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J. Fröhlich1∗, M. Griesemer2†and I.M. Sigal3‡

1. Theoretical Physics, ETH–Hönggerberg,
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Abstract

For a model of atoms and molecules made from static nuclei and non-relativistic elec-

trons coupled to the quantized radiation field (the standard model of non-relativistic QED),

we prove a Mourre estimate and a limiting absorption principle in a neighborhood of the

ground state energy. As corollaries we derive local decay estimates for the photon dynam-

ics, and we prove absence of (excited) eigenvalues and absolute continuity of the energy

spectrum near the ground state energy, a region of the spectrum not understood in previous

investigations.

The conjugate operator in our Mourre estimate is the second quantized generator of

dilatations on Fock space.

1 Introduction

According to Bohr’s well known picture, an atom or molecule has only a discrete set of sta-

tionary states (bound states) at low energies and a continuum of states at energies above the

ionization threshold. Electrons can jump from a stationary state to another such state at lower

energy by emitting photons. These radiative transitions tend to render excited states unstable,
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i.e., convert them into resonances. Exceptions are the ground state and, in some cases, ex-

cited states that remain stable for reasons of symmetry (e.g. ortho-helium). In non-relativistic

QED, the instability of excited states finds its mathematical expression in the migration of

eigenvalues to the lower complex half-plane (second Riemannian sheet for a weighted resol-

vent) as the interaction between electrons and photons is turned on. Indeed, the spectrum of

the Hamiltonian becomes purely absolutely continuous in a neighborhood of the unperturbed

excited eigenvalues [7, 5]. The ground state, however, remains stable [4, 5, 16]. The methods

used to analyze the spectrum near unperturbed excited eigenvalues have either failed [7], or

not been pushed far enough [5], to yield information on the spectrum of the interacting Hamil-

tonian in a neighborhood of the ground state energy. The purpose of this paper is to close

this gap. We establish a Mourre estimate and a corresponding limiting absorption principle

for a spectral interval at the infimum of the energy spectrum. It follows that the spectrum

is purely absolutely continuous above the ground state energy. As a corollary we prove local

decay estimates for the photon dynamics.

In non-relativistic QED (regularized in the ultraviolet), the Hamiltonian, H, of an atom or

molecule with static nuclei with is a self-adjoint operator on the tensor product, H := Hpart⊗F ,

of the electronic Hilbert space Hpart = ∧N
i=1L

2(R3; C2) and the symmetric (bosonic) Fock space

F over L2(R3,C2; dk). It is given by

H =
N∑

i=1

(−i∇xi + α3/2A(αxi))2 + V +Hf , (1)

where N is the number of electrons and α > 0 is the fine structure constant. The variable

xi ∈ R3 denotes the position of the ith electron, and V is the operator of multiplication

by V (x1, . . . , xN ), the potential energy due to the interaction of the electrons and the nuclei

through their electrostatic fields. In our units, V (x1, . . . , xN ) is independent of α and given by

V (x1, . . . , xN ) = −
N∑

i=1

M∑
l=1

Zl

|xi −Rl|
+
∑
i<j

1
|xi − xj |

.

The operator Hf accounts for the energy of the transversal modes of the electromagnetic field,

and A(x) is the quantized vector potential in the Coulomb gauge with an ultraviolet cutoff. In

terms of creation- and annihilation operators, a∗λ(k) and aλ(k), these operators are

Hf =
∑

λ=1,2

∫
d3k|k|a∗λ(k)aλ(k),

and

A(x) =
∑

λ=1,2

∫
d3k

κ(k)
|k|1/2

ελ(k)
{
eik·xaλ(k) + e−ik·xa∗λ(k)

}
, (2)

where λ ∈ {1, 2} labels the two possible photon polarizations perpendicular to k ∈ R3. The

corresponding polarization vectors are denoted by ελ(k); they are normalized and orthogonal
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to each other. Thus, for each x ∈ R3, A(x) = (A1(x), A2(x), A3(x)) is a triple of operators

on the Fock space F . The real-valued function κ is an ultraviolet cutoff and serves to make

the components of A(x) densely defined self-adjoint operators. We assume that κ belongs to

the Schwartz space, although much less smoothness and decay suffice. We emphasize that no

infrared cutoff is used; that is, (physically relevant) choices of κ, with

κ(0) 6= 0 (3)

are allowed. The spectral analysis of H for such choices of κ is the main concern of this paper.

Under the simplifying assumption that |κ(k)| ≤ |k|β, for some β > 0, the analysis is easier and

some of our results are already known for β sufficiently large; see the brief review at the end

of this introduction.

The spectrum of H is the half-line [E,∞), with E = inf σ(H). The end point E is an

eigenvalue if N − 1 <
∑

l Zj [6, 16, 19], but the rest of the spectrum is expected to be

purely absolutely continuous (with possible exception as explained above). For a large interval

between E and the threshold, Σ, of ionization, absolute continuity has been proven in [7, 6]; but

the nature of the spectrum in small neighborhoods of E and Σ has not been analyzed. There

are further results on absolute continuity of the spectrum for simplified variants of H, and we

shall comment on them below. Our main goal, in this paper, is to analyze the spectrum of H

in a neighborhood of E. Under the assumption that e1 = inf σ(Hpart) is a simple and isolated

eigenvalue of Hpart = −
∑N

i=1 ∆xi + V , we show that σ(H) is purely absolutely continuous in

(E,E+egap/2), where egap = e2−e1 and e2 is the first point in the spectrum of Hpart above e1.

It follows, in particular, that H has no eigenvalues near E other than E, and, as a byproduct

of our proofs, a local decay estimate is obtained for the photon dynamics.

Our approach to the spectral analysis of H is based on Conjugate Operator Theory in its

standard form with a self-adjoint conjugate operator. Our choice for the conjugate operator,

B, is the second quantized dilatation generator on Fock space, that is,

B = dΓ(b), b =
1
2
(k · y + y · k), (4)

where y = i∇k denotes the “position operator” for photons. The hypotheses of conjugate

operator theory are a regularity assumption on H and a positive commutator estimate, called

Mourre estimate. Concerning the first assumption we show that s 7→ e−iBsf(H)eiBsψ is twice

continuously differentiable, for all ψ ∈ H and for all f of class C∞
0 on the interval (−∞,Σ)

below the ionization threshold Σ. Our Mourre estimate says that, if α is small enough, then

E∆(H − E)[H, iB]E∆(H − E) ≥ σ

10
E∆(H − E), (5)

for arbitrary σ ≤ egap/2 and ∆ = [σ/3, 2σ/3]. As a result we obtain all the standard conse-

quences of conjugate operator theory on the interval (E,E+egap/2) [21], in particular, absence
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of eigenvalues (Virial Theorem), absolute continuity of the spectrum, existence of the boundary

values

〈B〉−s(H − λ± i0)−1〈B〉−s (6)

for λ ∈ (E,E + egap/3), s ∈ (1/2, 1) (Limiting Absorption Principle), and their Hölder conti-

nuity of degree s − 1/2 with respect to λ. This Hölder continuity implies the following local

decay estimate: if f ∈ C∞
0 (R) with supp(f) ⊂ (E,E + egap/3), then

‖〈B〉−se−iHtf(H)〈B〉−s‖ = O(
1

ts−1/2
), (t→∞),

which is a statement about the growth of 〈B〉 := (1 + B2)1/2 under the time evolution of

states in the range of f(H)〈B〉−s. Such estimates are useful in scattering theory. See [13] for

a discussion of this point.

The idea to use conjugate operator theory with (4) as the conjugate operator is not new

and has been used for instance in [7]. It is based on the property that

[Hf , iB] = Hf

and that Hf is positive on the orthogonal complement of the vacuum sector. There is an

obvious problem, however, with the implementation of this idea that discouraged people from

using it in the analysis of the spectrum close to E: if α3/2W = H − (Hpart +Hf ) denotes the

interaction part of H, then

[H, iB] = Hf + α3/2[W, iB], (7)

and the commutator [W, iB] has no definite sign. It can be compensated for by part of the

field energy Hf so that Hf + α3/2[W, iB] becomes positive, but only so on spectral subspaces

corresponding to energy intervals separated from E by a distance of order α3 [7]. For fixed

α > 0 no positive commutator, and thus no information on the spectrum is obtained near

E = inf σ(H). For this reason, Hübner and Spohn and, later, Skibsted, Dereziński and Jakšić,

and Georgescu et al. chose the operator

B̂ =
1
2
dΓ(k̂ · y + y · k̂), k̂ =

k

|k|
,

or a variant thereof, as conjugate operator; see [18, 22, 9, 14]. It has the advantage that,

formally, [Hf , iB̂] = N , the number operator, which is bounded below by the identity operator

on the orthogonal complement of the vacuum sector. It follows that [H, iB̂] ≥ 1
2N , for α > 0

small enough, and one may hope to prove absolute continuity of the energy spectrum all the

way down to inf σ(H). The drawback of B̂ is that it is only symmetric, but not self-adjoint,

and hence not admissible as a conjugate operator. Therefore Skibsted, and, later, Georgescu,

Gérard, and Møller developed suitable extensions of conjugate operator theory that allow for

non-selfajoint conjugate operators [22, 14]. Skibsted applied his conjugate operator theory
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to (1) and obtained absolute continuity of the energy spectrum away from thresholds and

eigenvalues under an infrared (IR) regularization, but not for (3). For the spectral results of

Georgescu et al. see the review below. Given this background, the main achievement of the

present paper is the discovery of the Mourre estimate (5). We now sketch the main elements

of its proof.

1. As an auxiliary operator we introduce an IR-cutoff Hamiltonian Hσ in which the inter-

action of electrons with photons of energy ω ≤ σ is turned off. It follows that Hσ is of the

form

Hσ = Hσ ⊗ 1 + 1⊗Hf,σ,

with respect to H = Hσ ⊗ Fσ, where Fσ is the symmetric Fock space over L2(|k| ≤ σ; C2)

and Hf,σ is dΓ(ω) restricted to Fσ. We show that the reduced Hamiltonian Hσ does not

have spectrum in the interval (Eσ, Eσ + σ) above the ground state energy Eσ = inf σ(Hσ) =

inf σ(Hσ). It follows that, for any ∆ ⊂ (0, σ),

E∆(Hσ − Eσ) = P σ ⊗ E∆(Hf,σ), (8)

where P σ is the ground state projection of Hσ.

2. We split B into two pieces B = Bσ +Bσ where Bσ and Bσ are the second quantizations

of the generators associated with the vector fields η2
σ(k)k and ησ(k)2k, respectively. Here

ησ, η
σ ∈ C∞(R3) is a partition of unity, η2

σ + (ησ)2 = 1, with ησ(k) = 1 for |k| ≤ 2σ and

ησ(k) = 1 for |k| ≥ 4σ. It follows that Bσ = Bσ ⊗ 1 with respect to H = Hσ ⊗ Fσ, and that

[H,Bσ] = [Hσ, Bσ]⊗ 1. Thus (8) and the virial theorem, P σ[Hσ, Bσ]P σ = 0, imply that

E∆(Hσ − Eσ)[H, iBσ]E∆(Hσ − Eσ) = 0. (9)

3. The first key estimate in our proof of (5) is the operator inequality

E∆(Hσ − Eσ)[H, iBσ]E∆(Hσ − Eσ) ≥ σ

8
E∆(Hσ − Eσ) (10)

valid for the interval ∆ = [σ/3, 2σ/3] and α � 1, with α independent of σ. This inequality

follows from

[Hf , iBσ] = dΓ(η2
σω) ≥ Hf,σ (11)

and from

E∆(Hσ − Eσ)[α3/2Hf + α3/2W, iBσ]E∆(Hσ − Eσ) ≥ O(α3/2σ). (12)

Indeed, by writing Hf = (1 − α3/2)Hf + α3/2Hf , combining (11) and (12), and using (8) we

obtain

E∆(Hσ − Eσ)[H, iBσ]E∆(Hσ − Eσ) ≥
(
(1− α3/2) inf ∆ +O(α3/2σ)

)
E∆(Hσ − Eσ). (13)

For ∆ = [σ/3, 2σ/3] and α small enough this proves (10).
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4. The second key estimate in our proof of (5) is the norm bound

‖f∆(H − E)− f∆(Hσ − Eσ)‖ = O(α3/2σ) (14)

valid for smoothed characteristic functions f∆ of the interval ∆ = [σ/3, 2σ/3]. The Mourre

estimate (5) follows from (9), (10), from B = Bσ + Bσ and from (14) if α � 1, with α

independent of σ.

We conclude this introduction with a review of previous work closely related to this paper.

