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Abstract. In this paper, we survey recent progress on the constructive

theory of the Feynman operator calculus. We first develop an opera-

tor version of the Henstock-Kurzweil integral, and a new Hilbert space

that allows us to construct the elementary path integral in the manner

originally envisioned by Feynman. After developing our time-ordered

operator theory we extend a few of the important theorems of semi-

group theory, including the Hille-Yosida theorem. As an application,

we unify and extend the theory of time-dependent parabolic and hy-

perbolic evolution equations. We then develop a general perturbation

theory and use it to prove that all theories generated by semigroups are

asympotic in the operator-valued sense of Poincaré. This allows us to

provide a general theory for the interaction representation of relativistic

quantum theory. We then show that our theory can be reformulated

as a physically motivated sum over paths, and use this version to ex-

tend the Feynman path integral to include more general interactions.

Our approach is independent of the space of continuous functions and

thus makes the question of the existence of a measure more of a natu-

ral expectation than a death blow to the foundations for the Feynman

integral.

1. Introduction

In elementary quantum theory, the (simplest) problem is to solve

i~
∂ψ(x, t)
∂t

− 1
2m

∆ψ(x, t) = 0, ψ(x, s) = δ(x− y),

ψ(x, t) = K [x, t; y, s] =
[
2πi~(t− s)

m

]−3/2

exp

[
im

2~
|x− y|2

(t− s)

]
.

(1.1)
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In his formulation of quantum theory, Feynman wrote the solution to equa-

tion (1.1) as

K [x, t; y, s] = ∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2~ ∫

t
s

∣∣dx
dt

∣∣2 dτ} ,(1.2)

where

∫x(t)=x
x(s)=y Dx(τ) exp

{
im
2~ ∫

t
s

∣∣dx
dt

∣∣2 dτ} =:

lim
N→∞

[
m

2πi~ε(N)

]3N/2
∫R3

N∏
j=1

dxj exp

 i
~

N∑
j=1

[
m

2ε(N) (xj − xj−1)
2
] ,

(1.3)

with ε(N) = (t− s)/N .

Problems

Equation (1.3) represents an attempt to define an integral on the space of

continuous paths with values in R3 (e.g., C
(
[s, t] : R3

)
).

• The kernel K [x, t; y, s] and δ(x), are not in L2[Rn], the standard

space for quantum theory.

• The kernel K [x, t; y, s] cannot be used to define a measure.

If we treat K [x, t; y, s] as the kernel for an operator acting on good

initial data, then a partial solution has been obtained by a number of work-

ers. (See the recent book by Johnson and Lapidus [JL] for references to all

the important contributions in this direction.)

Question

Is there a separable Hilbert space containing K [x, t; y, s] & δ(x)? This

is required if the above limit is to make sense.
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Since the position and momentum, x,p are canonically conjugate

variables (e.g., Fourier transform pairs), any Hilbert space containing

K [x, t; y, s] & δ(x) must also allow the convolution and Fourier trans-

form as bounded operators. This requirement is necessary if we are to make

sense of equation (1.3), and have a representation space for basic quantum

theory. (Recall, it is precisely the realization that one cannot associate a

countably additive measure with the Feynman integral that has led many to

question much of the mathematical integrity of modern physics, where this

integral is routinely used.)

Purpose

The purpose of this review is to provide a survey of recent progress on the

constructive theory for the Feynman operator calculus (see Gill and Zachary

[GZ]). (The theory is constructive in that operators acting at different times

actually commute.) The work in [GZ] was primarily written for researchers

concerned with the theoretical and/or mathematical foundations for quan-

tum field theory. (A major objective was to prove two important conjectures

of Dyson for quantum electrodynamics, namely that in general, we can only

expect the perturbation expansion to be asymptotic, and that the ultravio-

let divergence is caused by a violation of the Heisenberg uncertainty relation

at each point in time.)
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In that paper, it was argued that a correct formulation and representation

theory for the Feynman time-ordered operator calculus should at least have

the following desirable features:

• It should provide a transparent generalization of current analytic

methods without sacrificing the physically intuitive and computa-

tionally useful ideas of Feynman.

• It should provide a clear approach to some of the mathematical

problems of relativistic quantum theory.

• It should explain the connection with path integrals.

This paper is written for the larger research community including applied

and pure mathematics, biology, chemistry, engineering and physics. With

this in mind, and in order to make the paper self contained, we have provided

a number of results and ideas that may not be normal fare. We assume the

standard mathematics background of an aggressive graduate student in en-

gineering or science, and have provided proofs for all nonstandard material.

Summary

In Section 1.1 we introduce the Henstock-Kurzweil integral (HK-integral).

This integral is easier to understand (and learn) compared to the Lebesgue

or Bochner integrals, and provides useful variants of the same theorems

that have made those integrals so important. Furthermore, it arises from a

simple (transparent) generalization of the Riemann integral that was taught

in elementary calculus. Its usefulness in the construction of Feynman path
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integrals was first shown by Henstock [HS], and has been further explored

in the book by Muldowney [MD].

In Section 1.2, We construct a new Hilbert space that contains the class

of HK-integrable functions. In order to show that this space has all the

properties required to provide a complete answer to our question and for

our later use, Section 1.3, is devoted to a substantial review of operator

theory, including some recently published results and some new results on

operator extensions that have not appeared elsewhere. As an application, we

show that the Fourier transform and the convolution operator have bounded

extensions to our new Hilbert space. In Section 1.4 we review the basics

of semigroup theory and in Section 1.5, we apply our results to provide

a rigorous proof that the elementary Feynman integral exists on the new

Hilbert space.

In Section 2, we construct the continuous tensor product Hilbert space

of von Neumann, which we use to construct our version of Feynman’s film.

In Section 3 we define what we mean by time ordering, prove our funda-

mental theorem on the existence of time-ordered integrals and extend basic

semigroup theory to the time-ordered setting, providing among other re-

sults, a time-ordered version of the Hille-Yosida Theorem. In Section 4 we

construct time-ordered evolution operators and prove that they have all the

expected properties. As an application, we unify and extend the theory of

time-dependent parabolic and hyperbolic evolution equations.
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In Section 5 we define what is meant by the phase ”asymptotic in the

sense of Poincaré” for operators. We then develop a general perturbation

theory and use it to prove that all theories generated by semigroups are

asympotic in the operator-valued sense of Poincaré. This result allows us to

extend the Dyson expansion and provide a general theory for the interaction

representation of relativistic quantum theory.

In Section 6 we return to the Feynman path integral. First, we show that

our theory can be reformulated as a physically motivated sum over paths.

We use this version to extend the Feynman path integral in a very general

manner and prove a generalized version of the well-known Feynman-Kac

theorem. The theory is independent of the space of continuous functions and

hence makes the question of measure more of a desire than a requirement.

(Whenever a measure exists, our theory can be easily restricted to the space

of continuous paths.)

1.1. Henstock-Kurzweil integral.

The standard university analysis courses tend to produce a natural bias

and unease concerning the use of finitely additive set functions as a basis

for the general theory of integration (despite the efforts of Alexandroff [AX],

Bochner [BO], Blackwell and Dubins [BD], Dunford and Schwartz [DS], de

Finetti [DFN] and Yosida and Hewitt [YH]).

Without denying an important place for countable additivity, Blackwell

and Dubins, and Dubins and Prikry (See [BD], [DUK], and [DU]) argues
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forcefully for the intrinsic advantages in using finite additivity in the basic

axioms of probability theory. (The penetrating analysis of the foundations

of probability theory by de Finetti [DFN] also supports this position.) In

a very interesting paper, [DU] Dubins shows that the Wiener process has

a number of ”cousins”, related processes all with the same finite dimen-

sional distributions as the Wiener process. For example, there is one cousin

with polynomial paths and another with piece-wise linear paths. Since the

Wiener measure is unique, these cousins must necessarily have finitely ad-

ditive limiting distributions.

In this section, we give an introduction to the class of HK-integrable func-

tions, while providing a generalization to the operator-valued case. The inte-

gral is well defined for operator-valued functions that may not be separably

valued (where both the Bochner and Pettis integrals are undefined). Loosely

speaking, one uses a version of the Riemann integral with the interior points

chosen first, while the size of the base rectangle around any interior point

is determined by an arbitrary positive function defined at that point. This

integral was discovered independently by Henstock [HS] and Kurzweil [KW].

In order to make the conceptual and technical simplicity of the HK-integral

available to all, we prove all except the elementary or well-known results.

Let H be a separable Hilbert space and let L(H) be the algebra of bounded

linear operators on H. Let [a, b] ⊂ R and for each t ∈ [a, b], let A(t) ∈ L(H)

be a given family of operators.
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Definition 1. Let δ(t) map [a, b] → (0,∞), and let P =

{t0, τ1, t1, τ2, · · · , τn, tn}, where a = t0 6 τ1 6 t1 6 · · · 6 τn 6 tn = b.

We call P a HK-partition for δ (or HK-partition when δ is understood)

provided that for 0 6 i 6 n− 1, ti, ti+1 ∈ (τi+1 − δ(τi+1), τi+1 + δ(τi+1)).

Lemma 2. (Cousins Lemma) If δ(t) is a mapping of [a, b] → (0,∞) then a

HK-partition exists for δ.

Lemma 3. Let δ1(t) and δ2(t) map [a, b] → (0,∞), and suppose that δ1(t) 6

δ2(t). Then, if P is a HK-partition for δ1(t), it is also one for δ2(t).

Definition 4. The family A(t), t ∈ [a, b], is said to have a (uniform) HK-

integral if there is an operator Q[a, b] in L(H) such that, for each ε > 0,

there exists a function δ from [a, b] → (0,∞) such that, whenever P is a

HK-partition for δ, then

∥∥∥∑n

i=1
∆tiA(τi)−Q[a, b]

∥∥∥ < ε.

In this case, we write

Q[a, b] = (HK)
∫ b

a
A(t)dt.

Theorem 5. For t ∈ [a, b], suppose the operators A1(t) and A2(t) both have

HK-integrals, then so does their sum and

(HK)
∫ b

a
[A1(t) +A2(t)]dt = (HK)

∫ b

a
A1(t)dt+ (HK)

∫ b

a
A2(t)dt.
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Theorem 6. Suppose {Ak(t) | k ∈ N} is a family of operator-valued func-

tions in L[H], converging uniformly to A(t) on [a, b], and Ak(t) has a

HK-integral Qk[a, b] for each k; then A(t) has a HK-integral Q[a, b] and

Qk[a, b] → Q[a, b] uniformly.

Theorem 7. Suppose A(t) is Bochner integrable on [a, b], then A(t) has a

HK-integral Q[a, b] and:

(B)
∫ b

a
A(t)dt = (HK)

∫ b

a
A(t)dt.(1.4)

Proof. First, let E be a measurable subset of [a, b] and assume that A(t) =

AχE(t), where χE(t) is the characteristic function of E. In this case, we

show that Q[a, b] = Al(E), where l(E) is the Lebesgue measure of E. Let

ε > 0 be given and let D be a compact subset of E. Let F ⊂ [a, b] be an open

set containing E such that l(F\D) < ε/‖A‖; and define δ : [a, b] → (0,∞)

such that:

δ(t) =


d(t, [a, b]\F ), t ∈ E

d(t,D), t ∈ [a, b]\E,

where d(x , y) = |x− y| is the distance function. Let P =

{t0, τ1, t1, τ2, · · · , τn, tn} be a HK-partition for δ ; for 1 6 i 6 n, if τi ∈ E

then (ti−1, ti) ⊂ F so that

∥∥∥∑n

i=1
∆tiA(τi)−Al(F )

∥∥∥ = ‖A‖
[
l(F )−

∑
τi∈E

∆ti
]
.(1.5)
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On the other hand, if τi /∈ E then (ti−1, ti) ∩ D = ∅ (empty set), and it

follows that:

∥∥∥∑n

i=1
∆tiA(τi)−Al(D)

∥∥∥ = ‖A‖
[∑

τi /∈E
∆ti − l(D)

]
.(1.6)

Combining equations (1.5) and (1.6), we have that∥∥∥∑n

i=1
∆tiA(τi)−Al(E)

∥∥∥ = ‖A‖
[∑

τi∈E
∆ti − l(E)

]
6 ‖A‖ [l(F )− l(E)] 6 ‖A‖ [l(F )− l(D)] 6 ‖A‖ l(F\D) < ε.

Now suppose that A(t) =
∑∞

k=1AkχEk
(t) . By definition, A(t) is Bochner

integrable if and only if ‖A(t)‖ is Lebesgue integrable with:

(B)
∫ b

a
A(t)dt =

∑∞

k=1
Akl(Ek),

and (cf. Hille and Phillips [HP])

(L)
∫ b

a
‖A(t)‖dt =

∑∞

k=1
‖Ak‖ l(Ek).

As the partial sums converge uniformly by Theorem 7, Q[a, b] exists and

Q[a, b] ≡ (HK)
∫ b

a
A(t)dt = (B)

∫ b

a
A(t)dt.

Now let A(t) be an arbitrary Bochner integrable operator-valued function

in L(H), uniformly measurable and defined on [a, b]. By definition, there

exists a sequence {Ak(t)} of countably-valued operator-valued functions in

L(H) which converges to A(t) in the uniform operator topology such that:

lim
k→∞

(L)
∫ b

a
‖Ak(t)−A(t)‖ dt = 0,
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and

(B)
∫ b

a
A(t)dt = lim

k→∞
(B)

∫ b

a
Ak(t)dt.

Since the Ak(t) are countably-valued,

(KH)
∫ b

a
Ak(t)dt = (B)

∫ b

a
Ak(t)dt,

so

(B)
∫ b

a
A(t)dt = lim

k→∞
(HK)

∫ b

a
Ak(t)dt.

We are done if we show that Q[a, b] exists. First, by the basic result of

Henstock, every L-integral is a HK-integral, so that fk(t) = ‖Ak(t)−A(t)‖

has a HK-integral. The above means that lim
k→∞

(KH)
∫ b
a fk(t)dt = 0. Let

ε > 0 and choose m so large that

∥∥∥∥(B)
∫ b

a
A(t)dt− (HK)

∫ b

a
Am(t)dt

∥∥∥∥ < ε/4

and

(HK)
∫ b

a
fk(t)dt < ε/4,

Choose δ1 so that, if {t0, τ1, t1, τ2, · · · , τn, tn} is a HK-partition for δ1, then

∥∥∥∥(HK)
∫ b

a
Am(t)dt−

∑n

i=1
∆tiAm(τi)

∥∥∥∥ < ε/4.

Now choose δ2 so that, whenever {t0, τ1, t1, τ2, · · · , τn, tn} is a HK-partition

for δ2, ∥∥∥∥(HK)
∫ b

a
fm(t)dt−

∑n

i=1
∆tifm(τi)

∥∥∥∥ < ε/4.
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Set δ = δ1 ∧ δ2 so that, by Lemma 3, if {t0, τ1, t1, τ2, · · · , τn, tn} is a HK-

partition for δ, it is also one for δ1 and δ2, so that:

∥∥∥∥∥(B)
∫ b

a
A(t)dt−

n∑
i=1

∆tiA(τi)

∥∥∥∥∥ 6

∥∥∥∥(B)
∫ b

a
A(t)dt− (HK)

∫ b

a
Am(t)dt

∥∥∥∥
+

∥∥∥∥(HK)
∫ b

a
Am(t)dt−

∑n

i=1
∆tiAm(τi)

∥∥∥∥ +
∣∣∣∣(HK)

∫ b

a
fm(t)dt−

∑n

i=1
∆tifm(τi)

∣∣∣∣
+ (HK)

∫ b

a
fm(t)dt < ε.

�

1.2. The KS-Hilbert Space.

Clearly, the most important factor preventing the wide spread use of the

HK-integral in engineering, mathematics and physics has been the lack of a

natural Banach space structure for this class of functions (as is the case for

the Lebesgue integral). Our objective in this section is to construct a par-

ticular (separable) Hilbert space KS2[Rn]. This space is of special interest,

because it contains the class of HK-integrable functions, the space M[Rn]

of measures on Rn and Lq[Rn] for 1 6 q 6 ∞. Each of the above spaces is

contained in KS2[Rn] as a continuous dense and compact embedding (e.g.,

weakly convergent sequences in each of the above spaces are strongly conver-

gent in KS2[Rn]). In addition, using results in other work [GBZS], we prove

that both the Fourier transform and the convolution operator have bounded

extensions to KS2[Rn]. This space is perfect for the highly oscillatory func-

tions that occur in quantum theory and nonlinear analysis. In particular,
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we will later show that KS2[Rn] allows us to (rigorously) construct the path

integral for quantum mechanics in the manner first suggested by Feynman.

First, recall that the HK-integral is equivalent to the Denjoy integral (see

Henstock [HS] or Pfeffer [PF]). In the one-dimensional case, Alexiewicz

[AL] has shown that the class D(R), of Denjoy integrable functions, can be

normed in the following manner: for f ∈ D(R), define ‖f‖D by

‖f‖D = sup
s

∣∣∣∣∫ s

−∞
f(r)dr

∣∣∣∣ .
It is clear that this is a norm, and it is known that D(R) is not complete.

