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Abstract. — We consider a mathematical model of the Fermi theory of weak

interactions as patterned according to the well-known current-current coupling

of quantum electrodynamics. We focuss on the example of the decay of the

muons into electrons, positrons and neutrinos but other examples are consid-

ered in the same way. We prove that the Hamiltonian describing this model

has a ground state in the fermionic Fock space for a sufficiently small coupling

constant. Furthermore we determine the absolutely continuous spectrum of

the Hamiltonian and by commutator estimates we prove that the spectrum

is absolutely continuous away from a small neighborhood of the thresholds of

the free Hamiltonian. For all these results we do not use any infrared cutoff

or infrared regularization even if fermions with zero mass are involved.
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1. Introduction

In this note we consider a mathematical model of the Fermi theory of weak

interactions as patterned according to the well-known current-current coupling

of quantum electrodynamics (see [GM89, Wei96]). The weak interaction

processes are well described at low energy by the current-current coupling.

We choose the example of the decay of the muons into electrons, positrons

and neutrinos. The beta decay of the neutron could be considered too.

The mathematical framework involves a fermionic Fock space for the par-

ticles and the antiparticles and the interaction is described in terms of an-

nihilation and creation operators together with an L2-kernel with respect to

the momenta. The total Hamiltonian, which is the sum of the free energy

of the particles and the antiparticles and of the interaction, is a self-adjoint

operator in the Fock space. We prove that this Hamiltonian has a ground

state in the Fock space for a sufficiently small coupling constant. Furthermore

we determine the absolutely continuous spectrum of the Hamiltonian and by

commutator estimates we prove that the spectrum is absolutely continuous

away from a small neighborhood of the thresholds of the free Hamiltonian.

From the mathematical point of view, the interaction is no more invariant by

translation and the singularity of the kernel at the origin is not too strong. In

fact the physical formal kernel is locally bounded at the origin. This means

that there is no infrared problem even if fermions with zero mass are involved

in the model in contrast to the case of QED. Detailed proofs are only given

for the Hamiltonian associated with the decay of muons.

We also describe the mathematical model for the beta dacay of quarks u and

d for which the results will be the same. We also consider the decay of the

massive bosons W+ and W−.



A MATHEMATICAL MODEL FOR THE FERMI WEAK INTERACTIONS 3

For the proofs we essentially follow the methods developed in [BFS98]

[BDG04] and in [AGG06] for the existence of the ground state and those

developed by [BFS98] and [Ski98] for the study of the continuous singular

spectrum.

Let us finally mention that the same results should hold in Fock spaces

associated to the Dirac equation in Schwarschild, Reisner-Nordstrøm and Kerr

black holes as soon as a generalized eigenfunction expansion for the Dirac

equation in that context is known.

2. The model

The decay of the muons involves four species of particles and antiparticles,

the muons µ− and µ+, the electron e− and the positron e+, the neutrino νe

and the antineutrino ν̄e associated to the electron and the neutrino νµ and the

antineutrino ν̄µ associated to the muon.

In this article we consider the neutrinos νe and νµ together with the antineutri-

nos ν̄e and ν̄µ as neutrinos and antineutrinos with different quantum leptonic

numbers (see [GM89], [PD95]). Thus, according to the convention described

in section 4.1 of [Wei95] and from the mathematical point of view, in what

follows the corresponding creation and annihilation operators for νe and ν̄e

will anticommute with those for νµ and ν̄µ. Our proof does not work if the

neutrinos νe and νµ are considered as particles of different species i.e., if the

corresponding creation and annihilation operators for νe and ν̄e commute with

those for νµ and ν̄µ.

Concerning our notations from now on the particles and antiparticles 1 will

be the electrons e− and the positrons e+, the particles and antiparticles 2 will

be the neutrinos νe, ν̄e, the particles and antiparticles 3 will be the neutrinos

νµ, ν̄µ and, finally, the particles and antiparticles 4 will be the muons µ− and

µ+.

Let ξ = (p, s) be the quantum variables of a particle of spin 1/2. Here p ∈ R
3

is the momentum, s ∈ {−1/2, 1/2} is the spin polarization of particles and an-

tiparticles 1 and 4 and s ∈ {−1, 1} is the helicity of particles and antiparticles

2 and 3. We set Σ1 = R
3 × {−1/2, 1/2} for the particles and antiparticles 1

and 4 and Σ2 = R
3 × {−1, 1} for particles and antiparticles 2 and 3. We will

denote by ξ̄ the quantum variables of an antiparticle.

Let us define the Fock space. Set

Q = (q, q̄, r, r̄, s, s̄, t, t̄) ∈ N
8
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where q (resp. r, s, t) is the number of particles 1 (resp. 2,3,4) and q̄ (resp.

r̄, s̄, t̄) is the number of antiparticles 1 (resp. 2,3,4). For i = q, r, s, t and

ī = q̄, r̄, s̄, t̄ we introduce the following sets of variables:

Ξi = (ξ1, ξ2, . . . , ξi) Ξī = (ξ̄1, ξ̄2, . . . , ξ̄i).

Notice that for the neutrinos and antineutrinos we could use another sets of

variables by adding leptonic quantum numbers to the ξ’s in order to get an

equivalent framework.

Let us denote by Ψ(Q)(·) a measurable function of the set of variables

Ξq,Ξq̄, . . . ,Ξt,Ξt̄ which is antisymmetric with respect to each set of variables

Ξi and Ξī separately and which is square integrable:

‖Ψ(Q)‖2 =

∫

∣

∣

∣Ψ(Q)(Ξq,Ξq̄,Ξr,Ξr̄,Ξs,Ξs̄,Ξt,Ξt̄)
∣

∣

∣

2 ∏

i=(q,r,s,t)

dΞi

∏

ī=(q̄,r̄,s̄,t̄)

dΞī <∞

where dΞi =
∏i

k=1 dξk, dξ =
∑

s

∫

d3p and dΞī =
∏i

k=1 dξ̄k, dξ̄ =
∑

s

∫

d3p̄.

When i = 0 or ī = 0, the corresponding variables do not appear in Ψ(Q).