Absolute continuity of (part of) the spectrum of Hamiltonians of the form (1), or caricatures

thereof, was previously established in [18, 2, 22, 14, 4, 6, 7]. Arai considers the explicitly

solvable case of a harmonically bound particle coupled to the quantized radiation field in the

dipole approximation. Hübner and Spohn study the spin-boson model with massive bosons

or with a photon number cutoff imposed. Their work inspired [22] and [14], where better

results were obtained: Skibsted analyzed (1) and assumed that |κ(k)| ≤ |k|5/2, while, in [14],

|κ(k)| ≤ |k|β, with β > 1/2, is sufficient for a Nelson-type model with scalar bosons; (see

Section 2 of the present article). The main achievement of [14] is that no bound on the

coupling strength is required. Papers [6] and [7] do not introduce an infrared regularization

but establish the spectral properties mentioned above only away from O(α3)-neighborhoods of

the particle ground state energy and the ionization threshold.

2 Non-relativistic Matter and Scalar Bosons

To illustrate the main ideas on which this work is based we first derive results for a sim-

plified model of matter and radiation with only one electron and scalar bosons, rather than

transversal photons. We suppress proofs of technical details that are similar and easier than

the corresponding proofs of results on non-relativistic QED, in the next section.

The Hamiltonian, in this section, is the operator

H = Hpart ⊗ 1 + 1⊗Hf + gφ(G) (15)

on the Hilbert space L2(R3) ⊗ F , with F being the symmetric Fock space over L2(R3; dk).

We assume that Hpart = −∆ + V , where V denotes the operator of multiplication with a

real-valued function V ∈ L2
loc(R3) that is ∆-bounded with bound zero. Moreover we assume

that e1 = inf σ(Hpart) is an isolated simple eigenvalue. The number e2 > e1 denotes the first

point in the spectrum of Hpart above e1 and egap = e2 − e1. The parameter g ≥ 0 measures

the strength of interaction between the electron and the bosons.

The field energy Hf and the interaction term gφ(G) are given in terms of creation and

annihilation operators a∗(k) and a(k), as

Hf =
∫
ω(k)a∗(k)a(k) d3k, ω(k) = |k|,
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and

φ(G) =
∫ {

G(k)∗ ⊗ a(k) +G(k)⊗ a∗(k)
}
d3k,

where, for each k ∈ R3, G(k) is a multiplication operator given by a function x 7→ Gx(k) on the

electronic Hilbert space L2(R3; dx). We assume that Gx(k) is twice continuously differentiable

with respect to k and that

sup
x∈R3

∫ ∣∣∣〈x〉−n|k|n∂n
|k|Gx(k)

∣∣∣2 (|k|−1 + 1)d3k <∞ (16)

for n ∈ {0, 1, 2}, where 〈x〉 = (1 + x2)1/2. Moreover, we assume that

|Gx(k)| ≤ |k|µ, for |k| ≤ 2egap (17)

〈x〉−1|k|
∣∣∣∣ ∂∂|k|Gx(k)

∣∣∣∣ ≤ |k|µ, for |k| ≤ 2egap, (18)

uniformly in x ∈ R3, for a suitably chosen µ ∈ R. The main theorem of this section holds for

µ ≥ 1/2.

Assumption (16) with n = 0 implies that φ(G) is H0-bounded, H0 = Hpart ⊗ 1 + 1 ⊗Hf ,

with relative bound zero. It follows from the Kato-Rellich Theorem, that H is self-adjoint on

the domain of H0, essentially self-adjoint on any core of H0, and bounded from below. We use

E = inf σ(H) to denote the lowest point of the spectrum of H and Σ to denote the ionization

threshold

Σ = lim
R→∞

(
inf

ϕ∈DR, ‖ϕ‖=1
〈ϕ,Hϕ〉

)
, (19)

where DR := {ϕ ∈ D(H)|χ(|x| ≤ R)ϕ = 0}.
Our conjugate operator is the second quantized dilatation generator

B = dΓ(b), b =
1
2
(k · y + y · k) (20)

where y = i∇k. By the methods of Section 4 one can show, using (16), that H is locally of

class C2(B) on Ω := (−∞,Σ). That is, the mapping

s 7→ e−iBsf(H)eiBsϕ (21)

is twice continuously differentiable, for every ϕ ∈ H and every f ∈ C∞
0 (Ω). This makes the

conjugate operator theory in the variant of Sahbani [21] applicable, and, in particular, it allows

one to define the commutator [H, iB] as a sesquilinear form on ∪KEK(H)H, the union being

taken over all compact subsets K of Ω.

We are now ready to state our main results on the Hamiltonian (15).

Theorem 1 (Mourre estimate). Suppose that Hypotheses (16), (17), and (18) hold with

µ ≥ 1/2. If g � 1 and σ ≤ egap/2 then

E∆(H − E)[H, iB]E∆(H − E) ≥ σ

10
E∆(H − E),

where ∆ = [σ/3, 2σ/3].
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This theorem verifies the second hypothesis of Conjugate Operator Theory, see Section B

of the appendix, and it has all the standard implications of this theory: In (E,E + egap/3),

the spectrum of H is absolutely continuous, the boundary values 〈B〉−s(H − λ ± i0)〈B〉−s

are Hölder continuous of degree s − 1/2, and 〈B〉−se−iHtf(H)〈B〉−s = O(t1/2−s), for f ∈
C∞

0 (E,E + egap/3) and s ∈ (1/2, 1); see Theorems 31, 32, and 33. For the more important

standard model of nonrelativistic QED, these properties are spelled out explicitly in the next

section.

The proof of Theorem 1 depends, of course, on an explicit expression for the commutator

[H, iB]. By Lemma 37 and an analog of Proposition 18, we know that for f ∈ C∞
0 (E,E+egap/3)

f(H)[H, iB]f(H) = lim
s→0

f(H)
[
H,

eiBs − 1
s

]
f(H)

= f(H)
(
dΓ(ω)− gφ(ibGx)

)
f(H), (22)

where the limit is taken in the strong operator topology. Therefore we may identify [H, iB]

with the operator
(
dΓ(ω)− gφ(ibGx)

)
, which is defined on D(|x|) ∩D(Hf ). One of our main

tools for estimating (22) from below is an infrared cutoff Hamiltonian Hσ, σ as in Theorem 1,

whose spectral subspaces for energies close to inf σ(Hσ) are explicitly known (see Lemma 2).

A second key tool is the decomposition of B into two pieces, Bσ and Bσ. We now define these

operators along with some other auxiliary operators and Hilbert spaces. As a general rule,

we will place the index σ downstairs if only low-energy photons are involved, and upstairs for

high-energy photons. The fact that this rule does not cover all cases should not lead to any

confusion.

Let χ0, χ∞ ∈ C∞(R, [0, 1]), with χ0 = 1 on (−∞, 1], χ∞ = 1 on [2,∞), and χ2
0 + χ2

∞ ≡ 1.

For a given σ > 0, we define χσ(k) = χ0(|k|/σ), χσ(k) = χ∞(|k|/σ), χ̃σ(k) = 1− χσ(k), and a

Hamiltonian Hσ by

Hσ = Hpart ⊗ 1 + 1⊗Hf + gφ(χ̃σG). (23)

Let Fσ and Fσ denote the bosonic Fock spaces over L2(|k| < σ) and L2(|k| ≥ σ), respectively,

and let Hσ = L2(R3) ⊗ Fσ. Then H is isomorphic to Hσ ⊗ Fσ, and, in the sense of this

isomorphism,

Hσ = Hσ ⊗ 1 + 1⊗Hf,σ. (24)

Here Hσ = Hσ � Hσ and Hf,σ = Hf � Fσ.

Next, we split the operator B into two pieces depending on σ. To this end we define new

cutoff functions ησ = χ2σ, ησ = χ2σ and cut-off dilatation generators bσ = ησbησ, bσ = ησbησ.

Since η2
σ + (ησ)2 ≡ 1 and [ησ, [ησ, b]] = 0 = [ησ, [ησ, b]] it follows from the IMS-formula that

b = bσ + bσ. Let Bσ = dΓ(bσ) and Bσ = dΓ(bσ). Then

B = Bσ +Bσ.
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An analog of Theorem 16 implies that H is locally of class C2(B), C2(Bσ) and C2(Bσ) on

(−∞,Σ). Since E ≤ e1 and Σ ≥ e2 −Λg2, by Equation (44), we have that Σ−E ≥ (2/3)egap,

for g sufficiently small. It follows that (−∞,Σ) ⊃ (−∞, E + 2/3egap) and hence, arguing as in

(22), that

[H, iBσ] = dΓ(η2
σω)− gφ(ibσGx), (25)

[H, iBσ] = dΓ((ησ)2ω)− gφ(ibσGx), (26)

in the sense of quadratic forms on the range of χ(H ≤ E + egap/2). Equally, Hσ is of class

C1(Bσ) and

[Hσ, iBσ] = dΓ((ησ)2ω)− gφ(ibσχ̃σGx) (27)

on χ(Hσ ≤ E + egap/2)Hσ.

As a last piece of preparation we introduce smooth versions of the energy cutoffs E∆(H−E)

and E∆(Hσ − Eσ). We choose f ∈ C∞
0 (R; [0, 1]) with f = 1 on [1/3, 2/3] and supp(f) ⊂

[1/4, 3/4], so that f∆(s) := f(s/σ) is a smoothed characteristic function of the interval ∆ =

[σ/3, 2σ/3]. We define

F∆ = f∆(H − E), F∆,σ = f∆(Hσ − Eσ). (28)

Lemma 2. Suppose that Hypothesis (16) holds. If g � 1 and σ ≤ egap/2, then

F∆,σ = P σ ⊗ f∆(Hf,σ), w.r.t. H = Hσ ⊗Fσ, (29)

where P σ denotes the ground state projection of Hσ.

Proof. For g sufficiently small, depending on e2−e1−σ, the operator Hσ has the gap (Eσ, Eσ +

σ) in the spectrum above Eσ = inf σ(Hσ) by Theorem 23 of [11] (see also Appendix A,

Theorem 26). Since the support of f∆ is a subset of (0, σ), the assertion of the lemma follows.

Proposition 3. Suppose that Hypothesis (16) holds, and let [H, iBσ] be defined by (26). If

g � 1 and σ ≤ egap/2, then

F∆,σ[H, iBσ]F∆,σ = 0.

Proof. From ησχσ = 0 and χσ + χ̃σ = 1 it follows that bσ = bσχ̃σ. Comparing (26) with (27)

we see that [H, iBσ] = [Hσ, iBσ] ⊗ 1 with respect to H = Hσ ⊗ Fσ. The proposition now

follows from Lemma 2 and the Virial Theorem P σ[Hσ, iBσ]P σ = 0, Proposition 34.

Proposition 4. Suppose that Hypotheses (16), (17), and (18) hold, and let [H, iBσ] be defined

by (25). If g � 1 and σ ≤ egap/2, then

F∆,σ[H, iBσ]F∆,σ ≥
[
(1− g)σ/4− Cgσ2µ+2

]
F 2

∆,σ

≥ (σ/8)F 2
∆,σ,
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where µ ≥ −1/2 is assumed in the second inequality and C is independent of g and σ.

Remark. The fact that this Proposition only assumes that µ ≥ −1/2, unlike Theorem 1, will

be important in our analysis of QED in the next section.

Proof. We write

dΓ(η2
σω)− gφ(ibσGx) = (1− g)dΓ(η2

σω) + g
[
dΓ(η2

σω)− φ(ibσGx)
]

and first estimate the term in brackets from below. Using that dΓ(η2
σω) is quadratic in ησa

#(k)

while φ(ibσGx) is linear, we complete the square and find

dΓ(η2
σω)− φ(ibσGx) ≥ −

∫
|k|≤4σ

|bησGx|2

ω
d3k

≥ −const 〈x〉2σ2µ+2,

because |bησ| ≤ const, |Gx(k)| ≤ |k|µ, and |bGx(k)| ≤ const〈x〉|k|µ for |k| ≤ 4σ ≤ 2egap, by

assumptions (17) and (18). This proves that

dΓ(η2
σω)− gφ(ibσGx) ≥ (1− g)dΓ(η2

σω)− const g〈x〉2σ2µ+2. (30)

It remains to estimate F∆,σdΓ(η2
σω)F∆,σ from below and F∆,σ〈x2〉F∆,σ from above. Using that

F∆,σ = P σ ⊗ f∆(Hf,σ), by Lemma 2, and

dΓ(η2
σω) ≥ Hf,σ, f∆(Hf,σ)Hf,σf∆(Hf,σ) ≥ σ

4
f2
∆(Hf,σ),

we obtain

F∆,σdΓ(η2
σω)F∆,σ ≥

σ

4
F 2

∆,σ. (31)

Furthermore, by Lemma 6,

sup
σ>0

‖x2E[0,σ](Hσ − Eσ)‖ <∞. (32)

Since E[0,σ](Hσ − Eσ)F∆,σ = F∆,σ the proposition follows from (30), (31), and (32).

Proposition 5. Suppose Hypotheses (16), (17) and (18) hold with µ ≥ −1/2. Then there

exists a constant Cµ, such that

∥∥f∆(H − E)− f∆(Hσ − Eσ)
∥∥ ≤ gCµσ

min{µ+1/2, 2µ}

for all g ≤ 1 and σ ≤ egap/2.

