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OLIVER DÍAZ–ESPINOSA AND RAFAEL DE LA LLAVE

Abstract. We study the effect of noise on one–dimensional crit-
ical dynamical systems (that is, maps with a renormalization the-
ory). We consider in detail two examples of such dynamical sys-
tems: unimodal maps of the interval at the accumulation of period–
doubling and smooth homeomorphisms of the circle with a critical
point and with golden mean rotation number.

We show that, if we scale the space and the time, several proper-
ties of the noise (the cumulants or Wick–ordered moments) satisfy
some scaling relations.

A consequence of the scaling relations is that a version of the
central limit theorem holds. Irrespective of the shape of the initial
noise, if the bare noise is weak enough, the effective noise becomes
close to Gaussian in several senses that we can make precise.

We notice that the conclusions are false for maps with positive
Lyapunov exponents.

The method of analysis is close in spirit to the study of scaling
limits in renormalization theory.

We also perform several numerical experiments that confirm the
rigorous results and that suggest several conjectures.

1. Introduction

The papers [CNR81, SWM81] considered heuristically a renormaliza-
tion theory for weak Gaussian noise perturbing one dimensional maps
at the accumulation of period doubling.

The main result of [CNR81, SWM81] was that after renormalizing
a large number of times, the Gaussian noise has a position-dependent
deviation which is universal and that, each step of the renormaliza-
tion multiplies the deviation by a universal number. Related rigorous
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results can be found in [VSK84], where one can find (using the ther-
modynamic formalism) that, for systems at the accumulation of period
doubling with weak noise, there is a stationary distribution for the
noise and that this distribution converges to the invariant measure in
the attractor. Results for quasi–periodic maps can be found in [SK89].
A very different rigorous renormalization theory for systems with noise
is developed in [CL89].

The goal of this paper is to develop a renormalization theory for weak
noise of arbitrary shape superimposed to one dimensional systems that
have a self similar structure. We will present a discussion of systems at
the accumulation of period doubling and of smooth maps of the circle
with a critical point and golden mean rotation number.

We will show that, under some mild conditions (existence of moments
and the like) the highly renormalized noise resembles a Gaussian (in
an appropriate sense that we will make precise).

The precise formulation of the results of this paper is that the scaling

limit of the noise is a standard Gaussian. That is, if we look at the
effective noise after a long time, making sure that the bare noise is weak
enough, and normalize the effective noise so that the variance becomes
one, then, the normalized effective noise resembles a Gaussian in several
well defined ways.

Note that this is very similar to (and includes as a particular case)
the standard central limit theorem which is obtained when the dynam-
ical system is the identity. Nevertheless, we will see that the scalings
that appear in our problem are different from those of the standard cen-
tral limit theorem. The relation between central limit theorems and
renormalization theory – emphasizing the case of correlated variables,
which we will not discuss here – was studied in [Sin76].

More generally, we will show that statistical properties of the noise,
the Wick-ordered moments (called “cumulants” by statisticians) also
satisfy some scaling properties with different rates depending on the
order of the cumulant.

It is important to remark that the central limit theorem we present
depends essentially on the fact that the Lyapunov exponents of the
maps we consider are zero. We will show that the conclusions are false
for systems with positive Lyapunov exponents (see Section 3.2).

Finally, we will show how the renormalization theory implies prop-
erties for arbitrary orbits of the original map. Indeed, if we consider
any orbit starting in the orbit of zero, of a point in the accumulation
of period doubling, we will see that if we affect it by any weak enough
noise, the noise after a long time, resembles a Gaussian. The speed of
convergence is very different for different points in the orbit of zero.



RENORMALIZATION OF WEAK NOISES 3

We also note that, for the orbits starting in the complement of the
basin of attractor (it is known that they are unstable periodic orbits of
period 2n and their preimages) there is no convergence to a Gaussian.

Similar results hold also for maps of the circle with critical points
and golden mean rotation number, namely, the effective noise for orbits
starting at any point in the orbit of the critical point converge to a
Gaussian. The argument, however, is somewhat different.

We will also present several numerical experiments that confirm the
arguments presented here, give some quantitative estimates for some
of the quantities mentioned in the theory, and also suggest several
questions. Some of the numerical results reported here suggest several
conjectures that remain a challenge for the rigorous

A fully rigorous mathematical theory of several of the results dis-
cussed here will appear elsewhere [DEdlL06].

2. Summary of the theory of [CNR81, SWM81]

We start by reviewing the theory of [CNR81] so as to set the notation
and to motivate further developments.

We consider systems of the form

xn+1 = f(xn) + σξn (2.1)

Where f is a unimodal map of [−1, 1] onto itself. (By a unimodal
map, we mean an analytic function such that f(0) = 1, f(x) = f(−x),
xf ′(x) ≤ 0, f ′′(0) 6= 0. See [CE80].)

We will assume that the noise is weak and that f is at the accumula-
tion of period doubling. Hence, it can be renormalized infinitely often.
If we re-scale space and time (that is, we set xn = λyn, with λ = f(1),
and observe the system every other time) we obtain for weak noises

yn+2 =
1

λ
f(f(λyn) + σξn) +

1

λ
σξn+1

' 1

λ
f(f(λyn)) +

1

λ
f ′(f(λyn))σξn +

1

λ
σξn+1

(2.2)

Hence, the renormalization procedure of [CNR81, SWM81] (the deriva-
tion in [SWM81] is different; using path integrals) consists in:

1) Sending f to T (f) = 1
λ
f ◦ fλ

2) Sending the noise to the renormalized noise

ξ̃n(x) =
1

λ
f ′ ◦ f(λx)ξ2n(λx) +

1

λ
ξ2n+1(f(λx)) (2.3)

Note that if the variables in {ξn}N are independent, so are the random

variables in {ξ̃n}n∈N. Note also that even if the noise is independent of
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the initial point x, the deviation of the noise after one step of renormal-
ization will depend on x. Hence the natural class of noise to consider
in [SWM81] is Gaussian noise whose deviation depends on the initial
condition.

The papers [CNR81, SWM81] observe that if all the ξn are Gaussian,

then, ξ̃n are also Gaussian and the x-dependent deviations satisfies

D̃n(x) =

√
1

λ2
f ′(f(λx))2D2

n(λx) +
1

λ2
D2

n(f(λx)) (2.4)

We use the notation D̃n(x) to denote the standard deviation of the

renormalized noise ξ̃n and Dn(x) to denote the standard deviation of
the noise ξn.

Using that T kf converges to a universal function g called the Feigen-
baum fixed point (see [Fei77, Lan82, TC78, Eps86, Sul92, Mar98, dMvS93,

JŚ02] for different arguments that imply this convergence), the paper
[CNR81] analyzes numerically the recurrence (2.4) and obtains that the
renormalized deviations align with a well defined function and grow ex-
ponentially.

