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Abstract

We compute accurately the golden critical invariant circles of several area-preserving
twist maps of the cylinder. We define some functions related to the invariant circle and
to the dynamics of the map restricted to the circle (for example, the conjugacy between
the circle map giving the dynamics on the invariant circle and a rigid rotation on the
circle). The global Hölder regularities of these functions are low (some of them are not
even once differentiable). We present several conjectures about the universality of the
regularity properties of the critical circles and the related functions. Using a Fourier
analysis method developed by R. de la Llave and one of the authors, we compute
numerically the Hölder regularities of these functions. Our computations show that
– withing their numerical accuracy – these regularities are the same for the different
maps studied. We discuss how our findings are related to some previous results: (a)
to the constants giving the scaling behavior of the iterates on the critical invariant
circle (discovered by Kadanoff and Shenker); (b) to some characteristics of the singular
invariant measures connected with the distribution of iterates. Some of the functions
studied have pointwise Hölder regularity that is different at different points. Our results
give a convincing numerical support to the fact that the points with different Hölder
exponents of these functions are interspersed in the same way for different maps, which
is a strong indication that the underlying twist maps belong to the same universality
class.
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Area-preserving twist maps of the cylinder are popular models of the dy-
namics of many physical systems, i.e., they occur as Poincaré maps of 2-degree-
of-freedom Hamiltonian systems. Homotopically non-trivial invariant circles of
such a map play an important role in organizing the global dynamics of the
map. Generally, as the perturbation grows, more and more of these circles are
destroyed, until there remains only one such circle, called the “critical” circle.
This circle is the last obstacle to the unbounded growth of the “action variable”.
In this critical situation many characteristics of the system become drastically
different from the “under-critical” case. For example, consider the dynamics of
the iterates of the twist map restricted to the critical circle – it is given by a
map of the circle. This map can be conjugated to a rigid rotation on the circle,
but the conjugating function has very low regularity – its Hölder exponent is
lower than 1. The Hölder regularity of this conjugacy is related to some uni-
versal properties of the map, i.e., to the universal rescaling factors [1, 2] and
to the scaling properties [3] of the distribution of the iterates on the critical
circle (which is governed by a singular invariant measure). We compute several
functions related to the critical circle and to the dynamics on it and us a method
developed in [4] to assess numerically their global Hölder regularity. Our find-
ings lend support to several conjectures concerned with the universality and the
renormalization group description of these critical objects.

1 Introduction

It has been known since the late 1970’s and early 1980’s that many objects at the boundary of
chaotic behavior exhibit remarkable scaling properties and that, furthermore, these proper-
ties are “universal”. Such properties are exhibited by unimodal maps of the interval [5, 6, 7],
critical maps of the circle [8], critical KAM tori [1, 2], and other systems. These observations
were explained in terms of a renormalization group analysis, following a methodology that
had been developed earlier in the study of critical phenomena in statistical mechanics and
field theory [9, 10, 11, 12].

The scale invariance of the critical objects affects many of their properties. Notably, the
Hölder regularity of the critical objects (or some functions related to them) tends to have a
low and fractional value. Presumably the values of the regularities are related to exponents
and geometric properties of the renormalization group fixed points which describe the critical
objects.

Furthermore, the observation that critical objects can be divided in “universality classes”
such that all objects in a given class “look the same” can be tested numerically. One way to
do this is to define certain functions related to the critical objects – typically these functions
are not very regular (in some cases not even once differentiable), and to test numerically
whether the regularities of these functions are the same for different objects. Another – even
more sensitive – test for universality is to take two functions, say h1 and h2, from the same
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class, and to study the regularity of functions like h1 ◦ h−1
2 – for h1 and h2 belonging to

the same universality class, one can expect that h1 ◦ h−1
2 be more regular than h1 and h−1

2 .
These ideas were tested in [4] in the case of non-critical and critical (with different degree
of criticality) circle maps, in which the empirical results are accompanied by an extensive
mathematical theory. A substantial part of the effort in [4] was to develop implementations
of methods known in harmonic analysis (finite differences, Littlewood-Paley theory, wavelet
analysis) to assess the regularity of the objects numerically.

In the present paper, we extend the methodology of [4] to the study of critical invariant
circles of area-preserving twist maps. Invariant circles in dynamical systems are among
the most important objects that organize the long-term behavior of the system, and the
critical ones are especially important because of their role as “last barriers to chaos” (for
readable reviews see, e.g., [13], or, with more emphasis on the mathematical aspects, the
recent book [14]). Critical invariant circles have been extensively studied since early 1980’s
[1, 2, 15, 12].

We compute accurately the golden critical invariant circles of several standard-like area-
preserving twist maps and some functions related to the dynamics of the iterates of the maps
on these circles. Then we apply methods developed in [4] to study the Hölder regularity of
these functions and some universality aspects.

In Sec. 2 we give some background on twist maps and their critical invariant circles,
define the functions that are the objects of our numerical study, and present several precise
conjectures concerning the properties of the critical invariant circles and the functions intro-
duced. Sec. 3 is devoted to a discussion of the numerical methods used to compute critical
invariant circles and to assess Hölder regularity of functions. We collect our results in Sec. 4,
and in Sec. 5 we discuss their significance and relationship with previous studies.

2 Critical invariant circles of twist maps

2.1 Twist maps

Let T := R/Z stand for the circle. We will be concerned with maps F of the (infinite)
cylinder T × R,

F : T × R → T × R : (θ, r) 7→ F (θ, r) =: (θ′, r′) ,

which satisfy the following properties:

• Area preservation: The map F preserves the oriented area: detDF = 1.

• Zero-flux: The oriented area between a homotopically non-trivial circle and its image
under F is 0. (In our situation, this is equivalent to saying that every non-trivial circle
intersects its image.)

• Twist condition: For any fixed value of θ, ∂θ′

∂r
> 0.
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A map of the cylinder can be identified with a map F̃ : R2 → R2 (called a lift of F )
which satisfies

F̃ (θ + 1, r) = F̃ (θ, r) + (1, 0) .

