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ABSTRACT. We consider Schrodinger operators with nonergodic ran-
dom potentials. Specifically, we are interested in eigenvalue estimates
and estimates of the entropy for the absolutely continuous part of the
spectral measure. We prove that increasing oscillations in the potential
at infinity have the same effect on the properties of the spectrum as the
decay of the potential.

Recall the Rozenbljum-Cwikel-Lieb estimate ([5],[20], [19], [27]) for the
numberN(V ) of negative eigenvalues of−∆− V (x):

N(V ) ≤ C

∫
|V (x)|d/2 dx.

The potentialV in this estimate must decay in order to make the integral
converge. We are going to study potentials that either decay slower than
Ld/2-potentials or do not decay at all. Instead of decay, our theorems re-
quire some oscillation ofV at infinity. There is an additional disadvantage
of our results in that they give an estimate for the number of eigenvalues
below arbitrary negative number−γ, which can not be taken equal to zero.
In order to estimate the amount of negative spectrum one has to combine
our main result with the Laptev-Weidl approach (see Theorem (1.2)). We
also study the conditions onV which guarantee the convergence of certain
eigenvalue sums. The classical Lieb-Thirring estimate for the eigenvalue
sum

∑
|λj|γ holds for all potentials fromLd/2+γ, even for the worst ones.

Our goal is to show that the probability to meet a “bad” potential is zero. It
means that for a typical potential one can expect a better behaviour of the
negative spectrum.

Denote byF the Fourier transform understood as a unitary operator in
L2. Let

X = aF ∗V Fa

wherea is the multiplication operator by a function denoted by the same
letter andV is the multiplication operator by a potentialV . First, we need to
state the Birman-Schwinger principle, which can be formulated as follows:

Proposition 0.1. LetH = −∆−V be the Schr̈odinger operator with a real
potentialV and leta(ξ) = (ξ2 + γ)−1/2 . Then the number of eigenvalues
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of H lying below−γ coincides with the number of eigenvalues ofX lying
to the right of1.

Suppose thatV is a random potential

V (x) = Vω(x) =
∑

j

ωjvjζj(x)

whereζj are characteristic functions of disjoint measurable setsQj andvj

are fixed real coefficients. We assume thatωj are independent bounded
random variables withE(ωj) = 0 andE(ω2

j ) = 1. In our main result

||v||qq :=
∑

vq
j |Qj|2.

By ||v||∞ we mean the usual supremum norm of the sequencev. LetT be a
compact operator on a Hilbert space. Then the eigenvalues of(T ∗T )1/2 are
called singular valuessj(T ) (or singular numbers) of the operatorT .

Theorem 0.1. The numberN of singular numbers ofX which are larger
than1 satisfies the estimate

(0.1) E[N ] ≤ C
(
||a||2(q−2)

∞ ||a||2p
p ||v||qq

)(
||v||∞

)(p−2)

with p > 2, q ≥ 2. In particularX is almost surely compact, if the right
hand side of(0.1) is finite.

Before proving this result, we formulate another statement where the con-
stants in the inequalities are much better than the ones in (0.1).

Theorem 0.2. The amountN of singular numbers ofX which are larger
than1 satisfies the estimate

(0.2)
(
E[N1/q]

)q

≤ C
(
||a||2(q−2)

∞ ||a||2p
p ||v||qq

)
||v||(p−2)

∞

with p > 2, q ≥ 2. In particularX is almost surely compact, if the right
hand side of(0.2) is finite.

Proof. One of the ideas in the proof is similar to the idea of Cwikel in [5].
IntroduceDk = { ξ ∈ Rd : 2kt < |a(ξ)| ≤ 2k+1t }. The characteristic
function ofDk will be denoted byχk. Set alsoak = χka. Then

X = A+B, B =
0∑

m=−∞

∑
k

akF
∗V Fam−k.