One should emphasize that the applicability of the renormaliza-
tion procedure (2.2) requires only that the noise is weak. Since the
renormalization increases the size of the noise, it is clear that the re-
peated application of renormalization requires the original noise to be
extremely weak.

Even if this theory does not have the customary fixed points, it can
have a scaling limit in which we consider weaker and weaker noise
as we renormalize more times. This procedure is quite customary in
renormalization group theory, See [AMM05].

Now, we proceed to discuss in more detail the scaling limit. Observe
that in the linear approximation, the effect of the noise after n steps is

xn = fn(x0) + σ

n∑

j=1

(fn−j)′ ◦ f j(x0)ξj (2.5)

The right hand side of (2.5) is a sum of independent random vari-
ables, but they are affected by coefficients. In the systems that we will
consider, the renormalization theory for the deterministic systems will
imply scaling theories for the coefficients. The central limit theorem we
will develop will involve different asymptotic scalings and corrections
than the standard central limit theorem. Some of these scalings will be
inherited from the scalings of the coefficients of the random variables.

As it is well known, one expects a central limit theorem when one
adds independent random variables of more or less equal size. When



RENORMALIZATION OF WEAK NOISES 5

the system has positive Lyapunov exponents however, the first terms of
(2.5) growing exponentially fast have a disproportionately large effect,
and the central limit theorem is false. See Section 3.2.

3. Renormalization theory for noises of arbitrary shape

3.1. Cumulants. One important tool in our analysis are the Wick-
ordered moments [Sim74, p. 9] (also known as “cumulants” in the
probability literature [Pet75, p. 8-9]). The cumulants Kp[X] of a ran-
dom variable X are defined by the following asymptotic sum.

log〈eitX〉 =
∞∑

p=0

(it)p

p!
Kp[X] (3.1)

It follows easily that if X has p moments, Kp(X) is well defined and
it is an algebraic expression involving moments of order up to p, which
are computed using Wick rules. For example, K2[X] = 〈X2〉 − 〈X〉2,
K3[X] = 〈(X − 〈X〉)3〉, and K4[X] = 〈(X − 〈X〉)4〉 − 3K2[X].

Two important well known properties that follow directly from the
definition of cumulants (3.1) are that if a is a number and X,Y are
independent random variables, we have

Kp[aX] = apKp[X]

Kp[X + Y ] = Kp[X] + Kp[Y ]
(3.2)

It is clear that, under appropriate conditions (e.g. 〈eitX〉 is analytic
in t), the cumulants determine the distribution function. In particular,
the Gaussian distribution is characterized by having a non-zero second
cumulant and having all the other cumulants zero. If a sequence (Xn) is
such that its cumulants of order higher than 2 converge to zero, then the
sequence (Xn) converges in distribution to a Gaussian. In particular,
the cumulants of order 3, 4 of the variable X/K2[X]1/2, called respec-
tively skewness and kurtosis, are measures of resemblance to Gaussian
widely used in practice and in the statistics literature [MGB74, p. 76].
Note that the skewness and the kurtosis are scale-invariant, that is,
they do not change if the variable is multiplied by a constant.

3.2. Systems with positive Lyapunov exponents. As we men-
tioned earlier, systems with positive Lyapunov exponents do not sat-
isfy the scaling limit discussed in this paper. Recall that the central
limit theorem for independent random variables applies to sequences of
random variables which are small and of comparable size. If the system
has positive Lyapunov exponents, then the noise at initial times has a
much larger effect that the noise at later times.



6 O. DÍAZ–ESPINOSA AND R. DE LA LLAVE

As an example, consider the map on R (or T
1) given by

f(x) = 2x

As we will see, there is a limit for the scaled noise, not necessarily
Gaussian, which depends strongly on the distribution of the original
noise ξn. Notice that

wn =
xn(x0, σn) − 2nx0

σn var
(∑n

j=1 2n−jξj

)

=
3
√

2

2
√

1 − 4−n

n∑

j=1

2−jξj

If (ξn) is an i.i.d. sequence with uniform distribution U [−1, 1] then, wn

will converge in law to a compactly supported random variable ξ with
characteristic function

ϕ(z) =
∞∏

k=2

2
√

2 sin(2−k
√

23z)

2−k3z

Moreover, if (ξn) is an i.i.d sequence with standard normal distribution,
then wn has standard normal distribution for all times.

Similar results happen for hyperbolic orbits and the reason is that
derivatives at hyperbolic points grow (or decay) exponentially, that is
|(fn−j)′ ◦ f j(x)| ≈ an−j for some number a > 0. If the noises (ξn) are
i.i.d for instance then, the cumulants Kp of order p > 2 of the n–times
renormalized noise T n(ξ(n)) do not decay to zero. In fact we have

Kp

[
T n(ξ(n))(x)

var[T n(ξ(n))(x)]

]
≈ Kp[ξ1]

√
|a2 − 1|s−2

Therefore, for hyperbolic orbits the scaling limit depends strongly on
the distribution of the sequence ξn.

Systems with enough hyperbolicity satisfy other types of central limit
theorems for weak noise [GK97], or even in the absence noise [Liv96],
[FMNT05]. Those results are very different from the ones we consider
in this paper.

3.3. Analysis of the period doubling renormalization. We now
use cumulants to study the effect of noises on dynamical systems. We
consider noises whose cumulants depend on the point x, but which do
not depend on the time n. We will assume that the noises at different
times are independent.

We start by observing that the derivation of (2.2) does not depend
on any properties of the noise except that it is small (we only use the



RENORMALIZATION OF WEAK NOISES 7

first order Taylor expansion), hence it remains valid for all weak noises,
whether they are Gaussian or not.

Taking cumulants of order p on both sides of (2.2) and using the

properties (3.2) we obtain that k̃p(x), the p-cumulant of the renormal-
ized noise at point x, satisfies

k̃p(x) = λ−p[f ′ ◦ f(λx)]pkp(λx) + λ−pkp ◦ f(λx) (3.3)

We note that the right hand side of (3.3) is a linear operator acting

on kp. We will denote this operator by K̃f,p. The spectral properties of

the operators K̃f,p will be crucial for us. In particular, the properties

of K̃g,p, the operators associated to the fixed point.
We also note that the p cumulant of the ` times renormalized process

is:

K̃T `f,pK̃T `−1f,p · · · K̃f,p

So that, when f is in the stable manifold of a fixed point, the renormal-
ization of the cumulants is very similar to the renormalization operator
at the fixed point.

