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Abstract

We develop an equation of state (EOS) for neutron star (NS) matter, which
forbids the direct URCA cooling and satis�es the recent information on the mass
and the radius, simultaneously. At sub-saturation densities, the symmetry en-
ergy of the EOS is well described by a function Esym (�) = 31:6 (�=�0)


 with
0:70 � 
 � 0:77. This constraint on the density dependence of the symmetry
energy is much severer than that obtained from the analysis of the isospin di¤usion
date in heavy-ion collisions. Consequently, we can obtain the valuable information
on nuclear matter from the astrophysical observations of NSs.

1 Introduction

Thanks to the recent progress in the terrestrial experiments of heavy-ion reactions and

the astronomical observations of neutron stars (NSs), there are renewed interests on the

equation of state (EOS) of nuclear matter. Nevertheless, we cannot reach a consensus

[1,2] on the sti¤ness of the EOS. The analysis [3] of K+ production in heavy-ion reactions

suggests a rather soft EOS, while the observations of massive NSs [4,5] strongly suggest

sti¤ EOSs. On the other hand, there have been many e¤orts [6-15] to derive the incom-

pressibility K, which is a well-known measure of the sti¤ness of EOS. At present, it is

however fair to follow Ref. [15], which concludes that the analyses of the �ow of nuclear

matter in heavy-ion reactions are not inconsistent to the incompressibility in the range

of 167MeV� K � 380MeV.
We have to note that the incompressibility is concerned with the isoscalar part of

the EOS while the symmetry energy is more important in asymmetric nuclear matter as

the NS matter and the matter produced in heavy-ion reactions. In fact, the symmetry

energy plays crucial roles [16,17] in determining the proton fraction and the radius of

NS. Inversely, the reliable information on the proton fraction and the radius impose the

constraint on the symmetry energy. According to the standard scenario of NS cooling,

the direct URCA process is forbidden. As a result, the proton fraction is severely limited.

On the other hand, the recent observations [18-20] strongly suggest the radii R > 13km

for the typical NSs of the gravitational masses 1:2M� < MG < 1:5M�. Moreover, it

is widely expected [21-24] that the recently found mass-radius relation [25,26] of EXO
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0748-676 is useful to constrain the EOS of NS matter. For an example, a famous EOS

referred to APR [27] is ruled out.

In the next section we review the relativistic mean-�eld (RMF) model of symmetric

nuclear matter developed in Ref. [28] and extend it to asymmetric nuclear matter. In

section 3 we apply the model to NS matter and investigate the constraints on the EOS

from the direct URCA cooling and the mass-radius relations of NSs. Then, the constraint

on the symmetry energy is investigated in the comparison with the analyses [17,29,30] of

the isospin di¤usion data in heavy-ion collisions. Finally, we summarize our investigation

in section 4.

2 The RMF model with modi�ed vertices

2.1 Symmetric nuclear matter

Here, we review the RMF model in Ref. [28] because it is not familiar and is not in a

free on-line journal. We �rst note that using the positive and negative energy projection

operators for the Dirac nucleon with mass M ,

�(�) (p) =
� =p+M

2M
; (1)

the identity holds for a vertex function �:

� � �(+) (p0) ��(+) (p)+�(+) (p0) ��(�) (p)+�(�) (p0) ��(+) (p)+�(�) (p0) ��(�) (p) : (2)

However, Eq. (2) is not meaningful in nuclear matter, because a nucleon in the medium

is not a physically observed particle in the positive-energy state but a quasi-particle

and because the coupling constant is determined only for the former. We have no direct

information on the vertex in the negative-energy state from experimental data. Therefore,

there are several theoretical e¤orts [31-34] to derive NN
 vertex in the complete space

of energy.

In the present work, we are based on the Walecka �-! model [35] of nuclear matter.

In contrast to the NN
 vertex, the NN� and NN! vertices are modi�ed in a purely

phenomenological way. We assume that the modi�ed NN� vertex is

I !
�
�(+) (p0) I�(+) (p) + �(�) (p0) I�(�) (p)

�
+��

�
�(+) (p0) I�(�) (p) + �(�) (p0) I�(+) (p)

�
;

=
(1� ��) =p0 =p+ (1 + ��)M

2

2M2
; (3)
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while the modi�ed NN! vertex is


� ! �!
�
�(+) (p0) 
��(+) (p) + �(�) (p0) 
��(�) (p)

�
+
�
�(+) (p0) 
��(�) (p) + �(�) (p0) 
��(+) (p)

�
;

=
(�! � 1) =p0
�=p+ (�! + 1)M2
�

2M2
; (4)

where �� and �! are the phenomenological parameters to have values between 0 and 1.