Remark. Our proof of Theorem 1 requires that
∥∥f∆(H − E) − f∆(Hσ − Eσ)

∥∥ = O(σ). To

achieve this using Proposition 5, we are forced to assume that µ ≥ 1/2.
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Proof. Let j ∈ C∞
0 ([0, 1],R) with j = 1 on [1/4, 3/4] and supp(j) ⊂ [1/5, 4/5]. Let j∆(s) =

j(s/σ), so that f∆j∆ = f∆, and let J∆ = j∆(H − E) and J∆,σ = j∆(Hσ − Eσ). We will show

that, for µ ≥ −1/2,

‖F∆ − F∆,σ‖ ≤ C1gσ
µ (33)

‖(F∆ − F∆,σ)J∆,σ‖ ≤ C2gσ
µ+1/2, (34)

and, likewise, with F and J interchanged, where the constants C1, C2 depend on µ but not on

g or σ. These estimates prove the proposition, because

F∆ − F∆,σ = F∆J∆ − F∆,σJ∆,σ

= F∆,σ(J∆ − J∆,σ) + (F∆ − F∆,σ)J∆,σ + (F∆,σ − F∆)(J∆ − J∆,σ).

To prove (33) and (34) we use the functional calculus based on the representation

f(s) =
∫

df̃(z)
1

z − s
, df̃(z) := − 1

π

∂f̃

∂z̄
(z)dxdy, (35)

for an almost analytic extension f̃ of f that satisfies |∂z̄ f̃(x + iy)| ≤ const y2 [8]. From (28)

and (35) we obtain

F∆ − F∆,σ = σ−1

∫
df̃(z)

1
(z − [H − E]/σ)

(H −Hσ − E + Eσ)
1

(z − [Hσ − Eσ]/σ)
(36)

where, by Lemma 8,

|E − Eσ| = O(g2σ2µ+2). (37)

Hence the contribution of E−Eσ to (36) is O(g2σ2µ+1), which, for µ ≥ −1/2, may be neglected

for both (33) and (34). By Lemma 22 and Hypothesis (17)

‖(H −Hσ)(Hf + 1)−1/2‖ = g‖φ(χσGx)(Hf + 1)−1/2‖

≤ 2g sup
x
‖χσGx‖ω ≤ 2g

(
4µ+2

µ+ 1
π

)
σµ+1, (38)

while ∥∥∥(Hf + 1)1/2(z − [Hσ − Eσ]/σ)−1
∥∥∥ ≤ const

√
1 + |z|
|y|

(39)

by an analog of Lemma 23. Since
√

1 + |z|/|y| is integrable with respect to |∂z̄ f̃ |dxdy, bound

(33) follows from (36), (37), (38), and (39).

By (36) and (37), with obvious notations for the resolvents,

(F∆ − F∆,σ)J∆,σ = σ−1

∫
df̃(z)R(z)(H −Hσ)J∆,σRσ(z) +O(g2σ2µ+1). (40)
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Lemma 7 and Lemma 28 yield

‖(H −Hσ)J∆,σ‖ = g‖φ(χσGx)J∆,σ‖

≤ 2g‖a(χσGx)J∆,σ‖+ g‖χσGx‖

≤ Cµg(σ2µ+2 + σµ+3/2).

Combined with (40) this proves (34).

Proof of Theorem 1. Since (ησ)2 + η2
σ = 1 and bσ + bσ = b, it follows from (25) and (26)

that dΓ(ω)− gφ(ibGx) = [H, iBσ] + [H, iBσ]. Thus Propositions 3 and 4 imply that

F∆,σ

(
dΓ(ω)− gφ(ibGx)

)
F∆,σ ≥

σ

8
F 2

∆,σ.

We next replace F∆,σ by F∆, using Proposition 5 with µ ≥ 1/2 and noticing that (dΓ(ω) −
gφ(ibGx))F∆,σ and F∆(dΓ(ω)−gφ(ibGx)) are bounded, uniformly in σ. Since, by (22), (dΓ(ω)−
gφ(ibGx)) = [H, iB] on the range of F∆ we arrive at

F∆[H, iB]F∆ ≥ σ

8
F 2

∆ +O(gσ).

After multiplying this operator inequality from both sides with E∆(H − E), the theorem

follows.

Ground state properties and localization of the electron

In this section we collect some technical auxiliaries for the proof of Theorem 1.

Lemma 6. Suppose that Hypothesis (16) holds. Then for every λ < e2 there exists a constant

gλ > 0 such that for all n ∈ N

sup
σ>0, g≤gλ

‖|x|nEλ(Hσ)‖ <∞.

Proof. From Theorem 1 of [15] we know that ‖eε|x|Eλ(Hσ)‖ <∞ if λ+ ε2 < Σσ, where Σσ is

the ionization threshold of Hσ. From the proof of that theorem we see that

sup
σ>0, g≤gλ

‖eε|x|Eλ(Hσ)‖ <∞,

provided R > 0 and δ > 0 can be found such that

Σσ,R := inf
ϕ∈DR, ‖ϕ‖=1

〈ϕ,Hσϕ〉 ≥ λ+ ε2 + δ +
C̃

R2
(41)

uniformly in σ > 0 and g ≤ gλ. Here C̃ is a constant that is independent of Hσ. It remains to

prove (41). To this end we note that, by a standard estimate,

Hσ ≥ Hpart ⊗ 1− g2Λ (42)
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where Λ = supx

∫
|Gx(k)|2/|k| dk <∞ due to Hypothesis (16), and, moreover, that

inf
ϕ∈DR, ‖ϕ‖=1

〈ϕ,Hpart ⊗ 1ϕ〉 ≥ inf σess(Hpart) + o(1), (R→∞), (43)

by Persson’s characterization of inf σ(Hpart); see, e.g., [15]. Since inf σess(Hpart) ≥ e2 we

conclude from (42), (43), and the definition of Σσ,R, that

Σσ,R ≥ e2 + o(1)− g2Λ, (44)

with o(1) → 0, as R → ∞, uniformly in σ, g. Since e2 > λ we may indeed find ε, δ, R, gλ > 0

so that (41) holds for all σ > 0 and all g ≤ gλ.

The following two Lemmas assume the existence of a ground state for Hσ, σ ≥ 0. This

assumption is justified under our assumptions on Hpart if µ > −1/2, at least for g sufficiently

small (see, e.g.,[23]).

Lemma 7. Let Hypotheses (16) and (17) be satisfied and suppose that ϕ ∈ H is a normalized

ground state of Hσ, where σ ≥ 0, g ≥ 0, and Hσ=0 := H. Then

‖a(k)ϕ‖ ≤ g|k|µ−1, for |k| ≤ 2egap.

Proof. Use the usual pull through trick (see the proof of Lemma 29) and assumption (17).

Lemma 8. Let Hypotheses (16) and (17) with µ > −1 be satisfied, suppose that σ ≤ egap,

g ≥ 0, and that E = inf σ(H) and Eσ = inf σ(Hσ) are eigenvalues of H and Hσ, respectively.

Then there exists a constant Cµ such that

|E − Eσ| ≤ Cµg
2σ2µ+2.

Proof. Let ϕ and ϕσ be normalized ground state vectors of H and Hσ respectively. Then by

Rayleigh-Ritz

Eσ − E ≤ 〈ϕ, (Hσ −H)ϕ〉 (45)

E − Eσ ≤ 〈ϕσ, (H −Hσ)ϕσ〉. (46)

From (45), Hypothesis (17), and Lemma 7 it follows that

Eσ − E ≤ −g〈ϕ, φ(χσGx)ϕ〉 ≤ 2g‖a(χσGx)ϕ‖‖ϕ‖

≤ 2g
∫
|k|≤2σ

|Gx(k)|‖a(k)ϕ‖ d3k ≤
(

4µ+2

µ+ 1
π

)
g2σ2µ+2.

The corresponding estimate for E −Eσ is a copy of the one above with ϕ replaced by ϕσ.
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3 Non-relativistic Matter and Quantized Radiation

We now come to the main part of this paper, the spectral analysis of atoms and molecules in the

standard model of non-relativistic QED. The methods and results of this section are analogous

to the ones presented in the previous section for matter and scalar bosons. For notational

simplicity again a one-electron model is presented and spin is neglected; our analysis can easily

be extended to many-electron systems with spin.

The Hilbert space of our systems is the tensor product

H = L2(R3, dx)⊗F ,

where F denotes the bosonic Fock space over L2(R3; C2). The Hamiltonian H : D(H) ⊂ H →
H is given by

H = Π2 + V +Hf , Π = −i∇x + α3/2A(αx) (47)

where V , as in the previous section, denotes multiplication with a real-valued function V ∈
L2

loc(R3). We assume that V is ∆−bounded with relative bound zero and that e1 = inf σ(−∆+

V ) is an isolated eigenvalue with multiplicity one. The first point in σ(−∆ + V ) above e1 is

denoted by e2 and egap := e2 − e1. The field energy Hf and the quantized vector potential

have already been introduced, formally, in the introduction. More proper definitions are Hf :=

dΓ(ω), the second quantization of multiplication with ω(k) = |k|, and Aj(αx) = a(Gx,j) +

a∗(Gx,j) where

Gx(k, λ) :=
κ(k)√
|k|
ελ(k)e−iαx·k,

and ελ(k), λ ∈ {1, 2}, are two polarization vectors that, for each k 6= 0, are perpendicular to k

and to one another. We assume that ελ(k) = ελ(k/|k|). The ultraviolet cutoff κ : R3 → C is

assumed to be a Schwartz-function that depends on |k| only. It follows that

|Gx(k, λ)−G0(k, λ)| ≤ α|k|1/2|x||κ(k)| (48)

|k|
∣∣∣∣ ∂∂|k|Gx(k, λ)

∣∣∣∣ ≤ α〈x〉|k|−1/2f(k) (49)

with some Schwartz-function function f that depends on κ and ∇κ.
The Hamiltonian (47) is self-adjoint on D(H) = D(−∆ + Hf ) and bounded from below

[17]. We use E = inf σ(H) to denote the least point of the spectrum of H and Σ to denote

the ionization threshold. On the set Ω := (−∞,Σ) the operator H is locally of class C2(B),

where B denotes the second quantized dilatation generator (20); see Section 4. The remarks

in the previous section concerning this property apply here as well. Thus we are prepared to

state the main results of this paper.
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Theorem 9. Suppose that α� 1. Then for any σ ≤ egap/2

E∆(H − E)[H, iB]E∆(H − E) ≥ σ

10
E∆(H − E),

where ∆ = [σ/3, 2σ/3].

Given Theorem 9, the remark preceding it, and the fact that, by Lemma 24, Σ ≥ E+egap/3

for α small enough, we see that both Hypotheses of Conjugate Operator Theory (Appendix B)

are satisfied for Ω = (E,E + egap/3). This implies that the consequences, Theorems 32 and

Theorem 33, of the general theory hold for the system under investigation, and, thus, it proves

Theorem 10 and Theorem 11 below. Alternatively, the first part of Theorem 10 can also be

derived from Theorem 9 using Theorem A.1 of [7].

Theorem 10 (Limiting absorption principle). Let α � 1. Then for every s > 1/2 and

all ϕ,ψ ∈ H the limits

lim
ε→0

〈ϕ, 〈B〉−s(H − λ± iε)−1〈B〉−sψ〉 (50)

exist uniformly in λ in any compact subset of (E,E + egap/3). For s ∈ (1/2, 1) the map

λ 7→ 〈B〉−s(H − λ± i0)−1〈B〉−s (51)

is (locally) Hölder continuous of degree s− 1/2 in (E,E + egap/3).

As a corollary from the finiteness of (50) one can show that 〈B〉−sf(H)(H−z)−1f(H)〈B〉−s

is bounded on C± for all f ∈ C∞
0 (R) with support in (E,E + egap/3). This implies H-

smoothness of 〈B〉−sf(H) and local decay∫
R
‖〈B〉−sf(H)e−iHtϕ‖2dt ≤ C‖ϕ‖2.

See [20], Theorem XIII.25 and its Corollary. From the Hölder continuity of (51) we obtain in

addition a pointwise decay in time (c.f. Theorem 33).

Theorem 11. Let α � 1 and suppose s ∈ (1/2, 1) and f ∈ C∞
0 (R) with supp(f) ⊂ (E,E +

egap/3). Then

‖〈B〉−se−iHtf(H)〈B〉−s‖ = O(
1

ts−1/2
), (t→∞).

3.1 Proof of the Mourre estimate

This section describes the main steps of the proof of Theorem 9. Technical auxiliaries such

as the existence of a spectral gap, soft boson bounds, and the localization of the electron are

collected in Appendix A. We follow closely the line of arguments in the proof of Theorem 1, and
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we take over many notations of the previous section. This applies in particular to χσ, χ
σ, χ̃σ,

b, bσ, b
σ, and B,Bσ, B

σ. To simplify notations we set∫
dk :=

∑
λ=1,2

∫
d3k

and we suppress the index λ in aλ(k), a∗λ(k), and Gx(k, λ).

