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Abstract. — We consider a mathematical model of the Fermi theory of weak
interactions as patterned according to the well-known current-current coupling
of quantum electrodynamics. We focuss on the example of the decay of the
muons into electrons, positrons and neutrinos but other examples are consid-
ered in the same way. We prove that the Hamiltonian describing this model
has a ground state in the fermionic Fock space for a sufficiently small coupling
constant. Furthermore we determine the absolutely continuous spectrum of
the Hamiltonian and by commutator estimates we prove that the spectrum
is absolutely continuous away from a small neighborhood of the thresholds of
the free Hamiltonian. For all these results we do not use any infrared cutoff
or infrared regularization even if fermions with zero mass are involved.
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1. Introduction

In this note we consider a mathematical model of the Fermi theory of weak
interactions as patterned according to the well-known current-current coupling
of quantum electrodynamics (see [GM89, Wei96]). The weak interaction
processes are well described at low energy by the current-current coupling.
We choose the example of the decay of the muons into electrons, positrons
and neutrinos. The beta decay of the neutron could be considered too.

The mathematical framework involves a fermionic Fock space for the par-
ticles and the antiparticles and the interaction is described in terms of an-
nihilation and creation operators together with an L2-kernel with respect to
the momenta. The total Hamiltonian, which is the sum of the free energy
of the particles and the antiparticles and of the interaction, is a self-adjoint
operator in the Fock space. We prove that this Hamiltonian has a ground
state in the Fock space for a sufficiently small coupling constant. Furthermore
we determine the absolutely continuous spectrum of the Hamiltonian and by
commutator estimates we prove that the spectrum is absolutely continuous
away from a small neighborhood of the thresholds of the free Hamiltonian.
From the mathematical point of view, the interaction is no more invariant by
translation and the singularity of the kernel at the origin is not too strong. In
fact the physical formal kernel is locally bounded at the origin. This means
that there is no infrared problem even if fermions with zero mass are involved
in the model in contrast to the case of QED. Detailed proofs are only given
for the Hamiltonian associated with the decay of muons.

We also describe the mathematical model for the beta dacay of quarks u and
d for which the results will be the same. We also consider the decay of the
massive bosons W and W~.
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For the proofs we essentially follow the methods developed in [BFS98]
[BDGO4] and in [AGGO6] for the existence of the ground state and those
developed by [BFS98| and [Ski98] for the study of the continuous singular
spectrum.

Let us finally mention that the same results should hold in Fock spaces
associated to the Dirac equation in Schwarschild, Reisner-Nordstrgm and Kerr
black holes as soon as a generalized eigenfunction expansion for the Dirac
equation in that context is known.

2. The model

The decay of the muons involves four species of particles and antiparticles,
the muons = and p™, the electron e~ and the positron e, the neutrino v,
and the antineutrino 7, associated to the electron and the neutrino v, and the
antineutrino v, associated to the muon.

In this article we consider the neutrinos v, and v, together with the antineutri-
nos 7, and 7, as neutrinos and antineutrinos with different quantum leptonic
numbers (see [GM89], [PD95]). Thus, according to the convention described
in section 4.1 of [Wei95] and from the mathematical point of view, in what
follows the corresponding creation and annihilation operators for v, and 7,
will anticommute with those for v, and 7,. Our proof does not work if the
neutrinos v, and v, are considered as particles of different species i.e., if the
corresponding creation and annihilation operators for v, and 7, commute with
those for v, and 7.

Concerning our notations from now on the particles and antiparticles 1 will
be the electrons e~ and the positrons e™, the particles and antiparticles 2 will
be the neutrinos v., U., the particles and antiparticles 3 will be the neutrinos

v, U, and, finally, the particles and antiparticles 4 will be the muons ;= and
+

wt.
Let &€ = (p, s) be the quantum variables of a particle of spin 1/2. Here p € R?
is the momentum, s € {—1/2,1/2} is the spin polarization of particles and an-
tiparticles 1 and 4 and s € {—1, 1} is the helicity of particles and antiparticles
2 and 3. We set ¥y = R3 x {—1/2,1/2} for the particles and antiparticles 1
and 4 and ¥y = R3 x {—1,1} for particles and antiparticles 2 and 3. We will
denote by ¢ the quantum variables of an antiparticle.

Let us define the Fock space. Set

Q= (q,q,r,7,8,5,t1t) € N®
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where ¢ (resp. r,s,t) is the number of particles 1 (resp. 2,3,4) and ¢ (resp.
7,5,t) is the number of antiparticles 1 (resp. 2,3,4). For i = ¢,r,s,t and
i=q,7,5,t we introduce the following sets of variables:

Ei:(£l7§27”‘7§i) 552(517527”‘757;)'

Notice that for the neutrinos and antineutrinos we could use another sets of
variables by adding leptonic quantum numbers to the &’s in order to get an
equivalent framework.