Consequently, in the mean-�eld approximation, the Lagrangian of the symmetric nuclear

matter is

L = � 
�
~=p�M

�
 � 1

2
m2
� h�i

2 +
1

2
m2
! h!0i

2

+ gNN� h�i
(1� ��)

�
� 
 �
=p
� �
~=p 
�
+ (1 + ��)M

2 �  

2M2

� gNN! h!0i
(�! � 1)

�
� 
 �
=p
�

0
�
~=p 
�
+ (�! + 1)M

2 � 
0 

2M2
; (5)

where  is the �eld of nucleon, h�i and h!0i are the scalar and vector mean-�elds, m� and

m! are the masses of � and ! mesons, and gNN� and gNN! are their coupling constants.

The resultant equation of nucleon is�
=p�M +

gNN� h�i
2M2

�
(1� ��) p2 + (1 + ��)M

2
�

� gNN! h!0i
2M2

�
(�! � 1) =p 
0=p+ (�! + 1)M2
0

��
 = 0: (6)

We have to reduce Eq. (6) to the Dirac equation. In the RMF model with scalar and

vector mean-�elds [35], the equation of nucleon generally has a form:�
=p� 
0V �M�� = 0; (7)

where

M� =M + S: (8)

The S and V are the scalar and vector potentials of nucleon. Noting that we can multiply

Eq. (7) by any factors, Eq. (6) is equated with the following equation:�
a1 =p=M + b1


0 + c1
� �
b2


0 + c2
� �
=p� 
0V �M�� = 0: (9)

Therefore, we have

a1b2 =
1

2
(1� �!) gNN!

h!0i
M

; (10)

a1c2 =
1

2
(1� ��) gNN�

h�i
M

; (11)
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a1b2m
� + a1c2 v = 0; (12)

b1c2 + b2 c1 = 0; (13)

b1b2 + c1c2 � (a1c2m� + a1b2 v) = 1; (14)

(b1c2m
� + b1b2 v) + (b2c1m

� + c1c2 v) =
1

2
(1 + �!) gNN!

h!0i
M

; (15)

(b1b2m
� + b1c2 v) + (c1c2m

� + b2c1 v) = 1�
1

2
(1 + ��) gNN�

h�i
M

; (16)

where m� �M�=M and v � V=M . Utilizing Eqs. (10), (13) and (14), Eq. (15) becomes

v + (a1c2m
� + a1b2 v) v =

1

2
(1 + �!) gNN!

h!0i
M

: (17)

Then, using Eq. (12), Eq. (17) becomes

v =
�
(m�)2 � v2

�
a1b2 +

1

2
(1 + �!) gNN!

h!0i
M

: (18)

Finally, substituting Eq. (10) again, we have

V = g�NN! h!0i ; (19)

where

g�NN! =
1

2

�
(1 + �!) + (1� �!)

�
(m�)2 � v2

��
gNN!: (20)

On the other hand, utilizing Eqs. (11), (13) and (14), Eq. (16) becomes

m� + (a1c2m
� + a1b2 v)m

� = 1� 1
2
(1� ��) gNN�

h�i
M

: (21)

Then, using Eq. (12), Eq. (21) becomes

1�m� =
�
(m�)2 � v2

�
a1c2 +

1

2
(1� ��) gNN�

h�i
M

: (22)

Finally, substituting Eq. (11) again, we have

M �M� = �S = g�NN� h�i ; (23)

where

g�NN� =
1

2

�
(1 + ��) + (1� ��)

�
(m�)2 � v2

��
gNN�: (24)

We can see that the modi�ed vertices (3) and (4) have been reduced to Eqs. (20) and

(24). They are the e¤ective coupling constants of the quasi-particle in the nuclear matter,
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and so depend on the mean-�elds. At zero density they should return to the free coupling

constants. This is satis�ed because of lim
�!0

m� = 1 and lim
�!0

v = 0.

