, Sp+(n). Let s1 be the homo-
topy class of the path�, and�0 a path joining s to s0 in Sp+(n) (we parametrize
both paths by t 2 [0; 1]). Let �0t0 be the restriction of �0 to the interval [0; t0],
t0 � t and s1(t0) the homotopy class of the concatenation � � �0t0. We have
det(s(t)�I) > 0 for all t 2 [0; t0] hence s	1(t)�\� 6= 0 as t varies from 0 to 1.
It follows from the fact that the �	� is locally constant on fs	1 : s	1�\� = 0g
(see Subsection 2.3) that the function t 7�! �	�(s

	
1(t)) is constant, and hence

�	�(s
	
1) = �

	
�(s

	
1(0)) = �

	
�(s

	
1(1)) = �

	
�(s

0	
1)

which was to be proven. (iv) The restriction of � to Sp�(n) satis�es the proper-
ties (CZ1), (CZ2), and (CZ3) of the Conley�Zehnder index listed in Subsection
3.1; we showed that these properties uniquely characterize iCZ.

Let us now state and prove the �rst main result of this paper:

Theorem 4 If s1, s01, and s1s
0
1 are such that det(s�I) 6= 0, det(s0�I) 6= 0,

and det(ss0 � I) 6= 0 then

�(s1s
0
1) = �(s1) + �(s

0
1) +

1
2
sign(Ms +Ms0) (35)

where Ms is the symplectic Cayley transform of s; in particular

�(sr1) = r�(s1) +
1
2
(r � 1) signMs (36)

for every integer r.
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PROOF. In view of (32) and the product property (16) of the Maslov index
we have

�(s1s
0
1) = �(s1) + �(s

0
1) +

1
2
�	(�; s	�; s	s0	�)

= �(s1) + �(s
0
1)� 1

2
�	(s	s0	�; s	�;�)

where s	 = I� s, s0	 = I� s0 and �	 is the signature on the symplectic space
(R2n�R2n; �	). The condition det(ss0�I) 6= 0 is equivalent to s	s0	�\� = 0
hence we can apply property (i) in Lemma 1 with ` = s	s0	�, `0 = s	�, and
`00 = �. The projection operator onto s	s0	� along � is easily seen to be

Prs	s0	�;� =

2664 (I � ss0)�1 �(I � ss0)�1

ss0(I � ss0)�1 �ss0(I � ss0)�1

3775
hence �	(s	s0	�; s	�;�) is the signature of the quadratic form

Q(z) = �	(Prs	s0	�;�(z; sz); (z; sz))

that is, since �	 = � 	 �:

Q(z) = �((I � ss0)�1(I � s)z; z))� �(ss0(I � ss0)�1(I � s)z; sz))
= �((I � ss0)�1(I � s)z; z))� �(s0(I � ss0)�1(I � s)z; z))
= �((I � s0)(I � ss0)�1(I � s)z; z)).

In view of formula (26) in Lemma 2 we have

(I � s0)(ss0 � I)�1(I � s) = (Ms +Ms0)
�1J

hence
Q(z) = �

D
(Ms +Ms0)

�1Jz; Jz
E

and the signature of Q is thus the same as that of

Q0(z) = �
D
(Ms +Ms0)

�1z; z
E

that is � sign(Ms+Ms0). This proves formula (35). Formula (36) follows from
(35) by induction on r.

4 Application to the Metaplectic Group

4.1 The group Mp(n)

The fundamental group �1[Sp(n)] being isomorphic to (Z;+) the symplectic
group has covering of all orders; its double covering Sp2(n) plays an important
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role in the literature because it has a faithful representation as a group of
unitary operators on L2(Rn). This group, the metaplectic group Mp(n), is
generated [12] by the quadratic Fourier transforms

SW;mf(x) =
�
1
2�

�n=2
�(W )

Z
eiW (x;x0)f(x0)dnx0 (37)

where W is a quadratic form on Rn � Rn given by

W (x; x0) = 1
2
hPx; xi � hLx; x0i+ 1

2
hQx0; x0i (38)

with P and Q symmetric and detL 6= 0; the factor in front of the integral in
(37) is

�(W ) = im
q
j detLj

where m corresponds to a choice of the argument of detL. The covering epi-
morphism �Mp : Mp(n) �! Sp(n) is determined by its restriction to the SW;m,
and we have

(x; p) = �Mp(SW;m)(x
0; p0)() p = @xW (x; x

0) , p0 = �@x0W (x; x0)

(sW = �(SW;m) is the free symplectic matrix generated by the quadratic form
W ).

