ON THE ABSENCE OF FERROMAGNETISM
IN TYPICAL 2D FERROMAGNETS

MAREK BISKUP!, LINCOLN CHAYES! AND STEVEN A. KIVELSON2

!Department of Mathematics, University of California at Los Angeles
2Department of Physics, Stanford University

ABSTRACT. We consider the Ising systems éhdimensions with nearest-neighbor ferromag-
netic interactions and long-range repulsive (antiferromagnetic) interactions which decay with a
power,s, of the distance. The physical context of such models is discussed; primarily dhis &

ands = 3 where, at long distances, genuine magnetic interactions between genuine magnetic
dipoles are of this form. We prove that when the power of decay lies abewel does not exceed

d + 1, then for all temperatures, the spontaneous magnetization is zero. In contrast, we also show
that for powers exceedingj+ 1 (with d > 2) magnetic order can occur.

1. INTRODUCTION

While most of our knowledge of statistical mechanics is derived from studies of model problems
with short-range forces, in nature interactions more often fall off only in proportion to an inverse
power of the distancel) (r) ~ 1/rS. This includes systems interacting via Coulomb forces
(s = 1), dipolar interactionss(= 3) as well as interactions caused by collective effects such as
strain induced interactions in solids or the effective entropic interactions (analogous to Casimir
forces) in lipid films. When the interactions are sufficiently long-range, i.e., wher whered
is the spatial dimension, the very definition of the thermodynamic limit is different than for short-
ranged models. However, even whes d, there can be qualitatively new, or at least unexpected,
phenomena, cf, e.g., [2—4, 29].

In the present paper we study a class of systems with long-range forces; namely, the Ising
models orZ®, d > 1, which are defined by the (formal) Hamiltonians

1
H:—%Jaiaj—i-E;Ki,jO'iO'j. (1.1)

Hereg, e {+1,—1}, i andj index sites inZ% and (i, j) denotes a nearest neighbor pair. The
above notation expresses the relevant signs of all the couplihgs: 0 is the short-rangéer-
romagneticinteraction whileK; ; > 0 represents thantiferromagnetidong range interaction
which we assume decays with poveof the distance betweerand j. We investigate the ques-
tion of presence, and absence, of spontaneous magnetization in such models.
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The motivation for this work was provided by a paper of Spivak and one of us [27] where it
was conjectured that, in the presence (or absence) of an external field, discontinuous transitions
permitting coexisting states of different magnetization are forbidden for antiferromagnetic power
law interactions withrange < s < d+1. A heuristic proof by contradiction was presented based
on the explicit construction of a “micro-emulsion” phase which has a lower free energy than the
state of macroscopic two-phase coexistence. Simply put, the anticipated surface tension between
the two pure phases would be negative—and divergent. The proof is heuristic in the sense that
it makes the physically plausible assumption that correlations in the putative coexisting phases
have reasonable decay properties and that there is a well defined interface.

As it turns out, versions of the above conjecture are actually more than 20 years old. For
example, on the physics side, modulated phases in 2D dipolar ferromagnets were analyzed in
[1,11,18]. Onthe mathematics side, in [8], models with extreme anisotropic repulsive interactions
which haveveryslow decay, but only among a sparse set of spins, were considered and absence of
spontaneous magnetism was proved. The isotropic tase,~ 1/r5, was also briefly mentioned
in [8] and the significance of the intervdl < s < d + 1 for the absence of magnetization was
stated (with no mention o = d + 1). Related problems were described in [17] for systems
with longer range, e.g., Coulomb, interactions and in [8, 9] for the current setuf#ithspins.
Furthermore, general theorems demonstrating instability of phase coexistence under the addition
of generic long-range interactions have been proved in [7,16,26]. In the present paper we provide
a full proof of the absence of ferromagnetism in the model (1.1) dith s < d + 1 thereby
vindicating completely the arguments of [27]—at leastHos 0.

The mathematical result presented in this note has the following consequence for 2D physics:
Two-dimensional magnetic systems often have strong “crystal field” effects which orient the elec-
tron spins (largely or entirely) in thedirection, perpendicular to the plane in which they reside.
This gives the problem of magnetic ordering an Ising character. Interactions between nearby
spins—quantum mechanical and somewhat complicated—are, often enough, of the ferromag-
netic type and considerably stronger than the direct magnetic dipolar interactions (which are a
relativistic effect). Thus, it seems reasonable to study Ising ferromagnets in 2D contexts and
conclude that there is a definitive possibility for ferromagnetism. However, while possibly weak,
there isalwaysthe long-range Ar 3 repulsive interaction. The conclusion of this note is that,
no matter how small its relative strength may be, this interaction will preclude the possibility of
ferromagnetism among tteecomponents.

