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ABSTRACT. We consider Schrodinger operators with nonergodic ran-
dom potentials. Specifically, we are interested in eigenvalue estimates
and estimates of the entropy for the absolutely continuous part of the
spectral measure. We prove that increasing oscillations in the potential
at infinity have the same effect on the properties of the spectrum as the
decay of the potential.

Recall the Rozenbljum-Cwikel-Lieb estimate ([5],[20], [19], [27]) for the
numberN (V') of negative eigenvalues efA — V(x):

N(V) < C/|V(g;)|d/2 dz.

The potentiall” in this estimate must decay in order to make the integral
converge. We are going to study potentials that either decay slower than
L??-potentials or do not decay at all. Instead of decay, our theorems re-
quire some oscillation of at infinity. There is an additional disadvantage
of our results in that they give an estimate for the number of eigenvalues
below arbitrary negative numbery, which can not be taken equal to zero.
In order to estimate the amount of negative spectrum one has to combine
our main result with the Laptev-Weidl approach (see Theorem (1.2)). We
also study the conditions dri which guarantee the convergence of certain
eigenvalue sums. The classical Lieb-Thirring estimate for the eigenvalue
sum>" |\;|” holds for all potentials froni4/2*7, even for the worst ones.
Our goal is to show that the probability to meet a “bad” potential is zero. It
means that for a typical potential one can expect a better behaviour of the
negative spectrum.

Denote byF the Fourier transform understood as a unitary operator in
L?. Let

X =aF*VFa

wherea is the multiplication operator by a function denoted by the same
letter andV/ is the multiplication operator by a potential First, we need to
state the Birman-Schwinger principle, which can be formulated as follows:

Proposition 0.1.Let H = —A —V be the Schidinger operator with a real

potentialV and leta(¢) = (€2 +~)~/2 . Then the number of eigenvalues
1
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of H lying below—~ coincides with the number of eigenvaluesXoftying
to the right of1.

Suppose that’” is a random potential

Vi(z) =V, (z) = Z%UJCJ‘(ZE)

where(; are characteristic functions of disjoint measurable getandv;,
are fixed real coefficients. We assume thatare independent bounded
random variables witli(w;) = 0 andE(w7) = 1. In our main result

[lollg =D vf1Qsl
By ||v||« we mean the usual supremum norm of the sequentet’ be a

compact operator on a Hilbert space. Then the eigenvalugs*@f)'/? are
called singular values;(T) (or singular numbers) of the operatbr

Theorem 0.1. The numberV of singular numbers ok which are larger
than1 satisfies the estimate

©1  EN < ([l 2lal ) (Il )

with p > 2, ¢ > 2. In particular X is almost surely compact, if the right
hand side of(0.1)is finite.

Before proving this result, we formulate another statement where the con-
stants in the inequalities are much better than the ones in (0.1).

(p—2)

Theorem 0.2. The amountV of singular numbers oX which are larger
than1 satisfies the estimate

q
©2)  (ENY)" < C(lalZ2llal2llol2) vl %
withp > 2, ¢ > 2. In particular X is almost surely compact, if the right
hand side of(0.2)is finite.

Proof. One of the ideas in the proof is similar to the idea of Cwikel in [5].
IntroduceD, = {£ € RY : 2kt < |a(&)] < 281t} The characteristic
function of D, will be denoted byy,. Set alsai, = yxa. Then

0
X =A+ B, B= > > aF'VFa,_y.

m=—oco k

Let us estimate the forB f, g) for f,g € L*:

0
(B.gI< Y 28|Vl D 1 fellllgm-+ll < CENVIIlIflllgl

m=—o00 k
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Heref, = xif andg, = xxg. This estimate implies thatB|| < C||v||t>.
Absolutely similar approach shows that
(0.3) 1] < Cllvllllal
Indeed,

210g; ([lal /1)
ALl < > 22Vl Y I fellllgm—rll-
k

m=1

Suppose that the Fourier transfofihof the functionV is bounded and
a € LP forp > 2. ThenA is not only a bounded operator but it also belongs
to the Hilbert-Schmidt class. Indeed,

trA"A=tr » & F'VFF*VF < WH;/ a?(€)a*(n) dédn =

jHk>1 la(€)a(n)|>2t

VI [ 2smeas(€n: fa(a(n)] > s)ds <2VIE [ alas
2t2 2t2

which implies that

(0.4) 1Al < CECDalplV]lee,  p>2.