3.3.1. Spectral properties of the cumulant operators. Note that the map

x 7→ (λ−1f ′(λx))
p

is always positive for even p. Hence, for even p, K̃f,p

sends positive functions into positive functions.
The fact that f is in the domain of the renormalization operator

implies that there are disjoint strict subintervals I1, I2 of I such that

λI1 = I, f(λI2), hence K̃f,p is analyticity improving (when f is close
to the fixed point, the analyticity improving is implied by the fact that
|λ| > 1, | d

dx
f(λx)| > 1). Using the above properties, we conclude that

if k is analytic for some domain which includes [−1, 1], but which is

close to it, then K̃f,pk is analytic in a larger domain).

This has the consequence that, if we consider the operator K̃f,p acting
on properly chosen spaces of analytic functions, it is compact.

For positive and compact operators, there is a result (the so called
Krěın–Rutman Theorem [Tak94]) which is an analog of Perron-Frobenius
theorem for matrices of positive entries (other more sophisticated ver-
sions often go under the name Ruelle-Perron-Frobenius theorem, see
[May80, Bal00]).

The Krein-Rutman Theorem implies that

(a) K̃f,p has a dominant simple eigenvalue ρ̃f,p > 0.
(b) The rest of the spectrum (except from 0) consists of eigenvalues,

all of finite multiplicity, with absolute value strictly smaller than
ρ̃f,p.
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(c) There is a unique strictly positive eigenfunction k∗
f,p(x) of norm

one corresponding to the leading eigenvalue.

3.3.2. Convexity properties of eigenvalues of cumulant operators. We
observe that

K̃f,2m(k∗
2)

m = λ−2m (f ′(f(λx)))2m (k2(λx))m + λ−2m (k∗
2(f(λx))m

<
[
λ−2f ′(fλx)k∗

2(λx) + λ−2k∗
2(f(λx))

]m

= (ρ̃f,2 k∗
2(x))m

We conclude that
ρ̃f,2m < (ρ̃f,2)

m (3.4)

In fact, by repeating the argument with more care, it is possible to
show using the Hölder inequality, that for all integers m > 2

ρ̃f,m < (ρ̃f,2)
m/2 (3.5)

The inequality (3.5) will prove crucial for future developments.

3.4. The scaling limit formulation of the renormalization. One
way to make precise the renormalization arguments formulated above
is to use a scaling limit. That is, we consider the limit of weaker and
weaker noise levels, but renormalize an increasing number of times.

The first main result of this paper is that regardless of the initial
distribution of the noise – provided that it satisfies some minimal con-
ditions such as the existence of moments – the scaling limit will be a
Gaussian (with a universal dependence on the position). Later, we will
show how to obtain results for the orbits of any point of the original
dynamical system.

The consideration of scaling limits for this system is very reminiscent
of the consideration of scaling limits for fluctuations at a phase tran-
sition. Dynamical systems f at the accumulation of period doubling
are very similar to critical systems in statistical mechanics because the
systems f are at the boundary between chaotic and stable and, upon
renormalization converge to a fixed point.

The scaling limit formulation which follows from the previous con-
siderations leads to the following prediction:

Consider a sequence indexed by ` of problems of the form (2.1) but
with an ` dependent noise coupling constant σ` which is becoming
weaker as ` increases. We will assume that σ2

` (ρ̃2)
` is very small. Then,

the `-times renormalized noise, will resemble a Gaussian of deviation
σ`(ρ̃2)

` independently of the characteristics of the original noise.
More precisely, using the exponential convergence of the renormal-

ization to a fixed point, we see that the cumulants of T `(ξ(`)) – the
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` times renormalization of the `-weak noise – satisfy the asymptotic
relation

Kp

[
T `(ξ(`))(x)

]
≈ (ρ̃p)

`σp
` Apk

∗
p(x), (3.6)

where Ap is a constant that depends on the details of the original

distribution and k∗
p(x) is the leading eigenvector of K̃g,p, the operator

for the renormalization of p cumulants at the fixed point g (see (3.3)).

3.4.1. The Gaussian properties of the scaling limit. To establish that
the scaling limit of the noise is Gaussian, we will see that inequality
(3.4) and the scaling relation (3.6) imply that the effective noise is close
to Gaussian. Recalling that σ2

` ¿ (ρ̃2)
`, we have that if we scale the

effective noise so that it has a constant deviation, (i.e. we multiply
the effective noise by (σ2

` (ρ̃2)
`)−1) then the other cumulants converge

to zero. Indeed, since var
[
T `(ξ(`))(x)

]
≈ (ρ̃2)

`, then by (3.6) it follows
that

Kp




T `(ξ(`))(x)√
var

[
T `(ξ(`))(x)

]


 ≈

(
ρ̃p

(ρ̃2)p/2

)` k∗
g,p(x)

(k∗
g,2(x))p/2

→ 0

Then, using the methods for the Lindeberg proof of the Central Limit
Theorem [Bil68, p. 44], it follows that scaling limit of the renormaliza-
tion group is Gaussian. We refer to [DEdlL06] for details.

The asymptotic expressions (3.6) for the cumulants also lead to an
Edgeworth expansion for the renormalized noise under some suitable
conditions on the distributions. A very illuminating discussion of the
connections between the renormalization group, the central limit the-
orem and Edgeworth expansions can be found in [Sin76].

Notice, however, that the asymptotic expressions for the cumulants
involve different powers than in the classical central limit theorems
and Edgeworth expansions. The powers appearing in the asymptotic
expansion in our problem, are related to the eigenvalues of the cumulant
operators and, hence, are not the usual semi-integers that appear in
the standard Central Limit theorems.

In [DEdlL06] one can find a very detailed Mathematical discussion of
the Central Limit theorem and the Berry–Esseen bounds and explicit
expressions for their rates of convergence.

3.4.2. Analysis of the nonlinear terms in renormalization. The deriva-
tion of (2.3) – and, therefore, our analysis so far – involves only a linear
approximation, because we were ignoring the terms of the Taylor ex-
pansion of f after the first.
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This assumption is justified in the scaling limit because (ρ̃2)
−`/2σ` is

an extremely small number. Even after ` renormalizations, the size of
the noise is only σ`.

In [DEdlL06] it is shown that if σ` ≤ γ−` for some γ > 0 which can
be given explicitly in terms of the eigenvalues of the renormalization
operator, then the effective noise distribution after ` renormalizations
converges to a Gaussian as ` → ∞, because, for sufficiently weak bare
noise, the effect of the non-linear theory is much smaller than that of
the linear approximation and can be treated as a perturbation.

One observation appearing in [DEdlL06] is that, to control the non-
linear theory, it is useful to exclude a set of events in which the noise
is much larger than the deviation. Of course, these events happen
with small probability. If one excludes these events, the behavior of
the system is very well described by the linear renormalization and,
therefore is very close to a Gaussian. The final result is that we can
find a set of small probability, so that, when we condition the noise on
the complement, the convergence to a Gaussian is particularly faster.