Often one does not need to keep the distinction.
The maps which we will use in our numerical studies are of the form (θ′, r′) := F (θ, r)

with

θ′ = (θ + r′) mod 1 ,
(1)

r′ = r + λV (θ) ,

where λ is a parameter, and V : T → R is a function satisfying
∫ 1

0
V (θ) dθ = 0. In particular,

many numerical studies have been devoted to studying (1) with

V (θ) = − 1

2π
sin 2πθ , (2)

in which case we will call the map F the Taylor-Chirikov map.
Given an orbit X = {(θn, rn) = F n(θ0, r0) |n = 0, 1, 2, . . .}, we define its rotation number,

ρ(X ), as the limit

ρ(X ) := lim
n→±∞

θn − θ0
n

,

whenever this limit exists. In contrast with the situation for circle maps, the rotation number
depends on the orbit (and it may happen that some orbits do not have rotation number).

We say that an orbit is well-ordered when for every k and l, the function of n defined as
e(n) = θn+k − l− θn has the same sign. Every well-ordered orbit has a rotation number (the
converse, however, is not true).

It is also easy to see that if a bounded orbit is well-ordered and ρ(θ0, r0) is irrational,
the closure of the orbit, {(θn, rn)}∞n=0, is a perfect set (i.e., every point is an accumulation
point of points in the set); in other words, in this case the orbit is either a homotopically
non-trivial circle or a Cantor set.

A set U ⊆ T × R is invariant if U = F (U).
The following result plays an important role.

Theorem 2.1. If F is as above, for every ρ ∈ R there exists a well-ordered orbit with
rotation number ρ.

2.2 Invariant circles of twist maps – rigorous results

The proof of the following theorem can be found in [16], [17]. We refer to [14] and [18] for a
detailed exposition.

Theorem 2.2. Let U be an open simply connected invariant set, containing one of the ends
of the cylinder. Then the boundary, ∂U , of the set U is an invariant circle which is the graph
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of a Lipschitz function. In other words, ∂U can be written as r = R(θ), where R : T → R is
a Lipschitz function.

For the map (1), the Lipschitz constant of the function R can be bounded by an expres-
sion which involves only the Lipschitz constant of the function F in a neighborhood of the
circle ∂U .

In particular,

Corollary 2.1. Any homotopically non-trivial invariant circle is the graph of a Lipschitz
function R. In the particular case of the map (1), the Lipschitz constant of R can be bounded
by a constant which is independent of λLipV .

A number ρ is said to be Diophantine if, for each m,n ∈ N \ {0}, for some C > 0, and
for some d > 2, it satisfies ∣∣∣ρ− m

n

∣∣∣ >
C

nd
.

In the case when the map F is close to integrable and its rotation number ρ is Diophantine,
one can apply Kolmogorov-Arnold-Moser theory to obtain that there exists an analytic
invariant circle such that the orbits on it have rotation number ρ.

Golden invariant circles are those with rotation number equal to the golden mean,

σG := [1, 1, 1, . . .] =

√
5 − 1

2
. (3)

Here we have used the notation ρ = [a1, a2, a3, . . .] = 1/(a1 + 1/(a2 + 1/(a3 + · · · ))) for the
continued fraction expansion of ρ ∈ (0, 1) [19].

There are also rigorous results that guarantee the non-existence of invariant circles of F
of the form (1).

Theorem 2.3. (i) If supθ |λV (θ)| > 1, then (1) has no invariant circles.

(ii) If supθ |V ′(θ)| = 1 (which holds for the function (2)), then for |λ| > 4
3

the map (1) has
no invariant circles.

(iii) For V given by (2), the map (1) has no golden invariant circles for |λ| > 63
64

=
0.984375 . . ..

(iv) For V given by (2), the map (1) has no golden invariant circles for |λ| > 0.9718.

Part (i) of Theorem 2.3 is elementary: if λ supθ |V (θ)| > 1, then there will exist points
(θ∗, r∗) ∈ T × R such that F (θ∗, r∗) = (θ∗, r∗ + 1), which, iterated, gives that F n(θ∗, r∗) =
(θ∗, r∗ + n) – the unbounded growth of the second coordinate of F n(θ∗, r∗) with n implies
that a topologically non-trivial invariant circle cannot exist.

Part (ii) can be found in [17], parts (iii) and (iv) are proved by computer-assisted methods
in [20] and [21], resp.

It is widely believed that
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Conjecture 2.1. For a Diophantine number ρ and for a map F of the form (1), there is a
number Λ(ρ) such that when |λ| > Λ(ρ), there is no invariant circle with rotation number ρ,
and when |λ| < Λ(ρ), there exists an analytic invariant circle with rotation number ρ. The
invariant circle becomes critical when |λ| = Λ(ρ).

Since our paper is devoted to homotopically non-trivial invariant circles, we will usually
omit the words “homotopically non-trivial”.

2.3 Functions related to the critical invariant circles

We are interested in describing the critical invariant circles with rotation number ρ which
are in the boundary of existence. Postponing for the moment issues on how these objects
can be actually computed, we point out that to a given critical invariant circle γ of rotation
number ρ, we can associate:

• the function R : T → R such that the critical invariant circle γ is the graph of R:

γ = {(θ, r) ∈ T × R : r = R(θ)} ; (4)

• the advance map g : T → T defined by

F (θ, R(θ)) = (g(θ), R ◦ g(θ)) ; (5)

• the hull map Ψ : T → T × R, which gives a representation of the invariant circle γ in
such a way that the dynamics on γ becomes a rotation by ρ, i.e.,

F ◦ Ψ(θ) = Ψ(θ + ρ) ; (6)

• the map h = π1 ◦ Ψ : T → T (where π1 : T × R → T is the projection onto T), which
conjugates the advance map to a rotation by ρ:

g ◦ h(θ) = h(θ + ρ) ; (7)

• the map h−1 : T → T, which is the inverse of the map h defined in (7).

We note the following rigorous results.
Theorem 2.2 guarantees that the invariant circle the function R is Lipschitz. It is an easy

consequence of the implicit function theorem that g should be as regular as R. Nevertheless,
it is useful to compute the regularities of both g and R independently to asses the reliability
of the numerical methods used.