Let us estimate the form(Bf, g) for f, g ∈ L2:

|(Bf, g)| ≤
0∑

m=−∞

2m+2t2||V ||∞
∑

k

||fk||||gm−k|| ≤ Ct2||V ||∞||f ||||g||.
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Herefk = χkf andgk = χkg. This estimate implies that||B|| ≤ C||v||∞t2.
Absolutely similar approach shows that

(0.3) ||A|| ≤ C||v||∞||a||2∞.
Indeed,

|(Af, g)| ≤
2 log2

(
||a||∞/t

)∑
m=1

2m+2t2||V ||∞
∑

k

||fk||||gm−k||.

Suppose that the Fourier transform̂V of the functionV is bounded and
a ∈ Lp for p > 2. ThenA is not only a bounded operator but it also belongs
to the Hilbert-Schmidt class. Indeed,

tr A∗A = tr
∑

j+k≥1

a2
jF

∗V Fa2
kF

∗V F ≤ ||V̂ ||2∞
∫
|a(ξ)a(η)|>2t2

a2(ξ)a2(η) dξdη =

= ||V̂ ||2∞
∫ ∞

2t2
2smeas{ ξ, η : |a(ξ)a(η)| > s } ds ≤ 2||V̂ ||2∞

∫ ∞

2t2
s1−p||a||2p

p ds

which implies that

(0.4) ||A||2 ≤ Ct−(p−2)||a||pp||V̂ ||∞, p > 2.

Now suppose thatV is a random potential

V (x) = Vω(x) =
∑

j

ωjvjζj(x)

whereζj are characteristic functions of disjoint setsQj andvj are fixed real
coefficients. We assume thatωj are independent bounded random variables
with E(ωj) = 0 andE(ω2

j ) = 1. In this case

sup
ξ

E[|V̂ (ξ)|2] ≤ C||v||22

where||v||22 =
∑
v2

j |Qj|2. Since the square of the Hilbert-Schmidt norm is
an integral, by the Fubini theorem we obtain (compare with (0.4))

(0.5) E{||A||22} ≤ Ct−2(p−2)||a||2p
p ||v||22, p > 2.

The complex interpolation between (0.3) and (0.5) leads to

(0.6)
(
E{||A||qq}

)1/q

≤ Ct−(p−2)θ||a||2(1−θ)
∞ ||a||pθ

p ||v||q

with 1/q = θ/2 andθ ∈ (0, 1). In the estimate (0.6) we use the following
notations

||v||qq =
∑

|vj|q|Qj|2

and
||A||qq = tr (A∗A)q/2.
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For a pair of operatorsA andB

sj+k−1(A+B) ≤ sj(A) + sk(B).

Therefore we obtain for the singular numberssj(X) of X that(
N−1

N∑
j=1

sq
j(X)

)1/q

≤ N−1/q||A||q + ||B||∞.

If N is the amount of singular numbers ofX greater than1, then

(0.7) 1 ≤ N−1/q||A||q + ||B||∞
which implies that

(0.8) E[N1/q] ≤ E[||A||q] + Ct2||v||∞E[N1/q].

Combining (0.6) and (0.8) we obtain

(0.9) E[N1/q] ≤ Ct−(p−2)θ||a||2(1−θ)
∞ ||a||pθ

p ||v||q + Ct2||v||∞E[N1/q],

with θ = 2/q.
This is a function of the formu(t) = ct−(p−2)θ + lt2, whose derivative

u′ = 2lt− [2(p− 2)/q]ct−2(p−2)/q−1 vanishes when

t2+2(p−2)/q = c(p− 2)/ql which means t =
(
c(p− 2)/ql

)q/(2(q+p−2))

sot2 is proportional to(c/l)q/(q+p−2). Therefore

E[N1/q] ≤ C
(
||a||2(1−2/q)

∞ ||a||2p/q
p ||v||q

)q/(q+p−2)(
||v||∞E[N1/q]

)1−q/(q+p−2)

which leads to

(0.10) E[N1/q] ≤ C
(
||a||2(1−2/q)

∞ ||a||2p/q
p ||v||q

)(
||v||∞

)(p−2)/q

The proof of the theorem is completed.�

Let us apply this estimate to obtain a bound for the number of negative
eigenvalues of the Schrödinger operator

H = −∆− Vω.

By the Birman-Schwinger principle, the numberN(γ) of eigenvalues ofH
below−γ coincides with the number of eigenvalues ofX larger than 1, if
a(ξ) = (ξ2 + γ)−1/2:

N(γ) = n+(1, X).