For the experts in renormalization theory, we call attention to the
similarities of this procedure with the elimination of the “Large fields”

that occurs in the rigorous study of renormalization group in [GK85,
GKK87].

3.4.3. Results for the dynamics. The renormalization group gives infor-
mation for times 2` in small scales. To obtain a central limit theorem
along the sequence of all times, notice that

f j(0) = f 2mr ◦ · · · ◦ f 2m0 (0)

with m0 > m1 > · · · > mr and j = 2m0 + · · · 2mr . The sequence of
times (2mj) accessible to renormalization is also the sequence of times
at which the orbit of zero comes close to the origin.

The effect of noise at 2m0 can be studied by the m0-times renormal-
ized noise. Using that f 2m0 (0) = λ−m0 , we see that f 2m0 (0) is close
enough to the origin so that the dynamics of f 2m1 starting in a neigh-
borhood of f 2m0 (0) can be understood using renormalization m1 times.

The argument we present has some delicate steps. We need to bal-
ance how close is the approximation to the Gaussian (how fast is the
convergence to the CLT) with how fast is the recurrence to zero at the
indicated times.

The properties required by this approach can be established and
proved by conceptual methods (convexity and the like) from the prop-
erties of the Feigenbaum fixed point g (see [DEdlL06]).
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Therefore, for an orbit starting on a point of the form x = f l(0) or
x ∈ f−l(0), the effective noise after a large number of iterations of will
be approximate a standard Gaussian.

3.4.4. Conjectures for the Basin of attraction. It is known [CEL80,

VSK84] that Cf = {fn(0)}n∈N is uniquely ergodic and that, except from
unstable periodic orbits of period 2n and their preimages, Cf attracts
the orbits of points in [−1, 1]. The set Cf is known as the Feigenbaum
attractor, and the set Bf of of points attracted by Cf is called the basin
of attraction of f .

Numerical simulations (see Figures 6 and 7) suggest that for orbits
starting in the basin of attraction Bf and affected by weak noise, the
effective noise after a large number of iterations approaches a Gauss-
ian. We conjecture that the is indeed the case and that the speed of
convergence to Gaussian is not uniform.

3.5. Connections with the central limit theorem. The renormal-
ization theory can be considered as a central limit theorem.

Notice that the effective noise at time N is in the linear approxima-
tion,

LN(x) =
N∑

n=0

(fN−n)′ ◦ fn(x)σNξn (3.7)

This is the sum of independent variables with coefficients. The key step
in the argument presented is to show that, for some systems normalized
to have standard deviation 1, (3.7) converges to the standard Gaussian.
(Note that, in the analysis of linear approximation, the σ does not play
any role. Of course, the fact that σ is small is critical to show that the
linear approximation is valid.)

For each p > 0, let us denote by

Λp(x,N) =
N∑

n=0

∣∣(fN−n)′ ◦ fn(x)
∣∣p (3.8)

Notice that the Lindeberg–Lyapunov sums Λp(x, n) satisfy the equation

Λp(x, n + m) = |(fm)′ ◦ fn(x)|pΛp(x, n) + Λp(f
n(x),m) (3.9)

Denote by ‖ξn‖p = E[|ξn|p]1/p < ∞, and assume that the sequence of
noises (ξn) are of moderate size, i.e.

0 < inf
n
‖ξn‖2 ≤ sup

n
‖ξn‖p < ∞

for some p > 2. The classical Lindeberg–Lyapunov theorem [Bil68] im-
plies that LN(x)/ var[LN(x)] converges in distribution to the standard
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Gaussian N(0, 1) if

lim
N→∞

Λp(x,N)

(Λ2(x,N))p/2
= 0 (3.10)

It is proved in [DEdlL06] that condition (3.10) is a sufficient condi-
tion for the convergence to standard Gaussian in scaling limit of sys-
tems with weak random perturbations (2.1). The main argument is to
supplement the central limit theorem for LN(x) with control over the
nonlinear terms neglected in the linear approximation (2.5).

3.5.1. Lindeberg-Lyapunov operators. Since the renormalized noise (2.3)

is the sum of independent random variables, we have that k̂p(x), the
p-th Lindeberg-Lyapunov sum (3.8) for the renormalized noise satisfies

k̂p(x) = |λ|−p ([−f ′ ◦ f(λx)]pkp(λx) + kp ◦ f(λx)) (3.11)

The right hand side of (3.11) is a linear operator Kf,p acting on kp.
These operators are related to the Lyapunov condition (3.10) of the
central limit theorem since the Lindeberg-Lyapunov sum (3.8) of the
noise after ` renormalizations is

KT `f,pKT `−1f · · · Kf,p

As in the case of the cumulant operators (3.3), when f is in the sta-
ble manifold of the fixed point, the renormalization of the Lindeberg-
Lyapunov sums is similar to the renormalization at the fixed point.

Notice that the cumulant operators K̃f,p relate to the Lindeberg–
Lyapunov operators by

K̃f,2m = Kf,2m

‖K̃f,p‖ ≤ ‖Kf,p‖
The operators Kf,p preserve the cone of positive real analytic func-

tions and analyticity improving. Therefore, their spectral properties
are described by the Krěın–Rutman Theorem.

As a function of p, the spectral radius ρf,p of is monotone increasing
and log–convex [DEdlL06]. Moreover, at the fixed point g we have that

λ−2p < ρp < λ−2p + |λ|−p (3.12)

A consequence of the log-convexity property of ρf,p is that

Λp(λ
`x, 2`)

(Λ2(λ`x, 2`))p/2
≈

(
ρg,p

(ρg,2)p/2

)`

→ 0

and therefore, that the Lyapunov condition (3.10) for the renormalized
noise holds.
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4. Renormalization of noise for critical circle maps with

golden mean rotation number

Another important example of one dynamical systems that have a
non-trivial renormalization theory is smooth maps of the circle with
a critical point and golden mean rotation number. The theory has
been developed both heuristically and rigorously in [FKS82, ÖRSS83,
Mes84, Lan84, SK87, dF99]

We will show that the same lines of the argument developed above
can be adapted to this case.

4.1. Circle maps with golden mean rotation number. In this
section, we consider systems of the form (2.1) where f belongs is an
analytic strictly increasing function with f(x + 1) = f(x) + 1, f(x) ≈
f(0) + c x2k+1 for some constant c > 0 as x ≈ 0, and rotation number

limn(fn(x) − x)/n =
√

5−1
2

:= β.
From the well known relation between the golden mean and the

Fibonacci sequence (Qn) given by Q−1 = 0, Q0 = 1 and Qn+1 =
Qn−1 + Qn

Qnβ − Qn−1 = (−1)n−1βn

it follows then that the rotation number of

f(n)(x) = fQn(x) − Qn−1

is given by (−1)n−1βn.