Because of (7), it is clear that the regularity of g is not smaller than the minimum of the
regularities of h and h−1.
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2.4 The “big” conjugacies

Let ρ be a Diophantine number, Fi (i = 1, 2) be area-preserving twist maps, and γi be
the critical invariant circle of Fi with rotation number ρ. Let gγi

and hγi
be the associated

advance map (5) and conjugacy (7), resp. We introduce the conjugating functions

Gγ1,γ2
:= gγ1

◦ g−1
γ2

: T → T ,

Hγ1,γ2
:= hγ1

◦ h−1
γ2

: T → T .

We will call these functions “big” conjugacies to distinguish them from the “small” conju-
gacies h that conjugate the projected dynamics on the critical circles to a rigid rotation (7).
Note that the “big” conjugacies satisfy

Gγ1,γ2
◦Gγ2,γ3

= Gγ1,γ3
, Hγ1,γ2

◦Hγ2,γ3
= Hγ1,γ3

.

Below we discuss one aspect of the definition of the big conjugacies that will be important
in our computations.

Since there is no “origin” on the circle T, one has certain amount of freedom in the
definition of some maps. For example, if the function Ψ is a hull map (i.e., satisfies (6)),
then the function Ψ̃ defined as Ψ̃(θ) = Ψ(θ + ζ) will also satisfy (6) for any choice of the
constant ζ. Similarly, the map h (7) that conjugates the advance map g to a rigid rotation
can be redefined by composing it on the right with a rotation, and the resulting map,
h̃(θ) = h(θ+ ζ), will also conjugate g to a rigid rotation. Naturally, all important properties
of the maps h and h̃ – in particular, their Hölder regularity – will be the same. However,
one cannot use this freedom liberally when studying the big conjugacies. To understand the
reason for this, consider the map h defined by (7) for some twist map F . Naturally, the
map h ◦ h−1 is the identity map, so it is C∞. However, for any nonzero ζ in the definition of
h̃, there is no guarantee that the map h ◦ h̃−1 will be C∞. This is due to the fact that the
regularity of h may be different at different points, and while in h◦h−1 these “irregularities”
cancel out, in h ◦ h̃−1 the action of h does not necessarily “undo” the irregularities caused
by h̃−1. In Sec. 2.5 we explain in detail how we choose ζ in order to avoid the “spurious”
irregularities of the big conjugacy.

2.5 Big conjugacies and symmetries

Consider two functions hγ1
and hγ2

corresponding to the critical circles γ1 and γ2 of the
twist maps F1 and F2. If F1 and F2 happen to belong to the same “universality class” (see
Sec. 2.6), then one would expect that the big conjugacy Hγ1,γ2

will be more regular than
the functions hγ1

and h−1
γ2

. To avoid introducing spurious irregularities in Hγ1,γ2
, we use the

symmetries of the map h that come from the symmetries of the F [22, 23, 24].
It is well known that if the function V is odd, then the map F given by (1) can be written

as a composition of two involutions:

F = I1 ◦ I0 , I2
0 = I2

1 = Id , (8)
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where
I0(θ, r) = (−θ, r + λV (θ)) , I1(θ, r) = (−θ + r, r) . (9)

From (8) we have I0 ◦ F = F−1 ◦ I0 and I1 ◦ F = F−1 ◦ I1. Acting on (6) with I0 from the
left, we obtain

F−1 ◦ (I0 ◦ Ψ)(θ) = (I0 ◦ Ψ)(θ + ρ) . (10)

On the other hand, if we define the function L : T → T×R by L(θ) := Ψ(−θ), then (6) can
be written as

F−1 ◦ L(θ) = L(θ + ρ) . (11)

Comparing (10) and (11), we see that L and I0 ◦Ψ can differ only by a shift in the argument,
i.e., there has to exist a constant ζ such that I0 ◦ Ψ(θ) = L(θ + ζ) = Ψ(−θ − ζ). This,
together with (9) and h = π1 ◦ Ψ, imply

h(θ) = −h(−θ − ζ) .

This implies that h(− ζ

2
) = 0, and the numerical value of ζ can be found from the computed

values of h. Setting h̃(θ) := h(θ − ζ

2
), we obtain that h̃ is an odd function. In what follows,

we will assume that the appropriate value of ζ has been subtracted, and will omit the tilde
over h.

2.6 Universality

In this section, we formulate precisely some conjectures on the behavior of critical invariant
circles described by a non-trivial fixed point of the renormalization group. It seems quite
possible that these conjectures can be proved as conditional theorems assuming existence
and certain properties of this fixed point.

One of the most striking predictions of the renormalization group theory is that many
characteristics of the critical invariant circles are largely independent of the details of the
map. This is captured by the notion of universality.

Definition 2.1. We say that a numerical characteristic is universal when it takes the same
value in an open set of functions. We say that a property is universal when it holds for an
open set of functions.

The open sets alluded to in Definition 2.1 are called domains of universality.
For the case that we will be concerned with, the description of the domains of universality

in terms of properties of the non-trivial fixed points of the renormalization operator is still
debated, but there are indications that the domain of universality is not the whole space
[25, 26, 27].

Conjecture 2.2. The existence of one and only one non-trivial fixed point of the renormal-
ization operator is a universal property.
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This conjecture has been known for a long time [12]. Recently in [28] it has been shown
how this conjecture follows rigorously from an extension of the standard renormalization
group picture. Even the formulation of the subsequent conjectures depends of Conjecture 2.2.

The concept of universality is rather natural when one wants to study properties that
depend on the speed at which the set of maps converges to the fixed point under the renor-
malization operator. In particular, regularity of conjugacies depends on the this speed of
convergence and, hence, should be a universal quantity (more precise formulations are given
in [29]). Hence, we can also conjecture that:

Conjecture 2.3. The regularity, κ(R), of the critical invariant circle is a universal number.

Conjecture 2.4. The regularities κ(g), κ(h) and κ(h−1) are universal numbers.

Conjecture 2.5. For pairs of critical circles γ1 and γ2, the regularities κ(Gγ1,γ2
) and κ(Hγ1,γ2

)
are universal numbers.