Consequently, we have the e¤ective Lagrangian for symmetric nuclear matter, which

is formally the same as the Walecka �-! model [35]:

Leff = � 
�
=p� 
0V �M�� � 1

2
m2
� h�i

2 +
1

2
m2
! h!0i

2 : (25)

The mean-�elds h�i and h!0i are expressed by the e¤ective mass m� and the vector

potential v through Eqs. (19) and (23). The energy per particle w is given in a unit of

M by

w =
1

4

�
3
E�F
M

+m� �S
�

�
+ v � 1 + 2

G��̂

�
1�m�

A�

�2
� 2

G!�̂

�
v

A!

�2
; (26)

where �̂ � �=�0 is the ratio of the baryon density to the saturation density, �S is the

scalar density and E�F =
q
k2F + (M

�)2 is the Fermi energy of nucleon. A�(!) and G�(!)
are

A�(!) =
�
1 + ��(!)

�
+
�
1� ��(!)

� �
(m�)2 � v2

�
; (27)

G�(!) =
g 2NN�(!)�0

m2
�(!)M

: (28)

The e¤ective mass m� and the vector potential v are determined by extremizing w,

@w=@m� = 0 and @w=@v = 0. From the equations we can express the coupling constants

in terms of m� and v:

G� =
4C

A3�B��̂
(1�m�) ; (29)

G! =
4C

A3!B!�̂
v; (30)

where

B� =
�
(1 + �!) + (1� �!)

�
(m�)2 + v2

��
(�S=�) + 2 (1� �!)m�v; (31)

B! = (�� + 1) + (�� � 1)
�
(m�)2 � 2m� + v2

�
+ 2 (1� ��) (1�m�) v (�S=�) ; (32)

C =
�
(�� + 1) + (�� � 1)

�
(m�)2 � 2m� + v2

�� �
(1 + �!) + (1� �!)

�
(m�)2 + v2

��
� 4 (1� ��) (1� �!) (1�m�)m�v2: (33)

(It is noted that Eqs. (41) and (42) in Ref. [28], which correspond to Eqs. (32) and (33)

in the present work, were mistyped.)
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2.2 Asymmetric nuclear matter

Here, we extend the model in the preceding subsection to asymmetric nuclear matter,

for which the isovector scalar meson � and vector meson � should be taken into account.

Their modi�ed vertices are introduced in analogous ways to � and !. The resultant

equation of nucleon is�
=p�M +

gNN� h�i
2M2

�
(1� ��) p2 + (1 + ��)M

2
�

+
gNN� h�3i
2M2

�
(1� ��) p2 + (1 + ��)M

2
�
� 3

� gNN! h!0i
2M2

�
(�! � 1) =p 
0=p+ (�! + 1)M2
0

�
�
gNN� h�03i
2M2

�
(�� � 1) =p 
0=p+ (�� + 1)M2
0

�
� 3

�
 = 0: (34)

Then, we consider the equations for proton and neutron independently. The procedure

following Eq. (6) is readily applied to them. It is easily seen that the e¤ective NNX

(X = �, !, � and �) coupling constant is given by

g�pp(nn)X = hpp(nn)XgNNX =
1

2

h
(1 + �X) + (1� �X)

��
m�
p(n)

�2 � v2p(n)�i gNNX : (35)

Consequently, the e¤ective Lagrangian for asymmetric nuclear matter is

Leff = � p
�
=p� 
0Vp �M�

p

�
 p + � n

�
=p� 
0Vn �M�

n

�
 n

� 1
2
m2
� h�i

2 +
1

2
m2
! h!0i

2 � 1
2
m2
� h�3i

2 +
1

2
m2
� h�03i

2 : (36)

where  p and  n are the Dirac �elds of proton and neutron. The scalar and vector

potentials are given by

Sp = � g�pp� h�i � g�pp� h�3i ; (37)

Sn = � g�nn� h�i+ g�nn� h�3i ; (38)

Vp = g�pp! h!0i+ g�pp� h�03i ; (39)

Vn = g�nn! h!0i � g�nn� h�03i : (40)

The energy density of asymmetric nuclear matter is

E =
X
i=p;n

�
1

4
(3E�Fi�i +M�

i �Si) + Vi �i

�
+
1

2
m2
� h�i

2 +
1

2
m2
� h�3i

2 � 1
2
m2
! h!0i

2 � 1
2
m2
� h�03i

2 ; (41)

where �i and �Si are the baryon density and the scalar density of proton or neutron.