The space F (Q) = {Ψ(Q) | ‖Ψ(Q)‖ < ∞} is an Hilbert space and the Fock

space is defined by

F = ⊕Q∈N8F (Q)

where F (0) = C. The vacuum Ω is the state (Ψ(Q))Q with Ψ(Q) = 0 for Q 6= 0

and Ψ(0) = 1. F is an Hilbert space and if Ψ = (Ψ(Q))Q ∈ F we have

‖Ψ‖2 =
∑

Q∈N8

‖Ψ(Q)‖2.

We can now define the formal annihilation and creation operators bj,ε(ξ) and

b?j,ε(ξ) for each type of particles and antiparticles. We have

(b1,+(ξ)Ψ)(Q)(ξ1, . . . , ξq; Ξq̄; Ξr; Ξr̄; Ξs; Ξs̄; Ξt; Ξt̄) =
√

q + 1Ψ(q+1,q̄,...,t̄)(ξ, ξ1, . . . , ξq; Ξq̄; Ξr; Ξr̄; Ξs; Ξs̄; Ξt; Ξt̄)
(2.1)

and

(b1,−(ξ)Ψ)(Q)(Ξq; ξ̄1, . . . , ξ̄q̄; Ξr; . . . ; Ξt̄) =
√

q̄ + 1(−1)qΨ(q,q̄+1,...,t̄)(Ξq; ξ, ξ̄1, . . . , ξ̄q̄; Ξr; . . . ; Ξt̄).
(2.2)

The operators b2,±(ξ) (resp. b4,±(ξ)) are defined similarly by substituting r

and r̄ (resp. t and t̄) for q and q̄ in an obvious way.

Furthermore, taking into account the anticommutation between b3,± and b2,±,
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we have

(b3,+(ξ)Ψ)(Q)(Ξq; Ξq̄; Ξr; Ξr̄; ξ1, . . . , ξs; Ξs̄; Ξt; Ξt̄) =
√
s+ 1(−1)r+r̄Ψ(q,q̄,r,r̄,s+1,s̄,t,t̄)(Ξq; Ξq̄; Ξr; Ξr̄; ξ, ξ1, . . . , ξs; Ξs̄; Ξt; Ξt̄)

(2.3)

and

(b3,−(ξ)Ψ)(Q)(Ξq; Ξq̄; Ξr; Ξr̄; Ξs; ξ̄1, . . . , ξ̄s̄; Ξt; Ξt̄) =
√
s̄+ 1(−1)r+r̄+sΨ(q,q̄,r,r̄,s,s̄+1,t,t̄)(Ξq; Ξq̄; Ξr; Ξr̄; Ξs; ξ, ξ̄1, . . . , ξ̄s̄; Ξt; Ξt̄).

(2.4)

As usual b?j,ε(ξ) is the formal adjoint of bj,ε(ξ), for example

(b?1,+(ξ)Ψ)(q+1,q̄,r,r̄,s,s̄,t,t̄)(ξ1, . . . , ξq+1; Ξq̄; Ξr; Ξr̄; Ξs; Ξs̄; Ξt; Ξt̄) =

1√
q + 1

q+1
∑

i=1

(−1)i+1δ(ξ − ξi)Ψ
(q,q̄,r,r̄,s,s̄,t,t̄)(ξ1, . . . , ξ̂i, . . . , ξq+1; Ξq̄; Ξr; Ξr̄; Ξs; Ξs̄; Ξt; Ξt̄)

(2.5)

where ·̂ denotes that the ith variable has to be omitted.

The following canonical anticommutation relations hold

{bj,ε(ξ), b?j,ε′(ξ′)} = δε,ε′δ(ξ − ξ′), j = 1, 2, 3, 4, ε, ε′ = ±

where δ(ξ − ξ′) = δs,s′δ(p− p′),

{bj,ε(ξ), bj,ε′(ξ′)} = {b?j,ε(ξ), b?j,ε′(ξ′)} = 0, j = 1, 2, 3, 4, ε, ε′ = ±

{b2,ε(ξ), b
]
3,ε′(ξ

′)} = {b?2,ε(ξ), b
]
3,ε′(ξ

′)} = 0

where b] is b or b?.

Note that

[bi,ε(ξ), b
]
j,ε′(ξ

′)] = [b?i,ε(ξ), b
]
j,ε′(ξ

′)] = 0, j = 1, 2, 3, 4, i = 1, 4 and j 6= i.

Let F0 be the subspace of functions Ψ = (Ψ(Q))Q such that Ψ(Q) is a function

in the Schwartz space and Ψ(Q) = 0 for all but finitely many Q. The bj,ε(ξ)’s

are well defined operators on F0 but they are not closable. It is better to

introduce the following operators:

bj,ε(φ) =

∫

bj,ε(ξ)φ(ξ)dξ,

b?j,ε(φ) =

∫

b?j,ε(ξ)φ(ξ)dξ
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where φ ∈ L2(Σ) and Σ = Σ1 when j = 1, 4 and Σ = Σ2 when j = 2, 3. Both

bj,ε(φ) and b?j,ε(φ) are bounded operators on F and

‖b?j,ε(φ)‖ = ‖bj,ε(φ)‖ = ‖φ‖.
The bj,ε(φ)’s and the b?j,ε(φ)’s satisfy similar anticommutation relations (see

[Tha92]).

The free Hamiltonian H0 is given by

(2.6) H0 =

4
∑

j=1

∑

ε=+,−

∫

dξωj(ξ)b
?
j,ε(ξ)bj,ε(ξ)

where

ω1(ξ) = ω1(p) =
√

|p|2 +m2
1

ω4(ξ) = ω4(p) =
√

|p|2 +m2
4

ωj(ξ) = ωj(p) = |p|, j = 2, 3

(2.7)

and the mass m1 and m4 are strictly positive. We know that m1 < m4.

H0 is essentially self-adjoint on F0, we still denoteH0 its self-adjoint extension.

The interaction, denoted by HI is given by

HI =
∑

ε6=ε′

∫

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)

b?1,ε(ξ1)b
?
2,ε′(ξ2)b

?
3,ε(ξ3)b4,ε(ξ4)

+
∑

ε6=ε′

∫

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)

b?4,ε(ξ4)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)

(2.8)

where Gε,ε′(ξ1, ξ2, ξ3, ξ4) is a kernel.

In particular this interaction describes the decay of the muon µ into an electron

and two neutrinos ν̄e and νµ.

The total Hamiltonian is then

(2.9) H = H0 + gHI

where g ∈ R is the coupling constant.