Now suppose thdt is a random potential
V(z) =Vi(r) = wvi(x)
j

where(; are characteristic functions of disjoint s€lsandv; are fixed real
coefficients. We assume tha are independent bounded random variables
with E(w;) = 0 andE(w?) = 1. In this case

Slglp E[]V(§)|2] < Clv|f3

where||v][3 = >~ v?|Q;]*. Since the square of the Hilbert-Schmidt norm is
an integral, by the Fubini theorem we obtain (compare with (0.4))

(0.5) E{|[Al[3} < Ct>*Dal[Z[jo]l3,  p>2.
The complex interpolation between (0.3) and (0.5) leads to

1/q
06  (E(IAllg) " < Ct 2 al X0 fal 1] o],
with 1/¢ = 0/2 andf € (0, 1). In the estimate (0.6) we use the following
notations
Jollg = > os11Q, 2
and

|JAJ|Z = tr (A*A)72.
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For a pair of operatord andB
Sj+k-1(A+ B) < s;(A) + sx(B).
Therefore we obtain for the singular numbey§X) of X that

N 1/q
(N2 s1x)) < NV Al + 1Bl

j=1
If Vis the amount of singular numbers &fgreater thar, then

(0.7) 1< N~Y9A]ly + 1Bl

which implies that

(0.8) E[N'?) < E[||All)] + CF||v]|<E[N"/4).

Combining (0.6) and (0.8) we obtain

(0.9) E[NYY) < Ct=@2P)|a| 2 al[5 o]l + CF[v] | E[NY),

with 6 = 2/q.
This is a function of the formu(t) = ct=*=2% + [+?, whose derivative
u' =2t — [2(p — 2)/q]ct~*P=2/a=1 vanishes when

q/(2(g+p—2))
t720=2/a — ¢(p — 2)/ql  which means t = (c(p - 2)/ql>

sot? is proportional ta(c/1)%/(7t7=2) Therefore

a/(g+p-2) 1—q/(q+p—2)
B[N < € (1/allZ 29 lal 2/ o]l ) (I1olloELN /1))
which leads to

(r—2)/q
0120) BN < C(1[allZ a2l ) (110l

The proof of the theorem is completed.

Let us apply this estimate to obtain a bound for the number of negative
eigenvalues of the Sobdinger operator

H=-A-YV,.

By the Birman-Schwinger principle, the numb¥¥~) of eigenvalues ot/
below —~ coincides with the number of eigenvaluesXoflarger than 1, if

a(€) = (€ +7) 7
N(7) =n, (1, X).

In this case

lallz = / a(©)Pdg = CPR psd
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and||a||. = 7~'/%. So the estimate (0.10) leads to
q (p—2)
©11)  (ENYa)])" < Oy ooV )

Denote the left hand side of the inequality (0.11)M{y), and assume that
V||« = 1. Then the analogue of the Lieb-Thirring inequality would be

o [Crmear <l IVie =1 dz2,
0

with anya > (¢ — 2). This inequality obviously holds even fgV/||., < 1,
simply because the negative eigenvalues &f — ¢t depend monotonically
ont.

The inconvenience of such estimates is that they do not imply conver-

gence of sums
>IN
j

of negative eigenvalues of the operatbr Therefore let us modify the proof
and derive Theorem 0.1
Proof of Theorem 0.1indeed, the estimate (0.7) leads to

N < 2([|Al[7 + NI|BJ[L,).
Therefore
E[N] < C7= @2 [a] 22 [al [22[[0]|¢ + CT(|o] | E[N],
wherer > 0. Choosing the optimat, we obtain (0.1)[]

Theorem 0.3. Let \;(V,,) be the negative eigenvalues Bf = —A — V,,
d > 2,and let||v||. < 1. Then

E[Z A (Vo)I*] < ClJllg

withg > 2 anda > ¢ — 2.
Combining this theorem with the main result of [28] we obtain: The con-

dition ||v||, + ||v||ec < oo for 2 < ¢ < 5/2 implies that the absolutely
continuous spectrum df is essentially supported by the positive real line.
That means the spectral projection corresponding to a sub®et of pos-
itive Lebesgue measure is different from zero.
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1. THE LAPTEV-WEIDL METHOD

One can reduce a multidimensional problem to a one dimensional matrix-
valued one using the main idea of Laptev and Weidl [18]. The result can be
formulated as follows.

Theorem 1.1.LetV (z, y) be a real valued potential depending on the vari-
ablesz € R andy € R%. Then

tr(—Ayy —V(z,y)l < C/tr (A, — V(z,y)) 2y
wherey > 0if dy > 3andy > 1/2if dy < 2.