Replacing R by Rn, for f ∈ D(Rn), we introduce the following generaliza-

tion:

‖f‖D = sup
r>0

∣∣∣∣∫
Br

f(x)dx
∣∣∣∣ = sup

r>0

∣∣∣∣∫
Rn

EBr(x)f(x)dx
∣∣∣∣ <∞,(1.7)

where Br is any closed ball in Rn and EBr(x) is the characteristic function of

Br. Now, fix n, and let Qn be the set {x = (x1, x2 · · · , xn) ∈ Rn} such that

xi is rational for each i. Since this is a countable dense set in Rn, we can

arrange it as Qn = {x1,x2,x3 · · ·}. For each l and i, let Bl(xi) be the closed

ball centered at xi of radius rl = 2−l, l ∈ N. Now choose an order so that

the set {Bk(xk), k ∈ N} contains all closed balls {Bl(xi) |(l, i) ∈ N× N}

centered at a point in Qn. Let Ek(x) be the characteristic function of Bk(xk),

so that Ek(x) is in Lp[Rn]∩L∞[Rn] for 1 6 p <∞. Define Fk( · ) on L1[Rn]

by

Fk(f) =
∫
Rn

Ek(x)f(x)dx.(1.8)
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It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for each k,

‖Fk‖∞ 6 1 and if Fk(f) = 0 for all k, f = 0 so that {Fk} is fundamental

on Lp[Rn] for 1 6 p 6 ∞ . Fix λ, set tkλ = λk−1e−λ
/
(k − 1)! and define a

measure dPλ(x,y) on Rn ×Rn by:

dPλ(x,y) =
[∑∞

k=1
tkλEk(x)Ek(y)

]
dxdy.

We can now define an inner product ( · ) on L1[Rn] by

(f, g) =
∫

Rn×Rn

f(x)g(y)∗dPλ(x,y)

=
∑∞

k=1
tkλ

[∫
Rn

Ek(x)f(x)dx
] [∫

Rn

Ek(y)g(y)dy
]∗
.

(1.9)

Our choice of tkλ is suggested by physical analysis in another context (see Gill

and Zachary [GZ], and Section 6). We call the completion of L1[Rn], with

the above inner product, the Kuelbs-Steadman space (KS2[Rn]). Following

suggestions of Gill and Zachary, Steadman (unpublished) constructed this

space by adapting an approach developed by Kuelbs [KB] for other purposes.

Her interest was in showing that L1[Rn] can be densely and continuously

embedded in a Hilbert space which contains the HK-integrable functions.

To see that this is the case, let f ∈ D[Rn], then:

‖f‖2
KS =

∑∞

k=1
tkλ

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2 6 sup

k

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2 6 ‖f‖2

D ,

so f ∈ KS2[Rn].

Theorem 8. For each p, 1 6 p 6 ∞, KS2[Rn] ⊃ Lp[Rn] as a dense

subspace.
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Proof. By construction, KS2[Rn] contains L1[Rn], so we need only show

that KS2[Rn] ⊃ Lq[Rn] for q 6= 1. If f ∈ Lq[Rn] and q <∞, we have

‖f‖KS
2 =

[∑∞

k=1
tkλ

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣ q2

q

]1/2

6

[∑∞

k=1
tkλ

(∫
Rn

Ek(x) |f(x)|q dx
) 2

q

]1/2

6 sup
k

(∫
Rn

Ek(x) |f(x)|q dx
) 1

q

6 ‖f‖q .

Hence, f ∈ KS2[Rn]. For q = ∞, we have

‖f‖KS
2 =

[∑∞

k=1
tkλ

∣∣∣∣∫
Rn

Ek(x)f(x)dx
∣∣∣∣2

]1/2

6
[[∑∞

k=1
tkλ[vol(Bk)]2

]
[ess sup |f |]2

]1/2
6 M ‖f‖∞ .

Thus f ∈ KS2[Rn], and L∞[Rn] ⊂ KS2[Rn]. �

The fact that L∞[Rn] ⊂ KS2[Rn], while KS2[Rn] is separable makes

it clear in a very forceful manner that whether a space is separable or

not, depends on the topology. It is of particular interest to observe that

KS2[Rn] ⊃ L1[Rn]∗∗ = M[Rn], the space of measures on Rn and that

KS2[Rn] has a number of other interesting and useful features. However,

before exploring these properties, we must discuss some recent results on

the extension of linear operators on Banach spaces in the next section.
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1.3. Operator Theory.

In this section, we prove a number of results on operator extensions

that will be of use later. One important application is to prove that

the Fourier transform and convolution operators can be extended from

L2(Rn) to KS2(Rn). We can then use these results to rigorously com-

pute the free particle path integral introduced in the beginning, in the

manner intended by Feynman. (Thus, KS2(Rn) allows positive solutions

for the problems posed in our introduction.) Let L[B], L[H] denote the

bounded linear operators on a separable Banach or Hilbert space, B,H re-

spectively. By a duality map φx defined on B, we mean any linear func-

tional fx ∈
{
f ∈ B′ | f(x) = 〈x, f〉 = ‖x‖2 , x ∈ B

}
, where 〈· , ·〉 is the nat-

ural pairing between a Banach space and its dual. Let J : H → H′ be the

standard conjugate isomorphism between a Hilbert space and its dual, so

that 〈x , J(x)〉 = (x, x)H = ‖x‖2. The following two theorems are by von

Neumann [VN1] and Lax [LX], respectively. The first is well-known, and

is proved in Yosida [YS]. The theorem by Lax is not as well-known, but

important for later, so we provide a proof.

Theorem 9 (von Neumann). Let H be a separable Hilbert space and let A

be a bounded linear operator on H. Then A has a well defined adjoint A∗

defined on H such that:

(1) The operator A∗A > 0,

(2) (A∗A)∗ = A∗A and
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(3) I +A∗A has a bounded inverse.

Theorem 10 (Lax). Suppose B is a dense continuous embedding in a sep-

arable Hilbert space H. Let A ∈ L[B]. If A is selfadjoint on H (i.e.,

(Ax, y)H = (x,Ay)H ,∀x,y ∈ B), then

(1) The operator A is bounded on H and ‖A‖H 6 k ‖A‖B, for some

positive constant k.

(2) The spectrum of A over H and over B, satisfies σH(A) ⊂ σB(A).

(3) The point spectrum of A is unchanged by the extension (i.e.,

σpH(A) = σpB(A)).

Proof. To prove (1), let ϕ ∈ B and, without loss, we can assume that k = 1

and ‖ϕ‖H = 1. Since A is selfadjoint,

‖Aϕ‖2
H = (Aϕ,Aϕ) =

(
ϕ,A2ϕ

)
6 ‖ϕ‖H

∥∥A2ϕ
∥∥
H =

∥∥A2ϕ
∥∥
H .

Thus, we have ‖Aϕ‖4
H 6

∥∥A4ϕ
∥∥
H, so it is easy to see that ‖Aϕ‖2n

H 6∥∥A2nϕ
∥∥
H for all n. It follows that:

‖Aϕ‖H 6 (
∥∥A2nϕ

∥∥
H)1/2n 6 (

∥∥A2nϕ
∥∥
B)1/2n

6 (
∥∥A2n

∥∥
B)1/2n(‖ϕ‖B)1/2n 6 ‖A‖B (‖ϕ‖B)1/2n

Letting n→∞, we get that ‖Aϕ‖H 6 ‖A‖B for ϕ in a dense set of the unit

ball of H. We are done, since the norm is attained on a dense set of the unit

ball.

Let Ā be the extension of A to H. To prove (2), first note that since A

is self-adjoint on H, any complex number (with nonzero imaginary part) is
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in the resolvent set of A. If λ0 is real and not in σB(A), let R(λ0, A) =

(λ0I − A)−1. This operator is easily seen to be self-adjoint relative to the

H inner product, so it is H norm bounded by (1). Thus, R(λ0, A) has a

bounded extension to H. Since R(λ0, A)(λ0I − A) = (λ0I − A)R(λ0, A) is

a bounded linear operator on H, and equal to the identity on B, it follows

that λ0 is not in σH(A).

To prove (3), let λ0 be in σpB(A), the point spectrum of A, so that λ0I−A

has a finite dimensional null space N , with dim(N ) = dim(B mod J ), where

J is the range of λ0I − A over B. From the symmetry of A, we see that

every element of J is orthogonal to N . Since dim(N ) = dim(B mod J ), we

conclude that J contains precisely those elements in B that are orthogonal

to N . It follows that λ0I − A is bijective when restricted to J , so that

the restriction of λ0I − A to J has an inverse R that, by the closed graph

theorem must be bounded. It now follows from (1) that R is bounded on

J in the H norm and can be extended to a bounded linear operator on the

closure of J in H. It follows that the closure of J in H is orthogonal to

N , so that λ0I − A has a bounded inverse on N⊥ with respect to H. This

means that λ0 belongs to σpH(A), the point spectrum of A over H, and the

null space of A over H is N . �

The following theorem shows that every separable Banach space may be

rigged between two separable Hilbert spaces. The theorem is a restricted

version of a result due to Gross and Kuelbs [GR], [KB]]. It is this rigging
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that makes possible a number of new and interesting results on operator

extensions.

Theorem 11. (Gross-Kuelbs) Suppose B is a separable Banach space. Then

there exist separable Hilbert spaces H1,H2 and a positive trace class oper-

ator T12 defined on H2 such that H1 ⊂ B ⊂ H2 (all as continuous dense

embeddings), and T12 determines H1 when B and H2 are given.

Proof. As B is separable, let {xn} be a dense set and let {fn}, be any fixed

set of corresponding duality mappings (i.e. fn ∈ B′ and fn(xn) = 〈xn, fn〉 =

‖xn‖2
B). Let {tn} be a positive sequence of numbers such that

∑∞
n=1 tn = 1,

and define (x, y)2 by:

(x, y)2 =
∑∞

n=1
tnfn(x)f̄n(y).

It is easy to see that (x, y)2 is an inner product on B. We let H2 be the

Hilbert space generated by the completion of B with respect to this inner

product. It is clear B is dense in H2, and as

‖x‖2
2 =

∑∞

n=1
tn |fn(x)|2 6 sup

n
|fn(x)|2 = ‖x‖2

B ,

we see that the embedding is continuous.

Now, let {φn} ⊂ B, be a complete orthonormal sequence for H2, and

let {λn} be a positive sequence such that
∑∞

n=1 λn < ∞, and M =∑∞
n=1 λ

2
n ‖φn‖

2
B <∞. Define the operator T12 on B by:

T12x =
∑∞

n=1
λn (x, φn)2 φn.
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Since

B ⊂ H2 ⇒ H′
2 ⊂ B′ ⇒ (·, φn)2 ∈ B

′, ∀n,

we have that T12 maps B → B and:

‖T12x‖2
B 6

[∑∞

n=1
λ2
n ‖φn‖

2
B

] [∑∞

n=1
|(x, φn)2|

2
]

= M ‖x‖2
2 6 M ‖x‖2

B .

Thus, T12 is a bounded operator on B. Define H1 by:

H1 =
{
x ∈ B

∣∣∣ ∑∞

n=1
λ−1
n |(x, φn)2|

2
<∞

}
, (x, y)1 =

∑∞

n=1
λ−1
n (x, φn)2 (φn, y)2 .

With the above inner product, H1 is a Hilbert space and since terms of

the form xN =
∑N

k=1 λ
−1
k (x, ψk)2 φk : x ∈ B are dense in B, we see that

H1 is dense in B. It follows that H1 is also dense in H2. It is easy to

see that T12 is a positive self adjoint operator with respect to the H2 in-

ner product, so by the theorem of Lax, T12 has a bounded extension to

H2 and ‖T12‖2 6 ‖T12‖B . Finally, it is easy to see that for x, y ∈ H1,

(x, y)1 = (T−1/2
12 x,T−1/2

12 y)2 and (x, y)2 = (T1/2
12 x,T

1/2
12 y)1. It follows that

H1 is continuously embedded in H2, hence also in B. �

Define the Steadman duality map of B associated with H2 by: fsx =(
‖x‖2

B

/
‖x‖2

2

)
J(x). (It is easy to check that fsx is a duality map for B.) A

bounded linear operator A is said to be maximal accretive if 〈Ax , fx〉 > 0

for all x ∈ B. The next result is a direct generalization of Theorem 9 (see

Gill et al, [GBZS]).
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Theorem 12 (von Neumann*). Let B be a separable Banach space and let

A be a bounded linear operator on B. Then A has a well defined adjoint A∗

defined on B such that:

(1) The operator A∗A > 0 (maximal accretive),

(2) (A∗A)∗ = A∗A, and

(3) I +A∗A has a bounded inverse.

Proof. Assume A is bounded. If we let Ji : Hi → H′
i, then A1 ≡ A |H1 :

H1 → H2, and A′1 : H′
2 → H′

1. It follows that A′1J2 : H2 → H′
1 and

J−1
1 A′1J2 : H2 → H1 ⊂ B so that, if we define A∗ =

[
J−1

1 A′1J2

]
|B , then

A∗ : B → B (i.e., A∗ ∈ L[B]). To prove 1, first note that as Ji : Hi → H′
i,

this implies that J′i : (H′
i)′ → H′

i, so that J′i = Ji. Now, for x ∈ H1,

〈A∗Ax,J2(x)〉 =
〈
Ax, (A∗)′J2(x)

〉

so, by using the above definition of A∗, we get that

(A∗)′J2(x) =
{[

J−1
1 A′1J2

]
|B

}′
J2(x) =

[
J2A1J−1

1

]
J2(x) = J2(A1x).

Since x ∈ H1 ⇒ A1x = Ax, and

〈A∗Ax, fsx〉 =
(
‖x‖2

B

/
‖x‖2

2

)
〈Ax,J2(A1x)〉 =

(
‖x‖2

B

/
‖x‖2

2

)
‖Ax‖2

2 > 0,

it follows that A∗A is accretive on a dense set, so that A∗A is accretive on

B. It is maximal accretive because it has no proper extension. To prove 2,
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we have that, for x ∈ H1,

(A∗A)∗x =
({

J−1
1

[{[
J−1

1 A′1J2

]
|B A

}
1

]′
J2

}
|B

)
x

=
({

J−1
1

[{
A′1

[
J2A1J−1

1

]
|B

}]
J2

}
|B

)
x = A∗Ax.

It follows that the same result holds on B. Finally, the proof that I + A∗A

is invertible follows the same lines as in Yosida [YS]. �

To show that the above theorem extends to closed operators, requires a

little more work. We begin with:

Theorem 13. Suppose that S is a subset of H and (S, 〈·, ·〉′) is a Hilbert

space. Then S is the range of a bounded linear operator in H.

Proof. Since S is a subset of H, the inclusion map T from (S, 〈·, ·〉′) into

(H, 〈·, ·〉) is bounded. It follows that T ∗ = J−1
S T ′JH is bounded from

(H, 〈·, ·〉) to (S, 〈·, ·〉′). If T ∗ = U [TT ∗]1/2 is the polar decomposition of

T ∗, then U is a partial isometry mapping H onto S. Since T is nonnegative,

so is U and 〈Uϕ,Uψ〉′ = 〈ϕ,ψ〉 for all ϕ,ψ ∈ H. �

Theorem 14. If A,B ∈ L(H), then

R(A∗) +R(B∗) = R([A∗A+B∗B]1/2).

Proof. Let T =

 A B

0 0

 act on H⊕H in the normal way. We then have

that T ∗ =

 A∗ 0

B∗ 0

, so that TT ∗ =

 AA∗ +BB∗ 0

0 0

. It follows
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that:

[R(A∗) +R(B∗)]⊕ {0} = R(T ) = R([TT ∗]1/2) = R

 [A∗A+B∗B]1/2 0

0 0


= R([A∗A+B∗B]1/2)⊕ {0} .

�

Theorem 15. Let C be a closed linear operator on H. Then there exists

a pair of bounded linear contraction operators A,B ∈ L[H] such that C =

AB−1, with B nonnegative. Furthermore, D(C) = R(B), R(C) = R(A)

and P = A∗A + B∗B is the orthogonal projection B−1B onto R̄(B∗) =

R(A∗) +R(B∗).

Proof. Let S = D(C) be the domain of C and endow it with the graph

norm, so that 〈ϕ,ψ〉′ = 〈ϕ,ψ〉 + 〈Cϕ,Cψ〉. Since C is linear and closed,

(S, 〈·, ·〉′) is a Hilbert space and ‖ϕ‖H 6 ‖ϕ‖S . By Theorem 13, there is

a bounded nonnegative contraction B with B(H) = S and, for ϕ,ψ ∈ S,

〈ϕ,ψ〉′ =
〈
B−1ϕ,B−1ψ

〉
. Now let A = CB so that, for ϕ ∈ H, we have:

〈Aϕ,Aϕ〉 = 〈CBϕ,CBϕ〉 6 〈Bϕ,Bϕ〉+ 〈CBϕ,CBϕ〉

= 〈Bϕ,Bϕ〉′ =
〈
B−1Bϕ,B−1Bϕ

〉
= 〈Pϕ, Pϕ〉 6 〈ϕ,ϕ〉 .

Hence, ‖Aϕ‖2 6 ‖ϕ‖2, so that A is a contraction and A = CB =

(AB−1)B = A(B−1B) = AP . Also,

〈ϕ, [A∗A+B∗B]ψ〉 = 〈Bϕ,Bψ〉+ 〈CBϕ,CBψ〉

= 〈Bϕ,Bψ〉′ =
〈
B−1Bϕ,B−1Bψ

〉
= 〈Pϕ, Pψ〉 = 〈ϕ, Pψ〉 .
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Hence, A∗A + B∗B = P and, since R(A∗) + R(B∗) = R([A∗A + B∗B]1/2),

R(A∗) + R(B∗) is closed and equal to the closure of R(B) (note that B is

self-adjoint). �

Let V(H) be the set of contractions and C(H) be the set of closed densely

defined linear operators on H. The following result is due to Kaufman [KF]

Theorem 16 (Kaufman). The equation K(A) = A(I −A∗A)−1/2 defines a

continuous bijection from V(H) onto C(H), with inverse K−1(C) = C(I +

C∗C)−1/2.