We first show that a self-adjoint operator in F is associated with the total

Hamiltonian H if the kernels Gε,ε′ are in L2.

Let {e+,i, e−,̄i, i, ī = 1, 2, . . .} (resp. {f+,i, f−,̄i, i, ī = 1, 2, . . .}, {g+,i, g−,̄i, i, ī =

1, 2, . . .}, {h+,i, h−,̄i, i, ī = 1, 2, . . .}) be two basis of L2(Σ1) (resp. L2(Σ2),

L2(Σ2), L
2(Σ1)). We assume that the e’s, f ’s, g’s and h’s are smooth functions
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in the Schwartz space with respect to p.

For every Q = (q, q̄, r, r̄, s, s̄, T, t̄) ∈ N
8 we now consider vectors in F of the

following form:

Ψ(Q) =b?1,+(e+i1) . . . b
?
1,+(e+iq )b

?
1,−(e−ī1) . . . b

?
1,−(e−īq̄ )

b?2,+(f+j1) . . . b
?
2,+(f+jr

)b?2,−(f−j̄1) . . . b
?
2,−(f−j̄r̄

)

b?3,+(g+k1
) . . . b?3,+(g+ks

)b?3,−(g−k̄1
) . . . b?3,−(g−k̄r̄

)

b?4,+(h+l1) . . . b
?
4,+(h+lt)b

?
4,−(h−l̄1) . . . b

?
4,−(h−l̄t̄

) Ω.

(2.10)

The indexes are ordered such that i1 < . . . < iq, ī1 < . . . < īq̄ and similarly

for the indexes j, k, l. The set {Ψ(Q) | Q ∈ N
8} is an orthonormal basis of F

(see [Tha92]) and the set

Ffin = { finite linear combination of the basis vectors of the form (2.10) }
is dense in F .

As the formal expression of H shows, we have to deal with operators in F
built from the product of creation and annihilation operators.

For Hε,ε′(·, ·, ·) ∈ L2(Σ1 × Σ2 × Σ2) the formal operator
∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3Hε,ε′(ξ1, ξ2, ξ3)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)

is defined as a quadratic form on Ffin ×Ffin:
∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3 < Ψ , Hε,ε′(ξ1, ξ2, ξ3)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)Φ > .

By mimicking the proof of Theorem X.44 in [RS75], we get an operator,

denoted byAε,ε′, associated with the form such that Aε,ε′ is the unique operator

in F such that Ffin ⊂ D(Aε,ε′) is a core for Aε,ε′ and

Aε,ε′ =

∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3Hε,ε′(ξ1, ξ2, ξ3)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)

as a quadratic forms on Ffin ×Ffin. Note that the formal operator
∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3Hε,ε′(ξ1, ξ2, ξ3)b
?
1,ε(ξ1)b

?
2,ε′(ξ2)b

?
3,ε(ξ3)

is similarly associated with A?
ε,ε′ and we have

A?
ε,ε′ =

∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3Hε,ε′(ξ1, ξ2, ξ3)b
?
1,ε(ξ1)b

?
2,ε′(ξ2)b

?
3,ε(ξ3)

as a quadratic forms on Ffin ×Ffin.

The proofs of the following propositions are similar to those in [BDG04]. For
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sake of completeness we give here complete proofs.

We have

Proposition 2.1. — Suppose that Hε,ε′(·, ·, ·) ∈ L2(Σ1×Σ2×Σ2). Then Aε,ε′)

and A?
ε,ε′ are bounded operators in F with

‖Aε,ε′‖ = ‖A?
ε,ε′‖ ≤ ‖Hε,ε′‖L2(Σ1×Σ2×Σ2).

Proof. — Let Ψ(Q) be a vector of the form (2.10). For simplicity we assume

that {i1, . . . , iq} = {1, . . . , q}, {ī1, . . . , īq̄} = {1, . . . , q̄}, etc. . . Let us consider

A+,−, the other choices of ε and ε′ are treated similarly. A straightforward

computation shows that

A+,−Ψ(Q) =

q
∑

α=1

r̄
∑

β=1

s
∑

γ=1

(−1)α+β+γ+1(H+,−, e+α ⊗ f−β ⊗ g+γ)L2(Σ1×Σ2×Σ2)

q
∏

i=1 i6=α

b?1+(e+i)

q̄
∏

ī=1

b?1−(e−ī)
r
∏

j=1

b?2+(f+j)
r̄
∏

j̄=1 k̄ 6=β

b?2−(f−j̄)

s
∏

k=1 k 6=γ

b?3+(g+k)
s̄
∏

k̄=1

b?3−(g−k̄)
t
∏

l=1

b?4+(h+l)
t̄
∏

k̄=1

b?4−(h−l̄) Ω.

(2.11)

As the right hand side of (2.11) is a linear combination of orthogonal vectors,

we get

‖A+,−Ψ(Q)‖2 =

q
∑

α=1

r̄
∑

β=1

s
∑

γ=1

|(H+,−, e+α ⊗ f−β ⊗ g+γ)|2

≤‖H+,−‖2‖Ψ(Q)‖2.

(2.12)

Therefore, in order to prove proposition 2.1, it is enough to show that (2.12)

holds for any finite linear combination of the Ψ(Q)’s. This can be done as in

the proposition 3.4 of [BDG04]. We omit the details.

We now investigate operators in F associated with the interaction HI . Let

us introduce the operators number of each particle:

(2.13) Ni =
∑

ε

∫

dξb?iε(ξ)biε(ξ) i = 1, 2, 3, 4.

Each Ni is self-adjoint in F and Ffin is a core for it.

For Gε,ε′(·, ·, ·, ·) ∈ L2(Σ1 × Σ2 × Σ2 × Σ1) the formal operators
∫

Σ1×Σ2×Σ2×Σ1

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)b
?
1,ε(ξ1)b

?
2,ε′(ξ2)b

?
3,ε(ξ3)b4,ε(ξ4)
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and
∫

Σ1×Σ2×Σ2×Σ1

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)b
?
4,ε(ξ4)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)

are defined as a quadratic form on Ffin×Ffin. Again by mimicking the proof of

Theorem X.44 in [RS75], we get an operator, denoted by Bε,ε′, associated with

the form such that Bε,ε′ is the unique operator in F such that Ffin ⊂ D(Aε,ε′)

is a core for Bε,ε′ and

Bε,ε′ =

∫

Σ1×Σ2×Σ2×Σ1

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)b
?
1,ε(ξ1)b

?
2,ε′(ξ2)b

?
3,ε(ξ3)b4,ε(ξ4)

and

B?
ε,ε′ =

∫

Σ1×Σ2×Σ2×Σ1

dξ1dξ2dξ3dξ4Gε,ε′(ξ1, ξ2, ξ3, ξ4)b
?
4,ε(ξ4)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)

as quadratic forms on Ffin ×Ffin.