The casey = 0 was considered by Hundertmark [11]. This result allows
one to increase’ while reducing the dimension. As a consequence we
obtain

Theorem 1.2.LetV be a random potential o4+
Vol(z,y) = ijngj(x,y), reRM yeR®,
j

where(; are characteristic functions of disjoint sefs and let
W(z,y) =Y Gla,y) / G(z,y) da.
j

Then
A1) B (-2~ Ve))?) £C [ [ Voo W(a.y) drdy

VE)(Z}Q) = ZUjCj(xvy>7
j
wherey + dy/2 > q—2; v > 0ifdy > 3andy > 1/2if dy < 2.

The advantage of this estimate is that it allows one to write a bound for
the number of negative eigenvalues by taking 0.
Proof. Indeed,

E(tr (A, — V(z, y))’1> < CE(/tr (A, — V(x,y))iQ/Qﬂdy).

For a fixedy we can treat;(z, y) as the characteristic function of its own
support. Therefore

E(tr (=2, =V{w,y)2*7) <O foyl0 = € / Vo, 9)|"W (x, y) da
J

wherel; = [ (;(z,y)de. O
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2. APPLICATIONS. ABSOLUTELY CONTINUOUS PART OF THE
SPECTRUM

In the second part of the paper we consider the absolutely continuous
spectrum of a one dimensional Setinger operator i.?(R, ) with a ran-
domV,,

Hu = —u"+ V,u, u(0) = 0.

The main reason why this operator has absolutely continuous spectrum is
the growth of the frequency of the oscillations at infinity. The main result of
this part can be compared with the result of Deift and Killip [6] which states
that a Schivdinger operator with ah? potential has absolutely continuous
spectrum essentially supported by the positive real line. By essentially sup-
ported we mean that the derivative of the spectral measure is positive almost
everywhere on the positive half-line. Note that in our examples we do not
study the co-existence of the a.c. spectrum with the singular spectrum. The
guestion of whether the spectrum is purely absolutely continuous was con-
sidered in [16]. In our paper we suggest a different method that resembles
the trace formula approach, and therefore this method is relatively simple.

LetV(z) = V,(x) = >, wnfn(x) be arandom bounded potential. Sup-
pose thatu,, are independent (uniformly) bounded random variables with
the propertyE|w,] = 0. For simplicity we impose the condition that the
variablesw, are identically distributed. Let, = v, x., whereuv,, are real
constants ang,, is the characteristic function of an interval of the length
A,.

Theorem 2.1. Let|[v][3 := Y, v2A2 < oco. Suppose also thag;x, = 0

for j # n. Then the absolutely continuous spectrum of the operatﬁg +
V,, is essentially supported by the positive real line and the spectral measure
1 of the operator satisfies the estimate

d
/ log(p/(N))d\ > —o0

with probability one for any: > 0 andd < oc.

3. PRELIMINARY RESULTS

Assume for the present thatis of compact support. For Ih > 0 one
can introduce the Jost solution of the equation

—"(z) + V(@)p(z) = k" ()

satisfying the condition that/(z) = exp(ikz) for large positiver. On
the left of the support ol the Jost solution is a linear combination of
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exponential functions

Y(z) = a(k)e™™ + b(k)e *,
and the coefficients in this formula satisfy the relation
(3.1) la(k)|* — [b(k)|* = 1

The role of the coefficient(k) is important in the spectral theory of the
operator on the half-line. Namely the derivative of the spectral measure can
be estimated by the absolute valueaofif V' is supported on the positive
half-line so thatV'(z) = 0 for z < 1, then the Green'’s function of the
operatorH defined on the half-line with the Dirichlet condition at zero, has
the following representation:

) — singﬂf) M (k) sin(ky)/k + cos(k:y)), forr <y <1
2T, sin(ky) M (k) sin(kz)/k + cos(k:x)), fory <x <1,

k

whereM (k) is the Weyl function defined by/ (k) = (0)/«(0) For the
imaginary part of the Green’s function we have

Im G (a.y) = smgm)lm M(/{:)Slngfy),
Therefore for the spectral measure of the operét@nd a functionf sup-

ported on[0, 1] one has the following representation

k=k.

