A CHEVALLEY’S THEOREM IN CLASS C".

by Gérard P. BARBANCON

Abstract. Let W be a finite reflection group acting orthogonally on R™, P be the
Chevalley polynomial mapping determined by an integrity basis of the algebra of W-
invariant polynomials, and h be the highest degree of the coordinate polynomials in P.
There exists a linear mapping: C"(R")W 3 f — F ¢ c["/M(R™) such that f = F o P,
continuous for the natural Fréchet topologies. A general counterexample shows that this
result is the best possible. The proof by induction on h uses techniques of division by linear
forms and a study of compensation phenomenons. An extension to P~1(R™) of invariant
formally holomorphic regular fields is needed.

Résumé. Soit W un groupe engendré par des reflexions opérant orthogonalement sur
R™, soit P ’application polynomiale déterminée par une base de I’algebre des W-invariants
polynomiaux, et h le plus haut degré des polynomes coordonnées dans P. Il existe une
application linéaire C"(R™)W 5 f — F € Cl"/M(R™) telle que f = F o P, continue pour
les topologie naturelles d’espaces de Fréchet. Un contre exemple général montre que ce
résultat est le meilleur possible. La preuve par récurrence sur h utilise des techniques
de division par des formes linéaires et une étude des phénomenes de compensation. Un
prolongement & P~1(R") des jets réguliers, invariants et formellement holomorphes est
nécessaire.

1. Introduction

Let W be a finite subgroup of O(n) generated by reflections. A theorem of Chevalley
([5]) states that the algebra of W-invariant polynomials is generated by n algebraically
independent W-invariant homogeneous polynomials, say the basic invariants or an integrity
basis. A W-invariant complex analytic function may be written as a complex analytic
function of these fundamental invariant polynomials([18]). Glaeser’s theorem ([9]) shows
that real W-invariant functions of class C*°, may be expressed as C* functions of the
fundamental invariant polynomials. In finite class of differentiability, Newton’s theorem in
class C™ ([1]) dealt with symmetric functions and as a consequence with the Weyl group
of A,,. This particular case shows a loss of differentiability as already did Whitney’s even
function theorem ([19]) which in fact ruled out the case of the Weyl group of A;. A first
attempt to study the general case may be found in the first part of [3] where the best result
was obtained for the Weyl groups of A,,, B,, by a method which was on the right track but
needed an additional ingredient to deal with the general case.

Here we give for any reflection group a result which is the best possible as shown
by a general counter example. Let py(x),...,p,(z) be the basic invariants and P be the
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mapping x — (p1(z),...,pn(x)), say the ‘Chevalley’ mapping. The loss of differentiability
is governed by the highest degree of the fundamental invariant polynomials. More precisely
we have:

Theorem 1: Let W be a finite group generated by reflections acting orthogonally on
R™ and let f be a W-invariant function of class C" on R™. There exists a function F
of class C"/M on R™ such that f = F o P, where P is the Chevalley polynomial mapping
associated with W and h is the highest degree of the coordinate polynomials in P, equal to
the greatest Cozeter number of the irreducible components of W.

2. The Chevalley mapping

The reader familiar with these questions may omit this section. Proofs and detailed
study may be found in [4], [7], or [10].

Let W be a finite orthogonal group generated by reflections.The Chevalley’s mapping
as defined above is the polynomial mapping P : R" 3 =z — P(x) = (p1(x),...,pn(z)) €
R"™. Tt is proper and separates the W-orbits ([17]), but it is neither injective nor surjective.
For i = 1,...,n the degree of p; will be denoted by k;. Theorem 1 does not depend on
the choice of the set of basic invariants, since a change of basic invariants is an invertible
polynomial map on R". We will choose as we may the most convenient coordinates and
basic invariants.

Let R be the set of reflections different from identity in W. The number of these
reflections is R# = d =Y. (k; —1). For each 7 € R, let A be a linear form the kernel of
which is the hyperplane H, = {z € R"|7(z) = z}. The jacobian of P is Jp = c¢[] .z A+
for some constant ¢ # 0. The critical set is the union of the H, when 7 runs through R.

A Weyl Chamber C' is a connected component of the regular set. All of the other
connected components are obtained by the action of W and the regular set is |,y w(C).
There is a stratification of R™ by the regular set, the reflecting hyperplanes H, and their
intersections. The mapping P induces an analytic diffeomorphism of C' onto the interior
of P(R™). It also induces an homeomorphism that carries the stratification from the
fundamental domain C onto P(R™).

When W is reducible, it is a direct product of its irreducible components, say W =
Wlx...xW? and we may write R as an orthogonal direct sum R™®R™ @. . . ©R"™ where
R™ is the subspace of W-invariant vectors and for i = 1,...,s, W* is an irreducible finite
Coxeter group acting on R™. Any Weyl Chamber C' for W is of the form R xC7 x...xCy
where C; is a chamber for W* in R™.

We may and will choose coordinates that fit with the orthogonal direct sum. If
w = w...ws € W with w; € W 1 < i < s we have w(z) = w(zo,x1,...,2s) =
(xo, w1 (z1),...,ws(xs)) for all x € R™. The direct product of the identity on R™ and of
Chevalley mappings P’ associated with W* acting on R™, 1 < i < s, is a Chevalley map
P = Idy x P' x ... x P* associated with the action of W on R"™.

For an irreducible W (or for an irreducible component) we will assume as we may
that the degrees of the coordinate polynomials pq, ..., p, are in increasing order: 2 = k; <
... <k, = h, Coxeter number of W (actually disregarding D,,, for all other irreducible
reflection groups strict inequalities k1 < ... < k, hold). In the reducible case, for each
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Wt i =1,...,s we assume the degrees of the pg to be in increasing order: 2 = ki <
e < k; = h;, Coxeter number of W*. We may have h; = h;, either W' = W7 or not.
Considering for an example Ag X Ag X H3, hy = ho = hy = 10. Anyway we will denote by
h the degree of the coordinate polynomial of highest degree, equal to the highest Coxeter
number of the irreducible components.