4.2. Renormalization theory for circle maps. There are quite a
number of rigorous renormalization schemes for circle maps. In our
case, we will need very little about the renormalization group, so that
we will use only a very basic formalism. This is not the only formalism
possible and indeed, there are other formalisms that are better suited
for other studies.

Let λ(n) = f(n)(0) and

fn(x) =
1

λ(n−1)
f(n)(λ

(n−1)x)

For each k ∈ N and each function in the class of functions mentioned
above, it is known [Eps89] that fn(x) < x for all n and x and moreover,
there is a universal constant −1 < λk < 0 and universal function ηk

such that:

a) The sequence of ratios αn = λ(n)/λ(n+1) converges to λk.
b) The sequence of functions fn converges to a limit ηk
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c) The universal function ηk is an analytic function in x2k+1 and
is a solution of the functional equations

ηk(x) = 1
λk

ηk

(
1
λk

ηk(λ
2
kx)

)
(4.1)

ηk(x) = 1
λ2

k

ηk (λkηk(λkx)) (4.2)

Solutions of the equations (4.1), (4.2) are constructed in [Eps89]
for all orders of tangency at the critical point. For k = 1, computer
assisted proofs are in [Mes84, LdlL84]. In [dFdM99] one can find the
fact that the renormalizations of a circle map converge to a fixed point
at an exponential rate in the norm of spaces of functions analytic in an
appropriate domain. Several properties of the renormalization group
and their implications to smooth conjugacies appear in [SK89].

4.3. Renormalization for the noise. In this section we will develop
in parallel two renormalization schemes for the noise. For the purpose
of this paper, either one of them is perfectly enough.

Starting at x near zero, the renormalization scheme consists on send-
ing f to fn and the noise to the effective noise. Two ways of doing this,
based on the relations Qn+2 = Qn + Qn+1 = Qn+1 + Qn, are

ξ̃n+2(x) = f ′
n+1

(
1

λk
fn(λ2

kx)

)
ξ̃n(λ2

kx) + ξ̃n+1

(
1

λk
fn(λ2

kx)

)
(4.3)

ξ̃n+2(x) = f ′
n(fn+1(λkx))ξ̃n+1(λ

2
kx) + ξ̃n(fn+1(λkx)) (4.4)

where ξ̃n, ˜ξn+1 are independent random variables. From (4.3) and (4.4)
and the properties of cumulants we obtain the following approximations
to the cumulant of order p at the (n + 2)–th level of renormalization

k̃n+2,p(x) ≈ kn+1,p

(
1

λk
ηk(λ

2
kx)

)
+

[
η′

k

(
1

λk
ηk(λ

2
kx)

)]p

kn,p(λ
2
kx) (4.5)

k̃n+2,p(x) ≈ [η′
k(λkηk(λkx))]

p
kn+1,p(λkx) + kn,p(λkηk(λkx)) (4.6)

The expressions on the right of equations (4.5) and (4.6) are defined
by linear operators Kp and K′

p acting on pairs, sending (kn+1,p, kn,p) to
(kn+2, p, kn+1,p). These operators are compact on an appropriate space
of analytic functions and preserve the cone of non-negative pairs of
functions.
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4.3.1. Spectral properties of the cumulant operators of circle maps. As
in the case of accumulation of period doubling, the spectral properties
of these operators will imply decay in the cumulants of order larger than
two of the renormalized noise. Indeed, the Krěın–Rutman theorem
[Tak94] implies that

(a) Both operators Kp and K̂p have a simple dominant eigenvalue
ρp and ρ̂p respectively.

(b) Both Spec(Kp) \ {0} and Spec(K̂p) \ {0} consist of eigenvalues.
(c) Their respective dominant eigenpair of functions can be chosen

to be in the cone of pairs strictly nonnegative functions.

The operators Kp and K̂p can be expressed as matrices of operators

Kp =

(
R Tp

I 0

)
K̂p =

(
Sp Q
I 0

)

where I is the identity operator and Sp, Tp, Q and R are defined by

Sph(x) = [η′
k(λkηk(λkx))]p h(λkx)

Tph(x) =
[
η′

k

(
1
λk

ηk(λ
2
k)

)]p

h(λ2
kx)

Qh(x) = h(λkηk(λkx))

Rh(x) = h
(

1
λk

ηk(λ
2
kx)

)

We notice that any m, p ∈ N and any pair of positive functions [h, g]

Kmp

(
hm

gm

)
<

(
Kp

(
h
g

))m

(4.7)

From (4.7) we can show that ρpm < ρm
p . A similar argument can be

used to show that ρ̂pm < (ρ̂p)
m.

4.3.2. Results for the dynamics. The renormalization procedure pre-
sented above gives us control of the noise for Fibonacci times Qm

around the critical point 0. Notice that Fibonacci times are the ones
at which the orbit of the critical point zero come close to zero. As a
consequence, all cumulants of order higher than two of the scaled ef-
fective noise at times Qn converge to zero. This gives us a central limit
theorem for the orbit of zero with weak noise along Fibonacci times.

Information for noise at all times is obtained by writing the noise on
the orbit of zero as of approximate Gaussians. This can be done since
for any positive integer j

f j(0) = fQmr ◦ · · · ◦ fQm0 (0)
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where Qm0
> Qm1

> · · · > Qmr
are non-consecutive Fibonacci numbers

such that j = Qm0
+ · · · + Qmr

.
The effect of the noise starting at zero at Qm0

times can be studied by
the m0 renormalized noise. Since fm0(0) ≈ λm0

k , the dynamics of fQm1

starting at fQm0 (0) can be analyzed by renormalizing m1 times and
so on. This procedure is based on the fact that the sequence of times
accessible to renormalization is also the sequence of times at which the
orbit of the critical point zero comes close to the origin.

The argument presented above requires a balance between how fast
the convergence in the central limit theorem is, with how fast the re-
currence to the origin at Fibonacci times is. The balance of this two
effects is given by the numerical condition

(
inf

{x:|x|≤λ2
k
}
η′

k(x)x−2k λ6k
k

)p

λ2kp
k ρp > 1, (4.8)

which seems to be true numerically, but which we do not know how to
verify using only analytical methods.

The analysis presented above raises the possibility that, for some
systems, the weak noise limit could have a CLT along some sequences
but not along other ones. Of course, it is possible that there are other
methods of proof that do not require such comparisons. We think that
it would be interesting either to develop a proof that does not require
these conditions or to present an example of a system whose weak noise
limit converges to Gaussian along a sequence of times but not others.