(Ex(0)f. f) = / FO)EMM(VN) A, 8¢ (0,00)

with

[ sin(kz) 9
F()\)—/O ’ f(z)dx, A= k"

This explains the reason why the measudefined by
M@:/WMNEM
é

is also called the spectral measure of the operatorThere is a relation
between the spectral measure of the operator on the semi-line and the scat-
tering coefficient(k). Namely,

k _
3.2 "(k?) > k=k .
(32) W) 2 s >0
This relation follows easily from
!/
Im M =1Im ¥'(0) = i = k

$(0) O a(k) +b(R)*

if one takes into account (3.1).
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4. PERTURBATION DETERMINANT

One of the crucial observations in the theory of one dimensional opera-
tors is that the functiom (k) coincides with the perturbation determinant,
ie.

(4.1)  a(k) =det(I +V(Hy—2)""), Im#k >0,z = k%

This observation can be made if one writes the following version of the
Birman -Krein formula

Im log(a(k)) = £(k?) = Im log(det(I+V (Ho—2)"")), k> 0,2 = k*>+i0

where()\) is the spectral shift function for the pair of operatéfg+ V' =
—d?/dz* +V and Hy = —d?/dz* defined on the whole line. Thus, to
prove (4.1) it is sufficient to show that zeros of the function in the left side
coincide with the zeros of the right side and to show that they have the same
asymptotic behavior als — oc.

Note once again thatly = —d?/dxz? is the operator on the whole axis,
however we will apply (4.1) to the theory of operators on the half- line.
After integration of the logarithms of both sides in (3.2), one gets the in-
equality

/b og (4 () (k) > /b C 1og(m)p<k>dk.

wherep is a positive weight on the real axis ahd> 0. Let us fixp. Then
this inequality can be rewritten in the form

@2) [ 1o () plbit = =2 [ togJa(w) okt + C:

whereC' depends o, c andp. Now we can write the expansion:
log(a(k)) =tr V(Hy — 2)~' +logdety(I + V(Hy — 2)~ )

and notice that the expectation of the first term is zero. Detgte =

deto(I + V(Hy — 2)71). Assume thap(k) = (k — b)?(k — ¢)* with some
large integet, then

(4.3) /b Clog(d(k:))p(k)dk: _ /F 10g<d(k:))p(k)dk.

wherel is the semi-circldk : Imk >0, |2k —b — ¢| = ¢ — b}.
We follow the aproach of Killip [12] to derive the estimate

2=k, Imz<c—b

o1
(44)  E[[log(d(k))|] < Cm 2l
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where~y is some positive constatnt. Indeed
d

u(z) = —log (d(k)) —tr (Ho+V — 2) 'V (Hy — 2) "V (Hy — 2)71).
z

Therefore

Ly el ; ]
u(2)| < (14 5 ) 1(Ho — )72V (Ho — 2) 72|

which implies the estimate

Elu(a)) < o (14 10 ([ )"

Integrating this inequality we obtain (4.4)
Therefore for sufficiently large numbéwe obtain the estimate

(45) (| [ togld(h)lp(k)dtl) < Calll

which follows from (4.3). The constant in (4.5) does not dependon
Using the inequality

E(/b log<,u’(k2)>p(/<;)dk) > —]E(] /b 1og(d(k)>p(k)dky) N

we obtain from (4.5) that

@s) B[ os(u0))o)ik) = ~Cillo] - Co

The inequality (4.6) has been derived under the assumptionithatof
compact support. However, as soon as it is proved for compactly sup-
portedV it is valid for arbitrary bounded potentials for which the right
hand side of (4.6) is finite. Since by Jenssen’s inequality the integral
J; log (u’(k2)>p(k:)dk is bounded from above, we come to the conclusion

that almost surely

/bc log<,u’(k:2)>p(k)dk: > o

which implies that the a.c. spectrum is essentially supportefl by

5. WHY MEASURES CONVERGE WEAKLY

The notion of the entropy appeared for the first time in the spectral theory
in the paper [13]. It is actually an integral of the following type

S(n) = / d log [u’(k)] dA.
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If a sequence of measurgs converges tq. weakly then
S(u) = lim inf S(p).
One can obtain even that
E(S(M) > nggﬂa(swn))
provided that
[ odm ) — [ oauty

uniformly in w for any fixed continuous compactly supported functign
The question is why do spectral measures correspondiihg tonverge if
V,, converges td/ in L;2.? This follows from

loc*

Theorem 5.1. Let f be a function supported bi, 1]. Assume thal’
is supported onfl,c) andV,, — V in L. Let H, be the operator

loc*

with the potentiall;,. Then the measure®y, () f, f) converge weakly
to (Ex(N)f, f).