Let us denote by ¥(@)(.) a measurable function of the set of variables
E¢,Zg - - > 2¢, 2¢ which is antisymmetric with respect to each set of variables
Z; and =; separately and which is square integrable:

H\P@IF=/(\If(@(Eq,Eq,E,«,EF,ES,Eg,E =| 11 = H d=; < o0

i=(q,m,s,t) (g,7,5,t)

where d=; = [[_, d&, d¢ = 3, [ d®p and d=; = [[_, d&, d€ = 3, [ d*p.
When i = 0 or i = 0, the corresponding variables do not appear in v (@),

The space F(@ = {U(@Q | |¥(@)| < oo} is an Hilbert space and the Fock
space is defined by

F = @QeNSJT(Q)

where F(©) = C. The vacuum ( is the state (¥(@)g with (@) =0 for Q # 0
and U(®) = 1. F is an Hilbert space and if ¥ = (¥(@)), € F we have

)2 = > ([w Q.
QeNS

We can now define the formal annihilation and creation operators b;((£) and
b;’e(ﬁ ) for each type of particles and antiparticles. We have

(b1, + ()W) D (&1, ..., €41 54; 50 B B B By Bp) =

[I]

(2.1) '

Va+ 10O ED (g 6 € B B By By Bas By Ep)
and
22) (b1- OV (Eg &, 6B 5 Ep) =

VI (=) 10T (= e & EnE L E).

The operators by 1 (&) (resp. by +(£)) are defined similarly by substituting r
and 7 (resp. t and t) for ¢ and ¢ in an obvious way.
Furthermore, taking into account the anticommutation between b3 + and bs 4,
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we have
(2.3)
(03,4 (O V) D (23 Eg: Eri Eri &1, . €61 B B Bp) =

Vs 1(=1) T w@drms i Lahl (5 20 2 E 6 Gy, & B B Ey)

and

(2.4)

(b3,— () ) D (Zg; Egs B3 Ers Ess &1, ., &53 B3 Bp) =
VEFI(—1)rTrregletr s st L (g 20 2 S0 E € 6L 65 B By).

As usual b3 (€) is the formal adjoint of b; (), for example

[I]

(2.5)
(014 (W) IFLITTSSED (&) €15 g3 B B B B3 B Bp) =
1 q+1
Z Z+15 5 5 ) qq7r7f757§7t7{)(£1’ 757:’ 75 e e B
- cey Qg1 2y S BFs S
q+ i=1

where * denotes that the ith variable has to be omitted.
The following canonical anticommutation relations hold

{b (S)?b;e (§ )} = 56,6’6(6 - 5/)7 J=1,2,3,4, ¢ €=+
where §(§ — &) = d5.40(p — 1),
{05,c(€), bjer (€} = {05 (£),05(6)} =0, j=1,2,3,4, ¢, =+
{b,c(€), b5 o (€))} = {b5,.(6), 0% . (€)} =0

where b? is b or b*.
Note that

[b1,6(€), b (€] = [b7(€), b 0 (€)] =0, j=1,2,3,4, i=1,4and j #i.

Let Fp be the subspace of functions ¥ = (\II(Q))Q such that ¥(@) is a function
in the Schwartz space and ¥(@) = 0 for all but finitely many Q. The b; (£)’s
are well defined operators on Fy but they are not closable. It is better to
introduce the following operators:

bmwz/@xﬂ@%

b0 = [ B0
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where ¢ € L?(X) and ¥ = X1 when j = 1,4 and ¥ = %5 when j = 2,3. Both
bje(¢) and b% (¢) are bounded operators on F and
17| = l1bj.e (@) = NIl

The bjc(¢)’s and the b} (¢)’s satisfy similar anticommutation relations (see
[Tha92]).
The free Hamiltonian Hj is given by

4
(2.6) H=% % j/<1£aq<s>b§ﬁ<s>bjﬁ<s>

j=1€e=+,—

w1(€) = w1(p) = /Il +m3
(2.7) wy(§) = wa(p) = \/m

w;(§) = w;(p) = Ip|, j=2,3
and the mass m; and my, are strictly positive. We know that m; < my.

H) is essentially self-adjoint on Fy, we still denote Hy its self-adjoint extension.
The interaction, denoted by Hj is given by

=3 [ dedead6ad€iGo(6r, 0,660
e#e!

where

T, ()05 ¢ (§2)b5 ((€3)Da,e(€4)

+ Z / d£1d£2d£3d£4GE,e’(£lv 527 537 54)
e#e!