From Eqs. (37)-(40), the meson mean-�elds are expressed in terms of the e¤ective masses
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M�
p(n) = m�

p(n)M and the vector potentials Vp(n) = vp(n)M :

h�i = M

gNN�

hnn�
�
1�m�

p

�
+ hpp� (1�m�

n)

HS

; (42)

h�3i =
M

gNN�

hnn�
�
1�m�

p

�
� hpp� (1�m�

n)

HS

; (43)

h!0i =
M

gNN!

hnn�vp + hpp�vn
HV

; (44)

h�03i =
M

gNN�

hnn!vp � hpp!vn
HV

; (45)

where

HS = hpp�hnn� + hnn�hpp�; (46)

HV = hpp!hnn� + hnn!hpp�: (47)

It is noted that the scalar mean-�elds depend on the vector potentials.

The e¤ective masses and the vector potentials are determined by extremizing E :

@ E
@Vp(n)

= �p(n) +m2
�

h�i
M

@ h�i
@vp(n)

+m2
�

h�3i
M

@ h�3i
@vp(n)

�m2
!

h!0i
M

@ h!0i
@vp(n)

�m2
�

h�03i
M

@ h�03i
@vp(n)

= 0; (48)

@ E
@M�

p(n)

= �Sp(n) +m2
�

h�i
M

@ h�i
@m�

p(n)

+m2
�

h�3i
M

@ h�3i
@m�

p(n)

�m2
!

h!0i
M

@ h!0i
@m�

p(n)

�m2
�

h�03i
M

@ h�03i
@m�

p(n)

= 0; (49)

where

@ h�i
@vp

=
vp
HS

�
[(1� ��)hnn� + (1� ��)hnn�] h�i � (1� ��)

(1�m�
n)M

gNN�

�
; (50)

@ h�3i
@vp

=
vp
HS

�
[(1� ��)hnn� + (1� ��)hnn�] h�3i+ (1� ��)

(1�m�
n)M

gNN�

�
; (51)

@ h!0i
@vp

=
M

gNN!

hnn�
HV

+
vp
HV

�
[(1� ��)hnn! + (1� �!)hnn�] h!0i � (1� ��)

vnM

gNN!

�
;

(52)
@ h�03i
@vp

=
M

gNN�

hnn!
HV

+
vp
HV

(
[(1� ��)hnn! + (1� �!)hnn�] h�03i+ (1� �!)

vnM

gNN�

)
;

(53)
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@ h�i
@vn

=
vn
HS

(
[(1� ��)hpp� + (1� ��)hpp�] h�i � (1� ��)

�
1�m�

p

�
M

gNN�

)
; (54)

@ h�3i
@vn

=
vn
HS

(
[(1� ��)hpp� + (1� ��)hpp�] h�3i � (1� ��)

�
1�m�

p

�
M

gNN�

)
; (55)

@ h!0i
@vn

=
M

gNN!

hpp�
HV

+
vn
HV

�
[(1� ��)hpp! + (1� �!)hpp�] h!0i � (1� ��)

vpM

gNN!

�
; (56)

@ h�03i
@vn

= � M

gNN�

hpp!
HV

+
vn
HV

(
[(1� ��)hpp! + (1� �!)hpp�] h�03i � (1� �!)

vpM

gNN�

)
;

(57)
@ h�i
@m�

p

= � M

gNN�

hnn�
HS

+
m�
p

HS

�
(1� ��)

(1�m�
n)M

gNN�
� [(1� ��)hnn� + (1� ��)hnn�] h�i

�
;

(58)
@ h�3i
@m�

p

= � M

gNN�

hnn�
HS

�
m�
p

HS

�
(1� ��)

(1�m�
n)M

gNN�
+ [(1� ��)hnn� + (1� ��)hnn�] h�3i

�
;

(59)
@ h!0i
@m�

p

=
m�
p

HV

�
(1� ��)

vnM

gNN!
� [(1� ��)hnn! + (1� �!)hnn�] h!0i

�
; (60)