In this case

||a||pp =

∫
|a(ξ)|pdξ = Cγ(d−p)/2, p > d,
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and||a||∞ = γ−1/2. So the estimate (0.10) leads to

(0.11)
(
E[N1/q(γ)]

)q

≤ Cγ−(q−2)+d−p||v||qq
(
||V ||∞

)(p−2)

Denote the left hand side of the inequality (0.11) byN(γ), and assume that
||V ||∞ = 1. Then the analogue of the Lieb-Thirring inequality would be

α

∫ ∞

0

γα−1N(γ) dγ ≤ C||v||qq, ||V ||∞ = 1, d ≥ 2,

with anyα > (q− 2). This inequality obviously holds even for||V ||∞ ≤ 1,
simply because the negative eigenvalues of−∆−tV depend monotonically
on t.

The inconvenience of such estimates is that they do not imply conver-
gence of sums ∑

j

|λj(V )|α

of negative eigenvalues of the operatorH. Therefore let us modify the proof
and derive Theorem 0.1

Proof of Theorem 0.1.Indeed, the estimate (0.7) leads to

N ≤ 2q(||A||qq +N ||B||q∞).

Therefore

E[N ] ≤ Cτ−(p−2)||a||2(q−2)
∞ ||a||2p

p ||v||qq + Cτ q||v||q∞E[N ],

whereτ > 0. Choosing the optimalτ , we obtain (0.1).�

Theorem 0.3. Let λj(Vω) be the negative eigenvalues ofH = −∆ − Vω,
d ≥ 2, and let||v||∞ ≤ 1. Then

E[
∑

j

|λj(Vω)|α] ≤ C||v||qq

with q ≥ 2 andα > q − 2.

Combining this theorem with the main result of [28] we obtain: The con-

dition ||v||q + ||v||∞ < ∞ for 2 < q < 5/2 implies that the absolutely
continuous spectrum ofH is essentially supported by the positive real line.
That means the spectral projection corresponding to a subset ofR+ of pos-
itive Lebesgue measure is different from zero.
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1. THE LAPTEV-WEIDL METHOD

One can reduce a multidimensional problem to a one dimensional matrix-
valued one using the main idea of Laptev and Weidl [18]. The result can be
formulated as follows.

Theorem 1.1.LetV (x, y) be a real valued potential depending on the vari-
ablesx ∈ Rd1 andy ∈ Rd2 . Then

tr (−∆x,y − V (x, y))γ
− ≤ C

∫
tr (−∆x − V (x, y))

d2/2+γ
− dy

whereγ ≥ 0 if d2 ≥ 3 andγ ≥ 1/2 if d2 ≤ 2.

The caseγ = 0 was considered by Hundertmark [11]. This result allows
one to increaseγ while reducing the dimension. As a consequence we
obtain

Theorem 1.2.LetV be a random potential onRd1+d2

Vω(x, y) =
∑

j

ωjvjζj(x, y), x ∈ Rd1 , y ∈ Rd2 ,

whereζj are characteristic functions of disjoint setsQj and let

W (x, y) =
∑

j

ζj(x, y)

∫
ζj(x, y) dx.

Then

(1.1) E
(

tr (−∆x,y − V (x, y))γ
−

)
≤ C

∫ ∫
|V0(x, y)|qW (x, y) dxdy,

V0(x, y) =
∑

j

vjζj(x, y),

whereγ + d2/2 > q − 2; γ ≥ 0 if d2 ≥ 3 andγ ≥ 1/2 if d2 ≤ 2.

The advantage of this estimate is that it allows one to write a bound for
the number of negative eigenvalues by takingγ = 0.

Proof. Indeed,

E
(

tr (−∆x,y − V (x, y))γ
−

)
≤ CE

(∫
tr (−∆x − V (x, y))

d2/2+γ
− dy

)
.