1e(64)b3,6(3)b2,er (§2)b1,¢(&1)

where G, (£1,82,83,&4) is a kernel.
In particular this interaction describes the decay of the muon 4 into an electron

and two neutrinos 7, and v,.
The total Hamiltonian is then

(2.9) H = Hy + gH;

where g € R is the coupling constant.
We first show that a self-adjoint operator in F is associated with the total
Hamiltonian H if the kernels G« are in L2

Let {e4i,e_3, i,i= 1_, 2,...} (vesp. {f4 [ 7, ii=1,2,...}, {9+.i,9- 7, i,i=
1,2,...}, {hyash 3, i,i = 1,2,...}) be two basis of L?(31) (resp. L*(Z2),
L?(%3), L?(31)). We assume that the e’s, f’s, g’s and h’s are smooth functions
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in the Schwartz space with respect to p.

For every Q = (q,q,7,7,5,5,T,t) € N® we now consider vectors in F of the
following form:

W =b} | (e4ir) - 0] (e )BT _(e3,) - BT _(e3,)
(2.10) 54+ (o) 05 (fag)bs _(f- 51) 5 (f-5.)
§,+(9+k1) cee (9+k )b3 ( —k ) (g—k;)
bt (Pgy) (h+zt)b* (h_ 1)---62,_(h_z;) Q.
The indexes are ordered such that z'l <l <dg i< ... < Eq and similarly

for the indexes j,k,I. The set {U(@) | Q € N8} is an orthonormal basis of F
(see [Tha92]) and the set

Ftin, = { finite linear combination of the basis vectors of the form (2.10) }

is dense in F.

As the formal expression of H shows, we have to deal with operators in F
built from the product of creation and annihilation operators.

For H, o (-,-,+) € L*(X1 x X2 x 3) the formal operator

/ d€1d€ad€3H, (&1, 82,63)b3,c(£3)b2,er (§2)b1,e(&1)
21 XEQXEQ
is defined as a quadratic form on Fy;, X Fein:
/ derdadts < | T, (€1, &, &)y c(€3)bs.(€2)b1 o (€1)D >
Y1 X2 X2

By mimicking the proof of Theorem X.44 in [RS75], we get an operator,
denoted by A ./, associated with the form such that A, - is the unique operator
in F such that Fg;y, C D(A¢e) is a core for A, o and

Acer =/ dé1déad&s He or(81,&2,€3)b3,c(€3)2,e (§2)b1,e(61)
21 XXX Do
as a quadratic forms on Fg;, X Frin. Note that the formal operator
/ d£1d£2d£3H5,6’ (517 &2, 53)bi(,e(£1) ;,E’ (52)b§,e (53)
21 XEQ XEQ

is similarly associated with A7 , and we have

Ar, = / 46 Aoy Ho (€1, 6, E3)V1 o (60)05 o (€285, (E5)
21 XD X Do

as a quadratic forms on Fg;, X Frin.
The proofs of the following propositions are similar to those in [BDGO04]. For
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sake of completeness we give here complete proofs.
We have

Proposition 2.1. — Suppose that H. (-, -,-) € L?($1x$ax X3). Then Aceny
and AY _, are bounded operators in F with

[Acell = 1ALl < 1Heell2(mixzaxss)-

Proof. — Let U(Q) be a vector of the form (2.10). For simplicity we assume
that {i1,...,i.} ={1,...,q}, {i1,...,i5} = {1,...,q}, etc...Let us consider
A, _, the other choices of € and ¢ are treated similarly. A straightforward
computation shows that

(2.11)
A, 0@ Z Z Z DO HL era ® fo8© g1y) 12(51 xSax5s)
a=1p=1~=1
q 7
H b1+ 6+z H —z H b f+,7 H b;—(f—j)
=1 i« =1 J=1 k#£p
s 5 t
11 b3+(9+k —(9-%) Hb (he) [T 01 (hp) ©
k=1 k#y k=1

As the right hand side of (2.11) is a linear combination of orthogonal vectors,
we get

q T S
JAL—T@P =" (He s era © fop @ g1y
(2.12) a=1p=1~=1
<\ Ho |21 292,

Therefore, in order to prove proposition 2.1, it is enough to show that (2.12)
holds for any finite linear combination of the ¥(®)’s. This can be done as in
the proposition 3.4 of [BDGO04]. We omit the details. O

We now investigate operators in JF associated with the interaction Hj. Let
us introduce the operators number of each particle:

(2.13) N; = Z/dgb o(6) i=1,2,34.