The mapping P is the restriction to R™ of a complex mapping from C™ to C™, still

denoted by P. The linear mappings defined by the action of W on R"” are restrictions of
C-automorphisms of C" and we will still denote by W the group of these automorphisms.
The complex P is W-invariant and thus is not injective, but it is surjective ([11]).
On its regular set, the mapping P is a local analytic isomorphism. The critical set where
the jacobian vanishes is the union of the complex hyperplanes H, = {z € C"|7(z2) = z},
kernels of the complex forms A.. The critical image is the algebraic set {u € C"|A(u) =
J%(z) = 0}, on which P carries the stratification.

Finally, let us recall that there are only finitely many types of irreducible finite Coxeter
groups defined by their connected graph types. Even when these groups are Weyl groups
of roots systems or of Lie algebras, we will follow the general usage and denote them with
upper case letters: A, By, D,,Is(m), Hs, Hy, Fy, Eg, E7, Es (we omit C, and G2 since
the Weyl groups of B,, and C,, are the same and Gy = I3(6)). For these groups explicit
integrity bases are given in [16].

3. Whitney Functions and r-regular, m-continuous jets

The Whitney regularity property of the image P(R™) is a likely conjecture but since
there is no proof available, we need an extension of the invariant regular fields to P~1(R").
The Whitney regularity of P(R™) would make the extension useless but the proof of
theorem 1 would be basically the same. The reader familiar with these questions may skip
this section. A complete study may be found in [18].

Let k = (k1,...,kn) € N” and = = (21, ..., z,) € R™. We shall put: |k| = k1 + ... + kp,
k! = ki!...k,! and ¥ = xlflxlfb” Analogously for the indeterminate X = (X1, ..., X,,), we
put XF = Xfl...X,’f;". In N", we write k < [, if and only if for all j, k; < [;, and in this
case | — k= (l4 — k1, ...,l, — k). The Euclidean norm of x will be denoted by | z |.

A jet of order m on a closed set £ C R" is a collection A = (ag)k/<m of real
valued functions aj, continuous on E. The vector space J™(E) of all jets of order m on
FE is naturally provided with the Fréchet topology defined by the family of semi-norms:
|A|E» = sup ve K lak(z)| where K, runs through a countable exhaustive collection of

compact sets of E.

Ezample. Let £E™(R™) be the algebra of real valued functions of class C™ on R". To each
I

f € E™(R™) we may associate the m-jet on E defined by (W)|k|<m.

" <

There is a ‘formal’ derivation of jets:
DY : J™(E) 3 A= D(A) = (aisq)gj<m— € T 1.

oIkl f olatkl f olal f

and since D(( ok )lk|<m) = (W)|k|<m_|ql is the jet of in J™l9 we may
x = x =




dentify D? and okl
identi and —.

Y oxd
At each point x € E the jet A determines a polynomial A, denoted A,(X) when studying
questions relevant to point-wise properties of the jet. As a function, A, acts upon vectors
x' — x tangent to R™ at x. To avoid introducing the notation T A, we write somewhat

inconsistently:
1
Ay 12’ — Ag(a)) = gak(x) (z' — z)*.
— k!

Formal derivation of A brings jets of the form (aq)|k|<m—|q inducing polynomials

lal
) ) = (Gt ) @) = aalo) + > @ @ =)

For | ¢ |<r < m, we put:

(R A)!(2") = (DIA)p (2") — (DI A)5 ().

Definition 1. Let A be an m-jet on E. For r < m, A is r-reqular on E, if and only
if for all compact set K in E for (x,2") € K2, and for all ¢ € N™ with | q |< r, it satisfies
the Whitney conditions.

Wwy) (R, A)(x') = o| 2/ — |7~ 19), when | x — 2’ |— 0.

Remark. Even if m > r there is no need to consider the truncated field A" in stead of
A in the conditions (Wy). Actually (R,A")?(z’) and (R, A)%(z") differ by a sum of terms
lar(z)/(k — q)!] (' — )%, with a; uniformly continuous on K and |k| —|q| > — |q|.

The space of r-regular jets of order m on FE, is naturally provided with the Fréchet
topology defined by the family of semi-norms:

| (RaA)* (") \)

1
K, _ -
A1 = s | o)+ s (RS

(z,z')eK2

[kl <sm wta,|k|<r

where K, runs through a countable exhaustive collection of compact sets of E. Provided
with this topology the space of r-regular, m-continuous polynomial fields on F is a Fréchet
space that will be denoted by £"™(E).

If r =m, E7(F) is the space of Whitney fields of order r or Whitney functions of class
C"on E. If A € E"(F) there exists a function f € C"(R") such that A is the r-jet of f on
E.

Theorem 2. Whitney extension theorem ([20]). The restriction mapping of the space
ET(R™) of functions of class C" on R™ to the space ET(E) of Whitney fields of order r on
E, is surjective. There is a linear section, continuous when the spaces are provided with
their natural Fréchet topologies.



Let E be a closed subset of C" ~ R?", we may consider jets A on F with complex
valued coefficients ag. Let z be in E, the polynomial determined by A in z is defined by:

1
A(XY)= > Waw(z)XleEC[X,Y].
k|41 <m

The questions of continuity and regularity discussed in the real case may be reproduced
here and we may define the Fréchet space of complex valued Whitney functions of class
C". This space will be denoted by £"(E; C).

Definition 2.[14] [19] A Whitney function A € E"(E; C) is formally holomorphic if
it satisfies the Cauchy-Riemann equalities:

. 0A 0A

=—,7=1,...,n
ZaXJ 83/}7 j ) 7n
Let Z =(Zy,...,2Zy), Z; = X;+1iY,, j=1,....,n. The field A is formally holomor-
0
phic if and only if 57, =0, 7 =1,...,n. Thus for all z € FE the polynomial A, belongs to
J
1
C[Z] and is of the form A,(Z) = Eak(z)Zk.
— k!

The algebra of formally holomorphic Whitney functions of class C" on the closed set
E of C™ will be denoted by H"(FE). It is a closed sub-algebra of £"(F;C) and therefore
a Fréchet space when provided with the induced topology. In practice we shall define the
semi-norms ||A||E» on ‘H"(E) by the same formulas as in £"(E;R), only using moduli
instead of absolute values.