@ h�03i
@m�

p

= �
m�
p

HV

�
(1� �!)

vnM

gNN�
+ [(1� ��)hnn! + (1� �!)hnn�] h�03i

�
; (61)

@ h�i
@m�

n

= � M

gNN�

hpp�
HS

+
m�
n

HS

(
(1� ��)

�
1�m�

p

�
M

gNN�
� [(1� ��)hpp� + (1� ��)hpp�] h�i

)
;

(62)
@ h�3i
@m�

n

=
M

gNN�

hpp�
HS

+
m�
n

HS

(
(1� ��)

�
1�m�

p

�
M

gNN�
� [(1� ��)hpp� + (1� ��)hpp�] h�3i

)
;

(63)
@ h!0i
@m�

n

=
m�
n

HV

�
(1� ��)

vpM

gNN!
� [(1� ��)hpp! + (1� �!)hpp�] h!0i

�
; (64)

@ h�03i
@m�

n

=
m�
n

HV

(
(1� �!)

vpM

gNN�
� [(1� ��)hpp! + (1� �!)hpp�] h�03i

)
: (65)

3 Numerical analyses

We �rst determine the isoscalar vertices. For given values of �� and �!, gNN� and gNN!
are determined so as to reproduce the nuclear matter saturation:

@w=@� j�̂=1 = 0; (66)

w0M � w (�̂ = 1)M = �15:75MeV: (67)

Substituting Eqs. (29) and (30) into Eqs. (66) and (67), we have a self-consistency

equation for m� at saturation:
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1

4

�
E�F
M
�m�

0

�S0
�0

�
� A�0B�0

2C0
(1�m�

0) +
A!0B!0
2C0

v0 = 0; (68)

where

v0 = 1 + w0 � E�F=M: (69)

(Indices 0 mean that the values are evaluated at saturation density � = �0 = 0:16fm
�3.)

Solving the nonlinear equation (68) for the given �� and �!, we obtain the value of m�
0

and then v0 from Eq. (69). The coupling constants gNN� and gNN! are determined

again from Eqs. (29) and (30). It is still necessary to �x the values of �� and �!. In

this work, we simply assume �� = �! = �0. Then we have a value �0 = 2=3 so as to

reproduce m�
0 ' 0:6, which is required [36] for the reasonable spin-orbit splitting of �nite

nuclei. Table 1 summarizes the properties of the saturated nuclear matter. Although the

incompressibility is relatively high, the value is tolerable as shown in Ref. [15].

Next, the isovector vertices should be determined. We simply assume �� = �� = �1

again and investigate the three cases of �1 = 0:0, 0.2 and 0.4 in the following. The

gNN� is assumed to be the same as the Bonn A potential in Ref. [38], while the gNN�
is adjusted so as to reproduce the empirical symmetry energy Esym (�0) = 31:6MeV

[29,30]. The obtained values are g2NN�=(4�) = 2:98, 2.44 and 2.05 for �1 = 0:0, 0.2 and

0.4, respectively. They are much larger than the Bonn A potential. This is a problem

common to all the RMF models.

Then, we develop the EOS of NS matter. For the purpose we have to add the contribu-

tions of electron and muon to the Lagrangian (36). Because the leptons are treated as the

free Fermi gases, the energy density (41) has an additional term

(1=4)
P

l=e�;�� ( 3EFl�l +ml�Sl). Although Eqs. (48) and (49) are not varied, the asym-

metry is prescribed by the �-equilibrium condition

�n � �p = �e� = ��� : (70)

The two independent bario-chemical potential �n and the charge chemical potential �e�
are determined through the baryon number conservation

� = �p + �n; (71)

and the charge neutral condition

�p = �e� + ��� : (72)

For a given density � Eqs. (48), (49), (71) and (72) are solved numerically using the

6-rank Newton-Raphson method so that we have the values of m�
p(n), vp(n), �n and �e�.