We then have

Proposition 2.2. — Suppose that Gε,ε′(·, ·, ·, ·) ∈ L2(Σ1 × Σ2 × Σ2 × Σ1).

Then D(Bε,ε′), D(B?
ε,ε′) ⊃ D(N

1/2
4 ) and

‖Bε,ε′Ψ‖ ≤ ‖Gε,ε′‖L2(Σ1×Σ2×Σ2×Σ1)‖N
1/2
4 Ψ‖,

‖B?
ε,ε′Ψ‖ ≤ ‖Gε,ε′‖L2(Σ1×Σ2×Σ2×Σ1)‖N

1/2
4 Ψ‖.

(2.14)

for Ψ ∈ D(N
1/2
4 ).

Proof. — We only investigate B+,−. The proof for the other cases is quite

similar. Set Q = (q, q̄, r, r̄, s, s̄, t, t̄) and Q′ = (q+ 1, q̄, r, r̄+ 1, s+ 1, s̄, t− 1, t̄).

Let Ψ(Q) and Ψ(Q′) be two vectors in Ffin∩F (Q) and Ffin∩F (Q′) respectively.

We have

(Ψ(Q′), B+,−Ψ(Q)) =

∫

Σ1×Σ2×Σ2×Σ1

dξ1dξ2dξ3dξ4

(

G+,−(ξ1, ξ2, ξ3, ξ4)b3,+(ξ3)b2,−(ξ2)b1,+(ξ1)Ψ
(Q′) , b4,+(ξ4)Ψ

(Q)
)

(2.15)

and by the Fubini theorem, we get
∣

∣

∣
(Ψ(Q′), B+,−Ψ(Q))

∣

∣

∣

2
=
∣

∣

∣

∫

Σ1

dξ4

(

b4,+(ξ4)Ψ
(Q),

∫

Σ1×Σ2×Σ2

G+,−(ξ1, ξ2, ξ3, ξ4)b3,+(ξ3)b2,−(ξ2)b1,+(ξ1)Ψ
(Q′)
)∣

∣

∣

2
.

(2.16)
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By the Cauchy-Schwarz inequality and proposition 2.1, we obtain

∣

∣

∣
(Ψ(Q′), B+,−Ψ(Q))

∣

∣

∣

2
≤

(∫

Σ1

dξ4‖b4,+(ξ4)Ψ
(Q)‖

(

∫

Σ1×Σ2×Σ2

dξ1dξ2dξ3|G+,−(ξ1, ξ2, ξ3, ξ4)|2
)1/2

)2

‖Ψ(Q′)‖2.

(2.17)

Applying again the Cauchy-Schwarz inequality and by the definition of b4+(ξ4)

we finally get

∣

∣

∣(Ψ(Q′), B+,−Ψ(Q))
∣

∣

∣

2
≤ t‖G+,−‖2‖Ψ(Q)‖2‖Ψ(Q′)‖2 = ‖G+,−‖2‖N1/2

4 Ψ(Q)‖2‖Ψ(Q′)‖2.

Since B+,−Ψ(Q) ∈ F (Q′) we deduce

∣

∣

∣
(Φ, B+,−Ψ(Q))

∣

∣

∣

2
≤ ‖G+,−‖2‖N1/2

4 Ψ(Q)‖2‖Φ‖2

for every Φ ∈ Ffin. Now, since Φ ∈ Ffin is dense in F , the last inequality still

holds for every Φ ∈ F and every Q ∈ N
8. Therefore we have

‖B+,−Ψ(Q)‖2 ≤ ‖G+,−‖2‖N1/2
4 Ψ(Q)‖2

which yields

(2.18) ‖B+,−Ψ‖2 ≤ ‖G+,−‖2‖N1/2
4 Ψ‖2

for every Ψ ∈ Ffin. Since Ffin is a core for N
1/2
4 and B+,− is closable (see

Theorem X.44 in [RS75]) we have D(N
1/2
4 ) ⊂ D(B+,−) and the inequality

(2.18) is still true for every Ψ ∈ D(N
1/2
4 ).

Set

V εε′

2 =

∫

Σ1×Σ2×Σ1

dξ1dξ3dξ4G
2
εε′(ξ1, ξ3, ξ4)

b?1ε(ξ1)b
?
3ε′(ξ3)b4ε(ξ4),

V εε′

3 =

∫

Σ1×Σ2×Σ1

dξ1dξ2dξ4G
3
εε′(ξ1, ξ2, ξ4)

b?1ε(ξ1)b
?
2ε′(ξ2)b4ε(ξ4),

(2.19)

where Gj
εε′ ∈ L2(Σ1×Σ2×Σ1), j = 2, 3. V εε′

j , j = 2, 3, are defined as quadratic

forms on Ffin ×Ffin. As above we then have
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Proposition 2.3. — Suppose that Gj
εε′ ∈ L2(Σ1 × Σ2 × Σ1), j = 2, 3. Then

D(V εε′

j ), D(V εε′?
j ) ⊃ D(N

1/2
4 ) and

‖V εε′

j Ψ‖ ≤ ‖Gj
εε′‖L2(Σ1×Σ2×Σ1)‖N

1/2
4 Ψ‖,

‖V εε′?
j Ψ‖ ≤ ‖Gj

εε′‖L2(Σ1×Σ2×Σ1)‖N
1/2
4 Ψ‖.

(2.20)

for Ψ ∈ D(N
1/2
4 ) and j = 2, 3.

The proof of proposition 2.3 is exactly the same as the one of proposition

2.2.

The following theorem shows that the formal total Hamiltonian is associated

with a self-adjoint operator in F , still denoted by H, if the interaction kernels

are in L2.

Theorem 2.4. — Suppose that Gεε′(·, ·, ·, ·) ∈ L2(Σ1 × Σ2 × Σ2 × Σ1) for ε 6=
ε′. Then H = H0 + gHI is a self-adjoint operator in F for every g ∈ R with

domain D(H0).