Proof. Itis sufficient to show that(H,, — 2)~' f, f) converges td(H —
2)~1f, f) uniformly on compact sets in the upper half plane. This follows
from the resolvent identity

(Ho=2) " f, )= (H=2)"f, f) = (Ha—=2) 7 (V=Vo)(H=2)"" [, f)

if we take into account that the set of compactly supported smooth func-
tions is dense in the domain éf. This means thatH — z)~'f can be
approximated by a compactly supported functigmvhich has the property
that(V — V,,)u — 0in L? asn — oo.

We give also other relevant references where one can find the solutions
of many interesting problems related to the absolutely continuous spectrum
of one dimensional operators. The potentials of these operators are either
random or slowly decaying, however there is a certain connection between
the two cases.

6. FURTHER IMPROVEMENTS OF THE RESULT

Suppose now that

V=V,=) wnls

where(,(z) = ((*3**) are compactly supported bounded functions with
disjoint supports of the length,, — 0. We assume that, are independent
bounded random variables wit(w,,) = 0, E(w?) = 0 andE(w?) = 1.
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Theorem 6.1. Letv,, be uniformly bounded real coefficients. Assume that
the Fourier transform of (z) has zero of ordep at the pointk = 0. Then

the condition
S (e2Ar 4 oAz < oo

n

implies that the absolutely continuous spectrum of the operator=
—&, + V is essentially supported by the positive real lifiecc)

Proof. The proof follows the pattern of the proof of Theorem 2.1. We

introduce the norm y
p
ollp = (3 loal?a2)

and now we prove that forin the upper half plane one has the estimate

61 [l -2 v -2 )] < ol

This inequality follows by interpolation from

[\OR V]

B[[1(Ho — =)V (o — =) )] < o]

Im z
and |[v]]
Hy — 2)" Y2V (Hy — 2)~12|| < ¢
I(Ho — 272V (Hy — 2] < o1
Forz =X\+10

E[Re 10g(det([+V(H0—z)_1))} — E[lv(%)|2]+E[Re log(det 4 (I+V (Hy—2)"))].

8k?
The first term in the right hand side appears because

_1\?2 \VA (2k)|? ,
_ 1) 2 _ ., _
Retr(V(Ho z) ) = g2 k*=z=X+10.

Now let us consider the same weights in the proof of Theorem 2.1
possibly with a larget. Then we shall obtain

Re /:E[log(demU +V(H,y - z)_l))]p(k) dk < C|lo||t, 2=k

Indeed, to prove the latter estimate one has to observe that the following
inequality follows from (6.1) for: in the upper half plane:

o[|3
E[l (det 4(I + V(Hy — ”
‘ og(det4(I +V(Ho = 2) =%lm 2y

for some constant > 0. On the other hand,

(\V(% ) ZUQA% (28,5)]7 < O w2 A2HD
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which completes the proof.

REFERENCES

[1] M. Christ and A. Kiselev,Absolutely continuous spectrum for one-dimensional
Schibdinger operators with slowly decaying potentials: some optimal results
Amer. Math. Soc. 11 (1998), no. 4, 771-797.

[2] M. Christ, A. Kiselev,WKB and spectral analysis of one-dimensional 8dimger
operators with slowly varying potentiglEomm. Math. Phys. 218 (2001), no. 2, 245—
262.

[3] M. Christ, A. Kiselev,WKB asymptotic behavior of almost all generalized eigenfunc-
tions for one-dimensional Sabdinger operators with slowly decaying potentjals
Funct. Anal. 179 (2001), no. 2, 426-447.

[4] M. Christ, A. Kiselev, and C. RemlingThe absolutely continuous spectrum of one-
dimensional Sclirdinger operators with decaying potentialslath. Res. Lett. 4
(1997), no. 5, 719-723.

[5] Cwikel, M.: Weak type estimates for singular values and the number bound states of
Schibdinger operatorsAnn. of Math.106, (1977) 93-100.

[6] P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional
Schibdinger operators with square summable potenti@de@mm. Math. Phys. 203
(1999), no. 2, 341-347.

[7] F. DelyonAppearance of a purely singular continuous spectrum in a class of random
Schibdinger operatorsJ. Statist. Phys. 40 (1985), no. 5-6, 621—630.

[8] F. Delyon, B. Simon, and B. Souillafeiom power pure point to continuous spectrum
in disordered system#nn. Inst. H. Poincar Phys. Thor. 42 (1985), no. 3, 283-309.