Every S 2 Mp(n) can be written (in in�nitely many ways [12,8]) as a product
SW;mSW 0;m0 and the integer

m+m0 � Inert(P 0 +Q) � m+m0 + Inert(`P ; sW `P ; sW sW 0`P ) mod 4

does not depend on the choice of factorization S = SW;mSW 0;m0 (see [6]).
The class modulo 4 of m+m0 � Inert(P 0 +Q) is denoted by m(S) and called
Maslov index of S 2 Mp(n). The function m : Mp(n) �! Z4 has the following
properties:

m(SW;m) = cm (39)

and

m(SS 0) = m(S) +m(S 0) +[Inert(`P ; s`P ; ss0`P ) (40)

where bk is the class modulo 4 of k 2 Z and s = �Mp(S); it is related to the
relative Maslov index m`p on Sp1(n) by

m(S) = dm`p(s1) (41)

where s1 is any element of Sp1(n) with projection S 2 Sp(n).
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4.2 Weyl representation of S 2 Mp(n)

De�ning, as in [14], the Mehlig-Wilkinson operator R�(s) associated to s 2
Sp�(n) and � 2 Z as being the Bochner integral

R�(s) =
�
1
2�

�n i�q
j det(s� I)j

Z
e
i
2
hMsz;ziT (z)d2nz

where T (z) is the Heisenberg-Weyl operator, one of us proved in [10], Prop.
6, §3.2 and Prop. 10, §3.3, the following results:

Proposition 5 (i) let sW be the free symplectic matrix generated by the quadratic
form (38). We have SW;m = R�(sW ) if and only � = �(SW;m) with

�(SW;m) � m� InertWxx mod 4 (42)

where InertWxx is the index of inertia of the Hessian matrix Wxx of x 7�!
W (x; x); (ii) Let S 2 Mp(n) be such that �Mp(S) 2 Sp�(n). If s = sW sW 0 and
S = R�(sW )(sW )R�(s0W )(sW 0) then S = R�(S)(s) with

�(S) � �(sW ) + �(sW 0) + 1
2
sign(MsW +Ms0W

): (43)

Comparison of the formulae (43) and (35) in Theorem 4 suggests that there
is a relation between the integer �(S) and the Conley-Zehnder index of some
symplectic path ending at s = �Mp(S). We claim that:

Theorem 6 Let s1 2 Sp1(n) be such that s = �1(s1) is in Sp�(n) and
denote by S the image in Mp(n) of the projection of s1 on Sp2(n). We have

�(S) � �(s1) mod 4: (44)

In view of the product formula (35) in Theorem 4 it is su¢ cient to establish
the congruence (44) when s = sW . Assume that S = SW;m; that

�(SW;m) � �(sW;1) mod 4

is an immediate consequence of the following result which is interesting in its
own right:

Proposition 7 We have

�(sW;1) = m`P (sW;1)� InertWxx (45)

and hence
�(sW;1) � m� InertWxx mod 4: (46)
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PROOF. Formula (46) follows from (45) in view of (41) and (39). We will
divide the proof of formula (45) in three steps. Step 1. Let L 2 Lag	(2n).
Using successively formulae (32) and (21) we have

�(s1) =
1
2
(�	L(s

	
1) + �

	(s	�;�; L)� �	(s	�; s	L;L)). (47)

Choosing in particular L = L0 = `P � `P we get

�	L0(s
	
1) = �

	((I � s)1(`P � `P ); (`P � `P ))
= �(`P;1; `P;1)� �(`P;1; s1`P;1)
= ��(`P;1; s1`P;1)
= �`P (s1)

so that there remains to prove that

�	(s	�;�; L0)� �	(s	�; s	L0; L0) = �2 signWxx.