For �1 = 0:0 we have no solution above � = 1:10fm�3. This is however not a problem

because the central density of the most massive NS is lower than � = 1:0fm�3 as will be
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shown below. The pressure of NS matter is calculated from the Gibbs-Duhem relation

P = �n�� E : The resultant EOSs for �1 = 0:0 and 0.2 are tabulated in Table 2.
The black curves in Fig. 1 show the proton fractions in NS. As �1 is larger, the proton

is more abundant. The direct URCA cooling is allowed if the fraction exceeds

fDUp =
1

1 +
�
1 + kFe=kFp

�3 ; (73)

where kFe and kFp are the Fermi momenta of electron and proton. The red curve shows

fDUp for �1 = 0:2, while the corresponding results for �1 = 0:0 and 0.4 are only slightly

lower and higher than the red curve and so are not shown in the �gure. According

to the standard scenario of NS cooling, the direct URCA process should be forbidden.

Consequently, only 0:0 � �1 � 0:2 is allowed.
The black curves in Fig. 2 are the mass-radius relations of NSs calculated by integrat-

ing the Tolman-Oppenheimer-Volkov equation [39]. For the crust of NS at low densities

� < 0:08fm�3, we use the EOSs by Feynman-Metropolis-Teller, Baym-Pethick-Sutherland

and Negele-Vautherin from Ref. [40]. The gravitational masses of the most massive NSs

are MG = 1:93M�, 1:94M� and 1:95M� for �1 = 0:0, 0.2 and 0.4, respectively. Their

radii are R = 11:6km, 11.8km and 11.9km, respectively. Their central baryon densities

are � = 0:97fm�3, 0:95fm�3 and 0:93fm�3, respectively. The red line is the mass-radius

relation of EXO 0748-676 [26], while the horizontal blue line indicates the lower limit

of the observed mass [5] of PSR J0751+1807. Our result satis�es both the constraints

irrespective of the value of �1. If the massive NS withMG > 2M� [4] would be con�rmed,

our model was ruled out. However, the masses of NSs other than the typical ones with

MG < 1:5M� are not well con�rmed. In fact, Ref. [41] suggests that EXO 0748-676 is a

typical NS with MG = 1:35M� in contrast to the result of Ref. [26].

According to the constraint on the proton fraction in Fig. 1, the NS radius is

severely restricted to the values in the solid and dotted curves. On the other hand,

there are notable observations [18-20] suggesting that the radius of the typical NS with

1:2M� < MG < 1:5M� is possibly larger than 13km. If they would be true, the famous

EOS referred to APR [27] was ruled out, the possibilities of strange star and the quark

matter core in NS [21] were also ruled out, and only the value �1 = 0:2 was accepted in

our model as shown by the vertical green line. In this respect, it is recently expected [42-

45] that the moderately accurate measurement of the moment-of-inertia of J0737-3039A

in future will impose a signi�cant constraint on the EOS of NS matter. For completeness

we have calculated it in a slow-rotation approximation [42,45]. The result is I45 = 1:53,

1.57 and 1.61 for �1 = 0:0, 0.2 and 0.4, respectively.

At sub-saturation densities the symmetry energy [17,29,30,46] is well described by a

function Esym (�) = 31:6 (�=�0)

. The crosses in Fig. 3 are the symmetry energies in our

EOS at � = 0:02fm�3, 0:04fm�3, � � � , 0:16fm�3. In fact, they are well approximated by

31:6 (�=�0)
0:70, 31:6 (�=�0)

0:77 and 31:6 (�=�0)
0:84 shown by the dotted curves. According

10
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to the result of Fig. 1, we have a constraint 0:70 � 
 � 0:77 on the density dependence
of the symmetry energy. On the other hand, the constraint from the analyses [17,29,30]

of the isospin di¤usion data in heavy-ion collisions is 0:69 � 
 � 1:05. Both the lower
limits agree well with each other while our upper limit is much severer. If the radius of

the typical NS would be larger than 13km, we had a unique value 
 = 0:77 according to

the result of Fig. 2.

4 Summary

We develop an EOS of NS matter based on the RMF model with the modi�ed meson-

nucleon vertices. They are reduced to the �eld-dependent e¤ective coupling constants

of quasi-particles in the medium. Historically, the �eld-dependent coupling was �rst

proposed in the Zimanyi-Moszkowski (ZM) model [47]. Moreover, the present author

developed the extended ZM model in Refs. [48-50]. Other extensions were also proposed

in Refs. [51,52]. The model in this work has an advantage over the other two models

because the model EZM2 [50] allows the direct URCA cooling and the model D3C [52]

has a lot of parameters.