For a fixedy we can treatζj(x, y) as the characteristic function of its own
support. Therefore

E
(

tr (−∆x−V (x, y))
d2/2+γ
−

)
≤ C

∑
j

|vj|ql2j = C

∫
|V0(x, y)|qW (x, y) dx

wherelj =
∫
ζj(x, y) dx. �
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2. APPLICATIONS. ABSOLUTELY CONTINUOUS PART OF THE

SPECTRUM

In the second part of the paper we consider the absolutely continuous
spectrum of a one dimensional Schrödinger operator inL2(R+) with a ran-
domVω

Hu = −u′′ + Vωu, u(0) = 0.

The main reason why this operator has absolutely continuous spectrum is
the growth of the frequency of the oscillations at infinity. The main result of
this part can be compared with the result of Deift and Killip [6] which states
that a Schr̈odinger operator with anL2 potential has absolutely continuous
spectrum essentially supported by the positive real line. By essentially sup-
ported we mean that the derivative of the spectral measure is positive almost
everywhere on the positive half-line. Note that in our examples we do not
study the co-existence of the a.c. spectrum with the singular spectrum. The
question of whether the spectrum is purely absolutely continuous was con-
sidered in [16]. In our paper we suggest a different method that resembles
the trace formula approach, and therefore this method is relatively simple.

Let V (x) = Vω(x) =
∑

n ωnfn(x) be a random bounded potential. Sup-
pose thatωn are independent (uniformly) bounded random variables with
the propertyE[ωn] = 0. For simplicity we impose the condition that the
variablesωn are identically distributed. Letfn = vnχn, wherevn are real
constants andχn is the characteristic function of an interval of the length
∆n.

Theorem 2.1. Let ||v||22 :=
∑

n v
2
n∆2

n < ∞. Suppose also thatχjχn = 0

for j 6= n. Then the absolutely continuous spectrum of the operator− d2

dx2 +
Vω is essentially supported by the positive real line and the spectral measure
µ of the operator satisfies the estimate∫ d

c

log(µ′(λ))dλ > −∞

with probability one for anyc > 0 andd <∞.

3. PRELIMINARY RESULTS

Assume for the present thatV is of compact support. For Imk > 0 one
can introduce the Jost solution of the equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x)

satisfying the condition thatψ(x) = exp(ikx) for large positivex. On
the left of the support ofV the Jost solution is a linear combination of
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exponential functions

ψ(x) = a(k)eikx + b(k)e−ikx,

and the coefficients in this formula satisfy the relation

(3.1) |a(k)|2 − |b(k)|2 = 1

The role of the coefficienta(k) is important in the spectral theory of the
operator on the half-line. Namely the derivative of the spectral measure can
be estimated by the absolute value ofa. If V is supported on the positive
half-line so thatV (x) = 0 for x < 1, then the Green’s function of the
operatorH defined on the half-line with the Dirichlet condition at zero, has
the following representation:

Gz(x, y) =


sin(kx)

k

(
M(k) sin(ky)/k + cos(ky)

)
, forx < y < 1

sin(ky)
k

(
M(k) sin(kx)/k + cos(kx)

)
, for y < x < 1,

whereM(k) is the Weyl function defined byM(k) = ψ′(0)/ψ(0) For the
imaginary part of the Green’s function we have

Im Gz(x, y) =
sin(kx)

k
Im M(k)

sin(ky)

k
, k = k̄.

Therefore for the spectral measure of the operatorH and a functionf sup-
ported on[0, 1] one has the following representation

(EH(δ)f, f) =

∫
δ

|F (λ)|2Im M(
√
λ) dλ, δ ⊂ (0,∞)

with

F (λ) =

∫ ∞

0

sin(kx)

k
f(x) dx, λ = k2.

This explains the reason why the measureµ defined by

µ(δ) =

∫
δ

Im M(
√
λ) dλ,

is also called the spectral measure of the operatorH. There is a relation
between the spectral measure of the operator on the semi-line and the scat-
tering coefficienta(k). Namely,

(3.2) µ′(k2) ≥ k

4|a(k)|2
, k = k > 0.

This relation follows easily from

Im M = Im
ψ′(0)

ψ(0)
=

k

|ψ(0)|2
=

k

|a(k) + b(k)|2
,

if one takes into account (3.1).
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4. PERTURBATION DETERMINANT

One of the crucial observations in the theory of one dimensional opera-
tors is that the functiona(k) coincides with the perturbation determinant,
i.e.