[9] S. A. Denisov,0On the application of some of M. G. Krein’s results to the spectral
analysis of Sturm-Liouville operatard. Math. Anal. Appl. 261 (2001), no. 1, 177—
191.

[10] S.Jitomirskaya and Y. Lastpwer-law subordinacy and singular spectra. I. Half-line
operators Acta Math. 183 (1999), no. 2, 171-189.

[11] Hundertmark, D.:On the number of bound states for Schrdinger operators with
operator-valued potentiaJ#irk. Mat. 40 (2002), no. 1, 73-87.

[12] R. Killip, Perturbations of one-dimensional Séklinger operators preserving the ab-
solutely continuous spectruiMRN.

[13] R. Killip and B. Simon,Sum rules for Jacobi matrices and their applications to spec-
tral theory, Ann. Math.

[14] A. KiselevAbsolutely continuous spectrum of one-dimensional &tihger opera-
tors and Jacobi matrices with slowly decreasing potenti@smm. Math. Phys. 179
(2996), no. 2, 377-400.

[15] A. Kiselev, Stability of the absolutely continuous spectrum of the &dtihger equa-
tion under slowly decaying perturbations and a.e. convergence of integral operators
Duke Math. J. 94 (1998), no. 3, 619-646.

[16] A. Kiselev, Y. Last, and B. SimoNodified Piifer and EFGP transforms and the
spectral analysis of one-dimensional Satiinger operatorsComm. Math. Phys. 194
(1998), no. 1, 1-45.

[17] S. Kotani and N. Ushiroy&ne-dimensional Sctdinger operators with random de-
caying potentialsComm. Math. Phys. 115 (1988), no. 2, 247—-266.

[18] Laptev, A., Weidl, T.: Sharp Lieb-Thirring inequalities in high dimensign&cta
Math. 184 (2000), no. 1, 87-111.



14 HOLT, MOLCHANOQV, SAFRONOV

[19] Lieb, E.: The number of bound states of one-body Schroedinger operators and the
Weyl problem. Geometry of the Laplace opergferoc. Sympos. Pure Math., Univ.
Hawaii, Honolulu, Hawaii, 1979), 241-252; Proc. Sympos. Pure Math., XXXVI,
Amer. Math. Soc., Providence, R.I., 1980.

[20] Lieb, E.: Bounds on the eigenvalues of the Laplace and &tihger operatoiBull.

AMS 82(1976), 751-753.

[21] S. Molchanov, M. Novitskii, and B. Vainbefgrst KdV integrals and absolutely
continuous spectrum fdr D Schibdinger operatorComm. Math. Phys. 216 (2001),
no. 1, 195-213.

[22] S. N. Nabokddn the dense point spectrum of Sathinger and Dirac operatorsTeo-
ret. Mat. Fiz. 68 (1986), no. 1, 18-28.

[23] D. B. PearsonSingular continuous measures in scattering thed@pmm. Math.
Phys. 60 (1978), no. 1, 13-36.

[24] C. RemlingA probabilistic approach to one-dimensional Sétlinger operators with
sparse potentia|gComm. Math. Phys. 185 (1997), no. 2, 313-323.

[25] C. Remling, The absolutely continuous spectrum of one-dimensionalo8uotger
operators with decaying potential€omm. Math. Phys. 193 (1998), no. 1, 151-170.

[26] C. Remling, Bounds on embedded singular spectrum for one-dimensional
Schibdinger operatorsProc. Amer. Math. Soc. 128 (2000), no. 1, 161-171.

[27] Rozenbljum, G.The distribution of discrete spectrum for singular differential oper-
ators Sov. Math. Dokl13 (1972), 245-249

[28] Safronov, O.: Multi-dimensional Sclirdinger operators with some negative spec-
trum, to appear in J. Funct. Analysis.

[29] B. Simon,Trace Ideals and Their Applicationkondon Mathematical Society Lec-
ture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979.

[30] B. Simon,Some Jacobi matrices with decaying potential and dense point spectrum
Comm. Math. Phys. 87 (1982/83), no. 2, 253-258.

[31] B. Simon,Operators with singular continuous spectrum. |. General operatars.
of Math. (2) 141 (1995), no. 1, 131-145.

[32] B. Simon, Bounded eigenfunctions and absolutely continuous spectra for one-
dimensional Schirdinger operators Proc. Amer. Math. Soc. 124 (1996), no. 11,
3361-3369.

[33] B. Simon,Some Sclirdinger operators with dense point spectriPnoc. Amer. Math.
Soc. 125 (1997), no. 1, 203—-208.