We remark that the absence of magnetization certainly does not disallow other types of or-
dering. Indeed, a large body of physics literature [1,5, 6,10, 11, 14,18, 19, 21-23, 27], points in
the direction of modulated (striped and/or bubble) states in this and related systems. (For an ex-
tremely insightful review of the phases produced by models of this sort and many experimentally
clear realizations of the corresponding physics, see [24].) From the perspective of mathematics,
recent rigorous estimates on ground-state energies [13], which are asymptbticZrand exact
in d = 1, also indicate striped order in the ground state. In fact, for certain special cases of the
1D ground-state problem, this was established completely.

The organization of the rest of this paper is as follows: In the next section we define all neces-
sary background and state the main results of this paper. In Sect. 3 we derive some estimates on
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the strength of the long range interaction between a box and its complement. These are assem-
bled into the proof of the main result in Sect. 4. Some open problems and further discussion are
provided in Sect. 5.

2. STATEMENT OF MAIN THEOREMS

As mentioned, for the problem of central interest we hiye ~ |i — j|=>in d = 2, where
li — j| is the Euclidian distance, but we may as well treat all powers for which the interaction is
absolutely summable. To be definitive we will simply take,gos d,

ol

(2.1)

with the provisoK;; = 0. We remark that more generality than Eq. (2.1) is manifestly possible
as is also the case with the ferromagnetic portion of the interaction in Eq. (1.1). However, these
generalities would tend to obscure the mechanics of the proofs and so we omit them.

In order to define the corresponding Gibbs measures letZ¢ be a finite set and, givene
{+1, —1}Zd, let Hy = Ha(oa, oac) denote the Hamiltonian ik which is obtained from (1.1)
by pitching out all terms wittboth i and j outsideA. Sinces > d, the corresponding ob-
ject is bounded uniformly ir. Then the DLR formalism tells us that a probability measure
on {+1, —1}Zd—equipped with the produet-algebra—is a Gibbs measure if the regular con-
ditional distribution ofs, = (0i)ica given a configuratiomwc = (oj)icac In the complement
A =79\ A is of the form

Za(opc) Lo PHalonone) (2.2)

Here Z, (oxc) = >, €/H2no09) s the partition function. We will use the notatigr-) to
denote expectations with respect to Gibbs measures (which may often stay implicit).

We wish to establish that all Gibbs measures corresponding to the above Hamiltonian have
zero average magnetization orsce (d, d+1]. We will employ some thermodynamic arguments
based, ultimately, on the notion of the free energy. To define this quanti®slgloc) denote
the partition function inA with the HamiltonianHx (o4, oac) — h >, ai, i.e., for the model
with external fieldh. Let A, = [—L, L]9NZ%. Then there exists, = o(]A|)—with little-o
uniform inh—such that for alb, 6 € {—1, 1}Zd,

ZAL h(UAC)
IO ’—,_,L < €L. 2.3
S Zanre) | = (2:3)
In particular, the limit
1 . 1
f(B,h) =—— Iim ——logZx, n(oas) (2.4)

B Loco |AL|
exists and is independent of the boundary condition. Furthermore, the fuhctionf (5, h) is
concave for alh.
The independence of the free energy on the boundary condition is standard and follows from
the uniform bound on energy per site; cf [25, Theorem 11.3.1]. In Sect. 3 we will show that,
perhaps not surprisingly, is orderL™a2d-s.d-1} with a logarithmic correction a = d + 1.
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The concavity of the free energy now permits us to definesiphentaneous magnetization
m, = m,(p) via the right-derivative oh — f (8, h) ath =0:
of
~ oht lh=o’
Itis clear that, by the symmetry of the model, the corresponding left derivative egugls

m, = (2.5)

The statement of our main result is as follows:

Theorem 2.1 Consider the interaction described by the Hamiltonian in Egs. (1.1-2.1). Then for
alls e (d,d+ 1]and all g € (0, 00), the spontaneous magnetization,, s zero.

The regimed < s < d + 1 of exponents for the vanishing of the spontaneous magnetization
was surmised already in [8]; the present work covers this and, in addition, the (somewhat subtle)
borderline cass = d + 1. The above is about as strong a statement as possible concerning
the absence of magnetic order from a thermodynamic perspective; the implications for statistical
mechanics are similar in their finality. Indeed, the following standard conclusions are implied for
the properties of equilibrium states:

Corollary 2.2 Letse (d, d+ 1] and letu be any infinite-volume Gibbs measure for the Hamil-
tonian in Egs. (1.1-2.1) at inverse temperatytee (0, c0). Let A be as above. For each
€ > Othere existsy > 0 such that for all L sufficiently large ang-almost every boundary
conditionaAcL,

,u(‘z cri‘ > €|AL| O'ACL) < eIl (2.6)
ieAL
In particular, «-almost all configurations have zero block-average magnetization,
1
lim — o =0. (2.7)
L—oo |AL| g} '

Finally, in any translation-invariant (infinite volume) Gibbs state, the expectation of the spin at
the origin is zero.