Step 2. We are going to show that

�	(s	�; s	L0; L0) = 0;

in view of the symplectic invariance and the antisymmetry of �	 this is equiv-
alent to

�	(L0;�; L0; (s
	)�1L0) = 0. (48)

We have
� \ L0 = f(0; p; 0; p) : p 2 Rng

and (s	)�1L0 \ L0 consists of all (0; p0; s�1(0; p00)) with s�1(0; p00) = (0; p0);
since s (and hence s�1) is free we must have p0 = p00 = 0 so that

(s	)�1L0 \ L0 = f(0; p; 0; 0) : p 2 Rng.

It follows that we have

L0 = � \ L0 + (s	)�1L0 \ L0

hence (48) in view of property (ii) in Lemma 1. Step 3. Let us �nally prove
that.

�	(s	�;�; L0) = �2 signWxx;

this will complete the proof of the proposition. The condition det(s� I) 6= 0
is equivalent to s	� \� = 0 hence, using property (i) in Lemma 1:

�	(s	�;�; L0) = ��	(s	�; L0;�)

is the signature of the quadratic form Q on L0 de�ned by

Q(0; p; 0; p0) = ��	(Prs	�;�(0; p; 0; p0); 0; p; 0; p0)
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where

Prs	�;� =

2664 (s� I)
�1 �(s� I)�1

s(s� I)�1 �s(s� I)�1

3775
is the projection on s	� along � in R2n � R2n. It follows that the quadratic
form Q is given by

Q(0; p; 0; p0) = ��	((I � s)�1(0; p00); s(I � s)�1(0; p00); 0; p; 0; p0)

where we have set p00 = p� p0; by de�nition of �	 this is

Q(0; p; 0; p0) = ��((I � s)�1(0; p00); (0; p)) + �(s(I � s)�1(0; p00); (0; p0)).

Let now Ms be the symplectic Cayley transform (24) of s; we have

(I � s)�1 = JMs +
1
2
I , s(I � s)�1 = JMs � 1

2
I

and hence

Q(0; p; 0; p0) = ��((JMs +
1
2
I)(0; p00); (0; p)) + �((JMs � 1

2
I)(0; p00); (0; p0))

= ��(JMs(0; p
00); (0; p)) + �(JMs(0; p

00); (0; p0))

= �(JMs(0; p
00); (0; p00))

= �hMs(0; p
00); (0; p00)i .

Let us calculate explicitly Ms. Writing s =

264A B
C D

375 we have

s� I =

26640 B

I D � I

3775
2664C � (D � I)B

�1(A� I) 0

B�1(A� I) I

3775
that is

s� I =

2640 B

I D � I

375
264 Wxx 0

B�1(A� I) I

375 (49)

where we have used the identity

C � (D � I)B�1(A� I)) = B�1A+DB�1 �B�1 � (BT )�1

which follows from the relation C �DB�1A = �(BT )�1 (the latter is a con-
sequence of the equalities DTA�BTC = I and DTB = BTD due to the fact
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that sTJs = sTJs). We thus have, setting W�1
xx = (Wxx)

�1,

(s� I)�1 =

2664 W�1
xx 0

B�1(I � A)W�1
xx I

3775
2664(I �D)B

�1 I

B�1 0

3775

=

2664 W�1
xx (I �D)B�1 W�1

xx

B�1(I � A)W�1
xx (I �D)B�1 +B�1 B�1(I � A)W�1

xx

3775
and hence

Ms =

2664B
�1(I � A)W�1

xx (I �D)B�1 +B�1 1
2
I +B�1(I � A)W�1

xx

�1
2
I �W�1

xx (I �D)B�1 �W�1
xx

3775
so that we have

Q(0; p; 0; p0) =
D
W�1
xx p

00; p00
E

=
D
W�1
xx (p� p0); (p� p0)

E
.

The matrix of the quadratic form Q is thus

2

2664 W
�1
xx �W�1

xx

�W�1
xx W�1

xx

3775
and this matrix has signature 2 sign(Wxx)

�1 = 2 signWxx, proving the �rst
equality (45); the second equality follows in because �`P (s1) = 2m`P (s1)�n
(since s`P \ `P = 0) and rankWxx = n in view of (49) which implies that

det(s� I) = (�1)n detB detWxx:
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