The IR-cutoff Hamitonian, corresponding to (23), is now given by

Hσ = (p+ α3/2Aσ(αx))2 + V +Hf (52)

where p = −i∇x and Aσ(αx) = φ(χ̃σGx). Again we have that

Hσ = Hσ ⊗ 1 + 1⊗Hf,σ

with respect to H = Hσ ⊗ Fσ. By Theorem 16, the Hamiltonian H is locally of class C2(B),

C2(Bσ) and C2(Bσ) on (−∞,Σ). By Lemma 37 and Proposition 18,

[H, iB] = dΓ(ω)− α3/2φ(ibGx) ·Π− α3/2Π · φ(ibGx) (53)

[H, iBσ] = dΓ(η2
σω)− α3/2φ(ibσGx) ·Π− α3/2Π · φ(ibσGx) (54)

[H, iBσ] = dΓ((ησ)2ω)− α3/2φ(ibσGx) ·Π− α3/2Π · φ(ibσGx) (55)

in the sense of quadratic forms on the range of χ(H ≤ E + egap/2), if α � 1. Also Hσ is of

class C1(Bσ) and

[Hσ, iBσ] = dΓ((ησ)2ω)− α3/2φ(ibσχ̃σGx) ·Π− α3/2Π · φ(ibσχ̃σGx) (56)

Let f∆ ∈ C∞
0 (R) be defined as in Section 2, and let F∆ := f∆(H−E), F∆,σ := f∆(Hσ−Eσ),

as in the previous section.

Lemma 12. If α� 1 and σ ≤ egap/2, then

F∆,σ = P σ ⊗ f∆(Hf,σ), w.r.t. H = Hσ ⊗Fσ,

where P σ denotes the ground state projection of Hσ.

Proof. By Theorem 26 of Appendix A, Hσ has the gap (Eσ, Eσ + σ) in its spectrum if α� 1.

Since the support of f∆ is a subset of (0, σ), the assertion follows.

Proposition 13. Let [H, iBσ] be defined by (55). If α� 1 and σ ≤ egap/2, then

F∆,σ[H, iBσ]F∆,σ = 0.

Proof. The proof is a copy of the proof of Proposition 3: From bσ = bσχ̃σ, Equations (55) and

(56) it follows that [H, iBσ] = [Hσ, iBσ]⊗1 with respect to H = Hσ⊗Fσ. The statement now

follows from Lemma 2 and the Virial Theorem P σ[Hσ, iBσ]P σ = 0, Proposition 34.
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Proposition 14. Let [H, iBσ] be defined by (54). If α� 1 and σ ≤ egap/2, then

F∆,σ[H, iBσ]F∆,σ ≥
σ

8
F 2

∆,σ.

Proof. On the right hand side of (54) we move the creation operators a∗(ibσGx) to the left of

Π and the annihilation operators a(ibσGx) to the right of Π. Since

3∑
j=1

(
[Πj , a

∗(ibσGx,j)] + [a(ibσGx,j),Πj ]
)

= 0

we arrive at

[H, iBσ] = dΓ(η2
σω)− 2α3/2a∗(ibσGx) ·Π− 2α3/2Π · a(ibσGx). (57)

Next, we estimate (57) from below using only the fraction 2α3/2dΓ(η2
σω) of dΓ(η2

σω) at first.

By completing the square we get, using (48) and (49),

dΓ(χ2
σω)− a∗(ibσGx) ·Π−Π · a(ibσGx)

=
∫
ω
[
χσa

∗ − ω−1Π ·
(
ibχσGx

)∗][
χσa− ω−1(ibχσGx) ·Π

]
dk

−
3∑

n,m=1

∫
Πn

(bχσGx,n)∗(bχσGx,m)
ω

Πm dk

≥ −const σ
3∑

n=1

Πn〈x〉2Πn. (58)

From (57) and (58) it follows that

[H, iBσ] ≥ (1− 2α3/2)dΓ(η2
σω)− const α3/2σ

∑
n

Πn〈x〉2Πn.

This estimate and Lemma 12 imply the statement of the proposition along the line of arguments

following estimate (30) in the proof of Proposition 4. Note that 〈x〉ΠE[0,σ](Hσ−Eσ) is bounded

uniformly in σ, thanks to Lemmas 25 and 23.

Proposition 15. There exists a constant C such that for α� 1 and σ ≤ egap/2,∥∥f∆(H − E)− f∆(Hσ − Eσ)
∥∥ ≤ Cα3/2σ.

Proof. The idea is to apply a Pauli-Fierz transformation H(σ) = UσHU
∗
σ affecting only the

photons with |k| ≤ σ, so that H(σ) − Hσ has an improved IR behavior corresponding to

µ = 1/2. Then we can proceed as in the proof of Lemma 5, Section 2. Let

Uσ = exp(iα3/2x ·Aσ(0)), Aσ(αx) := φ(χσGx).
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Then

H(σ) := UσHU
∗
σ

=
(
p+ α3/2A(σ)(αx)

)2
+ V +Hf + α3/2x · Eσ(0) +

2
3
α3x2‖χσκ‖2

where

A(σ)(αx) := A(αx)−Aσ(0)

Eσ(0) := −i[Hf , Aσ(0)].

We compute, dropping the argument αx temporarily,

H(σ) −Hσ = 2α3/2p · (A(σ) −Aσ)

+ α3(A(σ) +Aσ) · (A(σ) −Aσ)

+ α3/2x · Eσ(0) +
2
3
α3x2‖χσκ‖2,

(59)

where (A(σ))2 − (Aσ)2 = (A(σ) +Aσ) · (A(σ) −Aσ) was used. Based on the equations

A(σ)(αx)−Aσ(αx) = Aσ(αx)−Aσ(0) = φ(χσ(Gx −G0)) (60)

x · Eσ(0) = φ(iωχσG0 · x), (61)

estimate (48), and Proposition 5, with µ = 1/2, we expect that

‖F∆,(σ) − F∆,σ‖ = O(α3/2σ), (62)

where F∆,(σ) = f∆(H(σ) − E) = UσF∆U
∗
σ . Suppose (62) holds true, and moreover that

‖(U∗
σ − 1)F∆,σ‖ = O(α3/2σ); (63)

then the proposition will follow from

F∆ − F∆,σ = U∗
σF∆,(σ)Uσ − F∆,σ

= (U∗
σ − 1)F∆,σ + U∗

σF∆,σ(Uσ − 1) + U∗
σ

(
F∆,(σ) − F∆,σ

)
Uσ.

It thus remains to prove (62) and (63). We begin with (63). By the spectral theorem

‖(U∗
σ − 1)F∆,σ‖ ≤ ‖α3/2x ·Aσ(0)F∆,σ‖

= α3/2‖x · φ(χσG0)F∆,σ‖

≤ 2α3/2‖x · a(χσG0)F∆,σ‖+ α3/2‖χσG0‖ · ‖xF∆,σ‖.

The second term is of order α3/2σ as σ → 0, because, by assumption on G0, ‖χσG0‖ = O(σ),

and because supσ>0 ‖xF∆,σ‖ < ∞ by Lemma 25. The first term is of order α3/2σ as well, by

Lemma 28 and Lemma 29 . To prove (62) it suffices to show that

‖F∆,(σ) − F∆,σ‖ = O(α3/2σ1/2), (64)

‖(F∆,(σ) − F∆,σ)J∆,σ‖ = O(α3/2σ), (65)



Fröhlich/Griesemer/Sigal, 6/November/06—Mourre for QED 19

as we have seen in the proof of Proposition 5. Here the operators J∆,σ, J∆,(σ), and J∆ are

defined in terms of j∆ like F∆,σ, F∆,(σ), and F∆ are defined through f∆, the function j∆ being

given in the proof of Proposition 5. The equations (64) and (65), with F and J interchanged,

hold likewise. We begin with the proof of (65). By the functional calculus

(F∆,(σ) − F∆,σ)J∆,σ

= σ−1

∫
df̃(z)

1
z − (H(σ) − E)/σ

(
H(σ) −Hσ − E + Eσ

)
J∆,σ

1
z − (Hσ − Eσ)/σ

. (66)

Since, by Lemma 30, |E − Eσ| = O(α3/2σ2), it remains to estimate the contributions of the

various terms due to H(σ) −Hσ as given by (59). To begin with, we note that

‖(A(σ) −Aσ)J∆,σ‖ = O(ασ2) (67)

‖x · Eσ(0)J∆,σ‖ = O(σ2). (68)

This follows from (60), (61), (48), Lemma 28 and Lemma 29, as far as the annihilation operators

in (67) and (68) are concerned. For the term due to the creation operator in (67) we use

‖a∗(χσ(Gx −G0))J∆,σ‖ ≤ ‖a(χσ(Gx −G0))J∆,σ‖+
∥∥‖χσ(Gx −G0)‖ J∆,σ

∥∥
and ‖χσ(Gx − G0)‖ = O(|x|ασ2), as well as supσ>0 ‖|x|J∆,σ‖ < ∞. The operators p and

A(σ) + Aσ stemming from the first and second terms of (59) are combined with the first

resolvent of (66): using U∗
σpUσ = p+ α3/2Aσ(0) and Lemma 23 we obtain

‖(z − (H(σ) − E)/σ)−1p‖ = ‖(z − (H − E)/σ)−1(p+ α3/2Aσ(0))‖

≤ const

√
1 + |z|
|y|

which is integrable with respect to df̃(z). This proves that the first, second and third terms of

(59) give contributions to (66) of order α5/2σ, α4σ, and α3/2σ, respectively. Since ‖χσκ‖2 =

O(σ3), (65) follows.

The proof of (64) is more involved than the corresponding estimate in the scalar case, due

to factors of x. We begin with

F∆,(σ) − F∆,σ = F∆,(σ)J∆,(σ) − F∆,σJ∆,σ

= (F∆,(σ) − F∆,σ)J∆,σ + F∆,(σ)(J∆,(σ) − J∆,σ)

The first term is of order α3/2σ by (65). The second one can be written as

σ−1

∫
df̃(z)R(σ)(z)F∆,(σ)

(
H(σ) −Hσ − E + Eσ

)
Rσ(z), (69)
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with obvious notations for the resolvents. We recall that, by Lemma 30, |E−Eσ| = O(α3/2σ2).

As in the proof of (65) we need to estimate the contributions due to the four terms of H(σ)−Hσ

given by (59). We do this exemplarily for the second one and begin with the estimate

‖F∆,(σ)(A
(σ) +Aσ) · (A(σ) −Aσ)Rσ(z)‖

≤ ‖F∆,(σ)〈x〉(A(σ) +Aσ)‖‖〈x〉−1(A(σ) −Aσ)(Hf + 1)−1/2‖‖(Hf + 1)1/2Rσ(z)‖ (70)

For the second factor of (70) we use

‖〈x〉−1(A(σ) −Aσ)(Hf + 1)−1/2‖ = ‖〈x〉−1φ(χσ(Gx −G0))(Hf + 1)−1/2‖

≤ sup
x
〈x〉−1‖χσ(Gx −G0)‖ω

= O(ασ3/2),

which is of the desired order. In the first factor of (70) we use that Uσ commutes with 〈x〉,
A(σ), and Aσ, as well as Lemma 22, Lemma 23 and Lemma 25. We obtain the bound

‖F∆,(σ)〈x〉(A(σ) +Aσ)‖ = ‖F∆〈x〉(A(σ) +Aσ)‖

≤ ‖F∆〈x〉(Hf + 1)1/2‖‖(Hf + 1)−1/2(A(σ) +Aσ)‖

≤ const ‖F∆(〈x〉2 +Hf + 1)‖ <∞.

Finally, for the last factor of (70), Lemma 23 implies the bound

‖(Hf + 1)1/2Rσ(z)‖ ≤ const

√
1 + |z|
|y|

,

which is integrable with respect to df̃(z). In a similar way the contributions of the other terms

of (59) are estimated. It follows that (69) is of order O(α3/2σ1/2) which proves (64). This

completes the proof of Proposition 15.

Proof of Theorem 9. Since (ησ)2+η2
σ = 1 and bσ +bσ = b, it follows from (54) and (55) that

C := dΓ(ω) − α3/2φ(ibGx) · Π − α3/2Π · φ(ibGx) = [H, iBσ] + [H, iBσ]. Thus Propositions 13

and 14 imply that

F∆,σCF∆,σ ≥
σ

8
F 2

∆,σ.

We next replace F∆,σ by F∆, using Proposition 15 and noticing that CF∆,σ and F∆C are

bounded, uniformly in σ. Since, by (53), C = [H, iB] on the range of F∆ we arrive at

F∆[H, iB]F∆ ≥ σ

8
F 2

∆ +O(gσ).