(4.1) a(k) = det(I + V (H0 − z)−1), Im k > 0, z = k2.

This observation can be made if one writes the following version of the
Birman -Krein formula

Im log(a(k)) = ξ(k2) = Im log(det(I+V (H0−z)−1)), k > 0, z = k2+i0

whereξ(λ) is the spectral shift function for the pair of operatorsH0 + V =
−d2/dx2 + V andH0 = −d2/dx2 defined on the whole line. Thus, to
prove (4.1) it is sufficient to show that zeros of the function in the left side
coincide with the zeros of the right side and to show that they have the same
asymptotic behavior ask →∞.

Note once again thatH0 = −d2/dx2 is the operator on the whole axis,
however we will apply (4.1) to the theory of operators on the half- line.
After integration of the logarithms of both sides in (3.2), one gets the in-
equality ∫ c

b

log
(
µ′(k2)

)
ρ(k)dk ≥

∫ c

b

log
( k

4|a(k)|2
)
ρ(k)dk.

whereρ is a positive weight on the real axis andb > 0. Let us fixρ. Then
this inequality can be rewritten in the form

(4.2)
∫ c

b

log
(
µ′(k2)

)
ρ(k)dk ≥ −2

∫ c

b

log
(
|a(k)|

)
ρ(k)dk + C,

whereC depends onb, c andρ. Now we can write the expansion:

log(a(k)) = tr V (H0 − z)−1 + log det2(I + V (H0 − z)−1)

and notice that the expectation of the first term is zero. Denoted(k) =
det2(I + V (H0 − z)−1). Assume thatρ(k) = (k − b)2l(k − c)2l with some
large integerl, then

(4.3)
∫ c

b

log
(
d(k)

)
ρ(k)dk =

∫
Γ

log
(
d(k)

)
ρ(k)dk.

whereΓ is the semi-circle{k : Im k > 0, |2k − b− c| = c− b}.
We follow the aproach of Killip [12] to derive the estimate

(4.4) E[| log
(
d(k)

)
| ] ≤ C

||v||22
|Im z|γ

, z = k2, Im z < c− b
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whereγ is some positive constatnt. Indeed

u(z) :=
d

dz
log

(
d(k)

)
= tr (H0 + V − z)−1V (H0 − z)−1V (H0 − z)−1).

Therefore

|u(z)| ≤ 1

Im z

(
1 +

||v||∞
Im z

)
||(H0 − z)−1/2V (H0 − z)−1/2||22

which implies the estimate

E[|u(z)| ] ≤ C

Im z

(
1 +

||v||∞
Im z

)
||v||22

(∫
dξ

|ξ2 − z|

)2

.

Integrating this inequality we obtain (4.4)
Therefore for sufficiently large numberl we obtain the estimate

(4.5) E
(
|
∫ c

b

log |d(k)|ρ(k)dk|
)
≤ C1||v||22

which follows from (4.3). The constant in (4.5) does not depend onV .
Using the inequality

E
(∫ c

b

log
(
µ′(k2)

)
ρ(k)dk

)
≥ −E

(
|
∫ c

b

log
(
d(k)

)
ρ(k)dk|

)
− C0.

we obtain from (4.5) that

(4.6) E
(∫ c

b

log
(
µ′(k2)

)
ρ(k)dk

)
≥ −C1||v||22 − C0.

The inequality (4.6) has been derived under the assumption thatV is of
compact support. However, as soon as it is proved for compactly sup-
portedV it is valid for arbitrary bounded potentials for which the right
hand side of (4.6) is finite. Since by Jenssen’s inequality the integral∫ c

b
log

(
µ′(k2)

)
ρ(k)dk is bounded from above, we come to the conclusion

that almost surely ∫ c

b

log
(
µ′(k2)

)
ρ(k)dk > −∞

which implies that the a.c. spectrum is essentially supported byR+.

5. WHY MEASURES CONVERGE WEAKLY

The notion of the entropy appeared for the first time in the spectral theory
in the paper [13]. It is actually an integral of the following type

S(µ) =

∫ d

c

log
[
µ′(λ)

]
dλ.