Proof. — Recall that H0 with domain Ffin is essentially self-adjoint. By

proposition 2.2 we have, for every Ψ ∈ Ffin,

‖HIΨ‖ ≤ 2





∑

ε6=ε′

‖Gεε′‖L2



 ‖N1/2
4 Ψ‖

and we get for every ε > 0,

‖HIΨ‖ ≤ 2





∑

ε6=ε′

‖Gεε′‖L2





(

√

ε/2‖N4Ψ‖ +
1√
2ε

‖Ψ‖
)

.

Furthermore, since ω4(p) ≥ m4, we have

‖N4Ψ‖ ≤ 1

m4
‖H0Ψ‖.

Thus

‖HIΨ‖ ≤ 2





∑

ε6=ε′

‖Gεε′‖L2





(

1

m4

√

ε/2‖H0Ψ‖ +
1√
2ε

‖Ψ‖
)

which means that HI is relatively bounded with respect to H0 with zero rela-

tive bound and the theorem follows from the Kato-Rellich theorem.



12 LAURENT AMOUR, BENOÎT GRÉBERT AND JEAN-CLAUDE GUILLOT

3. The results

Our main result states that H has a ground state for g sufficiently small.

We have

Theorem 3.1. — Suppose that for ε 6= ε′, Gεε′(·, ·, ·, ·) ∈ L2(Σ1,Σ2,Σ2,Σ1)

and

3
∑

i=2

∫

B(0,1)

|Gεε′(ξ1, ξ2, ξ3, ξ4)|2
|pi|2

dξ1dξ2dξ3dξ4 <∞(3.1)

where ξj = (pj, sj), pj ∈ R
3, j = 1, 2, 3, 4 and where B(0, 1) = {(p1, p2, p3, p4) ∈

R
12 |∑4

j=1 |pj|2 ≤ 1}.
Then there exists g0 > 0 such that H has an unique ground state for |g| ≤ g0.

Furthermore σ(H) = σac(H) = [inf σ(H),+∞).

Notice that Theorem 3.1 is true for sharp cutoffs, i.e., when Gεε′ = χΛ,

Λ > 0, with

χΛ(p1, p2, p3, p4) = 1 if |pj | ≤ Λ, j = 1, 2, 3, 4

= 0 otherwise.
(3.2)

This means that the ground state exists without infrared regularization even

if particles with zero mass are involved.

The statement concerning the absolutely continuous spectrum of H follows

easily from the existence of asymptotic Fock representations of the ACR. Pre-

cisely, for f ∈ L2(R3) we define the operators

b[jε,t(f) = eitHe−itH0b[jε(f)eitH0e−itH , j = 1, 2, 3, 4 , ε = ±.

Then for f ∈ C∞
0 (R3) and ψ ∈ F the strong limits of b[jε,t(f) exist:

lim
t→±∞

b[jε,t(f)ψ = b[jε,±(f)ψ.

The b[jε,±(f)’s satisfy the ACR and if φ is the ground state of H, we have, for

f ∈ C∞
0 (R3),

b[jε,±(f)φ = 0.

The fact that σ(H) = σac(H) = [inf σ(H),+∞) follows by mimicking [Hir05].

Now the next theorem concerns the absolutely continuous spectrum of H. We

define S as the set of threshold of H0:

(3.3) S = {km1 + lm4 | k, l ∈ N}.
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Theorem 3.2. — Suppose that for ε 6= ε′, Gεε′(·, ·, ·, ·) ∈ L2(Σ1×Σ2×Σ2×Σ1)

satisfy (3.1) and that for i = 1, 2, 3, 4, pi · ∇pi
Gεε′ and p2

i ∆pi
Gεε′ are all in

L2(Σ1 × Σ2 × Σ2 × Σ1). Then there exists a constant C > 0 such that, for g

sufficiently small, the spectrum of H in R \ (S + [−C√
g, C

√
g]) is absolutely

continuous.

4. Proof of theorem 3.1

Let HI,σ be the operator obtained from (2.8) by substituting

Gσ
εε′(ξ1, ξ2, ξ3, ξ4) = 1{(p1 ,p2,p3,p4)||p2≥σ, |p3|≥σ|}Gεε′(ξ1, ξ2, ξ3, ξ4)

for Gεε′ where σ is a strictly positive parameter. We then define

Hσ = H0 + gHI,σ.

Hσ is a self adjoint operator in F with domain D(Hσ) = D(H0) for any g ∈ R

and any σ > 0.

Set

(4.1) H1
0 =

∑

ε

∫

ω1(ξ)b
?
1ε(ξ)b1ε(ξ)dξ +

∑

ε

∫

ω4(ξ)b
?
4ε(ξ)b4ε(ξ)dξ.

We consider H1
0 as a self-adjoint operator in the Fock space F1 associated with

the particles and antiparticles 1 and 4. We then have σ(H 1
0 ) = {0}∪ [m1,+∞)

because m1 < m4.

For 0 < λ < m1 let P (λ) be the spectral projection of H1
0 in F1 corresponding

to (−∞, λ] and let PΩneut
be the orthogonal projection on the vacuum state of

the neutrinos and antineutrinos 2 and 3. We consider PΩneut
as a projection

in the Fock space F2 associated with the neutrinos and antineutrinos 2 and

3. Note that F ≡ F1 ⊗ F2. As in [BDG04] and [BFS98] theorem 3.1 is the

consequence of the following theorem:

Theorem 4.1. — There exists g0 > 0 such that for every g satisfying |g| ≤ g0

the following properties hold:

(i) For every ψ ∈ D(H0) we have Hσψ → Hψ as σ → 0.

(ii) For every σ ∈ (0, 1], Hσ has a normalized ground state φσ.

(iii) We have for every σ ∈ (0, 1]

(φσ, P (λ) ⊗ PΩneut
φσ) ≥ 1 − δg(λ)

where δg(λ) tends to zero when g tends to zero and 0 ≤ δg(λ) < 1 for

|g| ≤ g0.
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Proof. — We first estimate Eσ = inf σ(Hσ), σ ∈ (0, 1]. One proves that Eσ ≤
0 as in lemma 4.3 of [BDG04].