We may also define Fréchet spaces H™™(FE) of formally holomorphic r-regular jets
of order m > r on E. These spaces will play an important part as intermediary tools,
allowing us to take advantage of compensation phenomenons.

Finally, let L be a C-automorphism of C™ and A € H"™™(FE) where E is a closed
subset of C". One may define Ao L in H"™ (LY (E)) by (Ao L).(Z) = Ap»)(L(Z)).
Analogously if P : C* — C" is a polynomial mapping, one may define Ao P on P~}(E)
by: .

(Ao P), = Ap()(P. = P(2)) =) T (P(2))(P: — P(z))"

where P, is the Taylor’s expansion of P in z. If P is of degree m and A is in H"(E), Ao P
will be in H™™"(P~1(E)). The formal holomorphy and the mr-continuity are obvious.
The r-regularity comes from:

1

(Ao P)u(2) = (Ao P).(2) = ag(P(2) = ) 7 0(P(2)(P(2') = P(2))*

= o(|P(z') = P(2)]") = o(|2" — 2[")
since P,(z') = P(2') and P(2') — P(z) = O(]z — 2/|).
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4. An extension operation

Definition 3. A real form ([15]) or a really situated subspace ([13], [18]) of C™ is a
real vector subspace E of dimension n such that E & iF = C™.

Ezample. For any involution «, the real subspace I'y, = {2z € C"|z,(;) = Zi}, is a real form
of C".

The reciprocal image P~1(R™) is a W-invariant finite union of real forms of C™. This
property is true for any finite group.

A classical theorem of Hilbert states that for any finite subgroup G of O(n) the algebra
of G-invariant polynomials on R" is finitely generated. There is a finite number d > n of
G-invariant homogeneous polynomials, say q1,...,qq4, and for all G-invariant polynomial
function f : R™ — R there exists a polynomial function F : R? — R such that f(z) =
F(q1(2),...,q4(z)). The polynomial mapping @ : R" > x = Q(z) = (q1(z), ..., q4(7)) €
R? is the restriction of a complex mapping from C" to C?, still denoted by @ for which
we have:

Lemma 1. Let G be a finite group acting orthogonally on R™ and ) be the associated
polynomial mapping as above. The reciprocal image Q~*(R?) C C" is a G-invariant finite
union of real forms of C™.

Definition 4.([14], [13], [18]) Two closed sets E and F of an open set Q C R™ are
1-regularly separated if either E N F is empty or if for all xg € E N F there exists a
netghborhood U of xy and a constant C > 0 such that for all x € U,

d(z,E)+d(z,F) > Cd(z,ENF).

An equivalent definition would be: for all xg € ENF there exists a neighborhood U of x¢
and a constant Cq > 0 such that for allx e UNE, d(x,F) > Cy d(z, ENF).
Actually E and F' are 1-regularly separated if and only if the 0-sequence:

0— H"™(EUF) = H"™E)®H"™F)—H"™(ENF)—0

is exact ([18]).

Remark. Any two linear subspaces are regularly separated. In particular any two real
forms in C™ are 1-regularly separated. Moreover the closed strata of the stratification of
P~Y(R™) by the reflecting hyperplanes and their intersections are regularly separated.

Proposition 1.[14] Let E and F be two 1-reqularly separated closed sets, and let Ag
and Ap be r-reqular fields on E and F respectively. If Ap = Ap on ENF, the field A

defined without ambiguity on EUF by A= Ag on E and A = Ar on F is itself r-reqular.

Let f € C"(R™)W be a W-invariant function of class C". It induces on R™ a W-
invariant Whitney field of order r and by complexification a formally holomorphic field in
H"(R™)W which will still be denoted by f.

The extension of f to the reciprocal image P~*(R"™) C C" of the Chevalley mapping
P will be provided by using the above proposition and the Whitney extension theorem:
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Proposition 2.[1] Let I' and T’ be two unions of real forms in C", with I" C . There
exists a continuous linear mapping: H"(I') > g — g € H"(I") such that g =g on T.
More precisely, with ' = R" and T = P~Y(R™), and averaging on W, there exists a

linear and continuous extension:

H' (R > f— feH (PTHR™)W.

5. Some multiplication and division properties.

Lemma 2. Let T' be a finite union of real forms of C™, let A be in H"(I"), and Q be
a polynomial (s — 1)-flat on S. Let z € I and zg € SNT, then for all g € N",| q |<r:

(R, QA)(2) = (DIQA).(2) — (DIQA)., (2) € of| z — zo |7~ lalF*).
Moreover QA € H™5(SNT) and is (s —1)-flat on SNT ([8]). For all compact K C SNT,

there exists a constant ¢ such that |QA||%® < ¢|| Q| x || All% -

Proof. Let zo € SNT. Forall z €T, and all ¢ € N",| ¢ |<r, and p < ¢, we consider:
(DPQ)=(2)(D*"PA):(2) — (DPQ)z (2)(D*"PA)(2).

Observing that by Taylor’s polynomial formula (D?PQ).(z) = (DPQ),, (%), we may write
this difference as:

(DPQ)=(2) [(DT7PA)(2) — (DT A)zy ()] -
By assumption (DPQ).(z) € O(| z — 2o [*7IPI) when | p |< s and

[(DT7PA).(2) — (DI7PA)5, ()] € o] 2 — 2 |77 11FIP),

So the product is in o(| z — zg |"~191%#%) either because |p| < s and r — |¢| + |p| + s — |p| =
r — |q| + s or because |p| > s and r — |q| + |p| > r — |q| + s.

The behavior of (R,,QA)4(z) is now a consequence of the Leibniz derivation formula.

Actually QA € H™"5. On SNT since | p |< s = (DPQ),,(20) = 0, in the derivatives
of QA of order < r + s the only derivatives of A that are not multiplied by a derivative
of () that vanishes, are of order < r. Then the above estimates show that the field QA
satisfies Whitney conditions Wy TS on SNT.

This was already noticed in [8]: when multiplying a field ri-regular and (s; — 1)-flat
by a field ry-regular and (sy — 1)-flat on SNT, the product is min(ry + so, 72 + $1)-regular
and (s1 + s2 — 1) flat (here ry =7, s1 =0, ry = +00, 53 =35).