Proof. Let A ∈ V(H) and set B = (I − A∗A)1/2, which is easily seen to be

positive and in V(H). It follows that K(A) = AB−1 and A∗A + B2 = I;

so that, by the proof of Theorem 15, we see that K(A) is a closed linear

operator on H. Since the domain of K(A) is B(H), which is dense in H,

K(A) is in C(H). On the other hand, if C ∈ C(H) then, by Theorem 15,

there exists a pair of bounded linear contraction operators A,B ∈ L[H]

such that C = AB−1, with B positive with range D(C) and A∗A + B2 =

I. Furthermore, for each nonzero ϕ, ‖ϕ‖2
H − ‖Aϕ‖2

H = ‖Bϕ‖2
H > 0; thus

A ∈ V(H) and K(A) = C. The graph of C is the set of all {(Bϕ,Aϕ), ϕ ∈

H} , so that C* = {(φ, ψ) ∈ H × H} such that (φ,Aϕ)H = (ψ,Bϕ)H, or

(A∗φ, ϕ)H = (Bψ,ϕ)H for all ϕ ∈ H, so that C∗ = B−1A∗. It is clear that

I +C∗C is an invertible linear operator with bounded inverse and, for each
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ϕ ∈ H, we have that

ϕ = B2ϕ+B−1(I −B2)B−1B2ϕ

= (I +B−1A∗AB−1)B2ϕ = (I + C∗C)B2ϕ.

It follows that (I + C∗C)−1 = B2 and therefore, A = CB = C(I +

C∗C)−1/2 = K−1(C). �

Theorem 17. Every closed densely defined linear operator A on B extends

to a closed densely defined linear operator Ā on H2, with ρ(Ā) = ρ(A) and

σ(Ā) = σ(A).

Proof. If J2 : H2 → H′
2 is the standard conjugate isomorphism then, as B

is strongly dense in H2 , J2[B] ⊂ H′
2 ⊂ B′ is (strongly) dense in H′

2. If

A is any closed densely defined linear operator on B (with domain D(A)),

then A′ is closed on B′ (the dual of B). In addition, A′
∣∣∣H′

2
is closed and,

for each ϕ ∈ D(A), J2(ϕ) ∈ H′
2, 〈Aψ,J2(ϕ)〉 is well defined for ∀ψ ∈ D(A).

Hence, J2(ϕ) ∈ D(A′) for all ϕ ∈ D(A) and, since J2(B) is strongly dense

in H′
2, this implies that J2(D(A′)) ⊂ D(A′) is strongly dense in H′

2, so

that D(A′) |H′
2 is strongly dense in H′

2. Thus, as H2 is reflexive, Ā =[
A′

∣∣∣H′
2

]′
is a closed densely defined operator on H2. To prove the second

part, note that, if λI − Ā has an inverse, then λI − A also has one, so

ρ(Ā) ⊂ ρ(A) and R(λI − A) ⊂ R(λI − Ā) ⊂ R(λI −A) for any λ ∈ C.

For the other direction, assume that ρ(A) 6= ∅ so there is at least one λ ∈

ρ(A). Then (λI − A)−1 is a continuous mapping from R(λI − A) onto
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D(A) and R(λI − A) is dense in B. Let ϕ ∈ D(Ā), so that (ϕ,Aϕ) ∈

Ḡ(A) by definition. Thus, there exists a sequence {ϕn} ⊂ D(A) such that

‖ϕ− ϕn‖G = ‖ϕ− ϕn‖B + ‖Aϕ−Aϕn‖B → 0 as n → ∞. It follows that

(λI−Ā)ϕ = limn→∞(λI−A)ϕn. However, by the boundedness of (λI−A)−1

on R(λI −A), we have that, for some δ > 0,

∥∥(λI − Ā)ϕ
∥∥
B = lim

n→∞
‖(λI −A)ϕn‖B > lim

n→∞
δ ‖ϕn‖B = δ ‖ϕ‖B .

It follows that λI − Ā has a bounded inverse and, since D(A) ⊂ D(Ā)

implies that R(λI − A) ⊂ R(λI − Ā), we see that R(λI − Ā) is dense in B

so that λ ∈ ρ(Ā) and hence ρ(A) ⊂ ρ(Ā). It follows that ρ(A) = ρ(Ā) and

necessarily, σ(A) = σ(Ā). �

Theorem 18 (Lax*). Suppose B is a dense and continuous embedding in a

separable Hilbert space H2. Let A ∈ L[B], then:

(1) The operator A extends to L[H2] and ‖A‖2 6 k ‖A‖B for some fixed

constant k.

(2) The spectrum and resolvent satisfies σ2(A) = σB(A), ρ2(A) = ρB(A).

Proof. To prove (1), let A be any bounded linear operator on B and set

T = A∗A. From the first part of Theorem 17, we see that T extends to a

closed linear operator (T̄ ) on H2. As T̄ is selfadjoint on H2, by Theorem 10

T̄ is bounded on H2 and

‖A∗A‖2 = ‖A‖2
2 6 ‖A∗A‖B 6 k ‖A‖2

B ,
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where k = inf
{

M | ‖A∗A‖B 6 M ‖A‖2
B

}
. The proof of (2) follows from the

second part of Theorem 17. �

Theorem 19. Let B be a separable Banach space and let C be a closed

densely defined linear operator on B. Then there exists a closed densely

defined linear operator C∗ such that C∗C is maximal accretive, (C∗C)∗ =

C∗C and I + C∗C has a bounded inverse.

Proof. If C is a closed densely defined linear operator on B, let C̄ be its

extension to H2. By Theorem 16, C̄ = Ā(I − Ā∗Ā)−1/2, where Ā is a linear

contraction on H2 and Ā = C̄(I + C̄∗C̄)−1/2. Thus, every closed densely

defined linear operator on B can be obtained as the restriction C of some C̄

to B. This means that every closed densely defined linear operator on B is

of the form C = Ā(I − Ā∗Ā)−1/2 |B, so that each Ā is the extension of some

linear contraction operator A on B to H2. Thus, on B, C = A(I−A∗A)−1/2

and, since A has an adjoint, C has one also
(
C∗ = (I −A∗A)−1/2A∗

)
. The

properties of C∗ now follow from those of A∗. �

We now prove that F and C, the Fourier transform and the convolu-

tion operator, respectively, defined on L1[Rn], have bounded extensions to

KS2[Rn]. It should be noted that this theorem implies that both operators

have bounded extensions to all Lp[Rn] spaces, for 1 ≤ p < ∞. This is the

first proof purely based on functional analysis, while the traditional proof is

obtained via some rather deep methods of (advanced) real analysis.
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Theorem 20. We have that:

(1) Both F and C extend to bounded linear operators on KS2[Rn].

(2) If fn
w−→ f (weakly) in Lp[Rn], 1 6 p 6 ∞, then fn

s−→ f in KS2[Rn]

(the embedding of Lp[Rn] in KS2[Rn] is compact).

Proof. For the proof of (1); first use Theorem 18, to show that since F is a

bounded linear operator on L1[Rn], it extends to a bounded linear operator

on KS2[Rn]. For C, fix g in L1[Rn] and define Cg on L1[Rn] by:

Cg(f)(y) =
∫
g(y)f(x− y)dy.

Since Cg is bounded on L1[Rn], by Theorem 18 it extends to a bounded linear

operator on KS2[Rn]. Now use the fact that convolution is commutative to

get that Cf is a bounded linear operator on L1[Rn] for all f ∈ KS2[Rn].

Another application of Theorem 18 completes (1). From the Gross-Keulbs

Theorem, we know that Lp[Rn] is a dense continuous embedding. To prove

it is compact, let fn
w−→ f in Lp[Rn]. Since Ek(x) ∈ Lq[Rn], 1 6 q 6 ∞, it

follows that for each k,∣∣∣∣∫
Rn

Ek(x) (fn(x)− f(x)) dx
∣∣∣∣2 → 0.

Thus fn
s−→ f in KS2[Rn]. �

Definition 21. A sequence {µk} ⊂ M[Rn] is said to converge weakly to µ,

(µn
w−→ µ), if for every bounded uniformly continuous function h(x),∫

Rn

h(x)dµn →
∫
Rn

h(x)dµ.
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Theorem 22. If µn
w−→ µ in M[Rn], then µn

s−→ µ (strongly) in KS2[Rn].

Proof. Since the characteristic function of a closed ball is a bounded uni-

formly continuous function, µn
w−→ µ in M[Rn] implies that

∫
Rn

Ek(x)dµn →
∫
Rn

Ek(x)dµ

for each k, so that limn→∞ ‖µn − µ‖ = 0. �

1.4. Semigroups of Operators.

In this section, we introduce some basic results from the theory of semi-

groups of operators, which will be used throughout the remainder of the

paper. We restrict our development to a fixed Hilbert space H, and assume

when convenient, that H = KS2[Rn].

Definition 23. A family of linear operators {S(t), 0 6 t <∞} (not neces-

sarily bounded) defined on H is a semigroup if

(1) S(t + s)ϕ = S(t)S(s)ϕ for ϕ ∈ D, the domain of the semigroup.

(2) The semigroup is said to be strongly continuous if lim
τ→0

S(t +

τ)ϕ = S(t)ϕ ∀ϕ ∈ D, t > 0.

(3) It is a C0-semigroup if it is strongly continuous, S(0) = I, and

lim
t→0

S(t)ϕ = ϕ ∀ϕ ∈ H.

(4) S(t) is a C0-contraction semigroup if ‖S(t)‖ 6 1.

(5) S(t) is a C0-unitary group if S(t)S(t)∗ = S(t)∗S(t) = I, and

‖S(t)‖ = 1.
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Definition 24. A densely defined operator A is said to be m-dissipative if

Re
〈
Aϕ,fϕ

〉
6 0 ∀ϕ ∈ D(A), and Ran(I −A) = H (range of (I −A)).

Theorem 25 (see Goldstein [GS] or Pazy [PZ]). Let S(t) be a C0-semigroup

of contraction operators on H. Then

(1) Aϕ = lim
t→0

[S(t)ϕ− ϕ]/t exists for ϕ in a dense set, and

R(λ, A) = (λI − A) - 1 (the resolvent) exists for λ > 0 and

‖R(λ, A)‖ 6 λ−1.

(2) The closed densely defined operator A generates a C0-semigroup

of contractions on H, {S(t), 0 6 t <∞}, if and only if A is m-

dissipative.

(3) If A is closed and densely defined with both A and A′ dissipative then

A is m-dissipative.

If A is the generator of a strongly continuous semigroup T (t) = exp(tA) on

H, then the Yosida approximator for A is defined by Aλ = λAR(λ,A), where

R(λ,A) = (λI−A)−1 is the resolvent of A. In general, A is closed and densely

defined but unbounded. The Yosida approximator Aλ is bounded, converges

strongly to A, and Tλ(t) = exp(tAλ) converges strongly to T (t) = exp(tA).

If A generates a contraction semigroup, then so does Aλ (see Pazy [PZ]).

This result is very useful for applications. Unfortunately, for general semi-

groups, A may not have a bounded resolvent. Furthermore, it is very con-

venient to have a contractive approximator. As an application of the the-

ory in the previous section, we will show that the Yosida approach can
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be generalized in such a way as to give a contractive approximator for all

strongly continuous semigroups of operators on H. The theory was devel-

oped for semigroups of operators on Banach spaces, but is also new for

Hilbert spaces. For any closed densely defined linear operator A on H,

let T = −[A∗A]1/2, T̄ = −[AA∗]1/2. Since −T (−T̄ ) is maximal accretive,

T (T̄ ) generates a contraction semigroup. We can now write A as A = UT ,

where U is a partial isometry . Define Aλ by Aλ = λAR(λ, T ). Note that

Aλ = λUTR(λ, T ) = λ2UR(λ, T )− λU and, although A does not commute

with R(λ, T ), we have λAR(λ, T ) = λR(λ, T̄ )A.

Theorem 26. For every closed densely defined linear operator A on H, we

have that

(1) Aλ is a bounded linear operator and limλ→∞Aλx = Ax, ∀x ∈ D(A),

(2) exp[tAλ] is a bounded contraction for t > 0, and

(3) if A generates a strongly continuous semigroup T (t) = exp[tA] on

D for t > 0, D(A) ⊆ D, then limλ→∞ ‖exp[tAλ]x − exp[tA]x‖H =

0 ∀x ∈ D.

Proof. : To prove 1, let x ∈ D(A). Now use the fact that

limλ→∞ λR(λ, T̄ )x = x and Aλx = λR(λ, T̄ )Ax. To prove 2, use Aλ =

λ2UR(λ, T ) − λU , ‖λR(λ, T )‖H = 1, and ‖U‖H = 1 to get that

‖exp[tλ2UR(λ, T )− tλU ]‖H ≤ exp[−tλ‖U‖H] exp[tλ‖U‖H‖λR(λ, T )‖H] ≤

1.
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To prove 3, let t > 0 and x ∈ D(A). Then

‖ exp [tA]x− exp [tAλ]x‖H = ‖
∫ t

0

d

ds
[e(t−s)AλesA]xds‖H

≤
∫ t

0
‖[e(t−s)Aλ(A−Aλ)esAx]‖H

≤
∫ t

0
‖[(A−Aλ)esAx]‖Hds.

Now use ‖[AλesAx]‖H = ‖[λR(λ, T̄ )esAAx]‖H ≤ ‖[esAAx]‖H to

get ‖[(A−Aλ)esAx]‖H ≤ 2‖[esAAx]‖H. Now, since ‖[esAAx]‖H

is continuous, by the bounded convergence theorem we have

limλ→∞ ‖exp[tA]x− exp[tAλ]x‖H ≤
∫ t
0 limλ→∞ ‖[(A−Aλ)esAx]‖Hds =

0. �

Theorem 27. Every C0-semigroup of contractions and C0-unitary group

on L2[Rn], {S(t), 0 6 t <∞}, extends to a C0-semigroup of contractions or

C0-unitary group on KS2[Rn].

Proof. We prove the first result, the second is easy. From Theorem 18, S(t)

on L2[Rn] extends to a bounded linear operator S̄(t) on KS2[Rn]. It is easy

to see that S̄(t) is a semigroup. Let Ā be the extension of A, then the fact

that σ(Ā) = σ(A) and ρ(Ā) = ρ(A) follows from Theorem 17. Since, in

our case, ρ(Ā) = ρ(A) ⊇ (0,∞), it follows that, for λ > 0, Ran(λI − Ā) =

KS2[Rn]. As Ā is densely defined and dissipative, it is m-dissipative, so that

Ā generates a C0-contraction semigroup on KS2[Rn]. �
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1.5. Feynman Path Integral I.

The properties of KS2[Rn] derived earlier suggests that it may be a better

replacement for L2[Rn] in the study of the path integral formulation of

quantum theory developed by Feynman. Note that it is easy to prove that

both the position and momentum operators have closed, densely defined

extensions to KS2[Rn]. Furthermore, the extensions of F and C insure that

all of the Schrödinger and Heisenberg theories have a faithful representation

on KS2[Rn]. These issues will be discussed more fully in another venue.

Since KS2[Rn] contains the space of measures, it follows that all the ap-

proximating sequences for the Dirac measure converge strongly to it in the

KS2[Rn] topology. (For example, [sin(λ · x)/(λ · x)] ∈ KS2[Rn] and con-

verges strongly to δ(x).) Thus, the finitely additive set function defined on

the Borel sets (Feynman kernel):

Kf [t,x ; s,B] =
∫
B

(2πi(t− s))−1/2 exp{i|x− y|2
/

2(t− s)}dy

is in KS2[Rn] and ‖Kf [t,x ; s,B]‖KS 6 1, while ‖Kf [t,x ; s,B]‖M = ∞ (the

variation norm) and

Kf [t,x ; s,B] =
∫
Rn

Kf [t,x ; τ, dz]Kf [τ, z ; s,B], (HK-integral).

Definition 28. Let Pn = {t0, τ1, t1, τ2, · · · , τn, tn} be a HK-partition of the

interval [0, t] for each n, with limn→∞ ∆µn = 0 (mesh). Set ∆tj = tj −
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tj−1, τ0 = 0 and for ψ ∈ KS2[Rn] define

∫
Rn[0,t]

Kf [Dλx(τ) ; x(0)] = e−λt
[[λt]]∑
k=0

(λt)k

k!


k∏
j=1

∫
Rn

Kf [tj ,x(τj) ; tj−1, dx(τj−1)]

,
and ∫

R[0,t]

Kf [Dλx(τ);x(0)]ψ[x(0)]

= lim
λ→∞

∫
Rn[0,t]

Kf [Dλx(τ);x(0)]ψ[x(0)]

(1.10)

whenever the limit exists.

Our use of Borel summability in the definition will be clear after we

develop our Feynman operator calculus. The next result is now elementary.

A more general (sum over paths) result, that covers almost all application

areas, will be proven in Section 6.

Theorem 29. The function ψ(x) ≡ 1 ∈ KS2[Rn] and

∫
R[s,t]

Kf [Dx(τ) ; x(s)] = Kf [t,x ; s,y] = 1√
2πi(t−s)

exp{i|x− y|2
/

2(t− s)}.

The above result is what Feynman was trying to obtain, in this case.

2. Continuous Tensor Product Hilbert Space

In this section, we study the continuous tensor product Hilbert space of

von Neumann, which contains a class of subspaces that we will use for our

constructive representation of the Feynman operator calculus. Although von

Neumann [VN2] did not develop his theory for our purpose, it will be clear

that the theory is natural for our approach. Some might object that these
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spaces are too big (non-separable) for physics. However, we observe that

past objections to non-separable spaces do not apply to a theory which lays

out all of space-time from past to present to future as required by Feynman.

(It should be noted that the theory presented is formulated so that the basic

space is separable at each instant of time, which is all that is required by

quantum theory.) The theory developed in this section follows closely the

original paper of von Neumann. However, we provide new proofs of some

results and simplifed proofs of others.

Let I = [a, b], 0 ≤ a < b ≤ ∞ and, in order to avoid trivialities, we always

assume that, in any product, all terms are nonzero.

Definition 30. If {zν} is a sequence of complex numbers indexed by ν ∈ I,

(1) We say that the product
∏
ν∈I zν , is convergent with limit z if, for

every ε > 0, there is a finite set J ⊂ I such that
∣∣∏

ν∈J zν − z
∣∣ < ε.

(2) We say that the product
∏
ν∈I zν is quasi convergent if

∏
ν∈I |zν | is

convergent. (If the product is quasi convergent, but not convergent,

we assign it the value zero.)