Recall that there exist a constant C > 0 such that for every η > 0 and for

every σ ∈ (0, 1]

(4.2) ‖HI,σψ‖ ≤ C(
√
η‖H0ψ‖ +

1√
η
‖ψ‖), ψ ∈ D(H0).

Therefore it follows from the Kato-Rellich theorem that

(4.3) |Eσ | ≤
|g|C√

η − |g|ηC
when |g|√ηC < 1.

(i) follows from the following inequality and from the Lebesgue’s theorem:

‖(H −Hσ)ψ‖ ≤ 2C|g|(
∑

ε6=ε′

‖Gεε′ −Gσ
εε′‖L2)(

√
η‖H0ψ‖ +

1√
η
‖ψ‖).

(ii) is proved as in [BFS98] or in [BDG04] (theorem 4.10). We omit the

details. Thus we have Hσφσ = Eσφσ with ‖φσ‖ = 1.

Writing H0φσ = Hσφσ − gHI,σφσ we get using (4.2) and (4.3)

‖H0φσ‖ ≤ (|Eσ| + |g| C√
η
)(1 −√

η|g|C)−1

≤ |g| C√
η
)(1 −√

η|g|C)−2(2 − |g|√ηC)

(4.4)

for every σ ∈ (0, 1] and for
√
η|g|C < 1.

It remains to prove (iii). Note that (iii) is equivalent to

(4.5) ((P (λ)⊥ ⊗ PΩneut
+ 1 ⊗ P⊥

Ωneut
)φσ, φσ) ≤ δg(λ)

for every σ ∈ (0, 1].

Note that

0 =(P (λ)⊥ ⊗ PΩneut
)(Hσ −Eσ)φσ

=P (λ)⊥(H1
0 ⊗ 1 −Eσ) ⊗ PΩneut

φσ + g(P (λ)⊥ ⊗ PΩneut
)HI,σφσ.

(4.6)

Remarking that P (λ)⊥H1
0 ≥ m1P (λ)⊥ and using Eσ ≤ 0, we get

(P (λ)⊥ ⊗ PΩneut
φσ, φσ) ≤ − |g|

m1
(P (λ)⊥ ⊗ PΩneut

HI,σφσ , φσ).

Furthermore it follows from (4.2) that there exists a constant C > 0 such that
∣

∣

∣(P (λ)⊥ ⊗ PΩneut
HI,σφσ, φσ)

∣

∣

∣ ≤ C
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and thus

(4.7) (P (λ)⊥ ⊗ PΩneut
φσ, φσ) ≤ C

|g|
m1

On the other hand one easily verifies that there exists a constant C > 0 such

that

(4.8) ‖P⊥
Ωneut

φσ‖ ≤ C(‖N 1/2
2 φσ‖ + ‖N1/2

3 φσ‖)
for every σ ∈ (0, 1] where we recall that Nj =

∑

ε

∫

b?jε(ξ)bj,ε(ξ)dξ.

The proof of (iii) then follows from (4.5), (4.7), (4.8) and the following lemma

Lemma 4.2. — There exists a constant C > 0 such that

(4.9) ‖N 1/2
j φσ‖2 ≤ g2C





∑

ε6=ε′

∫ |Gεε′(ξ1, ξ2, ξ3, ξ4)|2
|pj|2

dξ1dξ2dξ3dξ4



 ‖H0φσ‖2

for j = 2, 3 and for every σ ∈ (0, 1].

Proof. — Recall that,

(4.10) {b2ε(ξ), b
[
3ε(ξ

′)} = {b2ε(ξ), b
[
3ε′(ξ′)} = 0

according to our convention. It follows from the CAR and (4.10) that we have

the following pull-through formula:

0 = (Hσ −Eσ + ωj(ξ))bj,ε(ξ)φσ + gV εε′σ
j (ξ)φσ , j = 2, 3

where for ε 6= ε′

V εε′σ
2 (ξ) =

∫

dξ1dξ3dξ4G
σ
ε′ε(ξ1, ξ, ξ3, ξ4)b

?
1ε′(ξ1)b

?
3ε′(ξ3)b4ε′(ξ4)

V εε′σ
3 (ξ) =

∫

dξ1dξ2dξ4G
σ
εε′(ξ1, ξ2, ξ, ξ4)b

?
1ε(ξ1)b

?
2ε′(ξ2)b4ε(ξ4).

(4.11)

We have

bj,ε(ξ)φσ = −g(Hσ −Eσ + ωj(ξ))
−1V εε′σ

j (ξ)φσ .

By proposition 2.3 we get

(4.12) ‖b2ε(ξ)φσ‖2 ≤ g2

m2
4|p2|2

(∫

|Gε′ε(ξ1, ξ, ξ3, ξ4)|2dξ1dξ3dξ4
)

‖H0φσ‖2

and

(4.13) ‖b3ε(ξ)φσ‖2 ≤ g2

m2
4|p3|2

(
∫

|Gεε′(ξ1, ξ2, ξ, ξ4)|2dξ1dξ2dξ4
)

‖H0φσ‖2.

Note that

(4.14)
∑

ε

∫

‖bj,ε(ξ)φσ‖2dξ = ‖N1/2
j φσ‖2 j = 2, 3.
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The lemma then follows from (4.12), (4.13) and (4.14) and theorem 3.2 is

proved. Note that the uniqueness (up to a phase) of the ground state follows

as in [AGG06] and [Hir05]. Thus theorem 3.1 is proved.

Let us remark that the proof of lemma 4.2 is rather formal but, by mimicking

[Hir05], one easily gets a rigorous proof. We omit the details.

5. Proof of theorem 3.2

In order to prove the absence of continuous singular spectrum away from

the thresholds of H0, we use the Mourre’s method originates from [Mou81].

Actually this method has been applied successfuly to QED models (see for

instance [BFS98, BFSS99, GGM04a, GGM04b, Amm04]).

To this end, we estimate from below the commutator of H with an anti-

selfadjoint operator A = −A?. Our choice for A is the sum of the second

quantization of dilatation generator on each particle and antiparticle space.

Namely, denoting aj =
(

pj · ∇pj
+ ∇pj

· pj

)

, the generator of dilatation in the

particle j acting on L2(R3), we set

(5.1) A =
∑

ε=±

4
∑

j=1

dΓjε(aj)

where giving an operator a on L2(R3), the operator dΓjε(a) : F → F is defined

by

(5.2) dΓjε(a) =

∫

dξb?jε(ξ) a bjε(ξ).