After multiplying this operator inequality from both sides with E∆(H − E), the theorem

follows.
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4 Local regularity of H with respect to B

The purpose of this section is to prove that H is locally of class C2(B) in (−∞,Σ), where

Σ is the ionization threshold of H, and B is any of the three operators dΓ(b),dΓ(bσ),dΓ(bσ)

defined in Section 3. Some background on the concept of local regularity of a Hamiltonian

with respect to a conjugate operator and basic criteria for this property to hold are collected

in Appendix B. To prove a result that covers the three aforementioned operators we consider

a class of operators B that contains all of them and is defined as follows.

Let k 7→ v(k) be a C∞-vector field on R3 of the form v(k) = h(|k|)k where h ∈ C∞(R)

such that sn∂nh(s) is bounded for n ∈ {0, 1, 2}. It follows

|v(k)| ≤ β|k|, for all k ∈ R3, (71)

for some β > 0, and that partial derivatives of v times a Schwartz-function, such as κ, are

bounded. We remark that the assumption that v is parallel to k is not needed if a representation

of H free of polarization vectors is chosen.

Let φs : R3 → R3 be the flow generated by v, that is,

d

ds
φs(k) = v(φs(k)), φ0(k) = k. (72)

Then φs(k) is of class C∞ with respect to s and k, and by Gronwall’s lemma and (71)

e−β|s||k| ≤ |φs(k)| ≤ eβ|s||k|, for s ∈ R. (73)

Induced by the flow φs on R3 there is a one-parameter group of unitary transformations on

L2(R3) defined by

fs(k) = f(φs(k))
√

detDφs(k). (74)

Since these transformations leave C∞
0 (R3) invariant, their generator b is essentially self-adjoint

on this space. From bf = id/ds fs|s=0 we obtain

b =
1
2
(v · y + y · v) (75)

where y = i∇k. Let B = dΓ(b). The main result of this section is:

Theorem 16. Let H be the Hamiltonian defined by (47) and let Σ be its ionization threshold.

Under the assumptions above on the vector-field v, the operator H is locally of class C2(B) in

Ω = (−∞,Σ) for all values of α.

The proof, of course, depends on the explicit knowledge of the unitary group generated by

B, and in particular on the formulas

e−iBsHfe
iBs = dΓ(e−ibsωeibs) = dΓ(ω ◦ φs) (76)

e−iBsA(x)eiBs = φ(e−ibsGx) = φ(Gx,s) (77)
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with Gx,s given by (74). Another essential ingredient is that, by [15], Theorem 1,

‖〈x〉2f(H)‖ <∞ (78)

for every f ∈ C∞
0 (Ω). We begin with four auxiliary results, Propositions 17, 18, 19, and 20.

Proposition 17. (a) For all s ∈ R, eiBsD(Hf ) ⊂ D(Hf ) and

‖Hfe
iBs(Hf + 1)−1‖ ≤ eβ|s|

(b) For all s ∈ R, eiBsD(H) ⊂ D(H) and

‖HeiBs(H + i)−1‖ ≤ const eβ|s|

Proof. From e−iBsHfe
iBs = dΓ(e−ibsω) = dΓ(ω ◦ φs) and (73) it follows that

‖Hfe
iBsϕ‖ = ‖dΓ(ω ◦ φs)ϕ‖ ≤ eβ|s|‖Hfϕ‖

for all ϕ ∈ F0(C∞
0 ), which is a core of Hf . This proves, first, that eiBsD(Hf ) ⊂ D(Hf ), and

next, that the estimate above extends to D(Hf ), proving (a).

The Hamiltonian H is self-adjoint on the domain of H(0) = −∆ + Hf . Therefore the

operators H(0)(H + i)−1 and H(H(0) + i)−1 are bounded and it suffices to prove (b) for H(0)

in place of H. The subspace D(∆) ⊗ D(Hf ) is a core of H(0). By (a) it is invariant w.r. to

eiBs and

‖H(0)eiBsϕ‖ ≤ ‖∆ϕ‖+ ‖Hfϕ‖eβ|s| ≤
√

2eβ|s|‖H(0)ϕ‖

As in the proof of (a), it now follows that eiBsD(H(0)) ⊂ D(H(0)) and then the estimate above

extends to D(H(0)).

Let Bs := (eiBs − 1)/is. Then, by Proposition 17, [Bs,H] is well defined, as a linear

operator on D(H). The main ingredients for the proof of Theorem 16 are Propositions 18 and

20 below.

Proposition 18. (a) For all ϕ ∈ D(H)

i lim
s→0

〈x〉−1[H,Bs]ϕ = 〈x〉−1
(
dΓ(∇ω · v)− α3/2φ(ibGx) ·Π−Π · φ(ibGx)α3/2

)
ϕ.

(b)

sup
0<|s|≤1

‖〈x〉−1[Bs,H](H + i)−1‖ <∞.

Proof. Part (b) follows from (a) and the uniform boundedness principle. Part (a) is equivalent

to the limit

i lim
s→0

〈x〉−1 1
s

(
e−iBsHeiBs −H

)
ϕ
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being equal to the expression on the right hand side of (a). By (76), for all ϕ ∈ D(Hf )

lim
s→0

1
s

(
e−iBsHfe

iBs −Hf

)
ϕ = lim

s→0

1
s
dΓ(ω ◦ φs − ω)ϕ = dΓ(∇ω · v)ϕ,

where the last step is easily established using Lebesgue’s dominated convergence Theorem.

The necessary dominants are obtained from |s−1(ω ◦ φs − ω)| ≤ |s|−1(eβ|s| − 1)ω, by (73), and

from the assumption ϕ ∈ D(dΓ(ω)).

It remains to consider the contribution due to Hint := 2α3/2A(αx) · p + α3A(αx)2. Let

∆Gx,s := Gx,s −Gx. By (77),

e−iBsHinte
iBs −Hint

= 2α3/2φ(∆Gx,s) · p+ α3φ(∆Gx,s) · φ(Gx) + α3φ(Gx,s) · φ(∆Gx,s), (79)

a sum of three operators, each of which contains ∆Gx,s. By Lemma 21 at the end of this

section, for each x ∈ R3

1
s
∆Gx,s =

1
s

(Gx,s −Gx) → −ibGx, (s→ 0) (80)

in the norm ‖ · ‖ω of Lω(R3) (see Appendix A), and

sup
x∈R3

〈x〉−1‖bGx‖ω <∞ (81)

by the assumptions on Gx. Since the operators p(Hf + 1)1/2(H + i)−1 and Hf (H + i)−1 are

bounded by Lemma 22 and since, by Lemma 23, ‖φ(f)(Hf+1)−1/2‖ ≤ ‖f‖ω and ‖φ(f)φ(g)(Hf+

1)−1‖ ≤ 8‖f‖ω‖g‖ω for all f, g ∈ L2(R3), it follows from (79), (80), and (81) that

lim
s→0

〈x〉−1 1
s

(
e−iBsHinte

iBs −Hint

)
ϕ

=
(
2α3/2φ(−ibGx) · p+ α3φ(−ibGx) · φ(Gx) + α3φ(Gx) · φ(−ibGx)

)
ϕ

= −α3/2
(
φ(ibGx) ·Π + Π · φ(ibGx)

)
ϕ

for all ϕ ∈ D(H).

Proposition 19. For all f ∈ C∞
0 (Ω),

sup
0<|s|≤1

‖[Bs, f(H)]‖ <∞.

Remark. By Proposition 35 this Proposition implies that f(H) is of class C1(B) for all f ∈
C∞

0 (Ω), that is, H is locally of class C1(B) in Ω.

Proof. Let F = f(H) and let adBs(F ) = [Bs, F ]. If g ∈ C∞
0 (Ω) is such that g ≡ 1 on supp(f)

and G = g(H), then F = GF and hence

adBs(F ) = GadBs(F ) + adBs(G)F.
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The norm of adBs(G)F is equal to the norm of its adjoint which is −F ∗adB−s(G
∗) where

F ∗ = f̄(H) and G∗ = ḡ(H). It therefore suffices to prove that

sup
0<|s|≤1

‖GadBs(F )‖ <∞ (82)

for all f, g ∈ C∞
0 (Ω). To this end we use the representation f(H) =

∫
df̃(z)R(z) where

R(z) = (z −H)−1 and f̃ is an almost analytic extension of f with |∂z̄ f̃(x + iy)| ≤ const|y|2,
c.f. (35). It follows that

GadBs(F ) =
∫

df̃(z)R(z)G[Bs,H]R(z),

which is well-defined by Proposition 17, part (b). Upon writing [Bs,H] = 〈x〉〈x〉−1[Bs,H]R(i)(i−
H) we can estimate the norm of the resulting expression for GadBs(F ) with 0 < |s| ≤ 1, by

‖GadBs(F )‖ ≤ sup
0<|s|≤1

‖〈x〉−1[Bs,H]R(i)‖‖g(H)〈x〉‖
∫
|df̃(z)|‖R(z)‖‖(i−H)R(z)‖.

Since

‖(i−H)R(z)‖ ≤ const
(

1 +
1

| Im(z)|

)
, (83)

the integral is finite by choice of f̃ . The factors in front of the integral are finite by Proposi-

tion 18 and by (78).

Proposition 20.

sup
0<|s|≤1

‖〈x〉−2[Bs[Bs,H]](H + i)−1‖ <∞.

Proof. By Definition of H,

[Bs, [Bs,H]] = [Bs, [Bs,Hf ]] + α3/2[Bs, [Bs, p · φ(Gx)]]

+α3[Bs, [Bs, φ(Gx)2]].

We estimate the contributions of these terms one by one in Steps 1-3 below. As a preparation

we note that

adBs = ieiBs 1
s
(W (s)− 1) (84)

ad2
Bs

= −e2iBs 1
s2

(W (s)− 1)2 = −e2iBs 1
s2
(
W (2s)− 2W (s) +W (0)

)
, (85)

Where W (s) maps an operator T to e−iBsTeiBs. In view of Equations (76), (77), we will need

that for every twice differentiable function f : [0, 2s] → C

1
s2
|f(2s)− 2f(s) + f(0)| ≤ sup

|t|≤2|s|
|f ′′(t)|. (86)
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Step 1.

sup
|s|≤1

‖ad2
Bs

(Hf )(Hf + 1)−1‖ <∞.

By (85) and (76)

ad2
Bs

(Hf ) = −e2iBs 1
s2

dΓ(ω ◦ φ2s − 2ω ◦ φs + ω). (87)

Thus in view of (86) we estimate the second derivative of s 7→ ω ◦ φs(k) = |φs(k)|. For k 6= 0,

∂2

∂s2
|φs(k)| = − 1

|φs(k)|
〈φs(k), v(φs(k))〉2 +

v(φs(k))
|φs(k)|

+
1

|φs(k)|
∑
i,j

φs(k)ivi,j(φs(k))φs(k)j .

By assumption on v, vi,j ∈ L∞ and |v(φs(k))| ≤ β|φs(k)| ≤ eβ|s||k|. It follows that

1
s2
∣∣(ω ◦ φ2s − 2ω ◦ φs + ω

)
(k)
∣∣ ≤ const eβ|s|ω(k),

which implies ∥∥∥∥ 1
s2

dΓ(ω ◦ φ2s − 2ω ◦ φs + ω)(Hf + 1)−1

∥∥∥∥ ≤ const eβ|s|.

By (87) this establishes Step 1.

Step 2.

sup
|s|≤1

sup
x∈R3

〈x〉−2‖ad2
Bs

(φ(Gx) · p)(H + i)−1‖ <∞.

Since p(Hf + 1)1/2(H + i)−1 is bounded, it suffices to show that

sup
|s|≤1, x

〈x〉−2‖ad2
Bs

(φ(Gx))(Hf + 1)−1/2‖ <∞. (88)

By Equation (77)

1
s2

(W (s)− 1)2(φ(Gx)) =
1
s2
φ(Gx,2s − 2Gx,s +Gx), (89)

and by (86)

〈x〉−2 1
s2

∥∥∥φ(Gx,2s − 2Gx,s +Gx)(Hf + 1)−1/2
∥∥∥

≤ 〈x〉−2 1
s2
‖Gx,2s − 2Gx,s +Gx‖ω ≤ 〈x〉−2

∥∥∥∥ ∂2

∂s2
Gx,s

∥∥∥∥
ω

For k 6= 0 the function s 7→ Gx,s(k) is arbitrarily often differentiable by assumption on v and

−i ∂
∂s
Gx,s(k) = (v · ∇kGx)s(k) +

1
2
(div(v)Gx)s(k) (90)

− ∂2

∂s2
Gx,s(k) =

(
(v · ∇k)2Gx

)
s
(k) + (div(v)v · ∇kGx)s (91)

+
1
2

∑
i,j

(
(vi∂i∂jvj)Gx

)
s
+

1
4
(
div(v)2Gx

)
s
. (92)
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By part (a) of Lemma 21 below, it suffices to estimate the L2
ω-norm of these four contributions

with s = 0. By our assumptions on v, div(v) and vi∂i∂jvj are bounded functions. This and

the bound ‖Gx‖ ≤ ‖G0‖ω <∞ account for the contributions of (92), and for the factor div(v)

in front of the second term of (91). It remains to show that the L2
ω-norms of

〈x〉−1(v · ∇k)Gx and 〈x〉−2(v · ∇k)2Gx

are bounded uniformly in x. But this is easily seen by applying v · ∇k to each factor of

Gx(k, λ) = ελ(k)e−ik·xκ(k)|k|−1/2 and using that v ·∇ελ(k) = 0, v ·∇e−ik·x = −iv ·xe−ik·x and

that v · ∇|k|−1/2 is again of order |k|−1/2 by assumption on v.