The constant �0 to specify the modi�ed isoscalar vertices is �xed so that the e¤ective

nucleon mass in saturated nuclear matter has a physically reasonable value M� ' 0:6M .
The isoscalar coupling constants are determined so as to reproduce the saturation of the

symmetric nuclear matter. On the other hand, the constant �1 to specify the modi�ed

isovector vertices is treated as a parameter. The NN� coupling constant is determined

so as to reproduce the symmetry energy at the saturation density.

We �rst investigate the proton fraction in NS matter. It is more abundant as �1 is

larger. The standard scenario of NS cooling limits �1 to a value between 0.0 and 0.2.

We next investigate the mass-radius relation of NS. The radius is larger as �1 is larger.

If the radius of the typical NS would be larger than 13km as suggested in the recent

observations, the value of �1 was �xed to 0.2. The possible massive NS PSR J0751+1807

and the mass-radius relation of EXO 0748-676 are reproduced irrespective of the value of

�1.

Then, we calculate the symmetry energy below the saturation density. It is well

described by a function Esym (�) = 31:6 (�=�0)

. According to the constraint on the

proton fraction, the value of 
 is limited to 0:70 � 
 � 0:77. The limitation is much

severer than 0:69 � 
 � 1:05 obtained from the analyses of the isospin di¤usion data

in heavy-ion collisions. The result indicates that we can obtain the valuable information

on nuclear matter from astrophysical observations of NSs. We also note that both the

lower limits of 
 agree well with each other. It suggests that the physically reasonable

value of 
 is near 0.7. This conjecture is consistent to the recent analyses of the fragment

isotopic yields in heavy-ion reactions [46] and the symmetry potential in nucleon-nucleus

scattering [53]. In this respect, it is valuable to investigate the neutron skin thickness of

11
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heavy nuclei [54] in our RMF model. It is a subject of a future work.
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Table 1: The values of the NN� and NN! coupling constants, the e¤ective mass at
saturation, the scalar and vector potentials at saturation, the incompressibility and the
Coulomb coe¢ cient [37].

g2NN�
4�

g2NN!
4�

m� S (MeV) V (MeV) K (MeV) KCoul (MeV)
10:4 15:7 0:597 �379 304 320 �5:91

Table 2: The EOSs, the pressure P vs. the baryon density � and the energy density E ,
for the core region � � 0:08fm�3 in NS.

�1 = 0:0 �1 = 0:2
�B(cm

�3) E(g � cm�3) P (dyn � cm�2) E(g � cm�3) P (dyn � cm�2)
8.00E+37 1.350949E+14 5.717765E+32 1.349457E+14 6.359135E+32
1.00E+38 1.690862E+14 1.076133E+33 1.689302E+14 1.246090E+33
1.20E+38 2.032231E+14 1.911122E+33 2.030878E+14 2.220682E+33
1.40E+38 2.375510E+14 3.155382E+33 2.374652E+14 3.634276E+33
1.60E+38 2.721126E+14 4.885360E+33 2.721036E+14 5.533926E+33
1.80E+38 3.069539E+14 7.206874E+33 3.070452E+14 8.023045E+33
2.00E+38 3.421220E+14 1.019774E+34 3.423340E+14 1.117493E+34
2.20E+38 3.776622E+14 1.391685E+34 3.780124E+14 1.504450E+34
2.40E+38 4.136166E+14 1.840373E+34 4.141195E+14 1.966860E+34
2.60E+38 4.500230E+14 2.367832E+34 4.506907E+14 2.506577E+34
2.80E+38 4.869142E+14 2.974214E+34 4.877567E+14 3.123706E+34
3.00E+38 5.243180E+14 3.658042E+34 5.253431E+14 3.816791E+34
3.20E+38 5.622567E+14 4.416526E+34 5.634709E+14 4.583084E+34
3.40E+38 6.007476E+14 5.245897E+34 6.021557E+14 5.418868E+34
3.60E+38 6.398032E+14 6.141752E+34 6.414091E+14 6.319772E+34
3.80E+38 6.794319E+14 7.099344E+34 6.812382E+14 7.281060E+34
4.00E+38 7.196382E+14 8.113831E+34 7.216467E+14 8.297875E+34
4.20E+38 7.604236E+14 9.180454E+34 7.626352E+14 9.365425E+34
4.40E+38 8.017869E+14 1.029467E+35 8.042018E+14 1.047911E+35
4.60E+38 8.437249E+14 1.145223E+35 8.463425E+14 1.163461E+35
4.80E+38 8.862327E+14 1.264921E+35 8.890514E+14 1.282793E+35
5.00E+38 9.293038E+14 1.388205E+35 9.323217E+14 1.405543E+35
5.20E+38 9.729311E+14 1.514753E+35 9.761454E+14 1.531380E+35
5.40E+38 1.017106E+15 1.644276E+35 1.020514E+15 1.660007E+35
5.60E+38 1.061821E+15 1.776516E+35 1.065417E+15 1.791158E+35
5.80E+38 1.107067E+15 1.911243E+35 1.110847E+15 1.924595E+35
6.00E+38 1.152833E+15 2.048254E+35 1.156793E+15 2.060108E+35
6.20E+38 1.199112E+15 2.187367E+35 1.203244E+15 2.197507E+35
6.40E+38 1.245894E+15 2.328422E+35 1.250192E+15 2.336627E+35
6.60E+38 1.293170E+15 2.471276E+35 1.297627E+15 2.477317E+35
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(continued from the preceding page)