Note that iA is essentially self-adjoint on Ffin. It remains to compute [A,H].

We begin with the remark that the second quantization respects commutators,

i.e., for given operators a, a′ on the one particle space L2(R3) and given

f ∈ L2(R3) such that af and a?f belong to L2(R3), we have for j = 1, 2, 3, 4

and ε = ±:

[dΓjε(a), dΓjε(a
′)]ψ = dΓjε([a, a

′)]ψ

[dΓjε(a), b
?
jε(f)]ψ = b?jε(af)ψ

[dΓjε(a), bjε(f)]ψ = −bjε(a?f)ψ,

(5.3)

and also for i, j = 1, 2, 3, 4 and ε, ε′ = ± with (j, ε) 6= (i, ε′):

[dΓjε(a), dΓiε′(a′)]ψ = 0

[dΓjε(a), b
?
iε′(f)]ψ = 0

[dΓjε(a), biε′(f)]ψ = 0

(5.4)
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for every ψ ∈ Ffin.

Recall that

H0 =
∑

ε=±

4
∑

j=1

dΓjε(ωj)

and a straightforward calculus leads to

(5.5)

[A,H0]ψ =
(

∑

ε=±

dΓ1ε

(

p2

√

p2 +m2
1

)

+dΓ2ε(|p|)+dΓ3ε(|p|)+dΓ4ε

(

p2

√

p2 +m2
4

)

)

ψ

for ψ ∈ Ffin.

Let us remark that [A,H0] is relatively bounded with respect to H0.

Proposition 5.1. — Let ∆ be a closed subset of R such that ∆ ∩ S = ∅ and

set β = dist(∆, S) > 0. Then

E∆(H0)[A,H0]E∆(H0) ≥ βE∆(H0)

where E∆(H0) denotes the spectral projection of H0 for the interval ∆.

Proof. — Using (5.5), we have for a given state Ψ(Q) ∈ F (Q) such that

E∆(H0)Ψ
(Q) = Ψ(Q),

[A,H0]Ψ
(Q)(Ξq, . . . ,Ξt̄) =

(

q
∑

j=1

p2
1j

√

p2
1j +m2

1

+

q̄
∑

j=1

p̄2
1j

√

p̄2
1j +m2

1

+

r
∑

j=1

|p2j | +
r̄
∑

j=1

|p̄2j |

+

s
∑

j=1

|p3j | +
s̄
∑

j=1

|p̄3j |

+
t
∑

j=1

p2
4j

√

p2
4j +m2

4

+
t̄
∑

j=1

p̄2
4j

√

p̄2
4j +m2

4

)

Ψ(Q)(Ξq, . . . ,Ξt̄).

(5.6)
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The free energy of such state Ψ(Q) is given by

H0Ψ
(Q)(Ξq, . . . ,Ξt̄) =

(

q
∑

j=1

√

p2
1j +m2

1 +

q̄
∑

j=1

√

p̄2
1j +m2

1

+
r
∑

j=1

|p2j | +
r̄
∑

j=1

|p̄2j |

+

s
∑

j=1

|p3j | +
s̄
∑

j=1

|p̄3j |

+

t
∑

j=1

√

p2
4j +m2

4 +
t̄
∑

j=1

√

p̄2
4j +m2

4

)

Ψ(Q)(Ξq, . . . ,Ξt̄)

(5.7)

with

q
∑

j=1

√

p2
1j +m2

1+

q̄
∑

j=1

√

p̄2
1j +m2

1 +

r
∑

j=1

|p2j | +
r̄
∑

j=1

|p̄2j|

+
s
∑

j=1

|p3j | +
s̄
∑

j=1

|p̄3j | +
t
∑

j=1

√

p2
4j +m2

4 +
t̄
∑

j=1

√

p̄2
4j +m2

4 ∈ ∆.

(5.8)

We decompose H0Ψ
(Q) as follows

H0Ψ
(Q)(Ξq, . . . ,Ξt̄) =

[

(q + q̄)m1 + (t+ t̄)m4

+

q
∑

j=1

(
√

p2
1j +m2

1 −m1) +

q̄
∑

j=1

(
√

p̄2
1j +m2

1 −m1)

+

r
∑

j=1

|p2j | +
r̄
∑

j=1

|p̄2j|

+
s
∑

j=1

|p3j | +
s̄
∑

j=1

|p̄3j|

+

t
∑

j=1

(
√

p2
4j +m2

4 −m4) +
t̄
∑

j=1

(
√

p̄2
4j +m2

4 −m4)
]

Ψ(Q)(Ξq, . . . ,Ξt̄).

(5.9)
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By (5.9) we get according to the definition of β

q
∑

j=1

(
√

p2
1j +m2

1 −m1) +

q̄
∑

j=1

(
√

p̄2
1j +m2

1 −m1)

+

r
∑

j=1

|p2j | +
r̄
∑

j=1

|p̄2j | +
s
∑

j=1

|p3j | +
s̄
∑

j=1

|p̄3j |

+

t
∑

j=1

(
√

p2
4j +m2

4 −m4) +
t̄
∑

j=1

(
√

p̄2
4j +m2

4 −m4) ≥ β

(5.10)

for (p1, p2, p3, p4) satisfying (5.8).

Therefore using

p2

√

p2 +m2
= (
√

p2 +m2 −m)

√

p2 +m2 +m
√

p2 +m2

≥
√

p2 +m2 −m

(5.11)

we conclude the proof.

We now estimate the commutator [A,HI ]. By (2.8), (5.3), (5.4) and since

a?
j = −aj we have

[A,HI ]ψ =
(

∑

ε6=ε′

4
∑

j=1

∫

dξ1dξ2dξ3dξ4(ajGεε′)(ξ1, ξ2, ξ3, ξ4)

b?1,ε(ξ1)b
?
2,ε′(ξ2)b

?
3,ε(ξ3)b4,ε(ξ4)

+
∑

ε6=ε′

4
∑

j=1

∫

dξ1dξ2dξ3dξ4(ajGεε′)(ξ1, ξ2, ξ3, ξ4)

b?4,ε(ξ4)b3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1)
)

ψ

(5.12)

for ψ ∈ Ffin. Therefore, if we assume that ajGεε′ ∈ L2 for each j = 1, 2, 3, 4

and for each ε 6= ε′, we deduce as in the proof of theorem 2.4 that [A,HI ] is

H0 relatively bounded and in particular there exist c > 0 such that

(5.13) E∆(H0)[A,HI ]E∆(H0) ≥ −cE∆(H0).