Step 3.

sup
|s|≤1, x

〈x〉−2‖ad2
Bs

(φ(Gx)2)(Hf + 1)−1‖ <∞.

By the Leibniz-rule for adBs ,

ad2
Bs

(φ(Gx)2) = ad2
Bs

(φ(Gx)) · φ(Gx) + φ(Gx) · ad2
Bs

(ϕ(Gx)) (93)

+2adBs(φ(Gx))adBs(φ(Gx)).

For the contribution of the first term we have

〈x〉−2‖ad2
Bs

(φ(Gx)) · φ(Gx)(Hf + 1)−1‖

≤ 〈x〉−2‖ad2
Bs

(φ(Gx))(Hf + 1)−1/2‖‖φ(Gx)(Hf + 1)−1/2‖

which is bounded uniformly in |s| ≤ 1 and x ∈ R3 by (88) in the proof of Step 2. For the

second term of (93) we first note that

φ(Gx)ad2
Bs

(φ(Gx)) = φ(Gx)e2iBs 1
s2

(W (s)− 1)2(φ(Gx))

= e2iBsφ(Gx,s)
1
s2

(W (s)− 1)2(φ(Gx))

and hence, by the estimates in Step 2, we obtain a bound similar to the one for the first term

of (93) with an additional factor of e2β|s| coming from the use of Lemma 21. Finally, by (84)

and (77)

adBs(φ(Gx))adBs(φ(Gx)) = e2iBsφ

(
Gx,2s −Gx,s

s

)
φ

(
Gx,s −Gx

s

)
which implies that

〈x〉−2‖adBs(φ(Gx))adBs(φ(Gx))(Hf + 1)−1‖ ≤ sup
|s|≤2, x∈R3

(
〈x〉−1‖∂sGx,s‖ω

)2
.

This is finite by (90) and the assumptions on v and Gx.
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Proof of Theorem 16. By Proposition 19 and 36 it suffices to show that

sup
0<s≤1

‖ad2
Bs

(f(H))‖ <∞ (94)

for all f ∈ C∞
0 (Ω). Let g ∈ C∞

0 (Ω) with gf = f and let G = g(H), F = f(H). Then F = GF

and hence

ad2
Bs

(F ) = ad2
Bs

(GF ) = ad2
Bs

(G)F + 2adBs(G)adBs(F ) +Gad2
Bs

(F ).

From Proposition 19 we know that sup0<s≤1 ‖adBs(G)‖ <∞, and similarly with F in place of

G. Moreover (
ad2

Bs
(G)F

)∗
= F ∗ad2

B−s
(G∗).

Thus it suffices to show that for all g, f ∈ C∞
0 (Ω)

sup
0<|s|≤1

‖Gad2
Bs

(F )‖ <∞. (95)

To this end we use F =
∫

df̃(z)R(z) with an almost analytic extension f̃ of f such that

|∂z̄ f̃(x+ iy)| ≤ const |y|4. We obtain

Gad2
Bs

(F ) = 2
∫

df̃(z)R(z)G[Bs,H]R(z)[Bs,H]R(z) (96)

+
∫

df̃(z)R(z)G[Bs, [Bs,H]]R(z). (97)

Since, by (78), ‖G〈x〉2‖ < ∞ the norm of the second term is bounded uniformly in s ∈ {0 <
|s| ≤ 1} by Proposition 20. In view of Proposition 18 we rewrite (96) (times 1/2) as∫

df̃(z)R(z)G〈x〉[Bs,H]R(z)〈x〉−1[Bs,H]R(z)

−
∫

df̃(z)R(z)G
[
〈x〉, [Bs,H]R(z)

]
〈x〉−1[Bs,H]R(z).

For the norm of the first integral we get the bound∫
|df̃(z)|‖R(z)‖‖G〈x〉2‖‖〈x〉−1[Bs,H]R(i)‖2‖(i−H)R(z)‖2,

which is bounded uniformly in s, by Lemma 18, the exponential decay on the range ofG = g(H)

and by construction of f̃ . The norm of the second term is bounded by∫
|df̃(z)|‖R(z)‖ ‖g(H)〈x〉‖ ‖〈x〉−1[〈x〉, [Bs,H]R(z)

]
‖ ‖〈x〉−1[Bs,H]R(z)‖. (98)

The last factor is bounded by ‖(i −H)R(z)‖, uniformly in s ∈ (0, 1], by Proposition 18. For

the term in the third norm we find, using the Jacobi identity and [Bs, 〈x〉] = 0, that

〈x〉−1[〈x〉, [Bs,H]R(z)
]

= 〈x〉−1[Bs, [〈x〉,H]
]
R(z) + 〈x〉−1[Bs,H]R(z)[〈x〉,H]R(z) (99)
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where

[〈x〉,H] = 2i
x

〈x〉
(p+A) +

2
〈x〉

+
1
〈x〉3

. (100)

Since (100) is bounded w.r.to H, the norm of the second term of (99), by Proposition 18, is

bounded by ‖(i−H)R(z)‖2 uniformly in s. As for the first term of (99), in view of (100), its

norm is estimated like the norm of 〈x〉−1[Bs,H]R(z) in Lemma 18, which leads to a bound of

the form const‖(i−H)R(z)‖. By (83) and by construction of f̃ it follows that (98) is bounded

uniformly in |s| ∈ (0, 1].

We conclude this section with a lemma used in the proofs of Propositions 18 and 20 above.

For the definition of L2
ω(R3) and its norm see Appendix A.

Lemma 21. Let f 7→ fs = e−ibsf on L2
ω(R3) be defined by (71), (72) and (74). Then

(a) The transformation f 7→ fs maps L2
ω(R3) into itself and, for all s ∈ R,

‖fs‖ω ≤ eβ|s|/2‖f‖ω.

(b) The mapping R → L2
ω(R3), s 7→ fs is continuous.

(c) For all f ∈ L2
ω(R3) with f ∈ C1(R3\{0}) and k · ∇f, ωf ∈ L2,

L2
ω − lim

s→0

1
s
(fs − f) = v · ∇f +

1
2
div(v)f.

Remark. Statement (c) shows, in particular, that f ∈ D(b) and that −ibf = v · ∇f +

(1/2)div(v)f for the class of functions f considered there.

Proof. (a) Making the substitution q = φs(k), dq = detDφs(k)dk and using (73) we get

‖fs‖2 =
∫

(|k|−1 + 1)|f(φs(k))|2 detDφs(k) dk

=
∫

(|φ−s(q)|−1 + 1)|f(q)|2 dq ≤ eβ|s|‖f‖2
ω.

(b) For functions f ∈ L2
ω(R3) that are continuous and have compact support ‖fs−f‖ω → 0

follows from lims→0 fs(k) = f(k), for all k ∈ R3 by an application of Lebesgue’s dominated

convergence theorem. From here, (b) follows by an approximation argument using (a).

(c) By assumption on f ,

f̃ := v · ∇f +
1
2
div(v)f ∈ L2

ω(R3).

Using that

fs(k)− f(k) =
∫ s

0
f̃t(k) dt, k 6= 0
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and Jensen’s inequality we get

‖s−1(fs − f)− f̃‖2
ω =

∫
dk(|k|−1 + 1)

∣∣∣∣1s
∫ s

0
[f̃t(k)− f̃(k)] dt

∣∣∣∣2
≤

∫
dk(|k|−1 + 1)

1
s

∫ s

0

∣∣∣f̃t(k)− f̃(k)
∣∣∣2 dt

=
1
s

∫ s

0
‖f̃t − f̃‖2dt

which vanishes in the limit s→ 0 by (b).

A Operator Estimates and Spectrum

Let L2
ω(R3,C2) denote the linear space of measurable functions f : R3 → C2 with

‖f‖2
ω =

∑
λ=1,2

∫
|f(k, λ)|2(|k|−1 + 1)d3k <∞.

Lemma 22. For all f, g ∈ L2
ω(R3,C2)

‖a](f)(Hf + 1)−1/2‖ ≤ ‖f‖ω,

‖a](f)a](g)(Hf + 1)−1‖ ≤ 2‖f‖ω‖g‖ω,

where a] may be a creation or an annihilation operator.

The first estimate of Lemma 22 is well known, see e.g., [4]. For a proof of the second one see

[10].

Lemma 23 (Operator Estimates). Let cn(κ) =
∫
|κ(k)|2|k|n−3 d3k for n ≥ 1. Then

(i) A(x)2 ≤ 8c1(κ)Hf + 4c2(κ),

(ii) −8
3
c1(κ)α3p2 ≤ 2p ·A(αx)α3/2 +Hf ,

(iii) p2 ≤ 2Π2 + 2α3A(αx)2.

If ±V ≤ εp2 + bε for all ε > 0, and if ε ∈ (0, 1/2) is so small that 16εα3c1(κ) < 1, then

(iv) Π2 ≤ 1
1− 2ε

(H + bε + 8εα2c2(κ)),

(v) Hf ≤
1

1− 16εα2c1(κ)
(H + bε + 8εα2c2(κ)),

(vi) A(x)2 ≤ 8c1(κ)
1− 16εα2c1(κ)

(H + bε + 8εα2c2(κ)) + 4c2(κ).
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Proof. Estimate (i) is proved in [16]. (ii) is easily derived by completing the square in creation

and annihilation operators, and (iii) follows from 2α3p ·A(αx) ≥ −(1/2)p2 − 2α3A(αx)2.

From the assumption on V and statements (i) and (iii) it follows that

H ≥ Π2 − εp2 − bε +Hf

≥ (1− 2ε)Π2 − 2εα3A(x)3 +Hf − bε

≥ (1− 2ε)Π2 + (1− 16εα3c1(κ))Hf − 8εα3c2(κ)− bε,

which proves (iv) and (v). Statement (vi) follows from (i) and (v).

Let Eσ = inf σ(Hσ) and let Σσ = limR→∞ Σσ,R be the ionization threshold for Hσ, that is,

Σσ,R = inf
ϕ∈DR, ‖ϕ‖=1

〈ϕ,Hσϕ〉

where DR = {ϕ ∈ D(Hσ)|χ(|x| ≤ R)ϕ = 0}.

Lemma 24 (Estimates for Eσ and Σσ). With the above definitions

1. For all α ≥ 0,

Eσ ≤ e1 + 4c2(κ)α3.

2. If c1(κ)α3 ≤ 1/8 then

Σσ,R ≥ e2 − oR(1)− c1(κ)α3C, (R→∞),

where C and oR(1) depend on properties of Hpart only. In particular

Σσ ≥ e2 − c1(κ)α3C

uniformly in σ ≥ 0.

Proof. Let ψ1 be a normalized ground state vector of Hpart, so that Hpartψ1 = e1ψ1, and let

Ω ∈ F denote the vacuum. Then

Eσ ≤ 〈ψ1 ⊗ Ω,Hσψ1 ⊗ Ω〉

= e1 + α3〈ψ1 ⊗ Ω, A(αx)2ψ1 ⊗ Ω〉

≤ e1 + 4c2(κ)α3

by Lemma 23. To prove Statement 2 we first estimate Hσ from below in terms of Hpart. By

Lemma 23,

Hσ = Hpart + 2p ·A(αx)α3/2 +A(αx)2α3 +Hf

≥ Hpart −
8
3
c1(κ)α3p2.
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Since p2 ≤ 3(Hpart +D) for some constant D, it follows that

Hσ ≥ Hpart(1− 8c1(κ)α3)− 8c1(κ)Dα3.

By Perrson’s theorem, 〈ϕ, (Hpart ⊗ 1)ϕ〉 ≥ e2−oR(1), as R→∞, for normalized ϕ ∈ DR, with

‖ϕ‖ = 1, and by assumption 1− 8c1(κ)α3 ≥ 0. Hence we obtain

ΣR,σ ≥ (e2 − oR(1))(1− 8c1(κ)α3)− 8c1(κ)Dα3

= e2 − oR(1)(1− 8c1(κ)α3)− 8c1(κ)α3(e2 +D),

which proves the lemma.

Lemma 25 (Electron localization). For every λ < e2 there exists αλ > 0 such that for all

α ≤ αλ and all n ∈ N
sup
σ≥0

‖|x|nEλ(Hσ)‖ <∞.