Since I is not countable, we note that

0 <
∣∣∣∏

ν∈I
zν

∣∣∣ <∞ ⇔
∑

ν∈I
|1− zν | <∞.(2.1)

Thus, it follows that convergence implies that at most a countable number

of the zν 6= 1.
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Let Hν = H, be a fixed Hilbert space, for each ν ∈ I and, for {φν} ∈∏
ν∈I Hν , let ∆I be those sequences {φν} such that

∑
ν∈I |‖ϕν‖ν − 1| <∞.

Define a functional on ∆I by

Φ(ψ) =
∑n

k=1

∏
ν∈I

〈
ϕkν , ψν

〉
ν
,(2.2)

where ψ = {ψν}, {ϕkν} ∈ ∆I , for 1 ≤ k ≤ n. It is easy to see that this

functional is linear in each component. Denote Φ by

Φ =
∑n

k=1
⊗ν∈Iϕkν .

Define the algebraic tensor product, ⊗ν∈IHν , by

⊗ν∈IHν =
{∑n

k=1
⊗ν∈Iϕkν

∣∣∣{ϕkν} ∈ ∆I , 1 ≤ k ≤ n, n ∈ N
}
.(2.3)

We define a linear functional on ⊗ν∈IHν by

(∑n

k=1
⊗ν∈Iϕkν ,

∑m

l=1
⊗ν∈Iψlν

)
⊗

=
∑m

l=1

∑n

k=1

∏
ν∈I

〈
ϕkν , ψ

l
ν

〉
ν
.(2.4)

Lemma 31. The functional (·,·)⊗ is a well-defined mapping on ⊗ν∈IHν .

Proof. It suffices to show that, if Φ = 0, then (Φ,Ψ)⊗ = 0. If Φ =∑n
k=1⊗ν∈Iϕkν and Ψ =

∑m
l=1⊗ν∈Iψlν , then with ψl = {ψlν},

(Φ,Ψ)⊗ =
∑m

l=1

∑n

k=1

∏
ν∈I

〈
ϕkν , ψ

l
ν

〉
ν

=
∑m

l=1
Φ(ψl) = 0.(2.5)

�
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Before continuing our discussion of the above functional, we first need to

look a little more closely at the structure of the algebraic tensor product

space, ⊗ν∈IHν .

Definition 32. Let φ = ⊗
ν∈I

φν and ψ = ⊗
ν∈I

ψν be in ⊗ν∈IHν .

(1) We say that φ is strongly equivalent to ψ (φ ≡s ψ), if and only if∑
ν∈I

|1− 〈φν , ψν〉ν | <∞ .

(2) We say that φ is weakly equivalent to ψ (φ ≡w ψ), if and only if∑
ν∈I

|1− |〈φν , ψν〉ν | | <∞.

Lemma 33. We have φ ≡w ψ if and only if there exist zν , | zν | = 1, such

that ⊗
ν∈I

zνφν ≡s ⊗
ν∈I

ψν .

Proof. Suppose that ⊗
ν∈I

zνφν ≡s ⊗
ν∈I

ψν . Then we have:

∑
ν∈I

|1− |〈φν , ψν〉ν || =
∑
ν∈I

|1− |〈zνφν , ψν〉ν || 6
∑
ν∈I

|1− 〈zνφν , ψν〉ν | <∞.

If φ ≡w ψ, set

zν = |〈φν , ψν〉ν |/〈φν , ψν〉ν ,

for 〈φν , ψν〉ν 6= 0, and set zν = 1 otherwise. It follows that

∑
ν∈I

|1− 〈zνφν , ψν〉ν | =
∑
ν∈I

|1− |〈φν , ψν〉ν || <∞,

so that ⊗
ν∈I

zνφν ≡s ⊗
ν∈I

ψν . �

Theorem 34. The relations defined above are equivalence relations on

⊗ν∈IHν , which decomposes ⊗ν∈IHν into disjoint equivalence classes.
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Proof. Suppose ⊗
ν∈I

φν ≡s ⊗
ν∈I

ψν . First note that the relation is clearly

symmetric. Thus, we need only prove that it is reflexive and transitive.

To prove that the first relation is reflexive, observe that |1− 〈ψν , φν〉ν | =∣∣∣1− 〈φν , ψν〉ν∣∣∣ =
∣∣∣[1− 〈φν , ψν〉ν ]∣∣∣ = |1− 〈φν , ψν〉ν | . To show that it is tran-

sitive, without loss, we can assume that ‖ψν‖ν = ‖φν‖ν = 1. It is then easy

to see that, if ⊗
ν∈I

φν ≡s ⊗
ν∈I

ψν and ⊗
ν∈I

ψν ≡s ⊗
ν∈I

ρν , then

1− 〈φν , ρν〉ν = [1− 〈φν , ψν〉ν ] + [1− 〈ψν , ρν〉ν ] + 〈φν − ψν , ψν − ρν〉ν .

Now 〈φν − ψν , φν − ψν〉ν = 2 [1− Re 〈φν , ψν〉ν ] 6 2 |1− 〈φν , ψν〉ν |, so that∑
ν
‖φν − ψν‖2

ν
< ∞ and, by the same observation,

∑
ν
‖ψν − ρν‖2

ν
< ∞. It

now follows from Schwartz’s inequality that
∑
ν
‖φν − ψν‖ν ‖ψν − ρν‖ν <∞.

Thus we have that

∑
ν∈I

|1− 〈φν , ρν〉ν | ≤
∑
ν∈I

|1− 〈φν , ψν〉ν |+
∑
ν∈I

|1− 〈ψν , ρν〉ν |

+
∑
ν∈I

‖φν − ψν‖ν ‖ψν − ρν‖ν <∞.

This proves the first case. The proof of the second case (weak equivalence)

now follows from the above lemma. �

Theorem 35. Let ⊗ν∈Iϕν be in ⊗ν∈IHν . Then:

(1) The product
∏
ν∈I ‖ϕν‖ν converges if and only if

∏
ν∈I ‖ϕν‖

2
ν con-

verges.

(2) If
∏
ν∈I ‖ϕν‖ν and

∏
ν∈I ‖ψν‖ν converge, then

∏
ν∈I 〈ϕν , ψν〉ν is

quasi-convergent.
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(3) If
∏
ν∈I 〈ϕν , ψν〉ν is quasi-convergent then there exist complex num-

bers {zν}, |zν | = 1 such that
∏
ν∈I 〈zνϕν , ψν〉ν converges.

Proof. For the first case, convergence of either term implies that

{‖ϕν‖ν , ν ∈ I} has a finite upper bound M > 0. Hence

|1− ‖ϕν‖ν | 6 |1 + ‖ϕν‖ν | |1− ‖ϕν‖ν | =
∣∣∣1− ‖ϕν‖2

ν

∣∣∣ 6 (1 +M) |1− ‖ϕν‖ν | .

To prove (2), note that, if J ⊂ I is any finite subset,

0 6

∣∣∣∣∣∏
ν∈J

〈ϕν , ψν〉ν

∣∣∣∣∣ 6
∏
ν∈J

‖ϕν‖ν
∏
ν∈J

‖ψν‖ν <∞.

Therefore, 0 6
∣∣∏

ν∈I 〈ϕν , ψν〉ν
∣∣ < ∞ so that

∏
ν∈I 〈ϕν , ψν〉ν is quasi-

convergent, and, if 0 <
∣∣∏

ν∈I 〈ϕν , ψν〉ν
∣∣ < ∞, it is convergent. The proof

of (3) now follows directly from the above lemma. �

Definition 36. For ϕ = ⊗
ν∈I

ϕν ∈ H2
⊗, we define H2

⊗(ϕ) to be the closed

subspace generated by the span of all ψ ≡s ϕ and we call it the strong partial

tensor product space generated by the vector ϕ.

Theorem 37. For the partial tensor product spaces, we have the following:

(1) If ψν 6= ϕν occurs for at most a finite number of ν, then ψ =

⊗
ν∈I

ψν ≡s ϕ = ⊗
ν∈I

ϕν .

(2) The space H2
⊗(ϕ) is the closure of the linear span of ψ = ⊗

ν∈I
ψν such

that ψν 6= ϕν occurs for at most a finite number of ν.

(3) If Φ = ⊗ν∈Iϕν and Ψ = ⊗ν∈Iψν are in different equivalence classes

of ⊗ν∈IHν , then (Φ,Ψ)⊗ =
∏
ν∈I 〈ϕν , ψν〉ν = 0.
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(4) H2
⊗(ϕ)w = ⊕

ψ≡wφ

[
H2
⊗(ψ)s

]
.

Proof. To prove (1), let J be the finite set of ν for which ψν 6= ϕν . Then

∑
ν∈I

|1− 〈ϕν , ψν〉ν | =
∑
ν∈J

|1− 〈ϕν , ψν〉ν |+
∑
ν∈I\J

|1− 〈ϕν , ϕν〉ν | ≤ c+
∑
ν∈I

∣∣∣1− ‖ϕν‖2
ν

∣∣∣ <∞,

so that ⊗
ν∈I

ψν ≡ ⊗
ν∈I

ϕν

To prove (2), let H2
⊗(ϕ)# be the closure of the linear span of all

ψ = ⊗ν∈Iψν such that ψν 6= ϕν occurs for at most a finite number of

ν. There is no loss in assuming that ‖ϕν‖ν = 1 for all ν ∈ I. It is

clear from (1), that H2
⊗(ϕ)# ⊆ H2

⊗(ϕ). Thus, we are done if we can

show that H2
⊗(ϕ)# ⊇ H2

⊗(ϕ). For any vector ψ = ⊗ν∈Iψν in H2
⊗(ϕ),

ϕ ≡ ψ so that
∑
ν∈I

|1− 〈ϕν , ψν〉ν | < ∞. If ‖ψ‖2
⊗ = 0 then ψ ∈ H2

⊗(ϕ)#,

so we can assume that ‖ψ‖2
⊗ 6= 0. This implies that ‖ψν‖ν 6= 0 for all

ν ∈ I and 0 6=
∏
ν∈I(1/‖ψν‖ν) < ∞; hence, by scaling if necessary, we

may also assume that ‖ψν‖ν = 1 for all ν ∈ I. Let 0 < ε < 1 be

given, and choose δ so that 0 <
√

2δe < ε (e is the base for the nat-

ural log). Since
∑
ν∈I

|1− 〈ϕν , ψν〉ν | < ∞, there is a finite set of distinct

values J = {ν1, · · · , νn} such that
∑

ν∈I−J
|1− 〈ϕν , ψν〉ν | < δ . Since, for

any finite set of numbers z1, · · · , zn, it is easy to see that |
∏n
k=1 zk − 1| =

|
∏n
k=1 [1 + (zk − 1)]− 1| ≤

(∏n
k=1 e

|zk−1| − 1
)
, we have that

∣∣∣∣∣∣
∏
ν∈I\J

〈ϕν , ψν〉ν − 1

∣∣∣∣∣∣ ≤ (exp{
∑
ν∈I\J

|〈ϕν , ψν〉ν − 1|} − 1) ≤ eδ − 1 ≤ eδ.
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Now, define φν = ψν if ν ∈ J, and φν = ϕν if ν ∈ I\J , and set φJ = ⊗ν∈Iφν

so that φJ ∈ H2
⊗(ϕ)# and

‖ψ − φJ‖2
⊗ = 2− 2 Re

[∏
ν∈J

〈ϕν , ψν〉ν ·
∏

ν∈I−J
〈ϕν , ψν〉ν

]

= 2− 2 Re

[∏
ν∈I

‖ψν‖2
ν ·

∏
ν∈I−J

〈ϕν , ψν〉ν

]
= 2Re

[
1−

∏
ν∈I−J

〈ϕν , ψν〉ν

]
6 2eδ < ε2.

Since ε is arbitrary, ψ is in the closure of H2
⊗(ϕ)#, so H2

⊗(ϕ)# = H2
⊗(ϕ).

To prove (3), first note that, if
∏
ν∈I ‖ϕν‖ν and

∏
ν∈I ‖ψν‖ν con-

verge, then, for any finite subset J ⊂ I, 0 ≤
∣∣∏

ν∈J 〈ϕν , ψν〉ν
∣∣ ≤∏

ν∈J ‖ϕν‖ν
∏
ν∈J ‖ψν‖ν < ∞. Therefore, 0 ≤

∣∣∏
ν∈I 〈ϕν , ψν〉ν

∣∣ =∣∣(Φ,Ψ)⊗
∣∣ < ∞ so that

∏
ν∈I 〈ϕν , ψν〉ν is convergent or zero. If 0 <∣∣(Φ,Ψ)⊗

∣∣ < ∞, then
∑
ν∈I

|1− 〈φν , ψν〉ν | < ∞ and, by definition, Φ and

Ψ are in the same equivalence class, so we must have
∣∣(Φ,Ψ)⊗

∣∣ = 0. The

proof of (4) follows from the definition of weakly equivalent spaces. �

Theorem 38. (Φ,Ψ)⊗ is a conjugate bilinear positive definite functional.

Proof. The first part is trivial. To prove that it is positive definite, let

Φ =
∑n

k=1⊗ν∈Iϕkν , and assume that the vectors ⊗ν∈Iϕkν , 1 ≤ k ≤ n, are in

distinct equivalence classes. This means that, with Φk = ⊗ν∈Iϕkν , we have

(Φ,Φ)⊗ =
(∑n

k=1
Φk,

∑n

k=1
Φk

)
⊗

=
∑n

k=1

∑n

j=1
(Φk,Φj)⊗ =

∑n

k=1
(Φk,Φk)⊗.

Note that, from Theorem 37 (3), k 6= j ⇒ (Φk,Φj)⊗ = 0. Thus, it suffices

to assume that ⊗ν∈Iϕkν , 1 ≤ k ≤ n, are all in the same equivalence class. In
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this case, we have that

(Φ,Φ)⊗ =
∑n

k=1

∑n

j=1

∏
ν∈I

〈
ϕkν , ϕ

j
ν

〉
ν
,

where each product is convergent. It follows that the above will be

positive definite if we can show that, for all possible finite sets J =

{ν1, ν2 · · · , νm},m ∈ N,

∑n

k=1

∑n

j=1

∏
ν∈J

〈
ϕkν , ϕ

j
ν

〉
ν
≥ 0.

This is equivalent to showing that the above defines a positive definite func-

tional on ⊗ν∈JHν , which follows from the standard result for finite tensor

products of Hilbert spaces (see Reed and Simon, [RS]). �

Definition 39. We define H2
⊗ = ⊗̂ν∈IHν to be the completion of the linear

space ⊗ν∈IHν , relative to the inner product (·,·)⊗.

2.1. Orthonormal Basis for H2
⊗(ϕ).

We now construct an orthonormal basis for each H2
⊗(ϕ). Let N be the

natural numbers, and let {eνn, n ∈ N = N∪{0}} be a complete orthonormal

basis for Hν . Let eν0 be a fixed unit vector in Hν and set E = ⊗ν∈Ieν0 . Let

F be the set of all functions f : I → N such that f(ν) = 0 for all but a finite

number of ν. Let F (f) be the image of f ∈ F (e.g., F (f) = {f(ν), ν ∈ I}),

and set EF (f) = ⊗ν∈Ieν,f(ν), where f(ν) = 0 ⇒ eν,0 = eν0 and f(ν) = n ⇒

eν,n = eνn.
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Theorem 40. The set {EF (f), f ∈ F} is a complete orthonormal basis for

H2
⊗(E).

Proof. First, note that E ∈ {EF (f), f ∈ F} and each EF (f) is a unit vector.

Also, we have EF (f)≡sE and
〈
EF (f), EF (g)

〉
=

∏
ν∈I

〈
eν,f(ν), eν,g(ν)

〉
= 0

unless f(ν) = g(ν) for all ν. Hence, the family {EF (f), f ∈ F} is an

orthonormal set of vectors in H2
⊗(E). Let H2

⊗(E)# be the completion of

the linear span of this set of vectors. Clearly H2
⊗(E)# ⊆ H2

⊗(E) so we

only need prove that every vector in H2
⊗(E) ⊂ H2

⊗(E)#. By Theorem 37

(2), it suffices to prove that H2
⊗(E)# contains the closure of the set of all

ϕ = ⊗ν∈Iϕν such that ϕν 6= eν0 occurs for only a finite number of ν. Let

ϕ = ⊗ν∈Iϕν be any such vector, and let J = {ν1, · · · , νk} be the finite set of

distinct values of ν for which ϕν 6= eν0 occurs. Since {eνn, n ∈ N} is a basis

for Hν , for each νi there exist constants aνi,n such that
∑

n∈N aνi,ne
νi
n = ϕνi

for 1 ≤ i ≤ k. Let ε > 0 be given. Then, for each νi there exists a finite

subset Ni ⊂ N such that
∥∥ϕνi −

∑
n∈Ni

aνi,ne
νi
n

∥∥
⊗ < 1

n(ε
/
‖ϕ‖⊗). Let ~N =

(N1, · · ·Nk) and set ϕNi
νi

=
∑

n∈Ni
aνi,ne

νi
n so that ϕ~N = ⊗

νi∈J
ϕNi
νi
⊗ ( ⊗

ν∈I\J
eν0)

and ϕ = ⊗
νi∈J

ϕνi ⊗ ( ⊗
ν∈I\J

eν0). It follows that:

∥∥∥ϕ− ϕ
~N
∥∥∥
⊗

=
∥∥∥∥[

⊗
νi∈J

ϕνi − ⊗
νi∈J

ϕNi
νi

]
⊗ ( ⊗

ν∈I\J
eν0)

∥∥∥∥
⊗

=
∥∥∥∥ ⊗
νi∈J

ϕνi − ⊗
νi∈J

ϕNi
νi

∥∥∥∥
⊗
.
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We can rewrite this as:∥∥∥∥ ⊗
νi∈J

ϕνi − ⊗
νi∈J

ϕNi
νi

∥∥∥∥
⊗

= ‖ϕν1 ⊗ ϕν2 · · · ⊗ ϕνk
− ϕN1

ν1 ⊗ ϕν2 · · · ⊗ ϕνk

+ ϕN1
ν1 ⊗ ϕν2 · · · ⊗ ϕνk

− ϕN1
ν1 ⊗ ϕN2

ν2 · · · ⊗ ϕνk

...