The last statement should not be interpreted as a claim that the state is disordered. In fact, as
already mentioned, one expects the occurrence of “striped states” at sufficiently low temperatures;
see our discussion in Sect. 1 and also Sect. 5.

To complement our “no-go” Theorem 2.1, we note that for exponestsl + 1, spontaneous
magnetizatiowill occur under the “usual” conditions:

Theorem 2.3 Letd > 2 and consider the interaction as described in Egs. (1.1-2.1). Then there
exist § = Jo(d) € (0, c0) and G = Cy(d) € (0, co) such that for allf(J — Jg) > Co,
m, > 0. (2.8)

In particular, under such conditions, there exist two distinct, translation-invariant extremal Gibbs
states(—)* and (—)~ such that

(o0) " = —(o0)” > 0. (2.9)
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Strictly speaking, this result could be proved by directly plugging into a theorem from [12,
Section 3], which is based on an enhanced Peierls estimate. Instead, we provide an independent
way to estimate the contour-flip energy which is technically no more demanding and permits
the use of sharp countour-counting arguments [20] to derive good estimalgsod the critical
value of$ at which the transition occurs. As a result, the corresponding constants can be bounded
as follows: Jy < C(d + 1 — s)~tz4, whereryq is the “surface” measure of the unit spheréify
andCo < C'3¢, for someC of order unity.

3. ESTIMATES ON INTERACTION STRENGTH

In this section we will perform some elementary but in places tedious calculations that are needed
for the proof of our main results. We begin by an estimate on the energy cost of turning large
magnetized blocks to opposite magnetization:

Proposition 3.1 LetA_ be as above and, for the couplings jkdescribed in Eq. (2.1), consider
the discrete sum

T = Z Kij. (3.1)
ieAL
jeAl
Then, as L tends to infinity:
() Ford <s<d+1,
T~ L%sQ (3.2)
whereQ@ is the integral
dx dy
o / . (3.3)
€S — vI|S
K Xy

with § = {x € RY: |x|; < 1}. In this case it is noted that the integral in Eq. (3.3) is finite
at short (as well as long) distance.
(i) Fors=d + 1, there exists a constant A A(d) € (0, o) such that

T, ~ AL% YlogL. (3.4)

In both (i) and (ii) the symbol- is interpreted to mean that the ratio of the two sides tends to
unity in the stated limit.

To prove this claim, we will instead consider the quanfity, which is defined in the same
fashion asT_ except that the “inside sum” now ranges over_, instead ofA |, providing us
with a cutoff scalea. Of course we must allo® — oo and, fors € (d,d + 1), not much
is actually required but, to save work, we shall insist that9+1~S — 0. (Indeed, we remark
that while most of the up and coming is reitictly necessary for these cases, it will allow for a
unified treatment later.) For the the marginal case efd + 1 we need to implement the stronger
requirement thaa/logL — 0.

Our claim is that the augmented quantities have the asymptotics that was stated for their un-
adorned counterparts. This is sufficient since, keeping in mind the above requirements,

TLa<TL<TLa+2d&L% (3.5)
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wherefs < oo denotes the maximum antiferromagnetic energy, na@ql;Ko, j» associated with
a single spin flip.

For the purposes of explicit calculations, it will be convenient to repkacewith the quanti-
ties Ki’j obtained by “smearing” the interaction about the unit cells surrounding thd sites; :

. dxd
Ki | =/ XY (3.6)
X=iloo<72 |X — Y|S
ly—j |oo§1/2
It is noted that since all distances exceed (the large quaatithle approximation is not severe:
K 5 K:
<K < — (3.7)
(1+0a-bs ’ (1-0a1bys

whered is a number of order unity. Thus, to prove the asymptotics foflihg we may insert
the K ; and then perform blatant continuum integration.
As a technical step, for the proof we will need to calculate the total (long-range) interaction
between the line segmetL, —a) on thex-axis and the half-space R containing all points
with positivex-coordinate:

Lemma 3.2 Consider the integral

L 00 1
I.(L,a) = dx d dz . 3.8
ey A A B e @9
In the limitwhen &L — 0 (with L > 1) whens< d+1and|loga|/logL — Owhens=d+1,
d+1-s H
(L. a) ~ CiL , !fd <s<d+1, (3.9)
CiloglL, ifs=d+1,
where G = Cy(d, s) € (0, o).
Proof. Scalingz by x + y yields
L 0
li(L,a) =C; / dx / dy (x + y)4—1—s (3.10)
a 0
where d
. z
Ci= —_—, A1
' /R [+ (277]%2 54D
From here the result follows by direct integration. O

Proof of Proposition 3.1(i).Forr < 1 let Q, denote the integral (3.3) witk restricted to a
cube§ instead ofS,. Let 'I~'|_,a denote the quantity, , with K; ; replaced byKi’,—. A simple
scaling yields
TLa=L%"5Q; o . (3.12)

Hence, all we need to show is th@ remains finite as 1 1. This in turn boils down to the
absolute convergence of the integral definipg

To show thatQ < oo we note that the quantity. — a)4~11,(L — a, a) in Lemma 3.2 may be
interpreted as the integral pf — y|~° overx € A _5 and overy ranging through the half-space
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marked by the hyperplane passing through a given side of the Aub€eThis impIies'I:L,a <
2d L9, (L — a, a) and, more importantly,

Q < 2d1;(1, 0). (3.13)

By Lemma 3.2 and the Monotone Convergence Theote(t, 0) < co whens < d + 1. O

The proof of the critical cases, = d + 1, is more subtle. The following lemma encapsulates
the calculations that are needed on top of those in Lemma 3.2:

Lemma 3.3 Letse (d,d + 1] and consider the integral

L L 00 00 1
I»(L,a) = d d dx dy d _ — . 3.14
2(L.2) / X/a y/o X/o Y fourZ s 02+ v+ 2 1z &

There exists €= Cy(d, S) < oo such that for L>» a > 1,
I,(L,a) < CoL9+27s, (3.15)

Similarly to the quantityl; (L, a) in Lemma 3.2, the integradb(L, a) may be interpreted as the
total interaction between the squdrelL, —a) x (—L, —a) in the (X, y)-plane and the quarter-
space inRY containing all points with positive andy coordinates.

Proof of Lemma 3.3Applying the boundx + )2 + (Y + §)2 + |z]° > X® + X2+ y?> + ¥? + |z
and scaling by the root ofx? + %2 + y? + ¥ we get

d—2-s

L L 00 00
I,(L,a) < 0(1)/ dx/ dy/ d)?/ dy [x°+ %>+ y* +¥°] 2 (3.16)
a a 0 0

Writing r?2 = x? 4+ y? and p? = %2 4+ §? we pass to the polar coordinates in both pairs of
variables—withp € (0, co) and, as an upper boundge (2, 2L )—yielding the result

2L 00 2L
I,(L,a) < 0(1)/ drr/ dp p[r2+ p? = 0(1) dr r9+1-s, (3.17)
a/2 0 a/2
Here we scale@ by r and integrategh out to get the last integral. Sinse< d + 1, the integral
overr is orderL9+t2-s, O

Proof of Proposition 3.1(ii)In thi§ case we cannot simply seet= 0 and apply scaling. Notwith-
standing, we still have the bould 5 < 2dL9I1(L — a, a). Applying Lemma 3.2, we have

TLa < 2dC L% tlogL[1+ o(D)], L - oo. (3.18)

We claim that this bound is asymptotically sharp. Indeed, (3.18) overcounts by including (the
integral overy in) the intersection of two halfspaces—marked by two neighboring sidas e
multiple times. In light of the aforementioned interpretationl gfi_, a), the contribution from
each such intersection is bounded i 21,(L, a). By Lemma 3.3, this is at most ordef 1.
Hence we have (3.4) with = 2dC;. a

Theorem 2.3 will require us to show that, fer> d + 1, the total strength of the long-range
interaction through the boundary of a finite set is of order boundary:
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Proposition 3.4 Lets> d+1. Then there is a constantG= Cs(d, S) < oo such thatifA c Z9

is finite and connected, then
> > Kij < CsloAl (3.19)
ieA jeA®

where|oA| denotes the number of bonds with one endpoint #nd the other inA°.