Each N; is self-adjoint in F and Fy;, is a core for it.
For G (-, ) € L}(X1 x ¥2 x ¥g x 1) the formal operators

/ d§1dEad83dEsGe (€1, 82, €3, €4)bT ((€1)05 o (§2)05 (§3)ba.e(€4)
Y XV XX
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and

/ 06106203060 (€1 Eas s G (E4)b3c(€)bir(E2)b1c(61)
Y X XX

are defined as a quadratic form on Fy;p, X Fyipn. Again by mimicking the proof of
Theorem X.44 in [RS75], we get an operator, denoted by B, «, associated with
the form such that B, ¢ is the unique operator in F such that F;,, C D(A¢ )
is a core for B, . and

Beu— / 0102 dE3 61 o (€1, €2 €, E0)DF (E1)D5 o (€2)D5(€5)ba e (E4)
21 X 22 XEQ ><21
and

Bf . =/ d&1dEadE3dEaGe (€1, 2,63, Ea)b) ((€4)b3,¢(§3)D2,er (§2)D1,(61)
DX X Mg X2

as quadratic forms on Fg;, X Frin.
We then have

Proposition 2.2. — Suppose that G () € L*(X1 x ¥z x ¥a X ¥1).
Then D(B. ), D(B%.) D D(N,/?) and

1/2
IBeor || < [1Ge el 120551 xspxsaxcsn N2 20,

(2.14) ) o
”BE,G’\IIH < HGE,E’HLZ(lengngZl)HN4 \I/”

for U € D(N,?).

Proof. — We only investigate B, _. The proof for the other cases is quite
similar. Set Q = (¢,q,7,7,s,5,t,t) and Q" = (¢+1,q,r, 7+ 1,s+1,5,t —1,¢).
Let (@ and U(@) be two vectors in FeinNF (@ and Frin NF @) respectively.
We have

@@, B, w@) = / déy déadésdes

(2.15) S1XTaxTax Ty

<G+,—(§1,52,537§4)bg,+(53)172,—(52)bl,+(§1)\I’(Q/) , b4,+(§4)\I’(Q)>

and by the Fubini theorem, we get

‘(‘I’(Q/)aBJr,—‘I’(Q))‘Q = ‘/2 d§4(b4,+(§4)‘I’(Q),
(2.16) 1

’ 2
/ Gy (£1,69,63,E4)b3 4 (€3)ba_(E9)by 4 (£1) W@ >> ‘ ‘
31 XXX
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By the Cauchy-Schwarz inequality and proposition 2.1, we obtain
(2.17)

‘(q,@'), By _0@)

(23

2
( / dé4]|bs, 1 (£4) T Q| ( / dsldszd§3\G+,_<fl,§2,sg,@)P)”) [ @))2,
1 D1 XXX Do

Applying again the Cauchy-Schwarz inequality and by the definition of b4 (£4)
we finally get

/ 2 ! 1 2 /
(9@, B, W) <ty PN QP D = |G PN Q9@
Since B, (@ ¢ F@) we deduce

2
(@, B9 @) < [l - 2N 2w @ o)

for every ® € Fy;,. Now, since ® € Fy;, is dense in F, the last inequality still
holds for every ® € F and every Q € N8 Therefore we have

1By, W@ )2 < |Gy _| 2N, * 0 @2
which yields
1/2
(2.18) 1By 0|2 < |Gy |21V 2w

for every ¥ € Fy;y,. Since Fyyp is a core for N, i/ % and B, _ is closable (see
Theorem X.44 in [RS75]) we have D(Ni/z) C D(By4,—) and the inequality

(2.18) is still true for every ¥ € D(N41/2). O
Set

il = [ L dadGGE 6, 6.6
Te(€1)b50(€3)bac(€a),

il = [ L el Gl (6 6.6
1e(€1)b50: (€2)bac(€4),

where Gze, € L2(X1xX9x %), =2,3. Vj“/, j = 2,3, are defined as quadratic
forms on Fg;y,, X Frin. As above we then have

(2.19)
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Proposition 2.3. — Suppose that Gze, € L%(X1 x ¥y x X1), j = 2,3. Then
D(V;), D(V{) 5 D(N;?) and

ee’ j 1/2
220 VAU < 1G22y s 1220,
: / 1 1/2
IVE T < (G2 | 205 s |V /2.

for ¥ € D(Ni/Q) and j =2,3.

The proof of proposition 2.3 is exactly the same as the one of proposition
2.2

The following theorem shows that the formal total Hamiltonian is associated
with a self-adjoint operator in F, still denoted by H, if the interaction kernels
are in L2.

Theorem 2.4. — Suppose that Geo(-,-,-,-) € L?(X1 x Xg x ¥ x ¥1) fore #

/

€. Then H = Ho+ gHy is a self-adjoint operator in F for every g € R with
domain D(H)).