+ ϕN1
ν1 ⊗ ϕN2

ν2 · · · ⊗ ϕ
Nk−1
νk−1 ⊗ ϕνk

− ϕN1
ν1 ⊗ ϕN2

ν2 · · · ⊗ ϕNk
νk

∥∥∥
⊗

≤
∑n

i=1

∥∥∥ϕνi − ϕNi
νi

∥∥∥
⊗
‖ϕ‖⊗ ≤ ε.

Now, as the tensor product is multilinear and continuous in any finite num-

ber of variables, we have:

ϕ
~N = ⊗

νi∈J
ϕNi
νi
⊗ ( ⊗

ν∈I\J
eν0) = ϕN1

ν1 ⊗ ϕN2
ν2 · · · ⊗ ϕNk

νk
⊗ ( ⊗

ν∈I\J
eν0)

=
[∑

n1∈N1

aν1,n1e
ν1
n1

]
⊗

[∑
n2∈N2

aν2,n2e
ν2
n2

]
· · · ⊗

[∑
nk∈Nk

aνk,nk
eνk
nk

]
⊗ ( ⊗

ν∈I\J
eν0)

=
∑

γ1∈N1···γn∈Nn

aν1,n1aν2,n2 · · · aνk,nk

[
eν1n1

⊗ eν2n2
· · · ⊗ eνk

nk
⊗ ( ⊗

ν∈I\J
eν0)

]
.

It is now clear that, by definition of F, for each fixed set of indices

n1, n2, · · · nk there exists a function f : I → N such that f(νi) = ni

for νi ∈ J and f(ν) = 0 for ν ∈ I\J . Since each Ni is finite, ~N = (N1, · · ·Nk)

is also finite, so that only a finite number of functions are needed. It follows

that ϕ~N is in H2
⊗(E)#, so that ϕ is a limit point and H2

⊗(E)# = H2
⊗(E). �

2.2. Tensor Product Semigroups.

Let Si(t), i = 1, 2, be C0-contraction semigroups with generators Ai defined

on H, so that ‖Si(t)‖H 6 1. Define operators S1(t) = S1(t)⊗̂I2, S2(t) =
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I1⊗̂S2(t) and S(t) = S1(t)⊗̂S2(t) on H⊗̂H. The proof of the next result is

easy.

Theorem 41. The operators S(t), Si(t) , i = 1, 2, are C0-contraction semi-

groups with generators A = A1⊗̂I2 + I1⊗̂A2, A1 = A1⊗̂I2, A2 = I1⊗̂A2,

and S(t) = S1(t)S2(t) = S2(t)S1(t).

Let Si(t), 1 6 i 6 n, be a family of C0-contraction semigroups with

generators Ai defined on H.

Corollary 42. S(t) = ⊗̂ni=1Si(t) is a C0-contraction semigroup on ⊗̂ni=1H

and the closure of A1⊗̂I2⊗̂ · · · ⊗̂In + I1⊗̂A2⊗̂ · · · ⊗̂In + · · · I1⊗̂I2⊗̂ · · · ⊗̂An

is the generator A of S(t).

3. Time-Ordered Operators

For the remainder of the paper, our index set I = [a, b], is a subset of the

reals, R and we replace H2
⊗ = ⊗̂ν∈IHν by ⊗̂t∈IH(t). Let L(H2

⊗) be the set

of bounded operators on H2
⊗, and define L(H(t)) ⊂ L(H2

⊗) by:

L(H(t)) =
{
A(t) = ⊗̂

b>s>t
Is ⊗A(t)⊗ ( ⊗

t>s>−a
Is),∀A(t) ∈ L(H)

}
,(3.1)

where Is is the identity operator. Let L#(H2
⊗) be the uniform closure of

the algebra generated by {L(H(t)), t ∈ I}. If the family {A(t), t ∈ I} is in

L(H), then the operators {A(t), t ∈ I} ∈ L#(H2
⊗) commute when acting at

different times: t 6= τ ⇒

A(t)A(τ) = A(τ)A(t).
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Let Pϕ denote the projection from H2
⊗ onto H2

⊗(ϕ).

Theorem 43. If T ∈ L#[H2
⊗], then PϕT = TPϕ.

Proof. Since vectors of the form Φ =
∑L

i=1⊗s∈Iϕis, with ϕis = ϕs for all

but a finite number of s, are dense in H2
⊗(ϕ); it suffices to show that T ∈

L#[H2
⊗] ⇒ TΦ ∈ H2

⊗(ϕ). Now, T ∈ L#[H2
⊗] implies that there exists a

sequence of operators Tn such that ‖T−Tn‖⊗ → 0 as n→∞, where each

Tn is of the form: Tn =
∑Nn

k=1 a
n
kT

n
k , with ank a scalar, Nn < ∞, and each

Tnk = ⊗̂s∈Jk
Tnks⊗̂s∈I\Jk

Is for some finite set of s-values Jk. Hence,

TnΦ =
∑L

i=1

∑Nn

k=1
ank ⊗s∈Jk

Tnksϕ
i
s ⊗s∈I\Jk

ϕis.

It is easy to see that, for each i, ⊗s∈Jk
Tnksϕ

i
s⊗s∈I\Jk

ϕis ≡ ⊗s∈Iϕs. It follows

that TnΦ ∈ H2
⊗(ϕ) for each n, so that Tn ∈ L[H2

⊗(ϕ)]. As L[H2
⊗(ϕ)] is a

norm closed algebra, T ∈ L[H2
⊗(ϕ)] and it follows that PϕT = TPϕ. �

Definition 44. We call L#(H2
⊗) the time-ordered von Neumann algebra

over H2
⊗.

The following theorem is due to von Neumann [VN2].

Theorem 45. The mapping Tt
θ : L(H) → L(H(t)) is an isometric isomor-

phism of algebras. (We call Tt
θ the time-ordering morphism.)

3.1. Exchange Operator.
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Definition 46. An exchange operator E[t, t′] is a linear map defined for

pairs t, t′ such that:

(1) E[t, t′] : L[H(t)] → L[H(t′)], (Isometric isomorphism),

(2) E[t, s]E[s, t′] = E[t, t′],

(3) E[t, t′]E[t′, t] = I,

(4) For s 6= t, t′, E[t, t′]A(s) = A(s), ∀A(s) ∈ L[H(s)].

The exchange operator acts to exchange the time positions of a pair of

operators in a more complicated expression.

Theorem 47. (Existence) There exists an exchange operator for L#[H2
⊗].

Proof. Define a map C[t, t′] : H2
⊗ → H2

⊗ (comparison operator) by its

action on elementary vectors:

C[t, t′]⊗s∈I φs = ⊗a6s<t′φs ⊗ φt ⊗ (⊗t′<s<tφs)⊗ φt′ ⊗ (⊗t<s6bφs),

for all φ = ⊗s∈Iφs ∈ H2
⊗. Clearly, C[t, t′] extends to an isometric isomor-

phism of H2
⊗. For U ∈ L#[H2

⊗], we define E[t, t′]U = C[t, t′]UC[t′, t]. It

is easy to check that E[ · , · ] satisfies all the requirements for an exchange

operator. �

3.2. The Film.

In the world view suggested by Feynman, physical reality is laid out as a

three-dimensional motion picture in which we become aware of the future
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as more and more of the film comes into view. (The way the world appears

to us in our consciousness.)

In order to motivate our approach, let
{
ei | i ∈ N

}
be a complete or-

thonormal basis for H, and, for each t ∈ I and i ∈ N, let eit = ei and set

Ei = ⊗t∈I eit. Now notice that the Hilbert space Ĥ generated by the family

of vectors {Ei, i ∈ N} is isometrically isomorphic to H. For later use, it

should be noted that any vector in H of the form ϕ =
∑∞

k=1 ake
k has the

corresponding representation in Ĥ as ϕ̂ =
∑∞

k=1 akE
k. The problem with

using Ĥ to define our operator calculus is that this space is not invariant for

any reasonable class of operators. We now construct a particular structure,

which is our mathematical version of this film.

Definition 48. A film, FD2
⊗, is the smallest subspace containing Ĥ, which

is invariant for L#[H2
⊗]. We call FD2

⊗ the Feynman Dyson space (FD-

space) over H.

In order to construct our space, let FDi2 = H2
⊗(Ei) be the strong partial

tensor product space generated by the vector Ei. It is clear that FDi2

is the smallest space in H2
⊗ which contains the vector Ei. We now set

FD2
⊗ =

∞
⊕
i=1

FDi2. It is clear that the space FD2
⊗, is a nonseparable Hilbert

(space) bundle over I = [a, b]. However, by construction, it is not hard to

see that the fiber at each time-slice is isomorphic to H almost everywhere.

In order to facilitate the proofs in the next section, we need an explicit

basis for each FDi2. As in Section 2.1, let F be the set of all functions
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f( · ): I → N ∪ {0} such that f(t) is zero for all but a finite number of t,

and let F (f) denote the image of the function f(· ). Set EiF (f) = ⊗t∈Ieit,f(t)

with eit,0 = ei , and f(t) = k ⇒ eit,k = ek.

Lemma 49. The set {EiF (f) |F (f) ∈ F} is a (c.o.b) for each FDi2.

If Φi =
∑

F (f)∈F aF (f)iEiF (f), Ψi =
∑

F (f)∈F b
i
F (f)E

i
F (f) ∈ FDi2, set

aiF (f) =
〈
Φi, EiF (f)

〉
and biF (f) =

〈
Ψi, EiF (f)

〉
, so that

〈
Φi,Ψi

〉
=

∑
F (f),F (g)∈F

ai
F (f)b̄

i
F (g)

〈
EiF (f), E

i
F (g)

〉
, and

〈
Φi,Ψi

〉
=

∑
F (f)∈F

ai
f(t)b̄

i
f(t).

(Note that
〈
EiF (f), E

i
F (g)

〉
=

∏
t∈I

〈
eit,f(t), e

i
t,g(t))

〉
= 0 unless f(t) =

g(t) ∀t ∈ I.)

The following notation will be used at various points of this section so we

record the meanings here for reference. (The t value referred to is in our

fixed interval I.)

(1) (e.o.v): ”except for at most one t value”;

(2) (e.f.n.v): ”except for an at most finite number of t values”; and

(3) (a.s.c): ”almost surely and the exceptional set is at most countable”.
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3.3. Time-Ordered Integrals and Generation Theorems.

In this section, we assume that I = [a, b] ⊆ [0,∞) and, for each t ∈ I, A(t)

generates a C0-semigroup on H.

To partially see the advantage of developing our theory on FD2
⊗, suppose

that A(t) generates a C0-semigroup for t ∈ I and define St(τ) by:

St(τ) = ⊗̂s∈[b,t)Is ⊗ (exp{τA(t)})⊗
(
⊗s∈(t,a]Is

)
.(3.2)

We briefly investigate the relationship between St(τ) = exp{τA(t)} and

St(τ) = exp{τA(t)}. By Theorems 13, 26 and 32, we know that St(τ) is a

C0-semigroup for t ∈ I if and only if St(τ) is one also. For additional insight,

we need a dense core for the family {A(t) |t ∈ I}, so let D̄ = ⊗
t∈I

D(A(t))

and set D0 = D̄ ∩FD2
⊗. Since D̄ is dense in H2

⊗, it follows that D0 is dense

in FD2
⊗. Using our basis, if Φ,Ψ ∈ D0, Φ =

∑
i

∑
F (f) a

i
F (f)E

i
F (f),Ψ =∑

i

∑
F (g) b

i
F (g)E

i
F (g); then, as exp{τA(t)} is invariant on FDi, we have

〈exp{τA(t)}Φ,Ψ〉 =
∑

i

∑
F (f)

∑
F (g)

ai
F (f)b̄

i
F (g)

〈
exp{τA(t)}Ei

F (f), E
i
F (g)

〉
,

and〈
exp{τA(t)}Ei

F (f), E
i
F (g)

〉
=

∏
s 6=t

〈
eis,f(s), e

i
s,g(s)

〉 〈
exp{τA(t)}eit,f(t), e

i
t,g(t)

〉

=
〈
exp{τA(t)}eit,f(t), e

i
t,f(t)

〉
(e.o.v),

=
〈
exp{τA(t)}ei, ei

〉
(e.f.n.v.),

⇒ 〈exp{τA(t)}Φ,Ψ〉 =
∑

i

∑
F (f)

ai
F (f)b̄

i
F (f)

〈
exp{τA(t)}ei, ei

〉
(a.s).
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Thus, by working on FD2
⊗, we obtain a simple direct relationship between

the conventional and time-ordered version of a semigroup. This suggests that

a parallel theory of semigroups of operators on FD2
⊗ might make it possi-

ble for physical theories to be formulated in the intuitive and conceptually

simpler time-ordered framework, offering substantial gain compared to the

conventional mathematical structure. Note that this approach would also

obviate the need for the problematic process of disentanglement suggested by

Feynman in order to relate the operator calculus to conventional mathemat-

ics. Let Az(t) = zA(t)R(z,A(t)) (respectively Az(t) = zA(t)R(z,T(t))),

where R(z,A(t)) (respectively R(z,T(t)) z > 0, is the resolvent of A(t)

(respectively T(t)). In the latter case, T(t)) = −[A∗(t)A(t)]1/2 and

T̄(t) = −[A(t)A∗(t)]1/2. Set Āz(t) = zA(t)R(z, T̄(t)).

By Theorem 27, in either case, Az(t) generates a uniformly bounded semi-

group and lim
z→∞

Az(t)φ = A(t)φ for φ ∈ D(A(t)).

Theorem 50. The operator Az(t) satisfies

(1) A(t)Az(t)Φ = Āz(t)A(t)Φ, Φ ∈ D, Az(t) generates a uni-

formly bounded contraction semigroup on FD2
⊗ for each t, and

lim
z→∞

Az(t)Φ = A(t)Φ, Φ ∈ D.

(2) For each n, each set τ1, · · · , τn ∈ I and each set a1, · · · , an, ai > 0;∑n
i=1 aiA(τi) generates a C0-semigroup on FD2

⊗.
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Proof. The proof of (1) follows from Theorem 27 and the relationship be-

tween A(t) and A(t). It is an easy computation to check that (2), follows

from Theorem 42 and Corollary 43, with S(t) =
∏n
i=1 Sτi(ait). �

We now assume that A(t), t ∈ I, is weakly continuous and thatD(A(t)) ⊇

D, whereD is dense inH and independent of t. It follows that this family has

a weak KH-integral Q[a, b] =
∫ b
a A(t)dt ∈ C(H) (the closed densely defined

linear operators on H). Furthermore, it is not difficult to see that Az(t), t ∈

I, is also weakly continuous and hence the family {Az(t) | t ∈ I } ⊂ L(H)

has a weak KH-integral Qz[a, b] =
∫ b
a Az(t)dt ∈ L(H). Let Pn be a se-

quence of KH-partitions for δn(t) : [a, b] → (0,∞) with δn+1(t) > δn(t)

and limn→∞ δn(t) = 0, so that the mesh µn = µ(Pn) → 0 as n → ∞. Set

Qz,n =
∑n

l=1Az(t̄l)∆tl, Qz,m =
∑m

q=1Az(s̄q)∆sq; Qz,n =
∑n

l=1Az(t̄l)∆tl,

Qz,m =
∑m

q=1Az(s̄q)∆sq; and ∆Qz = Qz,n − Qz,m, ∆Qz = Qz,n −Qz,m.

Let Φ,Ψ ∈ D0; Φ =
∑J

i Φi =
∑J

i

∑K
F (f) a

i
F (f)E

i
F (f), Ψ =

∑L
i Ψi =∑L

i

∑M
F (g) b

i
F (g)E

i
F (g). Then we have:

Theorem 51. (Fundamental Theorem for Time-Ordered Integrals)

(1) The family {Az(t) | t ∈ I } has a weak KH-integral and

〈∆QzΦ,Ψ〉 =
∑J

i

∑K

F (f)
ai
F (f)b̄

i
F (f)

〈
∆Qzei, ei

〉
(a.s.c).(3.3)

(2) If, in addition, for each i

n∑
k,

∆tk
∥∥Az(sk)ei − 〈

Az(sk)ei, ei
〉
ei

∥∥2
6 Mµδ−1

n ,(3.4)
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where M is a constant, µn is the mesh of Pn, and 0 < δ < 1, then the

family {Az(t) | t ∈ I } has a strong integral, Qz[t, a] =
∫ t
a Az(s)ds.

(3) The linear operator Qz[t, a] generates a uniformly continuous C0-

contraction semigroup.

Remark 52. In general, the family {Az(t) | t ∈ I } need not have a Bochner

or Pettis integral. (However, if it has a Bochner integral, our condition 3.4

is automatically satisfied.)

Proof. To prove (1), note that

〈∆QzΦ,Ψ〉 =
∑

i

∑
F (f)

∑
F (g)

ai
F (f)b̄

i
F (g)

〈
∆QzE

i
F (f), E

i
F (g)

〉

(we omit the upper limit). Now

〈
∆QzE

i
F (f), E

i
F (g)

〉
=

n∑
l=1

∆tl
∏
t 6=t̄l

〈
eit,f(t), e

i
t,g(t)

〉 〈
Az(t̄l)eit̄l,f(t̄l)

, eit̄l,g(t̄l)

〉

−
m∑
q=1

∆sq
∏
t 6=s̄q

〈
eit,f(t), e

i
t,g(t)

〉 〈
Az(s̄q)eis̄q ,f(s̄q), e

i
s̄q ,g(s̄q)

〉
=

n∑
l=1

∆tl
〈
Az(t̄l)eit̄l,f(t̄l)

, eit̄l,f(t̄l)

〉

−
m∑
q=1

∆sq
〈
Az(s̄q)eis̄q ,f(s̄q), e

i
s̄q ,f(s̄q)

〉
=

〈
∆Qzei, ei

〉
(e.f.n.v).