Proof. Let V c RY denote the union of unit cubes centered at the sites.ofet W = {y €
Ve dist(y, V) > 1}. In light of (3.7), it suffices to show that, for sonie < oo,

1
d /dx <CZX(V), 3.20
/W ) TR TEE ) (3:20)
whereX denotes the surface measureadh (Indeed, we have& (6V) = |6A].) To this end we

note that the functiox — (d — s)|x|~® is the divergence of the vector field— X/|x|%. The
Gauss-Green formula thus tells us that forya#t (V°)°,

1 1 7(X) - (X =)
- 2
/v ox X —yls d-s /6A X —yI° Z @), (3.21)

wherez (X) is the unit outer normal to the surface at painfwhich is well definedz-a.e. be-
causedV is piecewise smooth). Byt (x) - (x — y)| < [x — y| and so

1 1 1
dx < X (dx 3.22
/v X —yl®s = s—=d Jou X =y[51 ) (3:22)

Buts > d + 1 ensures thay — |x — y|~®1 is integrable on the sdéy € RY: |y — x| > 1}
and so integrating ovey, applying Fubini-Tonelli’'s theorem and extending théntegral from
yeWto{y: |y — x| > 1} we get (3.20) withC = (s — d)™* [q 121511y dz. O

4. PROOFS OF MAIN RESULTS

Here we will prove the results from Sect. 2; we begin with Theorem 2.1. In our efforts to rule out
thatm, > 0, it is useful to have a definitive state that exhibits the magnetization. Our choice will
be the limit of states at positive external field that are constructed on the torus.

Definition 4.1 Let h > 0 and let (—)T.n denote an infinite volume state for the interaction
described in Egs. (1.1-2.1) at inverse temperature 8 and external field h that is constructed as a
limit of finite volume states with toroidal boundary conditions. We define (—)T to be any h |, O
weak limit of the states (—)1.n. When the occasion arises, we will denote the measure associated
with this state by wr.

Lemma 4.2 The measure is a Gibbs measure for the interaction described in Egs. (1.1-2.1)
at inverse temperaturg. Moreoverwr is translation invariant, it satisfie&)r = m, and if m_
denotes the block magnetizations,

1
=—— D0,
|ALI

ieAL

me (4.2)
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then for anyu with0 < 4 < m,,
lim wr(m, > px) =1 (4.2)
L—oo

Proof. These are standard results from the general theory of Gibbs states. Indeed, translation
invariance follows by construction while the fact that is Gibbs is a result of the absolute
summability of interactions; cf. [25, Corollary 111.2.3]. To compute the expectatir we

recall that concavity of the free energy ensures that fortdny h < h” and any translation-
invariant Gibbs staté—)y, at external fieldh,

of , of "
_W(ﬁ’ h') < (oo)n < —m_(ﬁs h”). (4.3)

The definition ofm,—and the construction @f-)r—then implies(ao)T = m,. Finally, we claim
thatm_ — m, in wp-probability, implying (4.2). Indeed, if the random varialolg were not
asymptotically concentrated, thepn = wr(m_ > m, + ¢) would be uniformly positive (at least

along a subsequence) for some- 0. But then the DLR conditions and (2.3-2.4) would imply
that, for anyh > 0,

CLeh|AL|(m*+5) < (eh|AL|mL)T — < ZAL’h — e_lAL”f(ﬂah)_f(ﬂ»o)‘i‘o(l)]‘ (44)
N ZacolT

Hence we would concludé(s, h) — f (8, 0) < —(m, + ¢€)h, in contradiction with (2.5). O

We now define the random analog of the quaniitydenoted byT, . In each configuration
this quantity measures the antiferromagnetic interaction between the inside and outside of a box
of scaleL:

T =D Kijoigj. (4.5)
ieAL
jeat

The central estimate—from which Theorem 2.1 will be readily proved—is as follows:

Proposition 4.3 Consider the interaction described by Egs. (1.1-2.1) with &, d + 1] and
S € (0, >0) and let m denote the spontaneous magnetization corresponding to these parameters.
For each/ € (0, 1) there is Ly < oo such that for L> L,

(Tu)T > AmM?TL. (4.6)

To facilitate the proof we will state and prove a small lemma concerning the averaging behavior
of theK; ;’s:

Lemma 4.4 Let¢ and a be such that &> ¢ and let \{ and \b be two translates ofA, such
thatdist(V1, Vo) > a. Then for any € {+1, —l}Zd andany p e Vi and p € Vy,

Z Ki,jO'iO'j — Kio’jo(Zm)(Z O'j) < CgKio,jolAflz' (4.7)
;2\\;12 ieVq jeVo

Here C is a constant independent oftag, i or jo.
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Proof. This is a simple consequence of the bound
l
[Ki.j = Kig,jo| < €5 Kio.io (4.8)

which follows by (discrete) differentiation of the formula (2.1) and using the fact that the dis-
tance betweei; andV; is at least, while the difference between the minimum and maximum
separation o¥; andV, is a number of ordef and¢ « a. O

Proof of Proposition 4.3Fora = a(L) tending to infinity in the fashion described in the proof of
Lemma 3.1, it is sufficient to establish the inequality in Eq. (4.6) Withieplaced byT, , andT
replaced by its random analob, 5, defined by the corresponding modification of Eq. (4.5). We
will need to introduce one more length scale, nanfely ¢(L) which will also tend to infinity
but in such a way that, — 0. We will assume thalt, a and¢ are such that both, _, and A}
may be tiled by disjoint copies of,. (Technically this only proves the result for a subsequence
but the extension is trivial.)