Proof. — Recall that Hy with domain Fy;, is essentially self-adjoint. By
proposition 2.2 we have, for every ¥ € Fy;y,,

1/2
1H| <2 [ S Gl | 1N/
eF#e€’

and we get for every ¢ > 0,

1
(e <2 [ 3 Gl <\/e/2||N4\P||+—||wn).
eF#e’ \/2—6

Furthermore, since w4(p) > my, we have
1

[N < —[[HoW||.
my

Thus

1 1
H;y|| <2 Gee —\/€/2||HoV +—\IJ>
1791 <2 | 3Gl (o Vel + I

which means that H; is relatively bounded with respect to Hy with zero rela-
tive bound and the theorem follows from the Kato-Rellich theorem. |
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3. The results

Our main result states that H has a ground state for g sufficiently small.
We have

Theorem 3.1. — Suppose that for € # ¢, Gea (-, -,-) € L*(31, 32,32, %1)
and
3

’Gee’(§ 75 75 7§ )‘2
(3.1) > /B o L5253 ST gy déadEsdy < oo

o pi|?

where &; = (pj, sj), pj € R3, j =1,2,3,4 and where B(0,1) = {(p1,p2,p3,p1) €
4

RYZ | 375 Ipsl? < 1}

Then there exists go > 0 such that H has an unique ground state for |g| < go.

Furthermore o(H) = 0,(H) = [inf 0 (H), +00).

Notice that Theorem 3.1 is true for sharp cutoffs, i.e., when G, = xa,
A > 0, with
XA(p17p27p37p4) =1 lf |p]‘ S A? ] = 1727374

3.2
(3-2) = 0 otherwise.

This means that the ground state exists without infrared regularization even
if particles with zero mass are involved.

The statement concerning the absolutely continuous spectrum of H follows
easily from the existence of asymptotic Fock representations of the ACR. Pre-
cisely, for f € L*(R3) we define the operators

Vo i(f) = et emitHop: (freitHoe=H 5 —1.234 €=+

Then for f € C§°(R?) and ¢ € F the strong limits of b"-e’t(f) exist:

J
lim B (f)v = e o ()0

t—Zoo
The bg-gyi(f)’s satisfy the ACR and if ¢ is the ground state of H, we have, for
f € Ce(R?),
bzt,:l:(f)¢ =0.
The fact that o(H) = 0,c(H) = [inf 0(H), +00) follows by mimicking [Hir05].

Now the next theorem concerns the absolutely continuous spectrum of H. We
define S as the set of threshold of Hy:

(3.3) S = {kmy + lmy | k,1 € N}.
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Theorem 3.2. — Suppose that for e # €', Geer (-, +,-,-) € L2(E1x Uy x Xgx ¥1)
satisfy (3.1) and that for i = 1,2,3,4, p; - Vp,Geer and p?Ap,Geer are all in
L?(X1 x g x X9 x ¥1). Then there exists a constant C > 0 such that, for g
sufficiently small, the spectrum of H in R\ (S 4 [-C\/g,C\/g]) is absolutely
continuous.

4. Proof of theorem 3.1
Let Hj, be the operator obtained from (2.8) by substituting
Gge’ (617 527 537 §4) = 1{(p1,p2,p3,p4)||p220', \p3|20\}Gee’ (517 527 537 §4)

for G, where o is a strictly positive parameter. We then define
Ho = HO + gHI,cr-

H, is a self adjoint operator in F with domain D(H,) = D(Hj) for any g € R
and any o > 0.
Set

41 m=Y / OO (E)de + 3 / (€5 (€)bac (€)de.

We consider H, 6 as a self-adjoint operator in the Fock space F7 associated with
the particles and antiparticles 1 and 4. We then have o(H}) = {0} U[my, +00)
because mq < my.

For 0 < A < mj let P(\) be the spectral projection of H& in F7 corresponding
to (—oo, \] and let Py, be the orthogonal projection on the vacuum state of
the neutrinos and antineutrinos 2 and 3. We consider Pq,  , as a projection
in the Fock space Fy associated with the neutrinos and antineutrinos 2 and
3. Note that F = F; ® F2. As in [BDGO04] and [BFS98| theorem 3.1 is the
consequence of the following theorem:

Theorem 4.1. — There exists go > 0 such that for every g satisfying |g| < go
the following properties hold:

(i) For every ¢ € D(Hy) we have Hytp — H1) as o — 0.
(ii) For every o € (0,1], H, has a normalized ground state ¢ .
(iii) We have for every o € (0,1]
(@5, P(A) @ Poyey o) 2 1= 04(X)

where 64(X\) tends to zero when g tends to zero and 0 < 64(X) < 1 for
9] < go-
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Proof. — We first estimate E, = info(H,), o € (0,1]. One proves that E, <
0 as in lemma 4.3 of [BDGO04].