5. Numerical experiments

5.1. Monte Carlo simulations of systems with weak random

perturbations. In this section, we perform numerical experiments
that confirm our predictions of the scaling limit. Two statistical tools
that we use are qqplot graphs and the Kolmogorov-Smirnov test.
These are standard techniques in Statistical analysis [MGB74, p. 508–
511] and [CCKT83].

We show in Figure 1 (a), (b) histograms of iterations of a sample of
the weakly perturbed quadratic Feigenbaum map as well as a weakly
perturbed quartic critical unimodal map. Similarly, histograms of a
sample of weakly perturbed cubic and quintic circle maps are shown
in 1 (c) and (d) respectively. The noise used in these simulations has
uniform [-1,1] distribution.

5.1.1. QQplots. For a given probability distribution on F on R and
0 < q < 1, the q-th quantile zq(F ) of F is defined as

zq = inf{x : F (x) ≥ q}
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Figure 1. Histograms of the effective noise: (a) 214 iterates
of the quadratic Feigenbaum fixed point, (b) 216 iterates of
the quartic critical unimodal map, (c) 28657 iterates of a
cubic circle map and (d) quintic circle map with uniform
distributed noise in the interval [-1,1].

A qqplot graph consists of a comparison between the quantiles of an
assumed theoretical distribution F , a Gaussian in our case, with those
of the empirical distribution Fn of a sample of size n. A successful
prediction on the theoretical distribution happens when the quantile
to quantile graph, i.e zq(F ) vs. zq(Fn), is close to the identity.

In Figure 2, we show qqplots of the samples corresponding to the
ones in Figure 1. Notice that the fitting confirms a Gaussian scaling
limit.

5.1.2. Kolmogorov–Smirnov Tests. The Kolmogorov–Smirnov test is a
quantitative test that measures how close the distribution of empirical
distribution Fn of a sample of size n is from an assumed theoretical
distribution F . The Kolmogorov–Smirnov statistic is defined by

KSn =
√

n sup
x∈R

|Fn(x) − F (x)|
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Figure 2. qqplot of normalized effective noise (a) quadratic
Feigenbaum fixed point, (b) quartic unimodal critical map,
(c) golden mean rotation number cubic circle map and (d)
quintic circle map

We reject the hypothesis H0 that a sample comes from a distribution F
if and only if KSn is “large”. For instance, values larger than 1.63 give
statistical evidence of bad prediction with a 99% level of significance
[MGB74, p. 508–511].

In Figure 3, we show for orbits of the weakly perturbed quadratic
Feigenbaum fixed point starting at the origin the dependence of the
Kolmogorov–Smirnov statistic (KS–statistic) on the noise level σ (in
logarithmic scale), for different number of renormalizations, and for
two different sequence of noises {ξn}n: (a) symmetric uniform noise
and (b) centered exponential noise. The corresponding analysis for
randomly perturbed critical circle maps is shown in Figure 4.

The shape of the graph of KS(σ) depends on the law of {ξn}n how-
ever, it is important to notice that the level of noise σ at which a
significant resemblance to Gaussian is observed decreases as the num-
ber of renormalizations increases. We notice in Figure 3 (Figure 4) an
apparent self similarity of the plots of KS2`(log10 σ) (KSQ`

(log10 σ))
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for period doubling (for critical circle maps), which is reflected by the
apparent asymptotic periodicity of the graph.
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Figure 3. σ vs. KS at accumulation of period doubling. (a)
(-1,1)–uniform noise (b) centered exponential(1) noise
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Figure 4. σ vs. KS for cubic critical circle map. (a) (-1,1)–
uniform noise (b) centered exponential(1) noise

5.1.3. Critical scaling. A question related to the results in this paper
is the asymptotic behavior of sequence of noise levels (σn) at which the
central limit theorem holds.

For period doubling, it is proved in [DEdlL06] that the `-times
renormalized noise T `ξ(`) approaches a Gaussian when one consid-
ers scalings σ2` ≤ 2−`γ , where γ depends on the Feigenbaum fixed
point g and the spectral radii of Kg,1 and Kg,2. In particular, for
orbits of the quadratic Feigenbaum map starting at zero, we have
γ = log2(

√
ρ2λ

−2ρ−3
1 ) ≈ 3.8836 . . .. A similar result holds for criti-

cal circle maps.
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In Figure 5, we show for different number of iterations n, the value
of σn at which a prescribed level of the Kolmogorov–Smirnov statistic
KS (99%) is achieved. We refer to those noise levels (σn) as the critical
scalings.

Our numerics suggest in the Feigenbaum case that there exists a
sequence of critical scalings (σ̂n) which is bounded by powers n−γ∗ of
the number of iterations n, and that oscillates periodically every 2n

iterations. Our numerics also suggest that the empirical critical power
γ∗ ≈ 2.7 compares rather well with the rigorous estimate γ.
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Figure 5. Critical scaling σn for different number of itera-
tions n with KS = 1.6. (a) Quadratic Feigenbaum map (b)
Cubic critical circle map

A similar conclusion can be drawn for critical circle maps (see Figure
5 (b)). That is, there are critical scalings σn, bounded by a power of
the number of iterations, that oscillates every Qn iterations.

Notice that the asymptotic periodicity is much more pronounced in
the period doubling case, since we are iterating the Feigenbaum fixed
point.

5.2. Lyapunov condition and the central limit theorem. In this
section, we will show numerically that the Lyapunov condition (3.10)
is satisfied for maps at the accumulation of period doubling and critical
circle maps with rotation number the golden mean.

5.2.1. Accumulation of period doubling. In this section, we consider two
critical unimodal maps: the quadratic Feigenbaum map g and a critical
quartic map f , namely

g(x) = 1 − 1.52763 . . . x2 + 0.10481 . . . x4 + · · · (5.1)

f c(x) = 1 − 1.59490135622 . . . x4 (5.2)
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Figure 6. (a) Decay of the Lyapunov condition of the qua-
dratic Feigenbaum fixed pint: x0 = λ. (b) Non uniform decay
of the Lyapunov condition: x0 = 0.935.
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Figure 7. (a) Decay of the Lyapunov condition of a quartic
critical unimodal map: x0 = 1. (b) Non uniform decay of
the Lyapunov condition: x0 = 0.5.

Figure 6 (a) shows that the Lyapunov condition (3.10) is satisfied by
the orbits of the quadratic Feigenbaum map, and that the normalized
cumulants converge to zero as a power. Figure 6 (b) shows an example
of an orbit that goes through a critical point after a while, and the
Gaussianity is lost.

Figure 7 (a) shows that orbits of the critical quartic map f c satisfy
the Lyapunov condition (3.10) and that the normalized cumulants con-
verge to zero like a power. Figure 7 (b) shows that the central limit
theorem is nonuniform.