Let V1 andV, denote translates of, with V3 ¢ A _; andV, C A{ and let us picko € V1
andjo € V. Letg, = wr(m, > u). The following is now easily derived using Lemma 4.4: On
the event that the average magnetization in BatlandV, exceeds: (which has probability at
least 2}, — 1) the contribution of € V; andj € V, to the random variabl&_ , is at least

[14+ Oa)|Kig,jol Acl?pi?. (4.9)

On the other hand, on the complementary event (which has probabiity,) the contribution
can be as small as

—[1+ O)]Kig,jol Acl?. (4.10)
This means that the blockg andV, contribute to{T 5)T at least
[1+ O(a)|Kig, jol Acl?[ 220 — 1) — (1 — q)]. (4.11)
Finally, Lemma 4.4 also gives
KigjolAel? = [1+ 0(a)] D° D Kij. (4.12)
ieVi jeVo

Noting that the erro©(¢,) holds uniformly in the position of; andV,, we may now sum over
all (disjoint) translates of/; andV, in A _; andAf, respectively, to get

(TLa)r > [14 O] (#*a =) — 1= 0) TLa- (4.13)
Sincef/y — 0 andg, — 1 asL — oo, the right-hand side exceeds?T, oncelL > 1. O

Proof of Theorem 2.1By the inherent spin-reversal symmetry, an enhancement of the standard
Peierls contour (de)erasement procedure yields, forany0,

wr(TL > xT) < e 2TL-2dIL7 (4.14)

Indeed, considering the probability conditioned on the configuration outsidleve may split the
energy into two parts: the energy insiéig (¢) and the energ¥qry (o) across the boundary of, .

The important difference between these objects is Hyats invariant under the (joint) reversal

of all spins inA, while Eyqry changes sign. Using the fact that the conditional measure has the
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Gibbs-Boltzmann form, and restricting the partition function in the denominator to configurations
obeyingT, < —«T,, we get

—B[Ein Ebar
ZJ: TisxT, € BLEin(6)+Epdry(0)]

wr(Te 2 kTijore) < —BlEin(0)+Ebdry(0)] * (4.15)
o: TL<—kT_ € Y
Now let us reverse all spins ifd; in the lower sum; this yields
. e‘ﬂ[Ein(U)+Ebdry(0)]
wr(TL > kTilope) < ZoiTien (4.16)

ot TL kT, e AlEin(0)=Ebdry(e)] *

But Epgry(o) > T — 2dJ L9-1 for every o in these sums and so (4.14) holds pointwise for
wt(TL > kT |oac). Integrating over the boundary condition, we get (4.14).
To finish the proof, we now note

(T < TLwr(Te = «T) +xTwr(Te <xTy). (4.17)

We learned in Proposition 4.3 that for afy< 1 the left hand side is bounded below by?T,
for all L large enough. Thus we havé € (0, 1) andvi € (0, 1)

m2 —
=5 < wp(TL = «T) (4.18)
1-x)
oncel > 1. But Proposition 3.1 tells u§_ > L9! and so, in light of Eq. (4.14), the — oo
limit forcesimf < k. Takingx | 0yieldsm, = 0 as claimed. O

Proof of Corollary 2.2.Let u be an arbitrary Gibbs state. A variant of the inequality in (4.4) tells
us that, for anyn > 0,

ZAL,h(UACL)
Zp0(0A¢)
Sincem, = 0, the ratio of the partition functions behaves like g#n | [o(h) + o(1)]} and so,
choosing O< h « 1, the right-hand side decays exponentiallyAi |. An analogous derivation
(involving h < 0) shows a bound op(m_ < —e¢). The second part of the claim now follows by
the Borel-Cantelli lemma. OJ

e—h|A|_|E

,u(mL > elaAcL) < (419)

We will also finish the proof of the existence of magnetic ordersford + 1:

Proof of Theorem 2.3.The proof is a simple modification of the standard Peierls argument.
Consider the box\_ and letu; denote the Gibbs measuren with plus boundary condition

in AS. We claim thatu; (so = —1) <« 1 onceJ andp are sufficiently large (iml > 2). Indeed,
given asetA C AL, let A, denote the event that = —1 in A andg; = +1 on the sites il\©

that are adjacent ta. Then the flip of all spins i\ shows, as in (4.15-4.16), that