We deduce

Proposition 5.2. — Assume that ajGεε′ ∈ L2 for each j = 1, 2, 3, 4 and for

each ε 6= ε′. There exists c > 0 such that if ∆ is a closed interval of R verifying
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∆ ∩ S = ∅ then

E∆(H)[A,H]E∆(H) ≥ (
β

2
− cg

β
)E∆(H)

where E∆(H) denotes the spectral projection of H for the interval ∆ and β =

dist(∆, S) > 0 is suficiently small.

Proof. — Let ∆′ be the closed interval such that ∆ = ∆′ + [−β/2, β/2] and

assume that 0 < β < 1. Using the Helffer-Sjöstrand Functional Calculus (see

for instance [DS99]), we find that

‖E∆(H)(1 −E∆′(H0))‖ ≤ c1g

β

for some constant c1 > 0 independent of ∆, g and β.

Therefore, using that [A,H] is H bounded (see the proof of theorem 3.2 just

below),

(5.14)

E∆(H)[A,H]E∆(H) ≥ E∆(H)E∆′(H0)[A,H]E∆′(H0)E∆(H) − c2
g

β
E∆(H)

for some constant c2 > 0.

On the other hand, from proposition 5.1 and (5.13), we have

(5.15) E∆′(H0)[A,H]E∆′(H0) ≥ (
β

2
− c3g)E∆′(H0)

for some constant c3 > 0.

Inserting (5.15) in (5.14) we get

E∆(H)[A,H]E∆(H) ≥ (
β

2
− c3g)E∆(H)E∆′(H0)E∆(H) − c2

g

β
E∆(H)

≥ (
β

2
− c3g)(1 − c1g

β
)E∆(H) − c2

g

β
E∆(H)

≥ (
β

2
− cg

β
)E∆(H)

for some c > 0 independent of ∆, g and β.

Proof of theorem 3.2 Theorem 3.2 is a consequence of proposition 5.2 and

the Mourre theory. Actually it only remains to verify the applicability of this

theory. This means that we have to verify that [A,H] and [A, [A,H]] are H

bounded. From (5.5) we deduce that [A,H0] is H0 bounded. For the second
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commutator a simple calculus gives

[A, [A,H0]]ψ =
[

∑

ε=±

dΓ1ε

(

p2m2
1

(p2 +m2
1)

3/2

)

+ dΓ2ε(|p|) + dΓ3ε(|p|)

+ dΓ4ε

(

p2m2
4

(p2 +m2
4)

3/2

)

]

ψ

for ψ ∈ Ffin. Thus [A, [A,H0]] is H0 bounded.

We have already noted that [A,HI ] is H0 bounded as soon as ajGεε′ ∈ L2 for

each j = 1, 2, 3, 4 and for each ε 6= ε′. The computation of the commutator of

A with the expression of [A,HI ] given by (5.12) shows that [A, [A,HI ]] is H0

bounded as soon as ajajGεε′ ∈ L2 for each j = 1, 2, 3, 4 and for each ε 6= ε′.

These conditions on Gεε′ are satisfied when pi · ∇pi
Gεε′ and p2

i ∆pi
Gεε′ are all

in L2(Σ1 × Σ2 × Σ2 × Σ1) for i = 1, 2, 3, 4 and ε 6= ε′.

6. Other examples

The main other examples of the Fermi-weak interactions are the beta decay

of the neutron and of the quarks u and d. Let us consider the decay of the

quark d. This decay involves four species of particles and antiparticles: the

quarks u and d and their antiparticles ū and d̄, the electron e− and the positron

e+, the neutrino νe and its antineutrino ν̄e (see [Wei96, GM89]). The Fock

space is the fermionic Fock space associated to these four species of particles

and the interaction is given by

HI =

∫

dξ1dξ2dξ3dξ4 J(ξ1, ξ2, ξ3, ξ4) b
?
1,+(ξ1)b

?
2,−(ξ2)b

?
3,+(ξ3)b4,+(ξ4)

+

∫

dξ1dξ2dξ3dξ4 J(ξ1, ξ2, ξ3, ξ4) b
?
4,+(ξ4)b3,+(ξ3)b2,−(ξ2)b1,+(ξ1).

(6.1)

Here the particles and antiparticles 1 are the electrons and the positrons,

the particles and antiparticles 2 are the neutrinos νe and ν̄e, the particles

and antiparticles 3 are the quarks u and ū and, finally, the particles and

antiparticles 4 are the quarks d and d̄.

Obviously theorems 3.1 and 3.2 remains valid for the associated Hamiltonian

under appropriate conditions on the kernel J .

We can also consider the decay of the massive bosons W ± into electrons,

positrons and neutrinos νe and ν̄e (see [Wei96, GM89]). The Fock space is

the tensor product of the fermionic Fock space associated to the electrons, the
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positrons and the neutrinos νe and ν̄e and of the bosonic Fock space associated

to a massive boson of spin 1. The interaction is then given by

HI =
∑

ε6=ε′

∫

dξ1dξ2dξ3 Kε,ε′(ξ1, ξ2, ξ3) b
?
1,ε(ξ1)b

?
2,ε′(ξ2)a3,ε(ξ3)

+
∑

ε6=ε′

∫

dξ1dξ2dξ3 Kε,ε′(ξ1, ξ2, ξ3) a
?
3,ε(ξ3)b2,ε′(ξ2)b1,ε(ξ1).

(6.2)

Here the particles and antiparticles 1 are the electrons and the positrons, the

particles and antiparticles 2 are the neutrinos νe and ν̄e, and a+(ξ3) (resp.

a−(ξ3)) is the annihilation operator for the meson W − (resp. W+).

Once again theorems 3.1 and 3.2 remains valid for the associated Hamiltonian

under appropriate conditions on the kernels Kε,ε′.

One could also give a mathematical model for the decay of the massive boson

Z0.

References
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[BFSS99] Volker Bach, Jürg Fröhlich, Israel Michael Sigal, and Avy Soffer, Positive

commutators and the spectrum of Pauli-Fierz Hamiltonian of atoms and

molecules, Comm. Math. Phys. 207 (1999), no. 3, 557–587.
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