Ezample 1. If X # 0 is a complex linear form with kernel H, if the field A is in H"(T),
zel and zo e 'N H, then for allq € N", | q |<r:

(R AA)1(2) = (DINA),(2) — (DINA), (2) € o] 2 — 2o |14,
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Moreover N\A € H™ (' N H).
More generally if (Hi)i?“:1 are the kernels of the forms ()\i)le, ze€Tl and zp € T'N
(N; Hi), then for allg e N", | q |<7:

k

(Reo ([T 20)A)1(2) € o] 2 — 2o "HE7141).

Additionally \; ... \A € H™PR(T N (N, Hy)).

Ezample 2. [3] Let fi1,..., fr be k formally holomorphic fields in H"(I"). For each
1=1,...,k let Q; be the product of s; > s forms, L be the intersection of the kernels of all
k

of these forms, and let ¢ = ZQifi e H"" (M. Ifz€T and z0 €T N L, |q| <, then
i=1
(R.,0)1(2) € o|z — zo|"t*7l4l). Moreover ¢ € H™(I'N L).

For more specific examples: a) with ' = R*, A = {2]|21 = 20 = 23 = z4}NR?, f; € H"(R*):
(21 - 2’2)(22 - 23)(21 - Zs)f1 + (2’1 - 23)(21 - 24)(2’3 - Z4)f2 + (21 - 22)(22 - 24)(21 - Z4)f3+

(Zl — ZQ)(Zl — 23)(22 — Z3>f4 - HT+S(A)

b) with ' =R, f; € H'(R®) 1 ¢.(2) = (25 — 23) /1 + (21 — 25) f2 + (21 — ) f.
The intersection of all the hyperplanes is the origin and ¢ verifies (Rog)?(2) € o(|z|"+2~1a])
for all z € R3 and all ¢, |q| < r.

Example 3. Let QQ be an homogeneous polynomial of degree s. It vanishes at the origin
with all its derivatives of order < s—1. If A € H"(T"), for allz € T and allq € N",| q |< r:

(RoQA)?(2) = (DIQA).(2) — (D1QA)o(2) € of| = ["+=714]).

The same result holds if instead of a product QA we have a sum Y ., Q;A;, with homo-
geneous polynomials Q; of degree s; > s and the A; € H"(T).

Let us recall the following division lemma:

Lemma 3. [1] Let T’ be a finite union of real forms of C™, and A # 0 be a complex
linear form with kernel H. If A € H"(I') is such that A,(Z) is divisible by \,(Z) whenever
z € TN H then there exists a field B € H™Y(T) such that A” = (AB)". For all compact
K CT, there exists a constant ¢ such that | B||% * < c||A||%

Actually B € H"(I'\ H) and if | s |=r, then A(2)(D°B).(#) tends to zero with A(z).

Remark. The lemma still holds if we replace I' by a closed subspace such as the
intersection of I and one or several hyperplanes H/, distinct from H.

The proof of lemma 3 relies upon a consequence of the mean value theorem that will
be instrumental in what follows:

Lemma 4.([13], [18]) Let I" be a finite union of real forms of C™, A # 0 be a poly-
nomial, and X = {xz € C" | A(z) = 0}). If f € H"(I' \ X) is r-continuous on I', then
feH (D).



By using several times lemma 3, we get:

Consequence 1.Let T be a finite union of real forms of C*, and (\;)reg be G# =p
non zero complex linear forms with kernels (H;)reg. If A € H"(T') is of the form A =
[I.cg A B, meaning that

VG' € G, A.(Z)is divisible by [ A-(Z) when z € TN () H),
TEG! TEG’

then B € H"P(T'). For all compact K C T, there exists a constant ¢ such that | B ¥ <
el Al

Actually, B € H"(I'\ U, cs H~) and it would be possible to study in the neighborhood of
the H, and their intersections the behavior of the derivatives that are lost in the division.

Using the second part of lemma 2 we also get the following:
Consequence 2. In the conditions of consequence 1 and with the same notations,
if A e H™"5(T) and if there exists a zg € T' N (), cg Hr) such that for all z € T' and

0<|q|<r, (R,;A)4(2) €0(| z— 2 |75~ |q'), then for 0 <|l|<r—p

Va1 € DN () Hr), (ReyB)'(21) € of| 21 — 20 [P 1),
TES

Proof. The derivatives of (][] .gAr) of order greater than p vanish identically while
the derivatives of order less than p still containing at least one factor A\, vanish on I' N
N,es H-. So by Leibniz derivation formula when z; € T'N (), o5 H-), the derivatives
(D?A),,(z1) — (D?A),,(21) of order |q| = p+ |I| < r are linear combinations of derivatives
(D!B).,(21) — (D'B),,(21) of order |I|. By solving an over determined but consistent
linear system with constant coefficients we get that for 2y € I'N ([, cg H~) the derivatives

(D'B).,(21) — (D'B).,(21) of order |I| <r —p are in o(| z; — zo ["T*7P~1). &

Lemma 5. Let T be a finite union of real forms of C™, and consider A =Y""_| Q;A;,
for some polynomials Q; and A; € H"(I'). Let Ay and A2 be two non zero complex linear
forms with kernels Hy and Hy, Hi N Hy = S. We assume the QQ; to vanish on S and A to
be of the form A1 Ao B, meaning that if z € T N H;, i = 1,2, A,(Z) is divisible by \;(Z)
and when z € I' N (Hy N Hy), A.(Z) is divisible by \(Z ) 2(Z). Then B € H"1(I).
If additionally, the Q; are (s — 1)-flat on S; C S, B is (s — 3)-flat on S;1 N T, and if

A(Z) = (O_Q;A:).(Z) is divisible by some A\(Z ),)\ # Niyi = 1,2, when \(z) = 0, then
B.(Z) is divisible by \(Z).
Finally for all compact K C T, there exists a constant c such that | B||%* < c|| 32 Qs Ail[%-

Proof. By lemma 3 and its consequence 1, B € ‘H"2(T') but it is in H"~! in the
complement of S in I', and in H" in the complement of H; U Hy in I'. By lemma 2,
A=3" QA € H™TH('NS), so that B € H™~2(I'N S). We just have to check the
continuity of B on S and more precisely the continuity of the coefficients of order r — 1
since we already know that B € H"~2(T).