Ui (Ap) < exp{—Z,BJlaAl +28>° > K } (4.20)
ieA jeAC
By Proposition 3.4 the second term in the exponent is boundéghfdA |. Letting Jo = Cs, we
thus have
1 (Ap) < e UL (4.21)
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But ] (50 = —1) can be written as the sum pf’ (4,) over all connectedh C A, containing

the origin. The standard Peierls argument shows that this sum is dominated/bytHé} term

once ¢2$0-%) exceeds the connectivity constant for the so-called Peierls contours. It follows
that uj (oo = —1) < 1 for J > Jo andp sufficiently large, uniformly inL. Taking the weak
limit L — oo produces a magnetized infinite volume Gibbs meagtreand, by symmetry, a
counterpart negatively-magnetized state O

5. OPEN PROBLEMS

We finish by some comments and a few open problems. First, the present paper shows the absence
of magnetization ah = 0. A natural generalization of this result is as follows:

Open Problem 5.1 Show that, if se (d, d + 1], then the free energy is continuously differen-
tiable in external field h even whensa 0.

A particular consequence of the positive answer to this problem is that every Gibbs state for a
given value of the external fiell has the same magnetization.

To move to our next problem, let us recall the main reason why the expsnent + 1 is
critical for the disappearance of magnetic order. &6t d + 1, the gain to be obtained from
the antiferromagnetic interaction “through” the boundary of a volume of dcageorder24—S
which—including the lod. correction whers = d + 1—overpowers the short-range surface cost
of orderL9-1. However the short-range calculation only applies under the conditions where one
envisions a surface tension, e.g., discrete spins. If we replace the Ising spins by, say, plane rotors,
the cost due to local interactions for turning over a block now scalé$as Various exponents
will readjust accordingly. Thus we pose:

Open Problem 5.2 For the Ising spins replaced by @)-spins, and the spin-spin interactions
given by the dot product, find the range of exponents s for which the spontaneous magnetization
vanishes.

The problem is interesting due to competing effects in the vicinity of the (purported) interfaces.
It has been stipulated in [8] that, in these cases, magnetism will not occdr fos < d + 2.
See [9] for some relevant calculations.

As for our next problem we note that, as already mentioned, absence of magnetism is far from
ruling out other types of order, with striped states being a prime candidate. Thus we ask:

Open Problem 5.3 Prove for interactions of the type discussed in this note, the existence of
striped states at low temperatures.

Some mathematical progress [13] and a great deal of physical progress [1,5, 6,10, 11, 14,18,
19,21-23, 27] in this direction has been made for the ground state problem. But, at present, the
positive temperature-case is far from resolved.

Finally, we recall that much of our proof was based on thermodynamic arguments which, to
begin with, require the existence of thermodynamics. Notwithstanding, analogous results should
hold even for interactions that decay so slowly that the standard techniques ensuring the existence
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of the free energy fail. An instance of some genuine interest arises from Ref. [17]: Consider the
model with the Hamiltonian as in (1.1) but with the long-range interaction term modified into
Zi,j Ki j(ai — p)(cj — p). The quantityp plays the role of “background charge” density; the
spin configurations are restricted to have averagetherwise their energy diverges).

Open Problem 5.4 Suppose K; ~ |i — j|~tind = 2,3 (and, in general, K; ~ |i — j|=S
with gy < s < d and d> 2). Prove that the free energy is differentiableginat p = 0.

On the basis of [28] one can infer that the lower bousdon the region of exponents in the
previous open problem satisfigs < d — 1. However, it is noted that, f& = d — 2, there is a
(complicated) counterexample to differentiability [15] so, presumably; d — 2.

ACKNOWLEDGMENTS

The authors wish to thank Aernout van Enter for useful comments on the content and litera-
ture. This research was patrtially supported by the grants NSF DMS-0505356 (M.B.), NSF DMS-
0306167 (L.C.) and DOE DE-FG03-00ER45798 (S.K.).