Directly from the definition of Hölder regularity, one can see that if κ(φ) and κ(ψ) are
between 0 and 1, then κ(φ ◦ ψ) ≥ κ(φ) κ(ψ). This implies that

κ(Hγ1,γ2
) = κ(hγ1

◦ h−1
γ2

) ≥ κ(hγ1
) κ(h−1

γ2
) . (12)

For all critical invariant circles γi that we studied, we obtained numerically that κ(hγi
) < 1

and κ(h−1
γi

) < 1, so (12) yields that Hγ1,γ2
is not less regular than κ(hγ1

) κ(h−1
γ2

). For γ1 and
γ2 in the same universality class, however, we expect more – because of “cancellation” of the
“singularities” of hγ1

and h−1
γ2

, we state our final

Conjecture 2.6. The following inequalities hold for i = 1, 2:

κ(hγi
) < κ(Hγ1,γ2

) , κ(h−1
γi

) < κ(Hγ1,γ2
) .

3 Description of the numerical methods

In this section we first describe the methods used for numerical computation of invariant
circles and the related functions described in Sections 2.3 and 2.4. Then we briefly discuss
the method we use to compute the global Hölder regularity of the functions.

3.1 Computing critical invariant circles

We need to compute (homotopically non-trivial) critical invariant circles of twist maps of
the form (1) with a Diophantine rotation number. We approximate such invariant circles
by well-ordered periodic orbits (whose existence is guaranteed by the so-called Birkhoff’s
Geometric Theorem [30]). Consider a sequence {X (j)}j∈N of well-ordered periodic orbits
whose rotation numbers, {ρj}j∈N, constitute a sequence of rational numbers which converge
to a Diophantine number ρ. Then the limit of these periodic orbits will be a well-ordered
invariant set Xρ of rotation number ρ; the existence of this set is guaranteed by Aubry-Mather
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theory [31, Ch. 13], [14, Ch. 2]. The set Xρ can be a continuous curve which is a graph of
a Lipschitz function under appropriate conditions (Theorem 2.2) or an orbit homeomorphic
to a Cantor set (Cantorus).

We approximate a Diophantine number ρ by the rational numbers given by finite trunca-
tions of the continued fraction expansion of ρ. In the case of the golden mean σG (3), these
rational approximants are ratios ρm = Qm−1/Qm of consecutive Fibonacci numbers Qm. The
limit of the periodic orbits with rotation numbers ρm is the invariant set Xρ we are looking
for [23].

The problem of computing well-ordered orbits with a prescribed rational rotation number
ρm is greatly simplified if the function V (θ) in (1) is odd. In this case the task of finding a
periodic orbit is reduced to a one-dimensional problem because the map F can be written as
the composition of two involutions as in (8); if such a decomposition is possible, the map F
is said to be reversible. If F is reversible, there exists a set of straight lines in the (θ, r) space
– called symmetry lines – that are invariant with respect to the maps I0 and I1. It can be
shown that any periodic orbit has two points that belong to one of these invariant straight
lines, hence we can find these points (and, therefore, the periodic orbits that contain them)
by using a one dimensional root finder [23]. Using the fact that the periodic orbits computed
in this way are well-ordered, we can implement a numerical procedure to compute periodic
orbits of several million points that approximate the invariant set Xρ.

We are interested in studying the properties of area-preserving twist maps of the form
(1). When the parameter λ in (1) is equal to 0, the corresponding twist map acts on each
point (θ, r) as a rigid rotation in θ-direction, F (θ, r) = (θ + r, r), hence the phase space is
foliated by invariant circles of the form {r = const}. For small values of |λ|, KAM theory
guarantees the existence of invariant circles with Diophantine rotation numbers. According
to Conjecture 2.1, there is an upper bound Λ(ρ) on the values of |λ| such that for |λ| < Λ(ρ)
there exists an invariant circle with rotation number ρ; (some rigorous upper bounds on Λ(ρ)
are given in Theorem 2.3). To find an accurate numerical approximation of the critical value,
Λ(ρ), of λ for which the invariant circle of rotation number ρ disintegrates, we applied an
empirical method known as the “residues method” proposed in [23], developed in [32], and
partially justified rigorously in [33]. The main idea of this method is to determine the value
of λ such that the residue of all the approximating periodic orbits reaches the same value.
Let Rm be the residue of a periodic orbit which is the mth approximant to an invariant
circle with rotation number ρ. If limm→∞Rm = 0, then there exists an invariant circle with
rotation number ρ; if limm→∞Rm = ∞, then the invariant set Xρ becomes a Cantor set. A
golden critical invariant circle is obtained at the value of λ for which Rm ' −2.55426 for all
values of m.

3.2 Studying global Hölder regularity numerically

In this section we describe briefly the method we employed to study global Hölder regularity,
referring the reader to [4] for details, references, and assessment of the numerical accuracy
of various numerical methods for computing regularity.

In this paper, we will only use the method developed in [4] that was found to be the most
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accurate for studying global Hölder regularity – the so-called ”Continuous Littlewood-Paley”
(CLP) method. Here we do not use the wavelet-based methods implemented in [4]. The
CLP method has been used in [34, 24].

3.2.1 Theoretical basis of the CLP method

We recall the following definition.

Definition 3.1. For κ = n+ χ with n ∈ Z, χ ∈ (0, 1), we say that the function K : T → R

has (global) Hölder exponent κ and write K ∈ Λκ(T) when K is n times differentiable and,
for some constant C > 0,

|DnK(θ) −DnK(θ̃)| ≤ C|θ − θ̃|χ

for all θ, θ̃ ∈ T.

For the case of an integer value of κ, this definition is more complicated, but we will omit
it since in the applications considered in this paper κ is not an integer.

The following result can be found in [35, Ch. 5, Lemma 5].

Theorem 3.1 (CLP). The function K ∈ L∞(T) is in Λκ(T) if and only if for some integer
η > κ there exists a constant C > 0 such that for any t > 0

∥∥∥∥
(
∂

∂t

)η

e−t
√
−∆K

∥∥∥∥
L∞(T)

≤ Ctκ−η , (13)

where ∆ is the one-dimensional Laplace operator: ∆K(θ) = K ′′(θ).