Let z € I'\ S and let z; be its orthogonal projection on I' (|(H; U H3). It may happen
that z = 21, but in any case the coefficients of order » — 1 of B are continuous in z;.
Assume for an example that z; € Hy and let 2y be its orthogonal projection on S.
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By consequence 2 with A € H™"+Y(T"), N H, = Hy, and z9 € H; N Ho, for || <7 —1,
(R.,MoB)! (1) € o(]z1 —20|"~1*17!). When |I| = r —1 using Leibniz derivation of a product
we have:

bA2(21)(D' Bz, (21) = D'Bzy (1)) + ) ai( D™ By, (21) — (D™ Bzy(21)) € 0(|21 — o))

where the D™ are derivations of order r — 2. Since |A\3(21)| is equal to |21 — zp| up to a
multiplicative constant we get that for |a| = r — 1, by (21) — ba(20) tends to 0 with |z — 21|
and this shows that B € H"~}(T).

The existence of a cx such that ||B|% " < ex|l Y. Qidi||% is a consequence of this
proof. The remaining properties of B are pointwise properties that B, clearly inherits

from A, = (3. Q;4;).. ¢

Remark. If m hyperplanes H;, © = 1,...,m, intersect along S = H; N Hy, assuming
the same pointwise divisibility properties on the H; and if the @); vanish on S, we would
show in the same way that the class of differentiability of B would be » — m + 1.

Example. Let A; € C"(R?), i=1,2 and 6 = 1, consider
m

m
= Z cos 2j0(x1 cos 250 + x4 sin 250) +AgZcos2g9(m1cos2]0+:L'251n2j0)
j=1 j=1

and assume that A is of the form [];",(z1sinkf — x5 cos k) B, then B is of class C" !
outside of the origin and globally in C"~™1(R?).

Lemma 6. Let I' be a finite union of real forms of C*, and (\;)rep be D¥ = d
non zero complex linear forms with kernels (H;)rep, and Sq =T N[\ cp Hr. Let G C D,
G#¥ =p, and S, =T'N (Nyeg Hr) D Sa be the intersection of I' and the p hyperplanes
(H;)reg. Let S, be the set of points of I contained in these p hyperplanes but no other.
Fori=1,...,n let A; be in H"(T") and Q; be homogeneous polynomials of degree s; > s that
are (s, — 1)-flat on S, and (sq — 1)-flat (sq > sp) on Sq. Assume that A=3"" | Q;A
(IL;ep Ar)C, meaning that

YU C D, A,(Z)is divisible by H Ar(Z) when z € T'N( ﬂ H;)
TEU TeU

Then the field C' which is in H™57P(S,) is in H"T5474(S,).

Proof. By lemma 2, > | Q;A; € H""2(S,) and in H""5¢(S,), so the field C is
in H"F»~P(S,) and in H"T%74(S,). All we have to show is the continuity on S, of
its coefficients of order < r + sq4 — d. The field B defined by A = (][..sAr) B is in
H"+5»=P(S,). Let z € S, and 2 its orthogonal projection on Sj.

For |q| < r, (RZOA) (2) € o(]z — z|"F*27ldl) and by consequence 2, for z € S, and
0<[1|<r—p, (R:B)'(2) € 0f] 2 = 2 |"FoaP= 1),

To get the conclusion on C' it is sufficient to give a proof when d —p = 1, for only one form
A with kernel H such that S_p N H = Sy, since we could reiterate the process.

TES
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In this case for z € S,
B.(z) = Bo(z) = M2)C:(2) = M(2)Cy(2) € o] 2 = 2 ["757F)

The regular separation of the linear subspaces S_p and H brings the existence of a constant ¢
such that |z—zg| < ¢ d(z, H) = ¢1|A(2)|. Therefore C.(2) —C.,(2) € o(| z—zg |7 T5¢=(P+1),
Let us assume that for | [ [<k—-1<r+s, —p:

D'C.(z) — D'C.,(2) € of| z — zy |"Tsa=PHD=IHY,
For j, |j| = k, we have:
D'B,(z) — DB, (2) € o] z — 2 |"T52a7P7F),
By Leibniz’ derivation formula:

a(2)(DIC.(2) — DICL, (2)) + D ai(DFCL(z) — DM Cuy(2)) € of| 2 — 2 |7 HeeP7F)

where the D¥: are derivations of order k—1 for which we may use the induction assumption
to get: A '
aX(2)(DIC,(2) — DIC,,(2)) € o] 2z — 2o |"T527P7F).

Using as above the regular separation, we obtain:
(DIC.(2) = DIC.,(2)) € of] 2 — 20 [+~ 4Dk,

thus completing the induction. <
In particular we will be interested in the following situation:

Consequence 3. Let I be a finite union of real forms of C*, and (\;)rep be D¥ =d
non zero complex linear forms with kernels (H:);cp, such that () ..p H; = {0}. Let

S,=Tn (Nyes Hr) where S C D and S# = p, be the intersection of real dimension one

of T and p of these hyperplanes. S, = S, \ {0} is the set of points of ' contained in the p
hyperplanes of S but no other.

Fori=1,...,n let A; be in H"(I') and Q; be homogeneous polynomials of degree s; > s
that are (s, — 1)-flat on S, and (sq — 1)-flat (sq = sp + sq) on Sq. Assume that A =
S QiAi = (I1,ep Ar)C, meaning that

YU C D, A,(Z)is divisible by H A (Z) when z € T'N ( ﬂ H,).
Teu Teu

Then the field C' which is in H™»7P(S,) is in H"T54=4(S,).

Example. Let I = R* C C*, and consider the set D of d = 24 hyperplanes of
equations:

z; =0, 1 << 4, mi::txj, 1§Z<]§4, r1 Ex9g a3ty =0.

11



Let S be the subset of p = 9 hyperplanes of equations z; =0, 1 <¢ <3, z; = £x;, 1 <
i < j < 3. The intersection S, of these 9 hyperplanes is the x4-axis but if one adds to S
anyone of the hyperplanes in D\ S the intersection will be {0} which is the intersection of
the 24 hyperplanes in D.