REFERENCES

[1] Ar. Abanov, V. Kalatsky, V.L. Pokrovsky and W.M. SasloR®hase diagram of ultrathin ferromagnetic films with
perpendicular anisotropyPhys. Rev. B51(1995), no. 2, 1023-1038.
[2] M. Aizenman, J.T. Chayes, L. Chayes and C.M. Newnfascontinuity of the magnetization in one-dimensional
1/|x — y|? Ising and Potts mode|s. Statist. Phys50 (1988), no. 1-2, 1-40.
[3] M. Aizenman and C. Newmamjiscontinuity of the percolation density in one-dimensidiyk —y|2 percolation
models Commun. Math. Phy<€.07(1986), no. 4, 611-647.
[4] P.W. Anderson, G. Yuval and D.R. Hamaiixact results in the Kondo problem. Il. Scaling theory, qualitatively
correct solution, and some new results on one-dimensional classical statistical nebgés Rev. BL (1970),
no. 1, 4464-4473.
[5] P. Bak and R. Bruinsmane-dimensional Ising model and the complete devil's staircabgs. Rev. Lett49
(1982), no. 4, 249-251.
[6] L. Chayes, V.J. Emery, S.A. Kivelson, Z. Nussinov and G. Tarfugided critical behavior in a uniformly
frustrated systeprPhysica A225(1996), no. 1, 129-153.
[7] H.A.M. Danigls and A.C.D. van EnteBDifferentiability properties of the pressure in lattice syste@smmun.
Math. Phys71(1980), no. 1, 65-76.
[8] A.C.D. van EnterA note on the stability of phase diagrams in lattice systébasnmun. Math. Phy§9 (1981),
no. 1, 25-32.
[9] A.C.D.van Enter|nstability of phase diagrams for a class of “irrelevant” perturbatioithys. Rev. B6(1982),
no. 3, 1336-1339.
[10] M.M. Fogler, A.A. Koulakov and B.I. ShklovskiiGround state of a two-dimensional electron liquid in a weak
magnetic fieldPhys. Rev. B4 (1996), no. 3, 1853-1871.
[11] T. Garel and S. DoniaclPhase-transitions with spontaneous modulation: the dipolar ferroma@mgs. Rev. B
26(1982), no. 1, 325-329.
[12] J. Ginibre, A. Grossmann and D. Ruel@pndensation of lattice gaseSommun. Math. Phys3 (1966), no. 3,
187-193.
[13] A. Giuliani, J.L. Lebowitz and E.H. Liedsing models with long-range dipolar and short range ferromagnetic
interactions arxiv: cond-mat/0604668.
[14] M. Grousson, G. Tarjus and P. Vidtyidence for “fragile” glass-forming behavior in the relaxation of Coulomb
frustrated three-dimensional syster®ys. Rev. B5 (2002), no. 6, 065103.



14 M. BISKUP, L. CHAYES, S.A. KIVELSON

[15] D. Huse, private communication.

[16] R.B. Israel, Generic triviality of phase diagrams in spaces of long-range interactions, Commun. MatthOBhys.
(1986), no. 3, 459-466.

[17] R.Jamei, S. Kivelson and B. Spivdltniversal aspects of Coulomb-frustrated phase separaBbiys. Rev. Lett.
94 (2005), no. 5, 056805.

[18] A.B. Kashuba and V.L. Pokrovsk@tripe domain structures in a thin ferromagnetic filrhys. Rev. B18(1993),
no. 14, 10335-10344.

[19] A.A. Koulakov, M.M. Fogler and B.l. ShklovskiiCharge density wave in two-dimensional electron liquid in
weak magnetic fieldPhys. Rev. Lett76 (1996), no. 3, 499-502.

[20] J.L. Lebowitz and A.E. Mazelmproved Peierls argument for high-dimensional Ising modé&lsStatist. Phys.
90(1998), no. 3-4, 1051-1059.

[21] U. Ldw, V.J. Emery, K. Fabricius and S.A. Kivelso&tudy of an Ising model with competing long- and short-
range interactionsPhys. Rev. Lett72(1994), no. 12, 1918-1921.

[22] K.-O. Ng and D. VanderhbiltStability of periodic domain structures in a two-dimensional dipolar moggys.
Rev. B52(1995), no. 3, 2177-2183.

[23] C. Ortix, J. Lorenzana and C. Di Castfaustrated phase separation in two-dimensional charged systehys.
Rev. B73(2006), no. 24, 245117.

[24] M. Seul and D. Andelmaromain shapes and patterns: The phenomenology of modulated pBagasce?267
(1995), no. 5197, 476-483.

[25] B. Simon,The statistical mechanics of lattice gas#®l. |., Princeton Series in Physics, Princeton University
Press, Princeton, NJ, 1993.

[26] A.D. Sokal, More surprises in the general theory of lattice syste@emmun. Math. Phys36 (1982), no. 3,
327-336.

[27] B. Spivak and S. KivelsorRhases intermediate between a two-dimensional electron liquid and Wigner ¢rystal
Phys. Rev. B/0(2004), no. 15, 155114,

[28] B. Spivak and S. Kivelsorransport in two dimensional electronic micro-emulsioasiv: cond-mat/0510422.

[29] D. J. ThoulessCritical region for the Ising model with a long-range interactidphys. Rev181(1969), no. 2,
954-968.