Remark 3.1. If the above result holds for some integer η > α, then it holds for all integers
η̃ > α.

Remark 3.2. The operator e−t
√
−∆ is a convolution with the Poisson kernel: e−t

√
−∆K =

Pexp(−2πt) ∗ K. The function u(θ, t) := e−t
√
−∆K(θ) is a solution of Laplace’s equation,

uθθ + utt = 0, on the half-cylinder (θ, t) ∈ T × (0,∞), with Dirichlet boundary condition
u(θ, 0) = K(θ).

Remark 3.3. The mathematical theory only requires that (13) be an upper bound. In our
numerical experiments, however, this bound is saturated for a significant range of values of t.
This fact is very possibly a consequence of the self-similarity at small scales of the functions
we consider (which is at the basis of the renormalization group description). This saturation
was also observed for the functions considered in [4, 24].
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3.2.2 Remarks on the numerical implementation

To use the CLP method, we need to apply repeatedly Fast Fourier Transform (FFT), which
is easiest to do if the values of the function K in (13) are known at 2N equally spaced points
in the interval [0, 1) for some positive integer N . However, as we describe in Sec. 4, we do
not have control over the set of points at which the values of K can be computed (where K
stands for any of the functions R, g, h, h−1, H, G). Hence, the first step in applying the
CLP method would be the computation of the values of K on an evenly spaced grid. If we
know accurately the values of K at M points in [0, 1), we can expect that by using some
interpolation method, we will be able to obtain the approximate values of K on 2N ≈ M
equidistant points, {2−Nj}2N−1

j=0 . To compute the approximate values of K on the equidistant
grid, we used cubic spline interpolation. Using interpolation poses the question of whether
the interpolated values represent faithfully the true values of K. Naturally, the answer to
this question is no, but practically if M is large enough, the interpolated values will be
very close to the true values, which will allow us to compute many Fourier coefficients of K
accurately. The degree of “contamination” of the Fourier spectra due to the interpolation
depends on the uniformity of the distribution of the M points at which the values of K is
known accurately (see Remark 4.2).

To apply the CLP method numerically, we observe that the operator
(

∂
∂t

)η
e−t

√
−∆ used

in Theorem 3.1 is diagonal in a Fourier series representation: if K(θ) =
∑

k∈Z
K̂ke

−2πikθ,
then (

∂

∂t

)η

e−t
√
−∆K(θ) =

∑

k∈Z

(−2π|k|)η e−2πt|k| K̂k e−2πikθ . (14)

Having computed the values of the spline interpolant to the function K on an equally spaced
grid, applying (13) is easy. Namely, we fix some values of the parameters η and t, perform
FFT to find K̂k and compute the Fourier coefficients of

(
∂
∂t

)η
e−t

√
−∆K. Then we apply in-

verse FFT to find the values of
(

∂
∂t

)η
e−t

√
−∆K at the equally spaced set of points {2−Nj}2N−1

j=0 ;
among these values we find the one with maximum absolute value – this value we take for the
numerical value of the left-hand side of (13). For a fixed value of η, we repeat this procedure
for many values of t (we used several hundred values of t in our computations). According
to (13), if we plot

log

∥∥∥∥
(
∂

∂t

)η

e−t
√
−∆K

∥∥∥∥
L∞(T)

versus log t , (15)

the points should lie below a straight line of slope κ− η. As pointed out in Remark 3.3 (see
also Remark 4.3) the points on the log-log plot should not only be below this straight line,
but should close to it. We perform linear regression to find the slope of this line, from which
we find κ.

12



4 Numerical results

4.1 Twist maps studied

We study numerically a set of one-parameter families of area-preserving twist maps of the
form (1), each family having a different function V . Within each family we find numerically
the value Λ(σG) of the parameter λ for which the golden invariant circle is critical. The set
of functions V (all of them odd) that we selected is the following:

1. The standard (Taylor-Chirikov) map:

V1(θ) = − 1

2π
sin 2πθ . (16)

2. The “standard map with two harmonics”:

V2(θ) = − 1

2π
[sin(2πθ) − 0.03 sin(6πθ)] . (17)

3. The “critical standard map with two harmonics”:

V3(θ) = − 1

2π

[
sin(2πθ) − 1

2
sin(6πθ)

]
. (18)

For this choice of coefficients, the first three derivatives of V (θ) at θ = 0 are zero.

4. The “0.2-analytic map”:

V4(θ) = − 1

2π

sin(2πθ)

1 − 0.2 cos(2πθ)
. (19)

This map has infinitely many nonzero Fourier coefficients. It would be very interesting
to study this map when the coefficient of the cosine function in the denominator is
close to 1, but then it would be extremely difficult to compute periodic orbits.

5. The “0.4-analytic map”:

V5(θ) = − 1

2π

sin(2πθ)

1 − 0.4 cos(2πθ)
. (20)

6. The “tent map”:

V6(θ) =

17∑

j=1

cj sin(2πjθ) , (21)

where cj = (−1)
j+1

2
4

π2j2 for j odd, and cj = 0 for j even, are the Fourier coefficients of
the function

V(θ) =





−4θ , for 0 ≤ θ < 1
4
,

4θ − 2 , for 1
4
≤ θ < 3

4
,

4 − 4θ , for 3
4
≤ θ < 1 .

The function V6 is close to the piecewise linear continuous function V.
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Our numerical experiments were performed with the twist maps coming from the above
six functions V (θ) and the corresponding values Λ(σG), following the steps below.

1. As discussed in Sec. 3.1, the invariant circle of rotation number σG can be obtained as
a limit of periodic orbits of rotation numbers equal to ratios of consecutive Fibonacci
numbers, ρm = Qm−1/Qm. We chose to compute hyperbolic periodic orbits, and found
the values of Λ(σG) by applying Greene’s residue criterion.