Proof. From [15, Theorem 1] we know that ‖eε|x|Eλ(Hσ)‖ <∞ if λ+ε2 < Σσ. Moreover, from

the proof of that theorem we see that

sup
σ≥0

‖eε|x|Eλ(Hσ)‖ <∞

if R > 0 and δ > 0 can be found so that

Σσ,R −
C̃

R2
≥ λ+ ε2 + δ (101)

holds uniformly in σ. Here C̃ is a constant that is independent of the system. Given λ < e2,

pick αλ > 0 so small that e2 − c1(κ)α3
λC > λ with C as in Lemma 24. It then follows from

Lemma 24 that (101) holds true for some δ > 0 if R is large enough.

Theorem 26 (Spectral gap). If α� 1 then

σ(Hσ � Hσ) ∩ (Eσ, Eσ + σ) = ∅

for all σ ≤ (e2 − e1)/2.

Remark. Variants of this results are already known [12, 3]. We therefore content ourselves

with a proof that is partly formal in the sense that domain questions are ignored.

Proof. From [16] we know that

inf σess(Hσ � Hσ) ≥ min(Eσ + σ,Σσ).

On the other hand, by Lemma 24,

Σσ − Eσ ≥ e2 − e1 − α3(8c1(κ) + 4c2(κ)) ≥ σ
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under our assumptions on α and σ. This proves that

inf σess(Hσ � Hσ) ≥ Eσ + σ

and it remains to verify that Hσ has no eigenvalues in (Eσ, Eσ + σ). This follows from Propo-

sition 27 and the Virial Theorem.

The following proposition is part of the proof of Theorem 26.

Proposition 27. Let B̃ = dΓ(b̂) +α3/2x · φ(ib̂χ̃σG0) where b̂ = (k̂ · y+ y · k̂)/2 and k̂ = k/|k|.
Then for α� 1 and σ ≤ egap/2,

E(0,σ)(Hσ − Eσ)[Hσ, iB̃]E(0,σ)(Hσ − Eσ) ≥ 1
2
E(0,σ)(Hσ − Eσ).

Remark. The reason for the contribution α3/2x · φ(ib̂χ̃σG0) to the operator B̃ is that in

Equation (102) it leads to φ(ib̂χ̃σ∆Gx) with ∆Gx = Gx −G0 rather then φ(ib̂χ̃σGx).

Proof. Let Πσ = p+ α3/2Aσ(αx) so that Hσ = Π2
σ + V +Hf . We compute

[Hσ, iB̃] = Πσ[Πσ, iB̃] + [Πσ, iB̃]Πσ + [Hf , iB̃]

where

[Hf , iB̃] = N − α3/2x · φ(ωb̂χ̃σG0)

and

[Πσ, iB̃] =
[
Πσ, idΓ(b̂)

]
+
[
Πσ, iα

3/2x · φ(ib̂χ̃σG0)
]

= −α3/2φ(ib̂χ̃σGx) + α3/2φ(ib̂χ̃σG0)− 2α3 Re 〈χ̃σGx, xb̂χ̃
σG0〉

= −α3/2φ(ib̂χ̃σ∆Gx)− 2α3 Re 〈χ̃σGx, xb̂χ̃
σG0〉. (102)

We first show that [Hσ, iB̃] − N between spectral projections E(0,σ)(Hσ − Eσ) is O(α3/2) as

α → 0. To this end we set λ = (1/4)e1 + (3/4)e2 and prove Steps 1-3 below. Note that, by

Lemma 24, Eσ + σ ≤ λ for σ ≤ egap/2 and 2c2(κ)α3 ≤ egap/4.

Step 1.

sup
σ>0

‖Eλ(Hσ)x · φ(ωb̂χ̃σG0)Eλ(Hσ)‖ <∞.

One has the estimate

‖Eλ(Hσ)x · φ(ωb̂χ̃σG0)Eλ(Hσ)‖ ≤ ‖Eλ(Hσ)x‖‖ωb̂χ̃σG0‖ω‖(Hf + 1)1/2Eλ(Hσ)‖

where each factor is bounded uniformly in σ > 0. For the first one this follows from Lemma 25,

for the second one from |ωb̂χ̃σG0(k)| = O(|k|−1/2) and for the third one from supσ ‖(Hf +

1)1/2(Hσ + 1)−1‖ <∞, by Lemma 23.
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Step 2.

sup
σ>0

‖Eλ(Hσ)Πσ · φ(ib̂χ̃σ∆Gx)Eλ(Hσ)‖ <∞.

This time we use

‖Eλ(Hσ)Πσ · φ(ib̂χ̃σ∆Gx)Eλ(Hσ)‖

≤ ‖Eλ(Hσ)Πσ‖
(

sup
x
〈x〉−1‖b̂χ̃σ∆Gx‖ω

)
‖〈x〉(Hf + 1)1/2Eλ(Hσ)‖. (103)

Since

b̂χ̃σ∆Gx(k, λ) = i
(
∂|k| + |k|−1

)
χ̃σ(e−ik·x − 1)

κ(k)√
|k|
ελ(k)

= O(〈x〉|k|−1/2), (k → 0),

while, as k →∞, it decays like a Schwartz-function, it follows that

sup
x,σ

〈x〉−1‖b̂χ̃σ∆Gx‖ω <∞.

The first factor of (103) is bounded uniformly in σ > 0 thanks to Lemma 23, and for the last

one we have

‖〈x〉(Hf + 1)1/2Eλ(Hσ)‖ ≤ ‖〈x〉2Eλ(Hσ)‖+ ‖(Hf + 1)Eλ(Hσ)‖,

which, by Lemma 25 and Lemma 23, is also bounded uniformly in σ.

Step 3.

sup
σ
‖Eλ(Hσ)Πσ · Re 〈χ̃σGx, x · b̂χ̃σG0〉Eλ(Hσ)‖ <∞.

This follows from estimates in the proof of Step 2.

From Steps 1, 2, 3 and N ≥ 1− PΩ it follows that

Eλ(Hσ)[Hσ, iB̃]Eλ(Hσ) ≥ Eλ(Hσ)(1− PΩ)Eλ(Hσ) +O(α3/2). (104)

In Steps 4, 5, and 6 below we will show that E(0,σ)(Hσ −Eσ)PΩE(0,σ)(Hσ −Eσ) = O(α3/2) as

well. Hence the proposition will follow from (104).

Step 4.

‖(P⊥
part ⊗ PΩ)Eλ(Hσ)‖ = O(α3/2).

Let H(0) denote the Hamiltonian H with α = 0 and let f ∈ C∞
0 (R) with supp(f) ⊂ (−∞, e2)

and f = 1 on [infσ≤egap Eσ, λ]. Then Eλ(Hσ) = f(Hσ)Eλ(Hσ), (P⊥
part ⊗ PΩ)f(H(0)) = 0 and

f(Hσ)− f(H(0)) =
∫

df̃(z)
1

z −Hσ

(
2α3/2p ·Aσ(αx) + α3Aσ(αx)2

) 1
z −H(0)

= O(α3/2).

It follows that

‖(P⊥
part ⊗ PΩ)Eλ(Hσ)‖ = ‖(P⊥

part ⊗ PΩ)
[
f(Hσ)− f(H(0))

]
Eλ(Hσ)‖

≤ ‖f(Hσ)− f(H(0))‖ = O(α3/2).
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Step 5. Let Pσ denote the ground state projection of Hσ. Then

‖Ppart ⊗ PΩ − Pσ‖ = O(α3/2).

Since 1− PΩ ≤ N1/2 we have

1− Ppart ⊗ PΩ = 1− PΩ + P⊥
part ⊗ PΩ

≤ N1/2 + P⊥
part ⊗ PΩ

where ‖(P⊥
part ⊗ PΩ)Pσ‖ = O(α3/2) by Step 4 and ‖N1/2Pσ‖ = O(α3/2) by Lemma 29. It

follows that ‖(1−Ppart⊗PΩ)Pσ‖ = O(α3/2). Hence, for α small enough, Pσ is of rank one and

the assertion of Step 5 follows.

Step 6.

E(0,σ)(Hσ − Eσ)(1⊗ PΩ)E(0,σ)(Hσ − Eσ) = O(α3/2).

Since PσE(0,σ)(Hσ − Eσ) = 0, it follows from Step 4 and Step 5 that

‖(1⊗ PΩ)E(0,σ)(Hσ − Eσ)‖ = ‖(1⊗ PΩ − Pσ)E(0,σ)(Hσ − Eσ)‖

≤ ‖(Ppart ⊗ PΩ − Pσ)E(0,σ)(Hσ − Eσ)‖+ ‖(P⊥
part ⊗ PΩ)E(0,σ)(Hσ − Eσ)‖

= O(α3/2).

The following Lemma is formulated in a way which makes it applicable to the scalar field

model of Section 2 as well as to QED.

Lemma 28 (overlap estimates). Let P σ ⊗ f∆(Hf,σ) on Hσ ⊗Fσ be defined as in Section 2

or Section 3.1, and suppose |χσGx(k)| = 0 if |k| > 2σ while |χσGx(k)| ≤ |k|µ for some µ > −1

if |k| ≤ 2σ. Then

‖a(χσGx)P σ ⊗ f∆(Hf,σ)‖ ≤
∫

σ≤|k|≤2σ
|k|µ‖a(k)P σ‖ dk + Cσµ+3/2,

‖|x|a(χσGx)P σ ⊗ f∆(Hf,σ)‖ ≤
∫

σ≤|k|≤2σ
|k|µ‖|x|a(k)P σ‖ dk + C‖|x|P σ‖σµ+3/2,

where C =
√

2π/(µ+ 1).

Proof. Let ϕ ∈ Hσ ⊗Fσ with ‖ϕ‖ = 1. By assumption on χσGx,

a(χσGx)P σ ⊗ f∆(Hf,σ)ϕ =
∫

σ≤|k|≤2σ
χσ(k)Gx(k)a(k)P σ ⊗ f(Hf,σ)ϕdk

+
∫
|k|<σ

χσ(k)
Gx(k)
|k|1/2

P σ ⊗ |k|1/2a(k)f(Hf,σ)ϕdk.
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Using |χσGx(k)| ≤ |k|µ, ‖f∆(Hf,σ)‖ ≤ 1, and the Cauchy-Schwarz inequality applied to the

second integral

‖a(χσGx)P σ ⊗ f∆(Hf,σ)ϕ‖

≤
∫

σ≤|k|≤2σ
|k|µ‖a(k)P σ‖ dk +

(∫
|k|≤σ

|k|2µ−1 dk

)1/2

‖H1/2
f,σ f(Hf,σ)ϕ‖

≤
∫

σ≤|k|≤2σ
|k|µ‖a(k)P σ‖ dk +

(
2π
µ+ 1

)1/2

σµ+3/2,

where ‖H1/2
f,σ f(Hf,σ)‖ ≤ σ1/2 was used in the last step. The proof of the second assertion is a

copy of the proof above with P σ replaced by |x|P σ.

The integrands in Lemma 28 are estimated in the following lemma.

Lemma 29 (ground state photons). Suppose HσPσ = EσPσ where σ ≥ 0, Eσ = inf σ(Hσ),

and Pσ is the ground state projection of Hσ. Here Hσ=0 = H. Let Rσ(ω) = (Hσ −Eσ + ω)−1.

Then

(i) a(k)Pσ = −iα3/2
[
1− ωRσ(ω)− 2Rσ(ω)(Πσ · k) + αRσ(ω)k2

]
x ·Gx(k)∗Pσ

−2α3/2Rσ(ω)k ·Gαx(k)∗Pσ.

There are constants C,D independent of σ, α ∈ [0, 1] such that

(ii) ‖a(k)Pσ‖ ≤ α3/2 C

|k|1/2
,

(iii) ‖xa(k)Pσ‖ ≤ α3/2 D

|k|3/2
.

Proof. We suppress the subindex σ for notational simplicity. By the usual pull-through trick

(H − E + ω(k))a(k)P = [H, a(k)]ϕ+ ω(k)a(k)P

= −α3/22Π ·Gx(k)∗P.

Since 2Π = i[H,x] = i[H − E, x], and (H − E)ϕ = 0 we can rewrite this as

iα−3/2a(k)ϕ = R(ω)
[
(H − E)x− x(H − E)

]
Gαx(k)∗P

= (1− ωR(ω))(x ·Gx(k)∗)P −R(ω)x[H,Gαx(k)∗]P (105)

For the commutator we get

[H,Gx(k)∗] = (Π · k)Gx(k)∗ +Gαx(k)∗(Π · k)

= 2(Π · k)Gx(k)∗ − αk2Gx(k)∗
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and hence, using x(Π · k) = (Π · k)x+ ik,

x[H,Gx(k)∗] =
[
2(Π · k)− αk2

]
x ·Gαx(k)∗ + 2ik ·Gx(k)∗. (106)

From (105) and (106) we conclude that

iα−3/2a(k)P =
[
1− ωR(ω)− 2R(ω)(Π · k) + αR(ω)k2

]
x ·Gx(k)∗P

−2iR(ω)k ·Gx(k)∗P.