Recall that there exist a constant C' > 0 such that for every n > 0 and for
every o € (0,1]

1
(4.2) | Hr09| < C(/nllHo || + %WII)’ ¢ € D(Hy).
Therefore it follows from the Kato-Rellich theorem that
l9|C
4.3 El< —1
(4.3) | Eo| Jii— [glnC

when |g|,/nC < 1.
(i) follows from the following inequality and from the Lebesgue’s theorem:

1
I(H = Ho)y|| < 2C19|(D |Geer — Glurll2) (Vall Hoto|| + TWH)‘
eF#e’ N

(ii) is proved as in [BFS98] or in [BDGO04] (theorem 4.10). We omit the
details. Thus we have H,¢, = E,¢, with ||¢.| = 1.
Writing Hy¢y = Ho¢g — gH [ 5¢5 We get using (4.2) and (4.3)

C
| Hotoll < (1Eo| + |9l —=)(1 — v/mlglC)
(4.4) Vi

< |g|%><1 IO 2@ — glyAC)

for every o € (0, 1] and for \/n|g|C < 1.
It remains to prove (iii). Note that (iii) is equivalent to

(4.5) (POV" ® Payey + 1@ Pa,,, )00, 60) < 04(A)
for every o € (0,1].
Note that

0 :(P()\)J_ ® PQneut)(HO' - EU)¢U
:P(A)J_(H& ® 1 - EO') ® Panut¢0' + g(P()\)J_ ® Panut)HI,Uqbo"
Remarking that P(A\)LHE > my P(A\)* and using E, < 0, we get

(4.6)

(POYE ® Py o) < —%(P(A)L © P H1.06s 60).

Furthermore it follows from (4.2) that there exists a constant C' > 0 such that

(P()\)J_ ® PanutHlqusU? ¢0’) é C



A MATHEMATICAL MODEL FOR THE FERMI WEAK INTERACTIONS 15

and thus

(4.7 (PO)* @ Poanor) < O
On the other hand one easily verifies that there exists a constant C' > 0 such

that
1/2 1/2
(4.8) 1P, ol < CUINS? 60| + IN3 260 )

for every o € (0,1] where we recall that Nj =" _ fb;e(ﬁ)bj,e(é)dﬁ.
The proof of (iii) then follows from (4.5), (4.7), (4.8) and the following lemma

Lemma 4.2. — There exists a constant C' > 0 such that
Gse’ 362583y 2
(4.9) N2, < g2C (Z / | (51| ]fjf?’ Sl d§1d§2d§3d§4) | Hooo?
eF#e€’ J

for j =2,3 and for every o € (0,1].
Proof. — Recall that,
(4.10) {b2c(€), 03 (€)} = {b2e(€),B3,(¢')} = 0

according to our convention. It follows from the CAR and (4.10) that we have
the following pull-through formula:

0= (Hy — By +wi(€)bj.c(€)do +9Vi 7 (€)s, j=2.3
where for € # ¢

V;Elo({) = /d§1d§3d§4G?’E(§17§7§37§4) 1(5’(51) §e’(§3)b46'(§4)
(4.11)

V?fe,U (5) - /d£1d£2d£4Gge’ (517 527 57 54) 1(5 (51) ge’ (52)1)46 (54)

We have
bj,e(£)¢0 = _g(Hcr - E, + (Uj(g))_l‘/_vjEe U(£)¢U'
By proposition 2.3 we get

2
(4.12)  [[boc(€) o> < — 2</ |GE/6(51,5,53,&)Pd&d@d@) | Hodo )2
m4|p2|
and
92 2 2
(4.13)  [|b3e(&)¢ol® < —5— (/IGEEI(&,EQ,&,&)I d£1d£2d£4> |Hooo ||~
m4\p3\
Note that

(4.14) 3 / 165 ()60 2de = [INY? 6,2 j =2,3.
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The lemma then follows from (4.12), (4.13) and (4.14) and theorem 3.2 is
proved. Note that the uniqueness (up to a phase) of the ground state follows
as in [AGGO06] and [Hir05]. Thus theorem 3.1 is proved. O

Let us remark that the proof of lemma 4.2 is rather formal but, by mimicking
[Hir05], one easily gets a rigorous proof. We omit the details.

5. Proof of theorem 3.2

In order to prove the absence of continuous singular spectrum away from

the thresholds of Hy, we use the Mourre’s method originates from [Mou81].
Actually this method has been applied successfuly to QED models (see for
instance [BFS98, BFSS99, GGMO04a, GGMO04b, Amm04)).
To this end, we estimate from below the commutator of H with an anti-
selfadjoint operator A = —A*. Our choice for A is the sum of the second
quantization of dilatation generator on each particle and antiparticle space.
Namely, denoting a; = (pj “Vp, +Vp, - pj), the generator of dilatation in the
particle j acting on L2(R?), we set

4
(5.1) A= dle(ay)

e=% j=1

where giving an operator a on L(R?), the operator dl'jc(a) : F — F is defined
by

(5.2) dljc(a / d§b3(§) abje(§).