2. The highest approximant to the critical invariant circle that we computed was a peri-
odic orbit with rotation number Q29/Q30 = 832040/1346269. The value of Λ(σG) was
determined by using the condition that the difference, |R30 − R29| of the residues of
the periodic orbits with periods Q29 and Q30 be zero (in practice, we wanted that this
difference be smaller than 10−10). The periodic orbits were computed with an error
not exceeding 10−23.

3. We computed the hyperbolic periodic orbit {(θm, rm)}M−1
m=0 of period M = Q30. The

values of the advance map g (5) at the points θm (m = 0, 1, . . . ,M − 1) were then
computed by g(θm) = θm+1 (here and below, we take mod 1 wherever needed). The
values of the conjugacy h at the pointsmσG (which corresponds tom applications of the
rigid rotation by σG to 0) are given by h(mσG) = θm, and, similarly, h−1(θm) = mσG.

4. In our Fourier-analysis-based CLP method we need to deal with periodic functions, so
we compute the “periodized” versions, g − Id, h − Id, h−1 − Id, of the functions g, h,
and h−1. Then we sort the periodized functions with respect to their argument; the
function R is already periodic, so we just sort its values.

5. The periodic functions are passed to the cubic spline interpolation routine to find
approximations to the values of the corresponding functions on a uniformly spaced
grid of 2N points; we used N = 20.

6. The interpolated values of the functions are given to the CLP algorithm to compute
their Hölder regularity. We used integer values of η in (13) from 1 to 5, and for each
analyzed function chose the value of η that gave the best straight line on the log-log
plot (15). The log-log plots for the other values of η were used as a consistency check.

Remark 4.1. In computing the big conjugacies Hγ1,γ2
, we had to take special care of the

preserving the symmetries of the maps h. For each critical circle we studied, we needed to
find the appropriate value of the constant ζ and shift the argument of the corresponding
function h as explained in Sec. 2.5.

4.2 Critical invariant circles – visual explorations

In Fig. 1 we show the critical invariant circles which, by the definition (4), are graphs of
the functions R corresponding to the six twist maps studied. The graphs of the “periodized
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versions” of the advanced maps, g− Id, the conjugacies, h− Id, and their inverses, h−1 − Id,
are plotted in Figures 2, 3, and 4, resp.

Figure 5 illustrates the self-similar nature the functions h; needless to say, the insets are
true zooms of parts of the graph of the function.

Fig. 6 shows the graphs of several periodized big conjugacies H − Id; it is obvious that
these functions are smoother than the “small” conjugacies h.

4.3 Fourier spectra, CLP method

Fig. 7 depicts log10 of the modulus of the kth Fourier coefficient of a periodized conjugacy (h−
Id) versus log10 k; here h is the conjugacy corresponding to the twist map F with V3 (18). The
horizontal distance between two adjacent high peaks is approximately equal to | log10 σG| ≈
0.209, which is a manifestation of the self-similarity at small scales. The log10-log10 plots of
the Fourier spectra of the functions (g− Id) and (h−1 − Id) for the same map F are given in
Fig. 8.

Remark 4.2. Note that the spectrum of h is very accurate even at length-scales ∼ 10−6,
while the spectrum of h−1 is quite noisy. As explained in Sections 3.2.2 and 4.1, the main
reason for this is that the exact values of h are known at the points (mσG) mod 1, which
are almost uniformly distributed on T. On the other hand, we know the exact values of
of g and h−1 at the very nonuniformly distributed points of the form gm(θ0) (because the
underlying invariant measure is singular – see Sec. 5.2), which results in the presence of big
gaps between these points and, hence, distorted values of the spline interpolant.

In Fig. 9 we show several plots of log10 of the left-hand side of (13) versus log10 t. The six
lines in each group of lines of similar slope correspond to the six different choices (16)–(21)
of functions V , and the lines in each group come from the same value of η in (13). Each
on the “lines” in the figure in fact consists of 400 points (visually indistinguishable). The
computer time spent on the CLP analysis is of the order of one minute per point (we used
220 Fourier coefficients to compute each of these points).

We computed the regularity by performing linear regression on the points on graphs like
the one in Fig. 9, in the regions where the points follow more or less a straight line. As one
can see from this figure, for t close to 1 (i.e., log10 t ≈ 0), the graphs for different functions are
not straight lines, then as t decreases they form more or less straight lines, and as t decreases
further, these lines level out. This behavior can be understood intuitively from (14) – for
t ≈ 1 the high-k Fourier coefficients are strongly suppressed by the factor (−2π|k|)η e−2πt|k|,
so the CLP method still does not “feel” the asymptotic self-similarity of the functions at
small length-scales; in the other extreme, the leveling-out of the lines for very small t comes
from the fact that in our computations we use a finite – albeit very large – number of Fourier
coefficients.

Remark 4.3. The “straight lines” in Fig. 9 are not really straight (which has been noticed
in different contexts in [4, 24]). We show this effect in Fig. 10, which was created as follows.
We took the six lines for η = 2 from Fig. 9, and for each of them we computed the slope
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of the line as a function of the horizontal coordinate in the figure, log10 t. To compute this
slope, we took each pair of adjacent points on the line and found the slope of the straight line
connecting these points. The distance between two consecutive peaks in Fig. 9 is | log10 σG|;
more interestingly, as log10 t becomes more negative, the lines tend to the same wavy line,
until all lines reach saturation around log10 t ≈ −4.5.

4.4 Global Hölder regularities – numerical results

Table 1 summarizes our numerical results. The first column gives the map V used in the
numerical computations (for the six functions V given by (16)–(21)). In the other columns
we give the the values of the (global) Hölder exponent κ of the function R (representing
the invariant circle as a graph in the (θ, r)-plane), the advance map g, the conjugacy h and
its inverse, h−1, coming from the (dynamics on) the golden critical invariant circle of the
corresponding area-preserving twist map F . The notations used are the following: 1.85(15)
stands for 1.85± 0.15, and 0.726(3) for 0.726± 0.003. Note that within the numerical error,
κ(R) = κ(g), as expected.

We also computed the Hölder regularities of all big conjugacies H between each of the
six functions h1, . . ., h6 (coming from V1, . . ., V6) with all other hj’s. We applied the CLP
method to find that the regularity of all thirty functions H studied is

κ(H) = 1.80 ± 0.15 . (22)

5 Discussion and conclusion

In Sections 5.1 and 5.2 we point out some relationships between our results and previous
studies related to universal scaling factors and singular measures. In the final Section 5.3,
we recapitulate our findings.