(ii) First of all supσ≥0 ‖xP‖ < ∞ by Lemma 25 and |Gx(k)| ≤ const|k|−1/2 by definition of

Gx(k). Since ‖R(ω)‖ ≤ |k|−1 and ‖R(ω)Π‖ ≤ const(1 + |k|−1) we find that∥∥∥[1− ωR(ω)− 2R(ω)(Π · k) + αR(ω)k2
]∥∥∥ ≤ const for α, |k| ≤ 1

This proves (ii). To estimate the norm of xa(k)P we use (i) and commute x with all operators

in front of P so that we can apply Lemma 25 to the operator x2P . Since

[x,R(ω)] = −2iR(ω)ΠR(ω)

the resulting estimate for ‖xa(k)P‖ is worse by one power of |k| than our estimate (i) for

‖a(k)P‖.

Lemma 30. There exists a constant C such that

|E − Eσ| = Cα3/2σ2

for all σ ≥ 0 and α ∈ [0, 1].

Proof. Let ψ and ψσ be normalized ground states ofH andHσ respectively. Then, by Rayleigh-

Ritz,

E − Eσ ≤ 〈ψσ, (H −Hσ)ψσ〉 (107)

Eσ − E ≤ 〈ψ, (Hσ −H)ψ〉 (108)

where H −Hσ = Π2 −Π2
σ and

Π2 −Π2
σ = 2α3/2p · (A(αx)−Aσ(αx))

+α3[A(αx) +Aσ(αx)] · [A(αx)−Aσ(αx)]. (109)

To estimate the contribution due to (109) we note that

[A(αx) +Aσ(αx)] · [A(αx)−Aσ(αx)] = [A(αx) +Aσ(αx)] · a(χσGx)

+a∗(χσGx) · [A(αx) +Aσ(αx)] (110)

+2
∫
|Gx(k)|2χ2

σ dk.
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The last term in (110) is of order σ2 and from Lemma 29 it follows that

‖a(χσGx)ψσ‖, ‖a(χσGx)ψ‖ ≤ Cα3/2

∫
|k|≤2σ

|Gx(k)| 1√
|k|
dk = O(α3/2σ2) (111)

Moreover, by Lemma 23,

‖pψσ‖, ‖[A(αx) +Aσ(αx)]ψσ‖ ≤ const.

It follows that the contributions of (109) to (107) and (108) are of order α3/2σ2 and α3σ2.

B Conjugate Operator Method

In this section we describe the conjugate operator method in the version of Amrein, Boutet

de Monvel, Georgescu, and Sahbani [1, 21]. In the paper of Sahbani the theory of Amrein et

al. is generalized in a way that is crucial for our paper. For simplicity, we present a weaker

form of the results of Sahbani with comparatively stronger assumptions that are satisfied by

our Hamiltonians.

The conjugate operator method to analyze the spectrum of a self-adjoint operator H :

D(H) ⊂ H → H assumes the existence of another self-adjoint operator A on H, the conjugate

operator, with certain properties. The results below yield information on the spectrum of H

in an open subset Ω ⊂ R, provided the following assumptions hold:

(i) H is locally of class C2(A) in Ω. This assumption means that the mapping

s 7→ e−iAsf(H)eiAsϕ

is twice continuously differentiable, for all f ∈ C∞
0 (Ω) and all ϕ ∈ H.

(ii) For every λ ∈ Ω, there exists a neighborhood ∆ of λ with ∆ ⊂ Ω, and a constant a > 0

such that

E∆(H)[H, iA]E∆(H) ≥ aE∆(H).

Remarks: By (i), the commutator [H, iA] is well defined as a sesquilinear form on the

intersection of D(A) and ∪KEK(H)H, where the union is taken over all compact subsets K

of Ω. By continuity it can be extended to ∪KEK(H)H.

The following two theorems follow from Theorems 0.1 and 0.2 in [21] and assumptions (i)

and (ii), above.

Theorem 31. For all s > 1/2 and all ϕ,ψ ∈ H, the limit

lim
ε→0+

〈ϕ, 〈A〉−sR(λ± iε)〈A〉−sψ〉

exists uniformly for λ in any compact subset of Ω. In particular, the spectrum of H is purely

absolutely continuous in Ω.
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This theorem allows one to define operators 〈A〉−sR(λ±i0)〈A〉−s in terms of the sesquilinear

forms

〈ϕ, 〈A〉−sR(λ± i0)〈A〉−sψ〉 = lim
ε→0

〈ϕ, 〈A〉−sR(λ± iε)〈A〉−sψ〉.

By the uniform boundedness principle these operators are bounded.

Theorem 32. If 1/2 < s < 1 then

λ 7→ 〈A〉−sR(λ± i0)〈A〉−s

is locally Hölder continuous of degree s− 1/2 in Ω.

Theorem 33. Suppose s ∈ (1/2, 1) and f ∈ C∞
0 (Ω). Then

‖〈A〉−se−iHtf(H)〈A〉−s‖ = O

(
1

ts−1/2

)
, (t→∞).

Proof. For every f ∈ C∞
0 (R) and all ϕ ∈ H

e−iHtf(H)ϕ = lim
ε↓0

1
π

∫
e−iλtf(λ) Im(H − λ− iε)−1ϕdλ (112)

by the spectral theorem. Now suppose f ∈ C∞
0 (Ω) and set F (z) = π−1〈A〉−s Im(H−z)−1〈A〉−s.

Then (112) and Theorem 31 imply

〈A〉−se−iHtf(H)〈A〉−sϕ =
∫
e−iλtf(λ)F (λ+ i0)ϕdλ (113)

This equation with H − π/t in place of H becomes

〈A〉−se−iHtf(H − π/t)〈A〉−sϕ = −
∫
e−iλtf(λ)F (λ+ π/t+ i0)ϕdλ. (114)

We take the sum of (113) and (114) and use ‖f(H)− f(H − π/t)‖ = O(t−1) to get

2‖〈A〉−se−iHtf(H)〈A〉−s‖+O(t−1)

≤
∫
|f(λ)|‖F (λ+ i0)− F (λ+ π/t+ i0)‖dλ = O(1/ts−1/2),

where the Hölder continuity from Theorem 32 was used in the last step.

For completeness we also include the Virial Theorem (Proposition 3.2 of [21]):

Proposition 34. If λ ∈ Ω is an eigenvalue of H and E{λ}(H) denotes the projection onto the

corresponding eigenspace, then

E{λ}(H)[H, iA]E{λ}(H) = 0.
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In the remainder of this section we introduce tools that will help us to verify assumption

(i). To begin with we recall, from [1, 21], that a bounded operator T on H is said to be of

class Ck(A) if the mapping

s 7→ e−iAsTeiAsϕ

is k times continuously differentiable for every ϕ ∈ H. The following propositions summarize

results in Lemma 6.2.9 and Lemma 6.2.3 of [1].

Proposition 35. Let T be a bounded operator on H and let A = A∗ : D(A) ⊂ H → H. Then

the following are equivalent.

(i) T is of class C1(A).

(ii) There is a constant c such that for all ϕ,ψ ∈ D(A)

|〈Aϕ, Tψ〉 − 〈ϕ, TAψ〉| ≤ c‖ϕ‖‖ψ‖.

(iii) lim infs→0+
1
s

∥∥e−iAsTeiAs − T
∥∥ <∞.

Proof. If T is of class C1(A) then sups 6=0 ‖s−1(e−iAsTeiAs − T )‖ < ∞ by the uniform bound-

edness principle. Thus statement (i) implies statement (iii). To prove the remaining assertions

we use that, for all ϕ,ψ ∈ D(A),

1
s
〈ϕ, (e−iAsTeiAs − T )ψ〉 =

−i
s

∫ s

0
dτ
[
〈eiAτAϕ, TeiAτψ〉 − 〈eiAτϕ, TeiAτAψ〉

]
. (115)

Since the integrand is a continuous function of τ , its value at τ = 0, 〈Aϕ, Tψ〉 − 〈ϕ, TAψ〉, is

the limit of 115 as s→ 0. It follows that

|〈Aϕ, Tψ〉 − 〈ϕ, TAψ〉| = lim
s→0+

s−1|〈ϕ, (e−iAsTeiAs − T )ψ〉|

≤ lim inf
s→0+

s−1‖e−iAsTeiAs − T‖‖ϕ‖‖ψ‖.
(116)

Therefore (iii) implies (ii).

Next we assume (ii). Then TD(A) ⊂ D(A) and [A, T ] : D(A) ⊂ H → H has a unique

extension to a bounded operator adA(T ) on H. The mapping

τ 7→ e−iAτadA(T )eiAτψ

is continuous, and hence (115) implies that

e−iAsTeiAsψ − Tψ = −i
∫ s

0
e−iAτadA(T )eiAτψ dτ (117)

for each ψ ∈ H. Since the r.h.s is continuously differentiable in s, so is the l.h.s, and thus

T ∈ C1(A).



40

Let As = (eiAs − 1)/is, which is a bounded approximation of A. Then

1
s

(
e−iAsTeiAs − T

)
= −ie−iAsadAs(T ). (118)

Hence, by Proposition 35, a bounded operator T is of class C1(A) if and only if lim infs→0+ ‖adAs(T )‖ <
∞. The following proposition gives an analogous characterization of the class C2(A).

Proposition 36. Let A = A∗ : D(A) ⊂ H → H and let T be a bounded operator of class

C1(A). Then T is of class C2(A) if and only if

lim inf
s→0+

‖ad2
As

(T )‖ <∞. (119)

Remark. This is a special case of [1, Lemma 6.2.3] on the class Ck(A). We include the

proof for the convenience of the reader.

Proof. Since T is of class C1(A) the commutator [A, T ] extends to a bounded operator adA(T )

on H and

i
d

ds
e−iAsTeiAsϕ = e−iAsadA(T )eiAsϕ (120)

for all ϕ ∈ H. By Proposition 35 the right hand side is continuously differentiable if and only

if

|〈Aϕ, adA(T )ψ〉 − 〈ϕ, adA(T )Aψ〉| ≤ c‖ϕ‖‖ψ‖, for ϕ,ψ ∈ D(A) (121)

with some finite constant c. To prove that (121) is equivalent to (119), it is useful to introduce

the homomorphism W (s) : T 7→ e−iAsTeiAs on the algebra of bounded operators. By (117)

(W (s)− 1)T = −i
∫ s

0
dτ1W (τ1)adA(T )

and therefore

1
s2

(W (s)− 1)2T =
−i
s2

∫ s

0
dτ1(W (s)− 1)W (τ1)adA(T )

=
−1
s2

∫ s

0
dτ1

∫ s

0
dτ2W (τ1 + τ2)[A, adA(T )] (122)

in the sense of quadratic forms on D(A), that is,

〈ϕ,W (τ1 + τ2)[A, adA(T )]ψ〉 := 〈Aϕ,W (τ1 + τ2)adA(T )ψ〉 − 〈ϕ,W (τ1 + τ2)adA(T )Aψ〉

for ϕ,ψ ∈ D(A). Since the right hand side is continuous as a function of τ1 + τ2, it follows

from (122), as in the proof of Proposition 35, that

|〈Aϕ, adA(T )ψ〉 − 〈ϕ, adA(T )Aψ〉| = lim
s→0+

1
s2
|〈ϕ, (W (s)− 1)2Tψ〉|

≤ lim inf
s→0+

1
s2
‖(W (s)− 1)2T‖‖ϕ‖‖ψ‖.
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Since, by (118),
1
s2

(W (s)− 1)2T = −e−2iAsad2
As

(T ),

condition (119) implies (121). Conversely, by (122) condition (121) implies that s−2‖(W (s)−
1)2T‖ ≤ c for all s > 0, which proves (119).

Lemma 37. Suppose that H is locally of class C1(A) in Ω ⊂ R and that eiAsD(H) ⊂ D(H)

for all s ∈ R. Then, for all f ∈ C∞
0 (Ω) and all ϕ ∈ H

f(H)[H, iA]f(H)ϕ = lim
s→0

f(H)
[
H,

eiAs − 1
s

]
f(H)ϕ.

Proof. By Equation 2.2 of [21],

f(H)[H, iA]f(H) = [Hf2(H), iA]−Hf(H)[f(H), iA]− [f(H), iA]Hf(H), (123)

where, by assumption, f(H) and Hf2(H) are of class C1(A). Since, by (118)

[T, iA]ϕ = −i lim
s→0

adAs(T )ϕ

for every bounded operator T of class C1(A), it follows from (123), the Leibniz-rule for adAs

and the domain assumption AsD(H) ⊂ D(H), that

f(H)[H, iA]f(H)ϕ

= −i lim
s→0

(
adAs(Hf

2(H))−Hf(H)adAs(f(H))− adAs(f(H))Hf(H)
)
ϕ

= −i lim
s→0

f(H)adAs(H)f(H)ϕ.
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