It is important to mention that the speed of convergence in the cen-
tral limit theorem is not uniform with respect to initial conditions. The
lack of uniformity in the convergence of the central limit theorem is due
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to the fact that after a large periods of time `, the orbit starting at
some point x in the basin of attraction is so close to 0 that the first
term on the right hand of

Λp(x, ` + 1) = |f ′(f `(x))|pΛp(x, `) + 1

becomes relatively small. Hence, the effective noise appears to restart
near zero. This also explains the drops in the value of the critical
scaling σn observed in Figure 5 (a) every 2n iterations.

For a rigorous study of the scaling limit of maps of order 2k near the
accumulation of period doubling, see [DEdlL06]

5.2.2. Critical maps of the circle. In this section, we consider maps of
the form

fC
K,ω(x) =

[
x + ω − 1

2π
(K sin 2πx + 1−K

2
sin 4πx)

]
mod 1 (5.3)

fQ
K,ω(x) =

[
x + ω − 1

2π
(K sin 2πx + 9−8K

10
sin 4πx

+3K−4
15

sin 6πx)
]

mod 1 (5.4)

where the values of K and ω are taken so that the rotation number
of (5.3) and (5.4) is the golden mean. A list of several values of the
parameters K and ω are computed in [dlLP02].
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Figure 8. Decay of the Lyapunov condition for (a) cubic
critical circle map and (b) quintic critical circle map. Initial
value x0 = 0

Figure 8 shows that the Lyapunov condition holds for orbits of the
cubic and quintic critical maps of the circle. Again, we note from the
figure that the decrease in the Layapunov condition is like a power.

Figure 9 shows that the central limit theorem is not uniform for
either the cubic or the quintic critical circle map. The explanation of
this lack of uniformity is very similar to the case of the maps of the
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Figure 9. Non-uniform decay of the Lyapunov condition
for (a) cubic critical circle map and (b) quintic critical circle
map. Initial value x0 = 0.5

interval, namely, that after a large period of time, any orbit visits a
very small neighborhood of the critical point 0.

5.3. Spectrum of the cumulant operators for the cuadratic

Feigenbaum map. In this section, we will illustrate numerically some
of the properties of the cumulant operators for the quadratic fixed point
of the period doubling renormalization group transformation, and for-
mulate several conjectures based on the numerics.

We use a scheme similar to [Lan82] to compute the quadratic Feigen-
baum map g given by (5.1).

We represent each analytic function f in x2 as

f(x) = F

(
x2 − c

r

)
(5.5)

Using a Newton method, we solve the functional equation

1
λ
g(g(λx)) − g(x) = 0

in the representation (5.5) with c = 1 and r = 2.5. The initial
guess for the Newton method is the critical logistic map f(x) = 1 −
1.401155 . . . x2.

5.3.1. Properties of the spectral radius. We consider the cumulant and
the Lindeberg–Lyapunov operators

K̃ph(z) =
[
λ−1g′ ◦ g(λx)

]p
h(λz) + λ−ph ◦ g(λz) (5.6)

Kph(z) = |λ|−p
(
[−g′ ◦ g(λx)]

p
+ h ◦ g(λz)

)
(5.7)
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We use the LAPACK routines SGEEVXand DGEEVX to compute the spec-
trum of the operators (5.6) and (5.7) for different values of p. A few

values of the spectral radius ρ̂p (ρp) of K̃p (Kp) are listed in Table 1.

p ρ̃p ρp λ−2p

1 4.669201 . . . 8.490400 . . . 6.264547. . .
2 43.81164 . . . 43.81164 . . . 39.24456. . .
3 237.7348 . . . 254.9407 . . . 245.8494. . .
4 1558.319 . . . 1558.319 . . . 1540.135. . .
5 9612.521 . . . 9685.003 . . . 9648.252. . .
6 60516.73 . . . 60516.73 . . . 60441.93. . .
7 378489.5 . . . 378794.2 . . . 378641.4. . .

Table 1. Values of ρ̃p, ρp and λ−2p

Our numerical computations, see Figure 10, suggests that

C1. For all p ∈ N, ρ̃p is an eigenvalue of K̃p.

C2. The rest of the spectrum Spec(K̃p) lies inside the circle of radius
ρ̃p.

C3. λ−2p ∼ ρ̃p ∼ ρp as p → ∞ (Here, for numerical sequences un,
vn, un ∼ vn means that limn un/vn = 1).

C3 is illustrated numerically in Figure 10. This also confirms nu-
merically that the map p 7→ ρp is log–convex and that ρp ∼ λ2p ( see
(3.12)).
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0

5

10

15

20

25

order p

lo
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ρ p

log−convexity of the cumulant operators

ρ
p
 positve cumulant

ρ
p
 cumulant

λ2p

Figure 10. Log–convexity and asymptotic behavior or ρ̃p

and ρp

5.3.2. Asymptotic behavior of the eigenvalues of the cumulant and Lin-

deberg Lyapunov operators. Our numerical computations suggest that
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the size of the the eigenvalues of the operators (5.6) and (5.7) de-
cays exponentially. These observations are illustrated by Figures 11–
11 and 15 for p odd (p = 1, 3, 5, 7), and by Figures 16–18 for p even
(p = 2, 4, 6, 8).
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Figure 11. Exponential decay of the Spectrum of the cumu-

lant operator K̃1 (denoted by +) and Lindeberg–Lyapunov
operator K1 (denoted by ◦): (a) single precision, (b) double
precision
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Figure 12. Exponential decay of the Spectrum of the cumu-

lant operator K̃3 (denoted by +) and Lindeberg–Lyapunov
operator K3 (denoted by ◦): (a) single precision, (b) double
precision

The change of the direction of the drift observed in these figures
might be due to the round–off level of the machine. However, since

the discrete approximations to the operators K̃p and Kp have a spe-
cial structure, the robustness of the singular value decomposition algo-
rithms suggests that
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Figure 13. Exponential decay of the Spectrum of the cumu-

lant operator K̃5 (denoted by +) and Lindeberg–Lyapunov
operator K5 (denoted by ◦): (a) single precision, (b) double
precision
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Figure 14. Exponential decay of the Spectrum of the cumu-

lant operator K̃7 (denoted by +) and Lindeberg–Lyapunov
operator K7 (denoted by ◦): (a) single precision, (b) double
precision

C4. If Spec(K̃p) \ {0} = {νn,p}n and Spec(Kp) \ {0} = {µn,p}n with
|νn,p| ≤ |νn−1| and |µn| ≤ |µn−1| respectively, then

νn,p ∼ cpλ
n ∼ µn,p.

for some constant cp

Even though for some of the operators Kp and K̃p, our computa-
tions give several complex eigenvalues; for instance, −0.03678952 . . .±
i 0.012161219 . . . for K2, and 0.002726849 . . . ± i 0.0105243 . . . for K̃3,
we conjecture that the spectrum of the cumulant operators and the
Lindeberg–Lyapunov operators is asymptotically real. That is
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Figure 15. Asymptotic behavior of the Spectrum of K̃p and
Kp: (a) p = 1, (b) p = 3, (c) p = 5, (d) p = 7. Observe that
the slope τp ≈ 1.