6.80E+38 1.340930E+15 2.615804E+35 1.345539E+15 2.619445E+35
7.00E+38 1.389165E+15 2.761892E+35 1.393918E+15 2.762895E+35
7.20E+38 1.437868E+15 2.909441E+35 1.442755E+15 2.907560E+35
7.40E+38 1.487029E+15 3.058363E+35 1.492040E+15 3.053347E+35
7.60E+38 1.536639E+15 3.208578E+35 1.541766E+15 3.200172E+35
7.80E+38 1.586691E+15 3.360016E+35 1.591924E+15 3.347961E+35
8.00E+38 1.637177E+15 3.512613E+35 1.642504E+15 3.496645E+35
8.20E+38 1.688089E+15 3.666315E+35 1.693499E+15 3.646165E+35
8.40E+38 1.739420E+15 3.821070E+35 1.744901E+15 3.796466E+35
8.60E+38 1.791161E+15 3.976833E+35 1.796702E+15 3.947500E+35
8.80E+38 1.843308E+15 4.133565E+35 1.848894E+15 4.099221E+35
9.00E+38 1.895851E+15 4.291228E+35 1.901472E+15 4.251591E+35
9.20E+38 1.948786E+15 4.449790E+35 1.954427E+15 4.404574E+35
9.40E+38 2.002106E+15 4.609223E+35 2.007752E+15 4.558135E+35
9.60E+38 2.055803E+15 4.769500E+35 2.061442E+15 4.712246E+35
9.80E+38 2.109874E+15 4.930597E+35 2.115490E+15 4.866880E+35
1.00E+39 2.164311E+15 5.092493E+35 2.169889E+15 5.022011E+35
1.02E+39 2.219109E+15 5.255171E+35 2.224634E+15 5.177618E+35
1.04E+39 2.274263E+15 5.418611E+35 2.279719E+15 5.333680E+35
1.06E+39 2.329767E+15 5.582800E+35 2.335139E+15 5.490177E+35
1.08E+39 2.385617E+15 5.747725E+35 2.390888E+15 5.647093E+35
1.10E+39 2.441808E+15 5.913372E+35 2.446960E+15 5.804411E+35
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Figure 1: The black curves are the proton fractions for �1 = 0:0, 0.2 and 0.4 as functions
of the baryon density. The red curve is the direct URCA limit (73) for �1 = 0:2.
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Figure 2: The black curves are the mass-radius relations of NSs for �1 = 0:0, 0.2 and
0.4. The red line is the mass-radius relation of EXO 0748-676 derived in Ref. [26]. The
horizontal blue line indicates the lower limit of the observed gravitational mass [5] of PSR
J0751+1807.
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Figure 3: The crosses are the symmetry energies calculated at the densities from
� = 0:02fm�3 to �0 = 0:16fm�3 for �1 = 0:0, 0.2 and 0.4. They are interpolated by
the dotted curves.
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