Note that A is essentially self-adjoint on Fg;,. It remains to compute [A, H].
We begin with the remark that the second quantization respects commutators,

e., for given operators a, a’ on the one particle space L?(R?) and given
f € L%(R3) such that af and a*f belong to L?*(R?), we have for j = 1,2,3,4
and € = +:

[dLje(a )7dF]E(a,)]w dfjs([&a')]l/f
(5.3) [dTje(a), b5 ()] = bl (af)¥
[dLje(a), bje(f)]Y = —bje(a” ),
and also for i,7 = 1,2,3,4 and €,¢’ = + with (j,¢€) # (i,€):
00 e(a),d oY = 0
(54) (AT e(a), b ()} = 0
(AT e0), bio (£ = 0
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for every ¢ € Fgp.
Recall that

and a straightforward calculus leads to

(5.5)

A, Holt = dr P’ dr dr dr P’

[A, 0]¢—<; le m +dla¢(|p|)+dL3(|p|)+-dl 4 m >1/1
for ¥ € Fy.

Let us remark that [A, Hy| is relatively bounded with respect to Hy.

Proposition 5.1. — Let A be a closed subset of R such that ANS =0 and
set = dist(A,S) > 0. Then

Ex(Hy)[A, Hy)Ea(Hy) > BEA(Hy)

where Ex(Hy) denotes the spectral projection of Hy for the interval A.

Proof. — Using (5.5), we have for a given state ¥(?@) ¢ F(@) such that
EA(HO)\I'(Q) = @),

q p2' q ]52'
A, Ho| U@ (5,,...,5p) = (Z%JFZ 1)

j=1 p%j +mi =1 \/ﬁ%j +mji
r T
+ > [p2jl + Y 172
j=1 j=1

s s
+ Z p3j| + Z |D3;|
j=1 j=1
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The free energy of such state U(@) is given by

q
HyW Q) (E,,... Zp) = (3 \fok, +mi +
j=1
T T
+ > [p2sl+ Y 172l
j=1 j=1

JEAN-CLAUDE GUILLOT

\/ PR +mi

1

q
]:

t t
30 mE D md ) e E,, L E)
o

(5.7) i .
+ > Ipssl+ Y 73]
j=1 j=1
j=1
with
q r
p3; +mi+
=1 j=1 j=1
(5.8) . . .
+Z|p3j| + ) |p3jl + p3; +mi+
j=1 j=1 j=1

We decompose HoWU(Q) as follows

(5.9)
HoW (2, 5p) = (g + Dmi + (¢ + Dma

q
+ Z(\/p%j +m?2 —my) +
j=1
r T
+ > Iposl+ Y 172
j=1 j=1
S S
+ Z Ip3;| + Z |D3;
j=1 j=1

t

M=

j=1

J=1 J=1

T

p+mi+ > ol + > payl
j J

—

t
pi; +mi €A

7j=1

(\/ﬁ%j +m% —my)

t
+ Z( p?lj +m3 —my) + Z(‘”ﬁj +m3 — m4)] \P(Q)(Eq, ..
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By (5.9) we get according to the definition of 3
q q
Z(\/p%j +m?2 —my) +

J=1 J
r T s s
(5.10) +Z 2| + Z |D2;] + Z ps;| + Z D35
g=1 J=1 j=1 j=1
t t
+Z(\/pij+mi—m4)+ (/D3 +mi—ma) >

Jj=1 J

[y

[y

for (p1,p2,ps,pa) satisfying (5.8).
Therefore using

2 2 2
D pe+ms+m
T VP m ) e
(5.11) p*+m p*+m

> VR Fm —m

we conclude the proof.
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O

We now estimate the commutator [A, H;|. By (2.8), (5.3), (5.4) and since

*—_ .
aj = —a; we have

4
At =(23 [ dedeadeadei(a,Gr) (6, €2.60.60)
e#e j=1

1,e(€1)05 ¢ (€2)03 ((€3)ba,e(§a)
(5.12)

4
+ 303 [ derdeadeadéi oG 6un)

e#e j=1

b e (€0)bs.c(€3)bae (E2)b1.c(61) ) ¥

for ¢ € Fgn. Therefore, if we assume that a;G. € L? for each j = 1,2,3,4
and for each € # €/, we deduce as in the proof of theorem 2.4 that [A, H ] is

H relatively bounded and in particular there exist ¢ > 0 such that
(5.13) Ex(Hp)[A, Hf|EA(Hy) > —cEa(Hy).
We deduce

Proposition 5.2. — Assume that a;Geo € L? for each j = 1,2,3,4 and for
each € # €. There exists ¢ > 0 such that if A is a closed interval of R verifying
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ANS =0 then

Ea(H)[A, HIEs(H) > (2 — 9B (i)

2 p
where Ea(H) denotes the spectral projection of H for the interval A and 3 =
dist(A,S) > 0 is suficiently small.