This gives (3.4) and shows that the family {Az(t) | t ∈ I } has a weak KH-

integral if and only if the family {Az(t) | t ∈ I } has one.
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To see that condition (3.4) makes Qz a strong limit, let Φ ∈ D0. Then

〈Qz,nΦ,Qz,nΦ〉 =
∑J

i

∑K

F (f),F (g)
ai
F (f)ā

i
F (g)

 n∑
k,m

∑n

k=1
∆tk∆tm

〈
Az(sk)Ei

F (f),Az(sm)Ei
F (g)

〉
=

∑J

i

∑K

F (f)

∣∣∣ai
F (f)

∣∣∣2 (∑n

k 6=m
∆tk∆tm

〈
Az(sk)eisk,f(sk), e

i
sk,f(sk)

〉 〈
eism,f(sm), Az(sm)eism,f(sm)

〉)
+

∑J

i

∑K

F (f)

∣∣∣ai
F (f)

∣∣∣2 (∑n

k=1
(∆tk)2

〈
Az(sk)eisk,f(sk), Az(sk)e

i
sk,f(sk)

〉)
.

This can be rewritten as

‖Qz,nΦ‖2
⊗ =

∑J

i

∑K

F (f)

∣∣∣aiF (f)

∣∣∣2 {∣∣〈Qz,nei, ei〉∣∣2
+

∑n

k=1
(∆tk)2

(∥∥Az(sk)ei∥∥2 −
∣∣〈Az(sk)ei, ei〉∣∣2)}

. (a.s.c)

(3.5)

First note that:
∥∥Az(sk)ei∥∥2 −

∣∣〈Az(sk)ei, ei〉∣∣2 =∥∥Az(sk)ei − 〈
Az(sk)ei, ei

〉
ei

∥∥2, so that the last term in (3.6) can be

written as∑n

k=1
(∆tk)2

(∥∥Az(sk)ei∥∥2 −
∣∣〈Az(sk)ei, ei〉∣∣2) =

∑n

k=1
(∆tk)2

∥∥Az(sk)ei − 〈
Az(sk)ei, ei

〉
ei

∥∥2

6 µδnM.

We can now use the above in (3.6) to get

‖Qz,nΦ‖2
⊗ 6

∑J

i

∑K

F (f)

∣∣∣aiF (f)

∣∣∣2 ∣∣〈Qz,nei, ei〉∣∣2 + µδnM (a.s.c).

Thus, Qz,n[t, a] converges strongly to Qz[t, a] on FD2
⊗. To show that Qz[t, a]

generates a uniformly continuous contraction semigroup, it suffices to show

that Qz[t, a] is dissipative. For any Φ in FD2
⊗,

〈Qz[t, a]Φ,Φ〉 =
J∑
i

K∑
F (f)

∣∣∣aiF (f)

∣∣∣2 〈
Qze

i, ei
〉

(a.s.c)
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and, for each n, we have

Re
〈
Qz[t, a]ei, ei

〉
= Re

〈
Qz,n[t, a]ei, ei

〉
+ Re

〈
[Qz[t, a]−Qz,n[t, a]] ei, ei

〉
6 Re

〈
[Qz[t, a]−Qz,n[t, a]] ei, ei

〉
,

since Qz,n[t, a]. Letting n → ∞, ⇒ Re
〈
Qz[t, a]ei, ei

〉
6 0, so that

Re 〈Qz[t, a]Φ,Φ〉 6 0. Thus, Qz[t, a] is a bounded dissipative linear op-

erator on FD2
⊗ which completes our proof. �

We can also prove Theorem 51 for the family {A(t) | t ∈ I }. The same

proof goes through, but now we restrict to D0 = ⊗
t∈I

D(A(t))∩FD2
⊗. In this

case (3.4) becomes:

n∑
k,

∆tk
∥∥A(sk)ei −

〈
A(sk)ei, ei

〉
ei

∥∥2
6 Mµδ−1

n .(3.6)

From equation (3.6), we have the following important result: (set
K∑
F (f)

∣∣∣ai
F (f)

∣∣∣2 =
∣∣bi∣∣2)
‖Qz[t, a]Φ‖2

⊗ =
J∑
i

∣∣bi∣∣2 ∣∣〈Qzei, ei〉∣∣2 (a.s.c).(3.7)

The representation (3.7) makes it easy to prove the next theorem.

Theorem 53. With the conditions of Theorem 51, we have:

(1) Qz[t, s] + Qz[s, a] = Qz[t, a] (a.s.c),

(2) s - lim
h→0

Qz [t+h,a]−Qz [t,a]
h = s - lim

h→0

Qz [t+h,t]
h = Az(t) (a.s.c),

(3) s - lim
h→0

Qz[t+ h, t] = 0 (a.s.c),

(4) s - lim
h→0

exp {τQz[t+ h, t]} = I⊗ (a.s.c),τ > 0.
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Proof. In each case, it suffices to prove the result for Φ ∈ D0. To prove 1.,

use

‖[Qz[t, s] + Qz[s, a]] Φ‖2
⊗ =

∑J

i

∣∣bi∣∣2 ∣∣〈[Qz[t, s] +Qz[s, a]] ei, ei
〉∣∣2

=
∑J

i

∣∣bi∣∣2 ∣∣〈Qz[t, a]ei, ei〉∣∣2 = ‖Qz[t, a]Φ‖2
⊗ (a.s.c).

To prove 2., use 1. to get that Qz[t+ h, a]−Qz[t, a] = Qz[t+ h, t] (a.s.), so

that

lim
h→0

∥∥∥∥Qz[t+ h, t]
h

Φ
∥∥∥∥2

⊗

=
J∑
i

∣∣bi∣∣2 lim
h→0

∣∣∣∣〈Qz[t+ h, t]
h

ei, ei
〉∣∣∣∣2 = ‖Az(t)Φ‖2

⊗ (a.s.c.).

The proof of 3 follows from 2 and the proof of 4 follows from 3. �

The results of the previous theorem are expected if Qz[t, a] is an integral

in the conventional sense. The important point is that a weak integral on

the base space gives a strong integral on FD2
⊗ (note that by 2., we also

get strong differentiability). This clearly shows that our approach to time

ordering has more to offer than simply a representation space to allow time

to act as a place keeper for operators in a product. It should be observed

that, in all results up to now, we have used the assumption that the family

A(t), t ∈ I, is weakly continuous, satisfies equation (3.6), and has a common

dense domain D ⊆ D(A(t)) in H. We now impose a condition that is

equivalent to assuming that each A(t) generates a C0-contraction semigroup;

namely, we assume that, for each t, A(t) and A∗(t) (dual) are dissipative.

This form is an easier condition to check.
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Theorem 54. With the above assumptions, we have that

lim
z→∞

〈Qz[t, a]φ, ψ〉 = 〈Q[t, a]φ, ψ〉 exists for all φ ∈ D[Q], ψ ∈ D[Q∗].

Furthermore:

(1) the operator Q[t, a] generates a C0-contraction semigroup on H,

(2) for Φ ∈ D0,

lim
z→∞

Qz[t, a]Φ = Q[t, a]Φ,

and

(3) the operator Q[t, a] generates a C0-contraction semigroup on FD2
⊗,

(4) Q[t, s]Φ + Q[s, a]Φ = Q[t, a]Φ (a.s.c.),

(5)

lim
h→0

[(Q[t+ h, a]−Q[t, a])/h] Φ = lim
h→0

[(Q[t+ h, t])/h] Φ = A(t)Φ (a.s.c.),

(6) lim
h→0

Q[t+ h, t]Φ = 0 (a.s.c.), and

(7) lim
h→0

exp {τQ[t+ h, t]}Φ = Φ (a.s.c.),τ > 0.

Proof. Since Az(t), A(t) are weakly continuous and Az(t)
s−→ A(t) for each

t ∈ I, given ε > 0 we can choose Z such that, if z > Z, then

sup
s∈[a,b]

|〈[A(s)−Az(s)]ϕ , ψ〉| < ε/3(b− a).

By uniform (weak) continuity, if s, s′ ∈ [a, b] we can also choose η such that,

if |s− s′| < η,

sup
z>0

∣∣〈[Az(s)−Az(s′)
]
ϕ , ψ

〉∣∣ < ε/3(b− a)



CONSTRUCTIVE REPRESENTATION THEORY FOR THE FEYNMAN OPERATOR CALCULUS59

and ∣∣〈[A(s)−A(s′)
]
ϕ , ψ

〉∣∣ < ε/3(b− a).

Now choose δ(t) : [a, b] → (0,∞) so that, for any KH-partition P for δ,

we have that µn < η, where µn is the mesh of the partition. If Qz,n =∑n
j=1Az(τj)∆tj and Qn =

∑n
j=1A(τj)∆tj , we have

|〈[Qz[t, a]−Q[t, a]]ϕ , ψ〉| 6 |〈[Qn[t, a]−Q[t, a]]ϕ , ψ〉|

+ |〈[Qz,n[t, a]−Qz[t, a]]ϕ , ψ〉|+ |〈[Qn[t, a]−Qz,n[t, a]]ϕ , ψ〉|

6
∑n

j=1

∫ tj

tj−1

|〈[A(τj)−A(τ)]ϕ , ψ〉| dτ +
∑n

j=1

∫ tj

tj−1

|〈[Az(τj)−Az(τ)]ϕ , ψ〉| dτ

+
∑n

j=1

∫ tj

tj−1

|〈[A(τj)−Az(τj)]ϕ , ψ〉| dτ <
ε

3
+
ε

3
+
ε

3
= ε.

This proves that lim
z→∞

〈Qz[t, a]φ, ψ〉 = 〈Q[t, a]φ, ψ〉. To prove 1., first note

that Q[t, a] is closable and use

Re 〈Q[t, a]φ, φ〉 = Re 〈Qz[t, a]φ, φ〉+ Re 〈[Q[t, a]−Qz[t, a]]φ, φ〉

6 Re 〈[Q[t, a]−Qz[t, a]]φ, φ〉 ,

and let z → ∞, to show that Q[t, a] is dissapative. Then do likewise for

〈φ,Q∗[t, a]φ〉 to show that the same is true for Q∗[t, a], to complete the

proof. (It is important to note that, although Q[t, a] generates a contrac-

tion semigroup on H, exp{Q[t, a]} does not solve the original initial-value

problem.)

To prove (2), use (3.7) in the form

‖[Qz[t, a]−Qz′ [t, a]] Φ‖2
⊗ =

J∑
i

∣∣bi∣∣2 ∣∣〈[Qz[t, a]−Qz′ [t, a]] ei, ei
〉∣∣2 .(3.8)
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This proves that Qz[t, a]
s−→ Q[t, a]. Since Q[t, a] is densely defined, it is

closable. The same method as above shows that it is m-dissipative. Proofs

of the other results follow the methods of Theorem 54. �

3.4. General Case.

We relax the contraction condition and assume that A(t), t ∈ I generates a

C0-semigroup on H. We can always shift the spectrum (if necessary) so that

‖exp{τA(t)}‖ 6 M(t). We assume that supJ
∏
i∈J ‖exp{τA(ti)}‖ 6 M ,

where the sup is over all finite subsets J ⊂ I.

Theorem 55. Suppose that A(t), t ∈ I, generates a C0-semigroup, satisfies

(3.6) and has a weak KH-integral, Q[t, a], on a dense set D in H. Then

the family A(t), t ∈ I, has a strong KH-integral, Q[t, a], which generates a

C0-semigroup on FD2
⊗ (for each t ∈ I) and ‖exp{Q[t, a]}‖⊗ 6 M .

Proof. It is clear from part (2) of Theorem 51 that Qn[t, a] =
∑n

i=1A(τi)∆ti

generates a C0-semigroup on FD2
⊗ and ‖exp{Qn[t, a]}‖⊗ 6 M . If Φ ∈

D0, let Pm, Pn be arbitrary KH-partitions for δm, δn (of order m and n

respectively) and set δ(s) = δm(s) ∧ δn(s). Since any KH-partition for δ is
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one for δm and δn, we have that

‖[exp{τQn[t, a]} − exp{τQm[t, a]}] Φ‖⊗

=
∥∥∥∥∫ τ

0

d

ds
[exp{(τ − s)Qn[t, a]}exp{sQm[t, a]}]Φds

∥∥∥∥
⊗

6
∫ τ

0
‖[exp{(τ − s)Qn[t, a]} (Qn[t, a]−Qm[t, a]) exp{sQm[t, a]}Φ]‖⊗

6 M

∫ τ

0
‖(Qn[t, a]−Qm[t, a]) Φ‖⊗ds

6 Mτ ‖[Qn[t, a]−Q[t, a]] Φ‖⊗ +Mτ ‖[Q[t, a]−Qm[t, a]] Φ‖⊗ .

The existence of the weak KH-integral, Q[t, a], on H satisfying equation

(3.6) implies that Qn[t, a]
s−→ Q[t, a], so that exp{τQn[t, a]}Φ converges as

n → ∞ for each fixed t ∈ I; and the convergence is uniform on bounded τ

intervals. As ‖exp{Qn[t, a]}‖⊗ 6 M , we have

lim
n→∞

exp{τQn[t, a]}Φ = St(τ)Φ, Φ ∈ FD2
⊗.

The limit is again uniform on bounded τ intervals. It is easy to see that the

limit St(τ) satisfies the semigroup property, St(0) = I, and ‖St(τ)‖⊗ 6 M .

Furthermore, as the uniform limit of continuous functions, we see that τ →

St(τ)Φ is continuous for τ > 0. We are done if we show that Q[t, a] is the

generator of St(τ). For Φ ∈ D0, we have that

St(τ)Φ− Φ = lim
n→∞

exp{τQn[t, a]}Φ− Φ

= lim
n→∞

∫ τ

0
exp{sQn[t, a]}Qn[t, a]Φds =

∫ τ

0
St(τ)Q[t, a]Φds.

Our result follows from the uniqueness of the generator, so that St(τ) =

exp{τQ[t, a]}. �
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The next result is the time-ordered version of the Hille-Yosida Theorem

(see Pazy [PZ], pg. 8). We assume that the family A(t), t ∈ I, is closed and

densely defined.

Theorem 56. The family A(t), t ∈ I, has a strong KH-integral, Q[t, a],

which generates a C0-contraction semigroup on FD2
⊗ if and only if ρ(A(t)) ⊃

(0,∞), ‖R (λ : A(t))‖ < 1/λ, for λ > 0, A(t), t ∈ I satisfies (3.6) and has

a densely defined weak KH-integral Q[t, a] on H.

Proof. In the first direction, suppose Q[t, a] generates a C0-contraction semi-

group on FD2
⊗, then Qn[t, a]Φ

s−→ Q[t, a]Φ for each Φ ∈ D0, and each t ∈ I.

Since Q[t, a] has a densely defined strong KH-integral, it follows from (3.6)

that Q[t, a] must have a densely defined weak KH-integral. Since Qn[t, a]

generates a C0-contraction semigroup for each KH-partition of order n, it

follows that A(t) must generate a C0-contraction semigroup for each t ∈ I.

From Theorem 42 and Theorem 51, we see that A(t) must also generate a

C0-contraction semigroup for each t ∈ I. From the conventional Hille-Yosida

theorem, the resolvent condition follows.

In the reverse direction, the conventional Hille-Yosida theorem along with

the first part of Theorem 55 shows that Q[t, a] generates a C0-contraction

semigroup for each t ∈ I. From parts 2, 3 of Theorem 51 and Theorem

42, we have that for each KH-partition of order n, Qn[t, a] generates a C0-

contraction semigroup, Qn[t, a]Φ → Q[t, a]Φ for each Φ ∈ D0 and each t ∈ I,

and Q[t, a] generates a C0-contraction semigroup on FD2
⊗. �
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The other generation theorems have a corresponding formulation in terms

of time-ordered integrals.

4. Time-Ordered Evolutions

As Q[t, a] and Qz[t, a] generate (uniformly bounded) C0-semigroups, we

can set U[t, a] = exp{Q[t, a]}, Uz[t, a] = exp{Qz[t, a]}. They are C0-

evolution operators and the following theorem generalizes a result due to

Hille and Phillips [HP].

Theorem 57. For each n, and Φ ∈ D
[
(Q[t, a])n+1

]
, we have: (w is positive

and Uw[t, a] = exp {wQ[t, a]})

Uw[t, a]Φ =

I⊗ +
n∑
k=1

(wQ[t, a])n

n!
+

1
n!

w∫
0

(w − ξ)nQ[t, a]n+1Uξ[t, a]dξ

 Φ.

Proof. The proof is easy, start with

[Uw
z [t, a]Φ− I⊗] Φ =

w∫
0

Qz[t, a]Uξ
z[t, a]dξΦ

and use integration by parts to get that

[Uw
z [t, a]Φ− I⊗] Φ = wQz[t, a]Φ +

w∫
0

(w − ξ) [Qz[t, a]]
2 Uξ

z[t, a]dξΦ.

It is clear how to get the nth term. Finally, let z →∞ to get the result. �

Theorem 58. If a < t < b,

(1) lim
z→∞

Uz[t, a]Φ = U[t, a]Φ, Φ ∈ FD2
⊗.
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(2)

∂

∂t
Uz[t, a]Φ = Az(t)Uz[t, a]Φ = Uz[t, a]Az(t)Φ,

with Φ ∈ FD2
⊗, and

(3)

∂

∂t
U[t, a]Φ = A(t)U[t, a]Φ = U[t, a]A(t)Φ, Φ ∈ D(Q[b, a]) ⊃ D0.