ESTIMATES 11

If a sequence of measuresµn converges toµ weakly then

S(µ) ≥ lim inf
n→∞

S(µn).

One can obtain even that

E
(
S(µ)

)
≥ lim inf

n→∞
E

(
S(µn)

)
provided that ∫

φ(λ)dµn(λ) →
∫
φ(λ)dµ(λ)

uniformly in ω for any fixed continuous compactly supported functionφ.
The question is why do spectral measures corresponding toVn converge if
Vn converges toV in L∞loc? This follows from

Theorem 5.1. Let f be a function supported by[0, 1]. Assume thatV
is supported on[1,∞) and Vn → V in L∞loc. Let Hn be the operator
with the potentialVn. Then the measures(EHn(λ)f, f) converge weakly
to (EH(λ)f, f).

Proof. It is sufficient to show that((Hn−z)−1f, f) converges to((H−
z)−1f, f) uniformly on compact sets in the upper half plane. This follows
from the resolvent identity

((Hn−z)−1f, f)−((H−z)−1f, f) = ((Hn−z)−1(V −Vn)(H−z)−1f, f)

if we take into account that the set of compactly supported smooth func-
tions is dense in the domain ofH. This means that(H − z)−1f can be
approximated by a compactly supported functionu, which has the property
that(V − Vn)u→ 0 in L2 asn→∞.

We give also other relevant references where one can find the solutions
of many interesting problems related to the absolutely continuous spectrum
of one dimensional operators. The potentials of these operators are either
random or slowly decaying, however there is a certain connection between
the two cases.

6. FURTHER IMPROVEMENTS OF THE RESULT

Suppose now that

V = Vω =
∑

n

ωnvnζn

whereζn(x) = ζ(x−xn

∆n
) are compactly supported bounded functions with

disjoint supports of the length∆n → 0. We assume thatωn are independent
bounded random variables withE(ωn) = 0, E(ω3

n) = 0 andE(ω2
n) = 1.
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Theorem 6.1. Let vn be uniformly bounded real coefficients. Assume that
the Fourier transform ofζ(x) has zero of orderp at the pointk = 0. Then
the condition ∑

n

(
v2

n∆2(p+1)
n + v4

n∆2
n

)
<∞

implies that the absolutely continuous spectrum of the operatorH =
− d2

dx2 + V is essentially supported by the positive real line(0,∞)

Proof. The proof follows the pattern of the proof of Theorem 2.1. We
introduce the norm

||v||p =
(∑

n

|vn|p∆2
n

)1/p

and now we prove that forz in the upper half plane one has the estimate

(6.1) E
[
||(H0 − z)−1/2V (H0 − z)−1/2||44

]
≤ C

||v||44
Im z3

.

This inequality follows by interpolation from

E
[
||(H0 − z)−1/2V (H0 − z)−1/2||22

]
≤ C

||v||22
Im z

and

||(H0 − z)−1/2V (H0 − z)−1/2|| ≤ C
||v||∞
Im z

.

For z = λ+ i0

E
[
Re log(det(I+V (H0−z)−1))

]
= E

[ |V̂ (2k)|2

8k2

]
+E

[
Re log(det 4(I+V (H0−z)−1))

]
.

The first term in the right hand side appears because

−Re tr
(
V (H0 − z)−1

)2

=
|V̂ (2k)|2

4k2
, k2 = z = λ+ i0.

Now let us consider the same weightρ as in the proof of Theorem 2.1
possibly with a largerl. Then we shall obtain

Re
∫ c

b

E
[
log(det 4(I + V (H0 − z)−1))

]
ρ(k) dk ≤ C||v||44, z = k2.

Indeed, to prove the latter estimate one has to observe that the following
inequality follows from (6.1) forz in the upper half plane:∣∣∣E[

log(det 4(I + V (H0 − z)−1))
]∣∣∣ ≤ C

||v||44
(Im z)γ

for some constantγ > 0. On the other hand,

E
(
|V̂ (2k)|2

)
=

∑
n

v2
n∆2

n|ζ̂(2∆nk)|2 ≤ C
∑

v2
n∆2(p+1)

n
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which completes the proof.
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