6. Proof of Theorem 1.

Let f € HT(P_l(R"))‘:V, the following lemma gives a pointwise solution by providing
in each point of x € R" a F, of degree r such that f, = (Fp(.) o P)".
Lemma 7. ([3]) For all W-invariant, formally holomorphic Whitney function f €

H"(P~'(R™)) , there exists a formally holomorphic field of polynomials F of degree ron
R" such that for all z € P~Y(R"), f, = (Fp() o P)L.

Proof. On the complement of I' N (J, . H- in I', the mapping P is a local analytic

isomorphism and this yields the construction of F = ( f o P~H™ unambiguously since
both f and P are W-invariant. On the regular image of P, F is r-regular and verifies
fr=(FoP).

Let x € I'N(UJ, cx H-) and let W, be the isotropy subgroup of W at . The polynomial
f» is W-invariant since for all wg € W, € W: fo(X) = fwom(on) = fu(woX) where the
first equality results from the W-invariance of the field f and the second from wopz = x.
As a consequence, f, is a polynomial in the W -invariant generators v = (vy,...,v,) of
the subalgebra of W, -invariant polynomials, and we have fx =Q%ow.

The polynomial @ depends of x through P(z). Let y be in P~*(P(x)), there exists a
w € W such that y = wx and the isotropy groups W, and W, are conjugate by w: for all
wy € Wy, there exists a wyg € W such that w; = wwow ™. The mapping

w* : R[X]"¥ 35— Sow e R[XV=

is an isomorphism and a basis of the subalgebra of W, -invariant polynomials will be given
/

by o' = (vf,...,v}) with v} =v;ow™, i=1,...,n. o
S0 fue = QW ov" = QW* o~vow*1, and therefore: f.(wX) = Q""ov(X). Since f = fow
we also have fy.(wX) = f.(X) = Q" o v(X) and thus Q** o v = Q% o v. The polynomial
mapping v being surjective, this entails that Q* = Q™" and then that the polynomial @
does not depend on the choice of x in P~1(P(z)).

There exists a neighborhood of x in C™ which does not meet any of the hyperplanes H.-
but those containing z. In this neighborhood we may write P = g ov for some polynomial
q, since P is W -invariant. Up to a multiplicative constant the jacobian of ¢ at v(x) is

the product ], (,).oAs and ¢ is an analytic isomorphism in a neighborhood of v(z). We
define the jet at P(x) by Fp(x) =[Qo g 1]" and we get:

[FoPl,=[(Qog ") o(gov);=[(Qog ") o(gov)l; =(Qov), = fo=Qouv,.

At z where the isotropy group is W, with a polynomial of highest degree h, among the
invariants v, @ o v = f implies that @) of weight r is of degree [r/h;] with respect to this
polynomial.

12



In particular when the isotropy subgroup is W' itself which happens at the origin (and
only at the origin if W is essential), Vw € W, fo(X) = fuwo(wX) = fo(wX). This means
that fo(X) is a W-invariant polynomial and using the polynomial Chevalley’s theorem,

we have fo(X) = Q(P(X)). The polynomial Fy = Q of weight r is of degree [r/h] in the
invariant polynomial p of highest degree h.

Remark. The point-wise solution already shows that in general we should expect a
loss of differentiability from r to [r/h].

When the highest degree of the coordinate polynomials of P is 2, theorem 1 is the
Whitney’s even function theorem. By induction assume that theorem 1 is true for any
reflection group such that h < K — 1, and let us consider a W with h = K.

In the neighborhood of z with isotropy subgroup W, such that its h, < K — 1, the
regularity of F' is given by the induction assumption. More precisely from the proof of
lemma 7, in a neighborhood of = we have f = [G o v]", with a field G the regularity of
which is determined by the induction assumption. In a neighborhood of v(z), G is locally
of class H["/h=], Then from FoP = Fogov = Gov, we get F = Gog~! without additional
loss of differentiability since ¢ is an analytic isomorphism in a neighborhood of v(z). So,
F is in H["/"=] in a neighborhood of P(z).

The field F is r-regular on the complement of the critical image {u € C™ | A(u) = 0},
where the discriminant A is a polynomial. By using Lemma 4, it will be sufficient to
prove that F is [r/h]-continuous on R™ to get its [r/h]-regularity. Moreover thanks to the
induction assumption we just have to show that F' is [r/h] continuous at the points where
the isotropy subgroup has the same k,, = K as W itself.

Since P is proper the continuity of any F, o P, entails the continuity of F,. So let us
check the continuity of the F, o P when | o |< [7’/ h]. Clearly Fyo P = f; is continuous.
For the first derivatives, it is natural to consider the partial derivatives of f , and get the

system:
of\ (32%) OF
! (3_>_( %; :;;;z>(8_P°P>'

In the chosen bases (see section 2) the jacobian matrix of P is block diagonal. The upper
block is the identity ng x ng, while the others are the jacobian matrices of the mappings P*
associated with the irreducible components W*. The jacobian determinant is the product
of the determinants of the P?. When solving system (I) it is sufficient to study the system
for each block and the global loss of differentiability will be determined by the block that
brings the greatest one. The class of F' is determined by the irreducible component which
brings the largest loss of differentiability at each step. Therefore we may and will assume
from now on that W is an irreducible Coxeter group acting on R! with h = K. In this
case we just have to study the continuity of the F,, o P of order |a| < [r/h] at the origin.
We consider the [ x [-dimensional system associated with this Coxeter group:

() () (3),



Using Cramer’s method as in [1] and [3], we multiply both sides by the comatrix of the

system and since the jacobian is ¢( H Ar), we have :
TER

)i of
11’{ (I] ») ap]oP Z +JM,J8 j=1...,1

TER

l ~
" 0
From (II") we see that V7 € R, if A\;(z) = 0 the polynomial <Z(—1)Z+JMZ- —f> (Z) is
i=1 i),
divisible by A\, (Z).
The minor M; ; is an homogeneous polynomial of degree s; = Z (ky —1) > s =
1<u<lu#j

l ~
" 0
> (ku—1) and then the field Z(—1)Z+9Mivja—j is in HrLro s (PL(RY).
1<u<i—1 i=1 J
Actually M; ; is the jacobian of the polynomial mapping:

(Zl, ey Ri—1yRi41y ey Ry ZZ) = (pl(z)a s 7pj71(z)7pj+1(2>7 s 7pl(z)7 Zl)

As already noticed in [2], this mapping is invariant by the sub group W; of W that leaves
invariant the i*"* coordinate axis in R!, say R e;. This sub group W; is generated by the
subset R; C R of the reflections it contains [10]. These are the reflections o in W such
that a(e;) = e;, about the hyperplanes H, containing e; the equations of which do not
contain x;. (*)

Ezample.([3]) The reflections contained in W (B;) are the reflections about the hyper-
planes of equations z; £2; = 0,1 <i < j <l and z; = 0,1 <4 < [. Their number is
R#* = 1(l — 1) +1 = [2. The hyperplanes containing e; are those such that z; does not
appear in their equation, say the hyperplanes of equations x; £ z; = 0,2 <7 < j <[ and
2; = 0,2 <i <1l Their number is R¥ = (1 -1 —2)+ (1 —1)=(—1)2.

The M; ;, j =1,...,1, as jacobian of W;-invariant polynomial mappings are polyno-
mial multiples of (HTE& Ar). For the Weyl groups of the infinite series A,, and B,, using
lemma 2 (see Example 2) these considerations bring the result ([3]).

On the reciprocal image P~1(R™), there is a natural stratification determined by
the hyperplanes H,. and their intersections. Each stratum is characterized by the forms
vanishing on it. Its points are stabilized by the same isotropy group, subgroup of W
generated by the hyperplanes containing the stratum. In what follows a stratum S, is a

(*) The description of W; given in [3] was not accurate. Although not essential to the
reasoning it was misleading. The explicit computations were correct however and gave the
best result for the loss of differentiability in the case of A,, and B,,.The case of D,, might
also be taken care of by this method but would need some technical although elementary
computations on determinants.
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connected component of the intersection of I' and exactly p reflecting hyperplanes. The
different possible isotropy subgroups and then strata types may be determined from the
Dynkin diagram. The strata of dimension 0 is the origin. The strata of dimension 1 are
those determined by removing only one point in the Dynkin diagram, they are strata S,
such that their closure is S, = S, U {0}. At the other end the strata of dimension n are
the connected components of the regular set in I'.

Ezxample. The reflections contained in Hj3 are reflections about the hyperplanes of
equations z; = 0,1 < i < 3 and 721 £ 7 29+ 23 =0, 7Tz +7 23+ 2 =0, and
Tz3 + 77121 £ 20 = 0 where 7 is the golden ratio. d = R* = 3+ 4 x 3 = 15. Using
the fundamental invariants given in [16] and computing with Maple, we see that the 2 x 2
minors of the jacobian are homogeneous polynomials of degree at least 6, of the form
2;2;Q1, with an irreducible Q). For instance:

Ms 3 = 3(15+ 7\/3) 331372(23;‘11 —2(5 — \/g) x%x%
(8= V/5) 0+ (V5 —5) o +2(5— 3V5) afai + 4v5 afad).

Let us consider the real form R? itself. The number of linear factors vanishing at x is
0 on the 3 dimensional strata (regular set), and 1 on the 2 dimensional strata (contained in
one and only one hyperplane). For the one dimensional strata there are several possibilities:

- 2 linear forms vanish. The one dimensional strata S, are the connected components
of intersections of the form {z; = 0} N {z; = 0} after removing the origin. The isotropy
subgroup is A; x A;. Observe that this subgroup is reducible.

- 3 on the intersections of type {xs = 0} N {771z £ 29 — 723 = 0} after removing the
origin. The isotropy subgroup is As.

- 5 after removing the origin from intersections of type {x3 = 0}N{r"1z; —zo+ 723 =
0} since this intersection is also contained in z1 — 722 £ 7 123 = 0. The isotropy subgroup
is I2(5)

In each case it is clear that if we take the intersection of the above hyperplanes and

one more, then all the linear forms vanish and we get the origin which is the intersection
of the 15 reflecting hyperplanes S15 = {0} where the isotropy subgroup is Hj itself.
If we consider real forms other than R™ the situation is slightly different, since the con-
ditions for belonging to this real form may interfere with the equations of the reflecting
hyperplanes. Then some of the reflection subgroups may not be isotropy sub groups
for any point of such real forms. For instance let us consider A, and the real form
I' = {z € C%2y = Z3,23 = Zs,25 = z5}. If 2 € T is in the hyperplane z; = z3, it
will automatically be in the hyperplane zo = z4.

By the induction assumption, in a neighborhood of z # 0, F' is of class C["/"=], where

h. is the Coxeter number of the isotropy subgroup of z. We will strengthen this induction

assumption by assuming that in a neighborhood of z, gTF o P is of class C"~1=(P=P1) The
j

loss of differentiability is 1+ p — p; = h,, where p is the number of hyperplanes through z

and p; is a compensation given by the polynomials M; ; that are (p; — 1)-flat in z). This

new induction assumption implies the previous one, since if we apply the same process to
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OF o P instead of F o P, at the next step there will again be a loss of differentiability of

Opj
h, units. By an other induction for |a| < [h—] the derivatives 2" ‘F| o P are continuous in
z
Pj
. . . Y 20 A . .
a neighborhood of z, and since P is proper, the derivatives ool of F' are continuous in a
P;

neighborhood of P(z).

The compensation from the M; ; does not happen when h = 2 (even function theorem),
it does for the first time when h = 3, with Ay = I5(3). Theresult h =3 =1+ (p — p1)
with p = 3, and p; = 1 is a particular case of a computation done in [3] for A,, and in [1]
about the symmetric group S,,+1. One may also observe that the remark following lemma
5 gives the result for Io(m) and in particular I5(3).

Example. As above we consider H3. There is no compensation on the strata of
dimension 3 or 2. On the strata of dimension 1 of type Sa, p = 2, say x1 and x5 vanish for
instance, but we have either z; or z3 (or both) in factor in the M; ; (directly from their
above description). So p = 2,p; = 1, and the loss of differentiability isr—1—(2—1) = r—2
as expected since W, is A1 x Aj.