Proof. — Let A’ be the closed interval such that A = A’ + [—/3/2,3/2] and
assume that 0 < § < 1. Using the Helffer-Sjostrand Functional Calculus (see
for instance [DS99]), we find that

|Ea(H)(1 ~ Bx(Ho)) | < =

g

for some constant ¢; > 0 independent of A, g and 3.
Therefore, using that [A, H] is H bounded (see the proof of theorem 3.2 just

below),
(5.14)
Ea(H)[A, H|Ea(H) > E(H)Ex(Ho)[A, H|Ea/(Ho)Ea(H) — Cz%EA(H)

for some constant cg > 0.
On the other hand, from proposition 5.1 and (5.13), we have

(5.15) Ene (Ho)[A. H|Ea (Hy) > (2  cs) Eny (1)

for some constant cg > 0.
Inserting (5.15) in (5.14) we get

Ea(H)[A, H|EA(H) > (é — c39) Ea(H)Enr(Ho) En(H) — ¢35 Ea(H)

2 p
> (5~ )1~ “DEA(H) - 5 Ea(H)
> (5~ DEa(h)
for some ¢ > 0 independent of A, ¢g and /3. O

Proof of theorem 8.2 Theorem 3.2 is a consequence of proposition 5.2 and
the Mourre theory. Actually it only remains to verify the applicability of this
theory. This means that we have to verify that [A, H] and [A, [A, H]] are H
bounded. From (5.5) we deduce that [A, Hy| is Hy bounded. For the second
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commutator a simple calculus gives

p*mi
414, Hollg = [ St (s ) + vl + T o)

2

p2m4

e (G I
for ¢ € Fan. Thus [A, [A, Hol] is Hp bounded.
We have already noted that [A, H;] is Hy bounded as soon as a;Gee € L? for
each j = 1,2,3,4 and for each € # ¢/. The computation of the commutator of
A with the expression of [A, Hy] given by (5.12) shows that [A, [A, H;]] is Hp
bounded as soon as aja;Ge € L? for each j = 1,2,3,4 and for each € # €.
These conditions on G are satisfied when p; - V.G and p?ApiGEG/ are all
in L?(X] X g x ¥g x ¥y) for i = 1,2,3,4 and € # ¢ O

6. Other examples

The main other examples of the Fermi-weak interactions are the beta decay
of the neutron and of the quarks v and d. Let us consider the decay of the
quark d. This decay involves four species of particles and antiparticles: the
quarks v and d and their antiparticles @ and d, the electron e~ and the positron
e™, the neutrino v, and its antineutrino 7, (see [Wei96, GM89]). The Fock
space is the fermionic Fock space associated to these four species of particles
and the interaction is given by

(6.1)
Hyp :/d§1d§2d§3d§4 J (&1, €2, €3, 8a) OT 1 (§1)b5,—(€2)b5 1 (€3)ba +(§4)

T / e d€xd€sdes T(Er, €0 EsrEn) Ul (€0)bs + (€3)ba (€2)b1 4 (€1).

Here the particles and antiparticles 1 are the electrons and the positrons,
the particles and antiparticles 2 are the neutrinos v, and 7., the particles
and antiparticles 3 are the quarks w and @ and, finally, the particles and
antiparticles 4 are the quarks d and d.

Obviously theorems 3.1 and 3.2 remains valid for the associated Hamiltonian
under appropriate conditions on the kernel J.

We can also consider the decay of the massive bosons W¥ into electrons,
positrons and neutrinos v, and 7, (see [Wei96, GM89]). The Fock space is
the tensor product of the fermionic Fock space associated to the electrons, the
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positrons and the neutrinos v, and 7, and of the bosonic Fock space associated
to a massive boson of spin 1. The interaction is then given by

Hyp ZZ/d&dEzd&a Kee(§1,62,83) ] ((€1)b5 0 (82)as,c(€3)
e#e!

+ Z / d£1d£2d£3 KE,E’(&’I? 52753) a§75(£3)b2,e’ (52)1)1,6(51)‘

e#e!
Here the particles and antiparticles 1 are the electrons and the positrons, the
particles and antiparticles 2 are the neutrinos v, and 7., and a4 (&3) (resp.
a_(&3)) is the annihilation operator for the meson W~ (resp. W).

(6.2)

Once again theorems 3.1 and 3.2 remains valid for the associated Hamiltonian
under appropriate conditions on the kernels K .

One could also give a mathematical model for the decay of the massive boson
A
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