5.1 Hölder regularity and scaling factors

Here we will explain how the scaling of the distances of closest returns of the iterates of a
point gives bounds on the Hölder regularity of some of the functions we study. Our analysis
here is reminiscent of the analysis in [4, Sec. 8.2].

We start by recalling the crucial observation of Kadanoff and Shenker [1, 2] (see also
[15, Sec. 4.4]) of the existence of universal scalings in the distribution of the iterates of the
Taylor-Chirikov map on the critical invariant circle γ in neighborhoods of certain points
of γ. Let θrar ∈ T stand for the value around which the iterates of the function g are most
rarefied (in our notations θrar = 1

2
, while in [2] θrar = 0). Let θden ∈ T stand for the value

around which the iterates of the function g are most dense (in our notations θrar = 0, while
in [2] it is θrar = 1

2
). Since by Theorem 2.2 the function R is Lipschitz, around the points

(θrar, R(θrar)) and (θden, R(θden)), the iterates of any point on γ under F are most rarefied,
resp. dense. Shenker and Kadanoff found that the critical invariant circle in a neighborhood
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of θrar is asymptotically invariant under simultaneous scalings in both θ- and r-directions,
with scaling factors

α0 ≈ −1.414836 (in θ) , β0 ≈ −3.0668882 (in r)

(see also the bounds on these values in Stirnemann [36]). This implies that, for large n,

gQn+1(θrar) − θrar

gQn(θrar) − θrar

≈ α−1
0 ,

R(gQn+1(θrar)) − R(θrar)

R(gQn(θrar)) −R(θrar)
≈ β−1

0 . (23)

The scaling around θden is a bit more complicated – it is called “step-3” scaling for obvious
reasons:

gQn+3(θden) − θden

gQn(θden) − θden
≈ α−1

3 ,
R(gQn+3(θden)) −R(θden)

R(gQn(θden)) − R(θden)
≈ β−1

3 , (24)

where the “step-3” scaling factors are

α3 ≈ −4.84581 (in θ) , β3 ≈ −16.8597 (in r) .

To understand heuristically why these scalings give restrictions on the Hölder regularity
of R, set ∆θ := gQn+1(θrar) − θrar, ∆r := R(gQn+1(θrar)) − R(θrar) for some large value of n.
Then if the local Hölder exponent of R at θ = θrar is κ, we will have |∆r| ∼ |∆θ|κ. If
the graph of R is asymptotically invariant around (θrar, R(θrar)) with respect to the scalings
(23), we will have |β0 ∆r| ∼ |α0 ∆θ|κ. “Dividing out” the last two relationships, we obtain

|β0| ∼ |α0|κ, i.e., κ ∼ log |β0|
log |α0| . This argument (which can easily be made rigorous) implies

that the (global) Hölder exponent of R does not exceed log |β0|
log |α0| ≈ 3.22945. The scaling (24)

yields a tighter bound on the Hölder regularity of R:

κ(R) ≤ log |β3|
log |α3|

≈ 1.7901 . (25)

Note that the fact that the scaling (24) is “step-3” (as opposed to “step-1”) is irrelevant for
the bounds on the Hölder regularity.

To obtain bounds on κ(h) and κ(h−1), we use Lemma 8.1 from [4], which says that if the
function h conjugates f1 and f2, h ◦ f1 = f2 ◦ h, and if for some sequence of positive integers
Qn the functions fj (j = 1, 2) behave in a neighborhood of the fixed point θfix = h(θfix) of h
as follows:

fQn

j (θfix) = θfix + Cjη
−n
j + o(η−n

j )

for some constants ηj and Cj, then κ(h) ≤ log |η2|
log |η1| . Applying this to the definition of h and

using the well-known fact that (Qn σG) mod 1 ≤ Cσn
G, we obtain the bounds

κ(h) ≤ log |α−1
0 |

log |σG|
≈ 0.721125 , κ(h−1) ≤ log |σ3

G|
log |α−1

3 | ≈ 0.91478 . (26)

A comparison with Table 1 suggests that these bounds are saturated.
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5.2 Conjugacies and singular measures

The functions whose Hölder regularity we study are defined through high iterates of maps.
For example, the graph of the function R defined by (4) is nothing but the the critical invari-
ant circle γ of F which is is filled densely by the iterates F n(θ0, r0) of some point (θ0, r0) ∈ γ.
Here we discuss how some characterizations of the singularities in the distribution of the
iterates of F on γ are related to the Hölder regularity of some of the functions considered.

Hentschel and Procaccia [37] pointed out the importance of the generalized (Rényi) di-
mensions D(q) of a singular measure for dynamical systems; these quantities have been
defined previously in the context of probability theory by Rényi [38]. Halsey et al in their
seminal paper [3] related heuristically the Rényi dimension of a singular measure to the
spectrum of singularities f(α). We recall that f(α) is the Hausdorff dimension of the set Eα

of points where the measure has singularity of strength α. The spectrum f(α) is a function
supported on the interval [αmin, αmax], where αmin = D(∞), resp. αmax = D(−∞), describe
the scaling behavior of the measure in the region where the measure is most dense, resp.
most rarefied.

Let (θ0, r0) be an arbitrary point on the critical invariant circle γ of the area-preserving
twist map F . Then the distribution of the iterates in a very long orbit, {F n(θ0, r0)}K

n=0,
approaches as K → ∞ the “density” of the measure on γ that is invariant with respect
of the restriction of the map F onto γ. (We put “density” is quotation marks because for
singular measures this is not a function, but a set of Dirac δ-distributions.) This invariant
measure on γ induces an invariant measure µg of the map g on T. It is easy to see that (7)
implies that

h−1(θ) =

∫ θ

0

dµg

(for an appropriately chosen ζ in the redefinition of h as in Sec. 2.5). This relationship
implies that the spectrum of singularities f(α) of the measure µg is the same as the Hölder
spectrum fH(α) of the function h−1. By definition, fH(α) is the Hausdorff dimension of the
set where the local Hölder exponent of the function is equal to α; for a readable account we
refer the reader to Jaffard [39]. The (global) Hölder regularity κ(φ) of a function φ is equal
to the lowest end, αmin, of the support of the Hölder spectrum, fH(α), of φ.