Proof. To prove (1), use the fact that Az(t) and A(t) commute, along with

U[t, a]Φ−Uz[t, a]Φ =
∫ 1

0
(d/ds)

(
esQ[t,a]e(1−s)Qz [t,a]

)
Φds

=
∫ 1

0
s
(
esQ[t,a]e(1−s)Qz[t,a]

)
(Q[t, a]−Qz[t, a]) Φds,

so that

lim
z→0

‖U[t, a]Φ−Uz[t, a]Φ‖ 6 M lim
z→0

‖Q[t, a]Φ−Qz[t, a]Φ‖ = 0.

To prove (2), use

Uz[t+h, a]−Uz[t, a] = Uz[t, a] (Uz[t+ h, t]− I) = (Uz[t+ h, t]− I)Uz[t, a],,

so that

(Uz[t+ h, a]−Uz[t, a])/h = Uz[t, a] [(Uz[t+ h, t]− I)/h] .

Now set Φt
z = Uz[t, a]Φ and use Theorem 58 with n = 1 and w = 1 to get:

Uz[t+h, t]Φt
z =

I⊗ + Qz[t+ h, t] +

1∫
0

(1− ξ)Uξ
z[t+ h, t]Qz[t+ h, t]2dξ

 Φt
z,
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so

(Uz[t+ h, t]− I)
h

Φt
z −Az(t)Φt

z =
Qz[t+ h, t]

h
Φt
z −Az(t)Φt

z

+

1∫
0

(1− ξ)Uξ
z[t+ h, t]

Qz[t+ h, t]
h

2

Φt
zdξ.

It follows that

∥∥∥∥(Uz[t+ h, t]− I)
h

Φt
z −Az(t)Φt

z

∥∥∥∥
⊗

6

∥∥∥∥Qz[t+ h, t]
h

Φt
z −Az(t)Φt

z

∥∥∥∥
⊗
+

1
2

∥∥∥∥∥Qz[t+ h, t]
h

2

Φt
z

∥∥∥∥∥
⊗

.

The result now follows from Theorem 54, (2) and (3) To prove (3),

note that Az(t)Φ = A(t) {zR(z,A(t))}Φ = {zR(z,A(t))}A(t)Φ, so that

{zR(z,A(t))} commutes with U[t, a] and A(t). It is now easy to show that

‖Az(t)Uz[t, a]Φ−Az′(t)Uz′ [t, a]Φ‖

6 ‖Uz[t, a] (Az(t)−Az′(t))Φ‖+
∥∥z′R(z′,A(t)) [Uz[t, a]Φ−Uz′ [t, a]]A(t)Φ

∥∥
6 M ‖(Az(t)−Az′(t))Φ‖+M ‖[Uz[t, a]Φ−Uz′ [t, a]]A(t)Φ‖ → 0, z, z′ →∞,

so that, for Φ ∈ D(Q[b, a]),

Az(t)Uz[t, a]Φ → A(t)U[t, a]Φ =
∂

∂t
U[t, a]Φ.

�

Since, as noted earlier, exp{Q[t, a]} does not solve the initial-value prob-

lem, we restate the last part of the last theorem to emphasize the importance

of this result, and the power of the constructive Feynman theory.
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Theorem 59. If a < t < b,

∂

∂t
U[t, a]Φ = A(t)U[t, a]Φ = U[t, a]A(t)Φ, Φ ∈ D0 ⊂ D(Q[b, a]).

4.1. Application: Hyperbolic and Parabolic Evolution Equations.

We can now apply the previous results to show that the standard condi-

tions imposed in the study of hyperbolic and parabolic evolution equations

imply that the family of operators is strongly continuous (see Pazy [PZ]), so

that our condition (3.6) is automatically satisfied. Let us recall the specific

assumptions traditionally assumed in the study of parabolic and hyperbolic

evolution equations. Without loss, we shift the spectrum of A(t) at each t,

if necessary, to obtain a uniformly bounded family of semigroups.

Parabolic Case

In the abstract approach to parabolic evolution equations, it is assumed

that:

(1) For each t ∈ I, A(t) generates an analytic C0-semigroup with do-

mains D(A(t)) = D independent of t.

(2) For each t ∈ I, R(λ,A(t)) exists ∀λ � Reλ 6 0, and there is an

M > 0 such that:

‖R(λ,A(t))‖ 6 M/[|λ|+ 1].

(3) There exist constants L and 0 < α 6 1 such that

∥∥(A(t)−A(s))A(τ)−1
∥∥ 6 L |t− s|α ∀ t, s, τ ∈ I
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In this case, when (3) is satisfied and ϕ ∈ D, we have

‖[A(t)−A(s)]ϕ‖ =
∥∥[

(A(t)−A(s))A−1(τ)
]
A(τ)ϕ

∥∥
6

∥∥(A(t)−A(s))A−1(τ)
∥∥ ‖A(τ)ϕ‖ 6 L |t− s|α ‖A(τ)ϕ‖ ,

so that the family A(t), t ∈ I, is strongly continuous on D. It follows that

the time ordered family A(t), t ∈ I, has a strong Riemann integral on D0.

Hyperbolic Case

In the abstract approach to hyperbolic evolution equations, it is assumed

that:

(1) For each t ∈ I, A(t) generates a C0-semigroup.

(2) For each t, A(t) is stable with constants M, 0 and ρ(A(t)) ⊃

(0,∞), t ∈ I (the resolvent set for A(t)), such that:∥∥∥∥∥∥
k∏
j=1

exp{τjA(tj)}

∥∥∥∥∥∥ 6 M.

(3) There exists a Hilbert space Y densely and continuously embedded

in H such that, for each t ∈ I, D(A(t)) ⊃ Y and A(t) ∈ L[Y,H]

(i.e., A(t) is bounded as a mapping from Y → H), and the function

g(t) = ‖A(t)‖Y→H is continuous.

(4) The space Y is an invariant subspace for each semigroup St(τ) =

exp{τA(t)} and St(τ) is a stable C0-semigroup on Y with the same

stability constants.

This case is not as easily analyzed as the parabolic case, so we need the

following:
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Lemma 60. Suppose conditions (3) and (4) above are satisfied with ‖ϕ‖H 6

‖ϕ‖Y . Then the family A(t), t ∈ I is strongly continuous on H.

Proof. Let ε > 0 be given and, without loss, assume that ‖ϕ‖H 6 1. Set

c = ‖ϕ‖Y
/
‖ϕ‖H, so that 1 6 c <∞. Now

‖[A(t+ h)−A(t)]ϕ‖H 6
{
‖[A(t+ h)−A(t)]ϕ‖H

/
‖ϕ‖Y

} [
‖ϕ‖Y

/
‖ϕ‖H

]
6 c ‖A(t+ h)−A(t)‖Y→H .

Choose δ > 0 such that |h| < δ ⇒ ‖A(t+ h)−A(t)‖Y→H < ε/c, which

completes the proof. �

5. Perturbation Theory

The study of perturbation theory for semigroups of operators has two

different approaches. Both have their roots in mathematical physics however

the first is motivated by and concerned with problems of modern physics,

while the concerns of the second approach has moved to the larger domain of

functional analysis, partial differential equations and applied mathematics.

In this section, we prove a few results for both types without attempting to

be exhaustive, since the known results (of perturbation theory) have a direct

extension to the time-ordered setting. Because of Theorem 27, the general

problem of perturbation theory can always be reduced to that of the strong

limit of the bounded case. Assume that, for each t ∈ I, A0(t) is the generator

of a C0-semigroup on H and that A1(t) is closed and densely defined. The

(generalized) sum of A0(t) and A1(t), in its various forms, whenever it is
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defined (with dense domain), is denoted by A(t) = A0(t)⊕A1(t) (see Kato

[KA], and Pazy [PZ]). Let An1 (t) = nA1(t)R(n, T1(t)) be the (generalized)

Yosida approximator for A1(t), where T1(t) = − [A∗1(t)A1(t)]
1/2 and set

An(t) = A0(t) +An1 (t).

Theorem 61. For each n, A0(t) +An1 (t) (respectively A0(t) +An1 (t)) is the

generator of a C0-semigroup on H (respectively FD2
⊗) and:

(1) If for each t ∈ I, A0(t) generates an analytic or contraction C0-

semigroup then so does An(t) and An(t).

(2) If for each t ∈ I, A(t) = A0(t) ⊕ A1(t) generates an analytic or

contraction C0-semigroup, then so does A(t) = A0(t) ⊕ A1(t) and

exp{τAn(t)} → exp{τA(t)} for τ > 0.

Proof. The first two parts of (1) are standard (see Pazy [PZ] pg. 79, 81).

The third part (contraction) follows because An1 (t) (respectively An1 (t)) is a

bounded m-dissipative operator. The proof of (2) follows from Theorem 27

equation (3.3) and Theorem 42. �

We now assume that A0(t) and A1(t) are weakly continuous, generators

of C0-semigroups for each t ∈ I, and equation (3.6) is satisfied. Then, with

the same notation, we have:

Theorem 62. If, for each t ∈ I, A(t) = A0(t)⊕A1(t) generates an analytic

or contraction semigroup, then Q[t, a] generates an analytic or contraction

semigroup and exp{Qn[t, a]} → exp{Q[t, a]}.
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Proof. The proof follows from Theorem 52 and Theorem 56. �

5.1. Interaction Representation.

The physical research related to this paper is part of a different point of de-

parture in the investigation of the foundations of relativistic quantum theory

(compared to axiomatic or constructive field theory approaches) and there-

fore considers different problems and questions (see [GJ] and also [SW]).

However, within the framework of axiomatic field theory, an important the-

orem of Haag suggests that the interaction representation, used in theoretical

physics, does not exist in a rigorous sense (see Streater and Wightman, [SW]

pg. 161). Haag’s theorem shows that the equal time commutation relations

for the canonical variables of an interacting field are equivalent to those of a

free field. In trying to explain this unfortunate result, Streater and Wight-

man point out that (see p. 168) ”... What is even more likely in physically

interesting quantum field theories is that equal time commutation relations

will make no sense at all; the field might not be an operator unless smeared

in time as well as space.” In this section, it is first shown that, if one as-

sumes (as Haag did) that operators act in sharp time, then the interaction

representation (essentially) does not exist.

We know from elementary quantum theory that there is some overlap-

ping of wave packets, so that it is more natural to expect smearing in time.

In fact, striking results of a beautiful recent experiment of Lindner et al
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(see Horwitz [HW] and references therein) clearly shows the effect of quan-

tum interference in time for the wave function of a particle. Horwitz [HW]

shows that the experiment has fundamental importance that goes beyond

the technical advances the work of Lindner, et al represents, since a complete

analysis requires relativistic quantum theory. In this section, we also show

that, if any time smearing is allowed, then the interaction representation is

well defined.

Let us assume that A0(t) and A1(t) are weakly continuous, generators of

a C0-unitary groups for each t ∈ I, A(t) = A0(t)⊕ A1(t) is densely defined

and equation (3.6) is satisfied. Define Un[t, a], U0[t, a] and Ūσ
0 [t, a] by:

Un[t, a] = exp{(−i/~)

t∫
a

[A0(s) +An1 (s)]ds},

U0[t, a] = exp{(−i/~)

t∫
a

A0(s)ds},

Ū0[t, a] = exp{(−i/~)

t∫
a

E[t, s]A0(s)ds},

where E[t, s] is the standard exchange operator (see Definition 47 and Theo-

rem 48). There are other possibilities, for example, we could replace Ū0[t, a]

by Ūσ
0 [t, a], where

Ūσ
0 [t, a] = exp{(−i/~)

t∫
a

Âσ0 (s)ds},

Âσ0 (t) =

∞∫
−∞

ρσ(t, s)E[t, s]A0(s)ds,
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where ρσ(t, s) is a smearing density that may depend on a small

parameter σ with
∫∞
−∞ ρσ(t, s)ds = 1 (for example, ρσ(t, s) =

[1
/√

2πσ2] exp{−(t− s)2
/
2σ2}).

In the first case, using U0[t, a], the interaction representation for An1 (t) is

given by:

AnI (t) = U0[a, t]An1 (t)U0[t, a] = An1 (t), (a.s)

as An1 (t) commutes with U0[a, t] in sharp time. Thus, the interaction rep-

resentation does not exist. In either of the last two possibilities, we have

AnI (t) = Ūσ
0 [a, t]An1 (t)Ūσ

0 [t, a],

and the terms do not commute. If we set Ψn(t) = Ūσ
0 [a, t]Un[t, a]Φ, we have

∂

∂t
Ψn(t) =

i

~
Ūσ

0 [a, t]A0(t)Un[t, a]Φ− i

~
Ūσ

0 [a, t] [A0(t) +An1 (t)]Un[t, a]Φ

⇒ ∂

∂t
Ψn(t) =

i

~
{Ūσ

0 [a, t]An1 (t)Ūσ
0 [t, a]}Ūσ

0 [a, t]Un[t, a]Φ

⇒ i~
∂

∂t
Ψn(t) = AnI (t)Ψn(t), Ψn(a) = Φ.

With the same conditions as Theorem 62, we have

Theorem 63. If Q1[t, a] =
∫ t
a A1(s)ds generates a C0-unitary group on

H, then the time-ordered integral QI[t, a] =
∫ t
a AI(s)ds, where AI(t) =

Ūσ
0 [a, t]A1(t)Ūσ

0 [t, a], generates a C0-unitary group on FD2
⊗, and

exp{(−i/~)Qn
I [t, a]} → exp{(−i/~)QI[t, a]},
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where Qn
I [t, a] =

∫ t
a A

n
I (s)ds, and:

i~
∂

∂t
Ψ(t) = AI(t)Ψ(t), Ψ(a) = Φ.

Proof. The result follows from an application of Theorems 62 and 63. �

Definition 64. The evolution operator Uw[t, a] = exp {wQ[t, a]} is said

to be asymptotic in the sense of Poincaré if, for each n and each Φa ∈

D
[
(Q[t, a])n+1

]
, we have

lim
w→0

w−(n+1)

{
Uw[t, a]−

n∑
k=1

(wQ[t, a])k

k!

}
Φa =

Q[t, a]n+1

(n+ 1)!
Φa.(5.1)

This is the operator version of an asymptotic expansion in the classical sense,

but Q[t, a] is now an unbounded operator.

Theorem 65. Suppose that Q[t, a] generates a contraction C0-semigroup

on FD2
⊗ for each t ∈ I. Then:

The operator Uw[t, a] = exp {wQ[t, a]} is asymptotic in the sense of

Poincaré.

For each n and each Φa ∈ D
[
(Q[t, a])n+1

]
, we have

Φ(t) = Φa +
n∑
k=1

wk
t∫

a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dskA(s1)A(s2) · · · A(sk)Φa

+

w∫
0

(w − ξ)ndξ

t∫
a

ds1

s1∫
a

ds2 · · ·
sn∫
a

dsn+1A(s1)A(s2) · · · A(sn+1)Uξ[sn+1, a]Φa,

(5.2)

where Φ(t) = Uw[t, a]Φa.
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Remark 66. The above case includes all generators of C0-unitary groups.

Thus, the theorem provides a precise formulation and proof of Dyson’s second

conjecture for quantum electrodynamics, that, in general, we can only expect

the expansion to be asymptotic. Actually, we prove more in that we produce

the remainder term, so that the above perturbation expansion is exact for all

finite n.

Proof. From Theorem 58, we have

Uw[t, a]Φ =


n∑
k=0

(wQ[t, a])n

n!
+

1
n!

w∫
0

(w − ξ)nQ[t, a]n+1Uξ[t, a]dξ

 Φ,

so that

w−(n+1)

{
Uw[t, a]Φa −

n∑
k=0

(wQ[t, a])k

k!
Φa

}
= +

(n+ 1)
(n+ 1)!

w−(n+1)

w∫
0

(w − ξ)ndξUξ[t, a]Q[t, a]n+1Φa.

Replace the right hand side by

I =
(n+ 1)
(n+ 1)!

w−(n+1)

w∫
0

(w − ξ)ndξ
{
Uξ
z[t, a] +

[
Uξ[t, a]−Uξ

z[t, a]
]}

Q[t, a]n+1Φa

= I1,z + I2,z,

where

I1,z =
(n+ 1)
(n+ 1)!

w−(n+1)

w∫
0

(w − ξ)ndξUξ
z[t, a]Q[t, a]n+1Φa,

and

I2,z =
(n+ 1)
(n+ 1)!

w−(n+1)

w∫
0

(w − ξ)ndξ
[
Uξ[t, a]−Uξ

z[t, a]
]
Q[t, a]n+1Φa.
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From the proof of Theorem 58, we see that limz→∞ I2,z = 0. Let ε > 0 be

given and choose Z such that z > Z ⇒ ‖I2,z‖ < ε. Now, use

Uξ
z[t, a] = I⊗ +

∑∞

k=1

ξkQk
z [t, a]
k!

for the first term to get that

I1,z =
(n+ 1)
(n+ 1)!

w−(n+1)

w∫
0

(w − ξ)ndξ
{

I⊗ +
∑∞

k=1

ξkQk
z [t, a]
k!

}
Q[t, a]n+1Φa.

If we compute the elementary integrals, we get

I1,z =
1

(n+ 1)!
Q[t, a]n+1Φa

+
∑∞

k = 1

1
k!n!


∑n

l=1

 n

l

 wk

(n+ k + 1− l)

Qk
z [t, a]Q[t, a]n+1Φa

then∥∥∥∥I− 1
(n+ 1)!

Q[t, a]n+1Φa

∥∥∥∥ <∥∥∥∥∥∥∥∥
∑∞

k = 1

1
k!n!


∑n

l=1

 n

l

 wk

(n+ k + 1− l)

Qk
z [t, a]Q[t, a]n+1Φa

∥∥∥∥∥∥∥∥ + ε.

Now let w → 0 to get

∥∥∥∥I− 1
(n+ 1)!

Q[t, a]n+1Φa

∥∥∥∥ < ε.