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

n

lo
g 

|µ
n|

Power decay of the spectrum of the cumulant of order 2

slope=−0.8633

(a)

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

n

lo
g 

|µ
n|

Power decay of the spectrum of the cumulant of order 2

slope=−0.9175

(b)

Figure 16. Exponential decay of the Spectrum of the cu-
mulant operator K2: (a) single precision, (b) double precision

C5. For all n large enough, νn,p, µn,p ∈ R.

Conjectures C4 and C5 are related to the behavior of the Perron-
Frobenius operators of real analytic expanding maps [Bal00, May80,
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Figure 17. Exponential decay of the Spectrum of the cu-
mulant operator K4: (a) single precision, (b) double precision
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Figure 18. Exponential decay of the Spectrum of the cu-
mulant operator K6: (a) single precision, (b) double precision

Rug94]. The case p = 1 corresponds to the problem of the reality of
the spectrum of the linearized period doubling operator. In [CCR90]
is observed numerically that the spectrum in this special case appears
to be real, and that all the eigenvalues behave as λn.

6. Possible extensions of the results

In this section we suggest possible extensions of the results of this
paper that could presumably be accessible.

1. Assume that (ξn) is a sequence of independent random variables
with mean zero and such that

A−nα− ≤ ‖ξn‖p ≤ A+nα+ ,

with some α± in a small range.
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2. Slightly dependent random variables (ξn) (e.g. Martingale ap-
proximations). This is natural in dynamical systems applica-
tions when the noise is generated by a discrete process. One
possible model is a system of the form

xn+1 = f(xn) + σφ(yn)

yn+1 = g(yn),

where g is an expanding map of something or an Anosov system.
3. Related to the central limit theorem (even in the case indepen-

dent random variables (ξn) of comparable sizes), it also would
be desirable to obtain higher order asymptotic expansions in
the convergence to Gaussian, namely Edgeworth expansions.

4. We note that the estimates for the asymptotic growth of the
variance of the effective noise ((3.6) with p = 2) for systems at
the accumulation of period doubling are obtained in [VSK84]
using the Thermodynamic formalism. Transfer operators sim-
ilar to the cumulant and Lindeberg–Lyapunov operators dis-
cussed in this paper were introduced several years ago in the
Thermodynamic formalism [May80]. We think that it would be
very interesting to develop analogs to the log–convexity prop-
erties of the Lindeberg–Lyapunov operators or the Edgeworth
expansions with the thermodynamic formalism.
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[CCR90] F. Christiansen, P. Cvitanović, and H. H. Rugh. The spectrum of the
period-doubling operator in terms of cycles. J. Phys. A, 23(14):L713–
L717, 1990. This article also appears in J. Phys. A 23 (1990), no. 22,
L7135–L7175.

[CE80] P. Collet and J. P. Eckmann. Iterated maps of the interval as dynamical
systems. Progress in Physics. Birkhauser, Boston, 1980.

[CEL80] P. Collet, J. P. Eckmann, and O. E. Lanford, III. Universal properties
of maps on an interval. Comm. Math. Phys., 76(3):211–254, 1980.

[CL89] P. Collet and A. Lesne. Renormalization group analysis of some dynam-
ical systems with noise. Journal of Statistical Physics, 57(5/6):967–992,
1989.

[CNR81] J. Crutchfield, M. Nauenberg, and J. Rudnick. Scaling for external noise
at the onset of chaos. Physical Review Letters, 46(14):933–935, 1981.

[DEdlL06] O. Dı́az-Espinosa and R. de la Llave. Renormalization and central limit
theorem for critical dynamical systems with external weak random
noise. In preparation. http://www.ma.utexas.edu/ ˜ odiaz/wkinprog,
2006.

[dF99] E. de Faria. Asymptotic rigidity of scaling ratios for critical circle map-
pings. Ergodic Theory Dynam. Systems, 19(4):995–1035, 1999.

[dFdM99] E. de Faria and W. de Melo. Rigidity of critical circle mappings. I. J.
Eur. Math. Soc. (JEMS), 1(4):339–392, 1999.

[dlLP02] R. de la Llave and N. P. Petrov. Regularity of conjugacies between crit-
ical circle maps: an experimental study. Experiment. Math., 11(2):219–
241, 2002.

[dMvS93] W. de Melo and S. van Strien. One-dimensional dynamics, volume 25
of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in
Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1993.

[Eps86] H. Epstein. New proofs of the existence of the Feigenbaum functions.
Comm. Math. Phys., 106(3):395–426, 1986.

[Eps89] H. Epstein. Fixed points of composition operators. II. Nonlinearity,
2(2):305–310, 1989.

[Fei77] M. J. Feigenbaum. Quantitative universality for a class of nonlinear
transformations. Journal of Statistical Physics, 19:25–52, 1977.

[FKS82] M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker. Quasiperiodicity
in dissipative systems: a renormalization group analysis. Phys. D, 5(2-
3):370–386, 1982.

[FMNT05] M. Field, I. Melbourne, M. Nicol, and A. Török. Statistical properties of
compact group extensions of hyperbolic flows and their time one maps.
Discrete Contin. Dyn. Syst., 12(1):79–96, 2005.

[GK85] K. Gaw
‘
edzki and A. Kupiainen. Gross-Neveu model through convergent

perturbation expansions. Comm. Math. Phys., 102(1):1–30, 1985.
[GK97] V. M. Gundlach and Y. Kifer. Random hyperbolic systems. In H. Crauel

and M. Dundlach, editors, Stochastic Dynamics, pages 17–145, Bremen,
Germany, 1997. Springer–Verlag.

[GKK87] K. Gaw
‘
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[ÖRSS83] S. Östlund, D. Rand, J. Sethna, and E. Siggia. Universal properties
of the transition from quasiperiodicity to chaos in dissipative systems.
Phys. D, 8(3):303–342, 1983.

[Pet75] V. V. Petrov. Sums of independent random variables. Springer-Verlag,
New York, 1975. Translated from the Russian by A. A. Brown, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 82.

[Rug94] H. H. Rugh. On the asymptotic form and the reality of spectra of
Perron-Frobenius operators. Nonlinearity, 7(3):1055–1066, 1994.

[Sim74] B. Simon. The P (φ)2 Euclidean (quantum) field theory. Princeton Uni-
versity Press, Princeton, N.J., 1974. Princeton Series in Physics.
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