Osbaldestin and Sarkis [40] applied the method of [3] to determine numerically the func-
tions f(α) and D(q) of the invariant measure µg coming from the distribution of iterates of
the Taylor-Chirikov map F on the golden invariant circle. They found that

αmin = D(∞) ≈ 0.915 , αmax = D(−∞) ≈ 1.387 ≈ 1

0.720
.

Comparing with the values in Table 1, the reader should recognize that their αmin is nothing
but our κ(h−1), while αmin is equal to the inverse of the regularity of the conjugacy h.

Burić et al [41, 42] studied numerically the Taylor-Chirikov map and the map (1) with
V (θ) = 1

2
sin 2πθ+ 1

4
sin 4πθ, for rotation numbers with continued fraction expansions of the

form [S, 1∞] := [S, 1, 1, 1, . . .], [S, 2∞], [S, 3∞], [S, 4∞], where S stands for some short string
of positive integers. They found that f(α) and D(q) depend only on the tail but do not
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depend on the initial part S as well as on whether the Taylor-Chirikov map or the other
map was used in their numerics.

Other papers related to numerical computations of singular measures on critical invariant
circles of area-preserving twist maps are Shi and Hu [43, 44], where the methods of [3] were
used, and Hunt et al [45], where the authors used the thermodynamic formalism developed
in [46] to compute the information dimension D(1) of the standard map for different rotation
numbers.

5.3 Conclusion

We computed accurately the golden critical invariant circles for six twist maps of the form (1)
and the global Hölder regularity κ of some functions related to the dynamics on these circles.
Our numerical experiments lend credibility to Conjectures 2.3, 2.4 and 2.5 concerning the
universality of the regularities of the functions R, g, h, h−1 and H (see Table 1 and (22)).
Yamaguchi and Tanikawa [47] found numerically that the golden invariant circle (given by the
function R) of the Taylor-Chirikov map is differentiable but R′ is not of bounded variation;
our studies significantly narrow the numerical bounds on κ(R) for this and for other maps.

Our results seem to indicate that the regularities of R, h, and h−1 saturate the upper
bounds (25) and (26) coming from previous studies of scaling exponents.

Our finding that κ(H) is greater than κ(h) and κ(h−1) by a comfortable margin (cf. Con-
jecture 2.6) has an interesting consequence. As discussed in Sec. 5.2, the Hölder regularity
of h and h−1 is different at different points, and for each α ∈ (αmin, αmax), the set Eα (where
the pointwise Hölder exponent of h−1 is α) has Hausdorff dimension fH(α) strictly between
0 and 1. Previous numerical studies indicated that fH(α) are the same for different maps F .
Our finding shows that the “irregularities” of functions h coming from different maps F are
interspersed in the same way in [0, 1] for all twist maps studied. Note that this does not
mean that for a certain value of α the sets Eα are the same for different F in the same
universality class – only the way all sets Eα for different α are interwoven is universal.

It would be interesting to apply wavelet-maxima methods for pointwise regularity [48, 49]
(see also the rigorous analysis in [39]) to the problem studied in this paper and to compare
the results of the wavelet analysis with the results about the singular invariant measures.

As a by-product of our studies, we have computed millions of Fourier coefficients of the
functions h, and noticed some self-similarity properties that to the best of our knowledge
have not been observed before. Presently we are working on understanding these properties.
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Tables

F with: κ(R) κ(g) κ(h) κ(h−1)

V1 1.83(9) 1.83(9) 0.722(1) 0.92(1)
V2 1.79(6) 1.75(9) 0.721(1) 0.92(1)
V3 1.83(4) 1.84(3) 0.724(2) 0.93(2)
V4 1.86(8) 1.86(8) 0.722(1) 0.92(1)
V5 1.85(5) 1.85(5) 0.724(2) 0.93(1)
V6 1.85(15) 1.88(12) 0.726(3) 0.93(2)

Table 1: Regularities of the functions R, g, h, and h−1 for the golden critical invariant circles
of different maps F .
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Figure captions

Caption to Figure 1:

Critical invariant circles, r = R(θ), of the maps corresponding to the maps V1, V2, . . .,
V6 given by (16)–(21) (V1 = thin solid line, V2 = thick solid line, V3 = dotted line, V4

= thin dashed line, V5 = thick dashed line, V6 = dot-dashed line).

Caption to Figure 2:

”Periodized” advance maps g − Id (notation same as in Fig. 1).

Caption to Figure 3:

“Periodized” conjugacies h− Id (notation same as in Fig. 1).

Caption to Figure 4:

“Periodized” inverse conjugacies h−1 − Id (notation same as in Fig. 1).

Caption to Figure 5:

Zooming in the graph of the function h− Id corresponding to the map V2 (17).

Caption to Figure 6:

“Periodized” big conjugacies H − Id.

Caption to Figure 7:

Plot of log10

∣∣∣
(
ĥ− Id

)

k

∣∣∣ versus log10 k, where h corresponds to the map F coming form

the function V3 (18).

Caption to Figure 8:

Plot of log10

∣∣∣
(
ĝ − Id

)
k

∣∣∣ and log10

∣∣∣
(

̂h−1 − Id
)

k

∣∣∣ versus log10 k, for the same map F as

in Fig. 7. The impulses correspond to (g − Id), and the dots above them to (h−1 − Id).

Caption to Figure 9:

Plots of log10

∥∥∥
(

∂
∂t

)η
e−t

√
−∆K

∥∥∥
L∞(T)

versus log10 t for the functions K = (h − Id) for

the twist maps coming from V1, . . ., V6, for η = 2 (shallowest lines), η = 3, and η = 4
(steepest lines).

Caption to Figure 10:

Slope of the lines on Fig. 9 as a function of log10 t (see the text). The notation is the
same as in Fig. 1.
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