Since ε is arbitrary, U[t, a] = exp {Q[t, a]} is asymptotic in the sense of

Poincaré.
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To prove (5.2), let Φa ∈ D
[
(Q[t, a])n+1

]
for each k 6 n + 1, and use the

fact that (Dollard and Friedman [DOF])

(Qz[t, a])
k Φa =

 t∫
a

Az(s)ds

k

Φa

= (k!)

t∫
a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dsnAz(s1)Az(s2) · · · Az(sk)Φa.

(5.3)

Letting z →∞ gives the result. �

There are special cases in which the perturbation series may actually

converge to the solution. It is known that, if A0(t) is a nonnegative self-

adjoint operator on H, then exp{−τA0(t)} is an analytic C0-contraction

semigroup for Re τ > 0 (see Kato [KA], pg. 491). More generally, if

∆ = {z ∈ C : ϕ1 < arg z < ϕ2, ϕ1 < 0 < ϕ2} and for z ∈ ∆, sup-

pose that T (z) is a bounded linear operator on H.

Definition 67. The family T (w) is said to be an analytic semigroup on H,

for w ∈ ∆, if

(1) T (w)f is an analytic function of w ∈ ∆ for each f in H.

(2) T (0) = I and limw→0 T (w)f = f for every f ∈ H.

(3) T (w1 + w2) = T (w1)T (w2) for w1, w2 ∈ ∆.

For a proof of the next theorem, see Pazy [PZ], page 61.

Theorem 68. Let A0 be a closed densely defined linear operator defined on

H, satisfying:
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(1) For some 0 < δ < π/2,

ρ(A0) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}.

(2) There is a constant M such that:

‖R(λ : A0)‖ 6 M/|λ|

for λ ∈ Σδ, λ 6= 0.

Then A0 is the infinitesimal generator of a uniformly bounded analytic semi-

group T (w), for w ∈ ∆̄δ′ = {w : |argw| 6 δ′ < δ}. Furthermore, for s > 0

and |w − s| 6 Cs for some constant C,

T (w + s) = T (s) +
∑∞

n=1
(wn/n!)T (n)(s),

and the series converges uniformly.

Theorem 69. Let Q0[t, a] =
t∫
a
A0(s)ds and Q1[t, a] =

t∫
a
A1(s)ds be non-

negative selfadjoint generators of analytic C0-contraction semigroups for

t ∈ (a, b]. Suppose D(Q1[t, a]) ⊇ D(Q0[t, a]) and there are positive constants

α, β such that

‖Q1[t, a]Φ‖⊗ 6 α ‖Q0[t, a]Φ‖⊗ + β ‖Φ‖⊗ , Φ ∈ D(Q0[t, a]).(5.4)

(1) Then Q[t, a] = Q0[t, a] + Q1[t, a] and AI(t) = Ū0[a, t]A1(t)Ū0[t, a]

both generate analytic C0-contraction semigroups and, for w small

enough, we have
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(2) For each k and each Φa ∈ D
[
(QI[t, a])

k+1
]
,

Uw
I [t, a]Φa = Φa +

k∑
l=1

wl
t∫

a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dskAI(s1)AI(s2) · · · AI(sk)Φa

+

w∫
0

(w − ξ)kdξ

t∫
a

ds1

s1∫
a

ds2 · · ·
sk∫
a

dsk+1AI(s1)AI(s2) · · · AI(sk+1)U
ξ
I[sk+1, a]Φa.

(3) If Φa ∈ ∩k>1D
[
(QI[t, a])

k
]
, we have

Uw
I [t, a]Φa = Φa +

∞∑
k=1

wl
t∫

a

ds1

s1∫
a

ds2 · · ·
sk−1∫
a

dskAI(s1)AI(s2) · · · AI(sk)Φa.

Proof. To prove (1), use the fact that Q0[t, a] generates an analytic C0-

contraction semigroup to find a sector Σ in the complex plane, with

ρ(Q0[t, a]) ⊃ Σ (Σ = {λ : |arg λ| < π/2 + δ′}, for some δ′ > 0), and

for λ ∈ Σ,

‖R(λ : Q0[t, a])‖⊗ 6 |λ|−1 .

From (5.4), Q1[t, a]R(λ : Q0[t, a]) is a bounded operator and:

‖Q1[t, a]R(λ : Q0[t, a])Φ‖⊗ 6 α ‖Q0[t, a]R(λ : Q0[t, a])Φ‖⊗ + β ‖R(λ : Q0[t, a])Φ‖⊗

6 α ‖[R(λ : Q0[t, a])− I] Φ‖⊗ + β |λ|−1 ‖Φ‖⊗

6 2α ‖Φ‖⊗ + β |λ|−1 ‖Φ‖⊗

Thus, if we set α = 1/4, and |λ| > 2β, we have

‖Q1[t, a]R(λ : Q0[t, a])‖⊗ < 1

and it follows that the operator

I−Q1[t, a]R(λ : Q0[t, a])
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is invertible. Now it is easy to see that:

(λI− (Q0[t, a] + Q1[t, a]))
−1 = R(λ : Q0[t, a]) (I−Q1[t, a]R(λ : Q0[t, a]))

−1 .

It follows that, using |λ| > 2β, with |arg λ| < π/2 + δ′′ for some δ′′ > 0, and

the fact that Q0[t, a] and Q1[t, a] are nonnegative generators, we get that

‖R(λ : Q0[t, a] + Q1[t, a])‖⊗ 6 |λ|−1 .

Thus Q0[t, a]+Q1[t, a] generates an analytic C0-contraction semigroup. The

proof of (2) follows from Theorem 66, and that of (3) follows from Theorem

69. �

There are also cases where the series may diverge, but still respond to

some summability method. This phenomenon is well known in classical

analysis. In field theory, things can be much more complicated. The book

by Glimm and Jaffe [GJ] has a good discussion.

6. Path Integrals II: Sum Over Paths

In his book Feynman suggested that the operator calculus was more gen-

eral than the path integral (see Feynman and Hibbs [FH], pg. 355-6). In

this section, we first construct (what we call) the experimental evolution

operator. This allows us to rewrite our theory as a sum over paths. We

use a general argument so that the ideas apply to almost all cases. Assume

that the family {τ1, τ2, · · · , τn} represents the time positions of n possible

measurements of a general system trajectory, as appears on a film of system
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history. We assume that information is available beginning at time T = 0

and ends at time T = t. Define QE [τ1, τ2, · · · , τn] by

QE [τ1, τ2, · · · , τn] =
n∑
j=1

∫ tj

tj−1

E[τj , s]A(s)ds.(6.1)

Here, t0 = τ0 = 0, tj = (1/2)[τj + τj+1] (for 1 6 j 6 n), and E[τj , s] is the

exchange operator. The effect of E[τj , s] is to concentrate all information

contained in [tj−1, tj ] at τj , the mid-point of the time interval around τj

relative to τj−1 and τj+1. We can rewrite QE [τ1, τ2, · · · , τn] as

QE [τ1, τ2, · · · , τn] =
n∑
j=1

∆tj

[
1

∆tj

∫ tj

tj−1

E[τj , s]A(s)ds

]
.(6.2)

Thus, we have an average over each adjacent interval, with information

concentrated at the mid-point. The evolution operator is given by

U [τ1, τ2, · · · , τn] = exp


n∑
j=1

∆tj

[
1

∆tj

∫ tj

tj−1

E[τj , s]A(s)ds

] .

For Φ ∈ FD2
⊗, we define the function U[N(t), 0]Φ by:

U[N(t), 0]Φ = U [τ1, τ2, · · · , τn]Φ.(6.3)

U[N(t), 0]Φ is a FD2
⊗-valued random variable, which represents the distri-

bution of the number of measurements, N(t), that are possible up to time

t. In order to relate U[N(t), 0]Φ to actual experimental results, we must

compute its expected value. Let λ−1 denote the smallest time interval in

which a measurement can be made, and define Ūλ[t, 0]Φ by:

Ūλ[t, 0]Φ = E [U[N(t), 0]Φ] =
∞∑
n=0

E {U[N(t), 0]Φ |N(t) = n }Pr ob [N(t) = n] .
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We make the natural assumption that: (See Gill and Zachary [GZ])

Pr ob [N(t) = n] = (n!)−1 (λt)n exp{−λt}.

The expected value-integral is of theoretical use and is not easy to compute.

Since we are only interested in what happens when λ → ∞, and as the

mean number of possible measurements up to time t is λt, we can take

τj = (jt/n), 1 6 j 6 n, (∆tj = t/n for each n). We can now replace

Ūn[t,0]Φ by Un[t,0]Φ, and with this understanding, we continue to use τj ,

so that

Un[t,0]Φ = exp


n∑
j=1

∫ tj

tj−1

E[τj , s]A(s)ds

 Φ.(6.4)

We define our experimental evolution operator Uλ[t, 0]Φ by

Uλ[t, 0]Φ =
[[λt]]∑
n=0

(λt)n

n!
exp{−λt}Un[t,0]Φ.(6.5)

We now have the following result, which is a consequence of the fact that

Borel summability is regular.

Theorem 70. Assume that the conditions for Theorem 51 are satisfied.

Then

lim
λ→∞

Ūλ[t, 0]Φ = lim
λ→∞

Uλ[t, 0]Φ = U[t, 0]Φ.(6.6)

Since λ→∞⇒ λ−1 → 0, this means that the average time between mea-

surements is zero (in the limit) so that we get a continuous path. It should

be observed that this continuous path arises from averaging the sum over
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an infinite number of (discrete) paths. The first term in (6.5) corresponds

to the path of a system that created no information (i.e., the film is blank).

This event has probability exp{−λt} (which approaches zero as λ → ∞).

The n-th term corresponds to the path that creates n possible masurements,

(with probability [(λt)n/n!] exp{−λt}) etc.

Let U [t, a] be an evolution operator on L2[R3], with time-dependent gen-

erator A(t), which has a kernel K[x(t), t ; x(s), s] such that:

K [x(t), t; x(s), s] =
∫
R3

K [x(t), t; dx(τ), τ ]K [x(τ), τ ; x(s), s] ,

U [t, s]ϕ(s) =
∫
R3

K [x(t), t; dx(s), s]ϕ(s).

Now let H = KS[R3] ⊃ L2[R3] in the construction of FD2
⊗ ⊂ H2

⊗, let U[t,s]

be the corresponding time-ordered version, with kernel Kf [x(t), t; x(s), s].

Since U[t,τ ]U[τ ,s] = U[t,s], we have:

Kf [x(t), t; x(s), s] =
∫
R3

Kf [x(t), t; dx(τ), τ ]Kf [x(τ), τ ; x(s), s] .

From our sum over paths representation for U[t, s], we have:

U[t, s]Φ(s) = lim
λ→∞

Uλ[t, s]Φ(s)

= limλ→∞ e−λ(t−s)
[[λ(t−s)]]∑
k=0

[λ (t− s)]k

k!
Uk[t, s]Φ(s),

where

Uk[t, s]Φ(s) = exp

(−i/~)
k∑
j=1

∫ tj

tj−1

E[(j/λ), τ ]A(τ)dτ

 Φ(s).
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As in Section 1, we define Kf [Dλx(τ) ; x(s)] by:∫
R3[t,s]

Kf [Dλx(τ) ; x(s)]

=: e−λ(t−s)
[[λ(t−s)]]∑
k=0

[λ(t− s)]k

k!


k∏
j=1

∫
R3

Kf [tj ,x(tj) ; dx(tj−1), tj−1]|(j/λ)

,
where [[λ(t− s)]], the greatest integer in λ(t− s), and |

(j/λ)

denotes the fact

that the integration is performed in time slot (j/λ).

Definition 71. We define the Feynman path integral associated with U[t, s]

by:

U[t, s] =
∫
R3[t,s]

Kf [Dx(τ) ; x(s)] = lim
λ→∞

∫
R3[t,s]

Kf [Dλx(τ) ; x(s)].

Theorem 72. For the time-ordered theory, whenever a kernel exists, we

have that:

lim
λ→∞

Uλ[t, s]Φ(s) = U[t, s]Φ(s) =
∫
R3[t,s]

Kf [Dx(τ) ; x(s)]Φ[x(s)],

and the limit is independent of the space of continuous functions.

Let us assume that A0(t) and A1(t) are strongly continuous generators

of C0-contraction semigroups for each t ∈ E = [a, b] and, let A1,ρ(t) =

ρA1(t)R(ρ,A1(t)) be the Yosida approximator for the time-ordered version

of A1(t). Define Uρ[t, a] and U0[t, a] by:

Uρ[t, a] = exp{(−i/~)

t∫
a

[A0(s) +A1,ρ(s)]ds},

U0[t, a] = exp{(−i/~)

t∫
a

A0(s)ds}.
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Since A1,ρ(s) is bounded, A0(s) +A1,ρ(s) is a generator of a C0-contraction

semigroup for s ∈ E and finite ρ. Now assume that U0[t, a] has an associated

kernel, so that U0[t, a] =
∫
R3[t,s] Kf [Dx(τ);x(a)]. We now have the following

general result, which is independent of the space of continuous functions.

Theorem 73. (Feynman-Kac)* If A0(s) ⊕ A1(s) is a generator of a C0-

contraction semigroup, then

lim
ρ→∞

Uρ[t, a]Φ(a) = U[t, a]Φ(a)

=
∫
R3[t,a]

Kf [Dx(τ) ; x(a)] exp{(−i/~)

τ∫
a

A1(s)ds]}Φ[x(a)].

Proof. The fact that Uρ[t, a]Φ(a) → U[t, a]Φ(a), is clear. To prove that

U[t, a]Φ(a) =
∫
R3[t,a]

Kf [Dx(τ);x(a)] exp{(−i/~)
∫ t

a
A1(s)ds},

first note that since the time-ordered integral exists and we are only inter-

ested in the limit, we can write, for each k

Uρk [t, a]Φ(a) = exp

{
(−i/~)

∑k

j=1

∫ tj

tj−1

[
E[τj , s]A0(s) + E[τ ′j , s]A1,ρ(s)

]
ds

}
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where τj and τ ′j are distinct points in the interval (tj−1, tj). Thus, we can

also write Uρk [t, a]Φ(a) as

Uρ
k[t, a]Φ(a)

= exp

{
(−i/~)

∑k

j=1

∫ tj

tj−1

E[τj , s]A0(s)ds

}
exp

{
(−i/~)

∑k

j=1
E[τ ′j , s]A1,ρ(s)ds

}

=
∏k

j=1
exp

{
(−i/~)

∫ tj

tj−1

E[τj , s]A0(s)ds

}
exp

{
(−i/~)

∑k

j=1
E[τ ′j , s]A1,ρ(s)ds

}

=
∏k

j=1

∫
R3

Kf [tj ,x(tj); tj−1, dx(tj−1)] |τj exp
{

(−i/~)
∑k

j=1
E[τ ′j , s]A1,ρ(s)ds

}
.

If we put this in our experimental evolution operator Uρ
λ[t, a]Φ(a) and com-

pute the limit, we have:

Uρ[t, a]Φ(a)

=
∫
R3[t,a]

Kf [Dx(t);x(a)] exp
{

(−i/~)
∫ t

a
A1,ρ(s)ds

}
Φ(a).

Since the limit as ρ → ∞ on the left exists, it defines the limit on the

right. �

7. Discussion

The reader may have noticed that there is no discussion of the various

Trotter-Kato product type theorems, which have played an important role

in the applications of semigroup theory. This theory identifies conditions

under which the sum of two or more semigroup generators is a generator

and as such, carries over to the time-ordered setting without any changes in

the basic results.
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The question of external forces requires discussion of the inhomogeneous

problem. Since the inhomogeneous problem is a special case of the semilin-

ear problem, we provide a few remarks in that direction. Since all of the

standard results go through as in the conventional approach, we content

ourselves with a brief description of a typical case. Without loss in gen-

erality, we assume H has our standard basis. With the conditions for the

parabolic or hyperbolic problem in force, the typical semilinear problem can

be represented on H as:

∂u(t)
∂t

= A(t)u(t) + f(t, u(t)), u(a) = ua.(7.1)

We assume that f is continuously differentiable with u0 ∈ H in the para-

bolic or u0 ∈ D, the common dense domain, in the hyperbolic case. These

conditions are sufficient for u(t) to be a classical solution (see Pazy [PZ],

pg. 187). The function f has the representation f(t, u(t)) =
∑∞

k=1 fk(t)e
k

in H. The corresponding function f , in FD2
⊗, has the representation

f(t,u(t)) =
∑∞

k=1 fk(t)E
k, where u(t) is a classical solution to the time-

ordered problem:

∂u(t)
∂t

= A(t)u(t) + f(t,u(t)), u(a) = ua.(7.2)

This function u(t) also satisfies the integral equation (time-ordered mild

solution):

u(t) = U(t, a)ua +
∫ t

a
U(t, s)f(s,u(s))ds.
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If f does not depend on u(t), we get the standard linear inhomogeneous

problem. It follows that all the basic results (and proofs) go though for

the semilinear and linear inhomogeneous problem in the time-ordered case.

Similar statements apply to the problem of asymptotic behavior of solutions

(e.g., dynamical systems, attractors, etc).

The general nonlinear problem requires a different approach, that depends

on a new theory of nonlinear operator algebras, which we call S∗-algebras.

This will be discuss at a later time, however the theory has recently been

(indirectly) used to construct a sufficiency class of functions for global (in

time) solutions to the 3D-Navier-Stokes equations [GZ1]. The corresponding

linear theory can be found in [GZ2] .

Conclusion

In this paper we have shown how to construct a natural representation

space for Feynman’s time-ordered operator calculus. This space allows us

to construct the time-ordered integral and evolution operator (propagator)

under the weakest known conditions. We have constructed a new Hilbert

space that contains the Feynman kernel and the delta function as norm

bounded elements, and shown that on this space, we can rigorously con-

struct the path integral in the manner originally intended by Feynman. We

have extended the path integral to very general interactions and provided
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a substantial generalization of the Feynman-Kac formula. We have also de-

veloped a general theory for perturbations and shown that all time-ordered

evolution operators are asymptotic in the operator-valued sense of Poincaré.
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