On the strata of type S3 defined by the intersection of {zy = 0}N{7tx;tzo—723 = 0}
for instance, using Maple to get the M; ; we see that if they do not contain x5 as a factor,
they vanish on {77'x; 4+ 29 — 723 = 0} when {z2 = 0}. So p; = 1, and since p = 3, the
loss of differentiability is r — 1 — (3 — 1) = r — 3 as expected since W, is As.

On the strata of type S5 defined by the intersection of {x3 = 0}N{7r 1o —zo+723 = 0}
for instance, using Maple to get the M; ; we see that if they do not contain x3 as a factor,
they vanish on {77 'z; — 29 & 723 = 0} when {z3 = 0}. So p; = 1, and since p = 5, the
loss of differentiability is r — 1 — (5 — 1) = r — 5 as expected since W, is I5(5). &

Let z # 0 be in some real form I' ¢ P~1(R"), more precisely let z belong to some
strata S of positive dimension. Let z; € S, be the point nearest of z in the union of strata
of dimension 1. As noticed S, = S, U {0}.

We may directly consider z; or reach it stepwise taking first the orthogonal projection
of z onto S\ S, say z, belonging to some strata S,, then the projection of z, onto S, \ Sy,
and so forth until we reach z;. The induction assumption and lemma 6 show that it would
not make any difference.

We may observe that |z — 21| < |z| and by the triangular inequality we also have |z1| <
|z — 21| 4 |2| < 2|z|. Therefore if z tends to 0, so do both z; and z — z;. Between z and z;
the continuity of the derivatives of ?TF o P on S, is granted by the induction assumption
up to an order > r — K. We just haxge to study the continuity between z; € S, and the
origin.

Let S be the set of p forms vanishing on S, and 7 = R \ S. Considering:

l

Z( 1)1+ M ’78 H/\ —oP H)\T)B

i=1 TER TES

and B = ([[,c7 M) g—pﬁ; o P, with M; ; homogeneous polynomial of degree at least s, we
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are in the situation of Consequence 3, the derivatives of gTF oPoforder <r—1—d+s
j

are continuous on S, and therefore on P~1(R") by using the above triangular inequality .

So the gTF o P ¢ H™174+5(P~1(R")) even in the reducible case since we have
j

considered the greatest loss of differentiability induced by an irreducible component. This
loss of differentiability is given by:

r—l+s—d=r—1+ Z (kj —1) — Z (kj—1)=r—1-k+l=r—k=r—-K.

1<j<i-1 1<j<li
Now applying the same process to ?WF o P instead of F o P, at the next step there will
j
r
again be a loss of differentiability of k; units. By induction for |a| < [k:_] with k; = K, the
. !
0°F

derivatives ool o P are continuous on P~}(R™) and since P is proper, the derivatives
Pj

O°F
]
J .
the formally holomorphic field F' is in H["/M(R™) and therefore induced by a function F

of class CI"/" with h = K. The proof by induction is now complete. <

of F are continuous on R™. We may now use lemma 4 to reach the conclusion that

We may observe that all the operations from f € C"(R™)W up to F € CI'/M(R") are
linear. It is a consequence of paragraphs 4 and 5 that they are also continuous when using
the natural Fréchet topologies (*). Then Chevalley’s theorem in class C" may be reworded
as:

Theorem 1°. Let W be a finite group generated by reflections acting orthogonally on
R"™, P the Chevalley polynomial mapping associated with W, and h = k,, the highest degree
of the coordinate polynomials in P (equal to the greatest Coxeter number of the irreducible
components of W ). There exists a linear and continuous mapping:

C'RMW s f— Fecl/MRM)
such that f = F o P.
7. Counter Example.
Let us give a counter example which applies to any finite reflection group. Clearly it
is sufficient to consider essential irreducible groups.
We consider F : R™ — R defined by F(y) = y5T* for some integer s and an « €]0, 1].

F is of class C* but not of class C**! in any neighborhood of the origin. Let P be the
Chevalley mapping associated with some finite irreducible Coxeter group W acting on R"”

(*) Using a modulus of continuity in the Whitney conditions we could follow it from || f|"
to || F||r/H.
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and consider the composite mapping F o P(x) = p3T*(z). We study the differentiability
of this mapping when p, () = 0 which happens only when z = 0.

Some of the fundamental invariant polynomials p,,, or integrity bases, were given by
Coxeter and all of them are available in [16]. For each finite irreducible Coxeter group W,
a W-invariant set of linear forms {L1, ..., L,} is chosen. Symmetric functions Y ;_, L of
the L; are W-invariant and the p; are the symmetric functions of degree k; as determined
in [6]. As usual, D,, does not follow the general line but as far as p,(z) = ?332(" D
concerned the computations and as a consequence the results of the general case apply.

We have p,(z) = S 7[Li(x)]*", and since |L;(z)| < a1|90| i = 1,...,v for some
numerical constants a;, we have the estimate |p,(z)| < (32} af™)|z|" = A|x|k

Analogously, since |D'L;(z)| < b; for some numerical constants b;, we get:

Do < Y (5 )it = mep

for some numerical constants B;.
The derivatives of the composite mapping pit%(x) are given by the Faa di Bruno
formula:

DA () = 30 o D ) (P (P,

where the sum is over all the g-tuples (u1, ... 1tq) € N9 such that 1pg + ...+ quq = k, with
p=p1+ ...+ pg There are constants C,, ... ;) such that:

‘(D pn(x)>u1 (qun(x)

Hq

.-,uq)‘x’(k"_l)er"'Jr(kn_q)“q =Cun, 7uq)|x‘k"p_k7

and therefore constants A, .,y and A such that:
D@ € 3 Al 4Pt < Ao,

This shows that the derivatives of order k < k, s tend to 0 at the origin while the derivatives
of order k,s + 1 will not if & < 1/k,,. This means that the composite mapping f = F o P
is of class C*»* but not of class C*¥**t1 at 2 = 0 and it factors through F which is of class
C® and not of class C5t!. The loss of differentiability is as expected from theorem 1 and
cannot be reduced.

GERARD P. BARBANCON Austin, July 2005,
Institut de Recherche M athematique Avancee, University of Texas at Austin,
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