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Abstract. Let W be a finite reflection group acting orthogonally on Rn, P be the
Chevalley polynomial mapping determined by an integrity basis of the algebra of W -
invariant polynomials, and h be the highest degree of the coordinate polynomials in P .
There exists a linear mapping: Cr(Rn)W 3 f → F ∈ C[r/h](Rn) such that f = F ◦ P ,
continuous for the natural Fréchet topologies. A general counterexample shows that this
result is the best possible. The proof by induction on h uses techniques of division by linear
forms and a study of compensation phenomenons. An extension to P−1(Rn) of invariant
formally holomorphic regular fields is needed.

Résumé. Soit W un groupe engendré par des reflexions opérant orthogonalement sur
Rn, soit P l’application polynomiale déterminée par une base de l’algèbre des W -invariants
polynomiaux, et h le plus haut degré des polynomes coordonnées dans P . Il existe une
application linéaire Cr(Rn)W 3 f → F ∈ C[r/h](Rn) telle que f = F ◦ P , continue pour
les topologie naturelles d’espaces de Fréchet. Un contre exemple général montre que ce
résultat est le meilleur possible. La preuve par récurrence sur h utilise des techniques
de division par des formes linéaires et une étude des phénomènes de compensation. Un
prolongement à P−1(Rn) des jets réguliers, invariants et formellement holomorphes est
nécessaire.

1. Introduction

Let W be a finite subgroup of O(n) generated by reflections. A theorem of Chevalley
([5]) states that the algebra of W -invariant polynomials is generated by n algebraically
independent W -invariant homogeneous polynomials, say the basic invariants or an integrity
basis. A W -invariant complex analytic function may be written as a complex analytic
function of these fundamental invariant polynomials([18]). Glaeser’s theorem ([9]) shows
that real W -invariant functions of class C∞, may be expressed as C∞ functions of the
fundamental invariant polynomials. In finite class of differentiability, Newton’s theorem in
class Cr ([1]) dealt with symmetric functions and as a consequence with the Weyl group
of An. This particular case shows a loss of differentiability as already did Whitney’s even
function theorem ([19]) which in fact ruled out the case of the Weyl group of A1. A first
attempt to study the general case may be found in the first part of [3] where the best result
was obtained for the Weyl groups of An, Bn by a method which was on the right track but
needed an additional ingredient to deal with the general case.

Here we give for any reflection group a result which is the best possible as shown
by a general counter example. Let p1(x), . . . , pn(x) be the basic invariants and P be the
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mapping x 7→ (p1(x), . . . , pn(x)), say the ‘Chevalley’ mapping. The loss of differentiability
is governed by the highest degree of the fundamental invariant polynomials. More precisely
we have:

Theorem 1: Let W be a finite group generated by reflections acting orthogonally on
Rn and let f be a W -invariant function of class Cr on Rn. There exists a function F
of class C[r/h] on Rn such that f = F ◦ P , where P is the Chevalley polynomial mapping
associated with W and h is the highest degree of the coordinate polynomials in P , equal to
the greatest Coxeter number of the irreducible components of W .

2. The Chevalley mapping

The reader familiar with these questions may omit this section. Proofs and detailed
study may be found in [4], [7], or [10].

Let W be a finite orthogonal group generated by reflections.The Chevalley’s mapping
as defined above is the polynomial mapping P : Rn 3 x 7→ P (x) = (p1(x), . . . , pn(x)) ∈
Rn. It is proper and separates the W -orbits ([17]), but it is neither injective nor surjective.
For i = 1, . . . , n the degree of pi will be denoted by ki. Theorem 1 does not depend on
the choice of the set of basic invariants, since a change of basic invariants is an invertible
polynomial map on Rn. We will choose as we may the most convenient coordinates and
basic invariants.

Let R be the set of reflections different from identity in W . The number of these
reflections is R# = d =

∑n
i=1(ki−1). For each τ ∈ R, let λτ be a linear form the kernel of

which is the hyperplane Hτ = {x ∈ Rn|τ(x) = x}. The jacobian of P is JP = c
∏

τ∈R λτ

for some constant c 6= 0. The critical set is the union of the Hτ when τ runs through R.
A Weyl Chamber C is a connected component of the regular set. All of the other

connected components are obtained by the action of W and the regular set is
⋃

w∈W w(C).
There is a stratification of Rn by the regular set, the reflecting hyperplanes Hτ and their
intersections. The mapping P induces an analytic diffeomorphism of C onto the interior
of P (Rn). It also induces an homeomorphism that carries the stratification from the
fundamental domain C onto P (Rn).

When W is reducible, it is a direct product of its irreducible components, say W =
W 1×. . .×W s and we may write Rn as an orthogonal direct sum Rn0⊕Rn1⊕. . .⊕Rns where
Rn0 is the subspace of W -invariant vectors and for i = 1, . . . , s, W i is an irreducible finite
Coxeter group acting on Rni . Any Weyl Chamber C for W is of the form Rn0×C1×. . .×Cs

where Ci is a chamber for W i in Rni .
We may and will choose coordinates that fit with the orthogonal direct sum. If

w = w1 . . . ws ∈ W with wi ∈ W i, 1 ≤ i ≤ s we have w(x) = w(x0, x1, . . . , xs) =
(x0, w1(x1), . . . , ws(xs)) for all x ∈ Rn. The direct product of the identity on Rn0 and of
Chevalley mappings P i associated with W i acting on Rni , 1 ≤ i ≤ s, is a Chevalley map
P = Id0 × P 1 × . . .× P s associated with the action of W on Rn.

For an irreducible W (or for an irreducible component) we will assume as we may
that the degrees of the coordinate polynomials p1, . . . , pn are in increasing order: 2 = k1 ≤
. . . ≤ kn = h, Coxeter number of W (actually disregarding Dn, for all other irreducible
reflection groups strict inequalities k1 < . . . < kn hold). In the reducible case, for each
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W i, i = 1, . . . , s we assume the degrees of the pi
j to be in increasing order: 2 = ki

1 ≤
. . . ≤ ki

ni
= hi, Coxeter number of W i. We may have hi = hj , either W i = W j or not.

Considering for an example A9 ×A9 ×H3, h1 = h2 = h3 = 10. Anyway we will denote by
h the degree of the coordinate polynomial of highest degree, equal to the highest Coxeter
number of the irreducible components.

The mapping P is the restriction to Rn of a complex mapping from Cn to Cn, still
denoted by P . The linear mappings defined by the action of W on Rn are restrictions of
C-automorphisms of Cn and we will still denote by W the group of these automorphisms.
The complex P is W -invariant and thus is not injective, but it is surjective ([11]).
On its regular set, the mapping P is a local analytic isomorphism. The critical set where
the jacobian vanishes is the union of the complex hyperplanes Hτ = {z ∈ Cn|τ(z) = z},
kernels of the complex forms λτ . The critical image is the algebraic set {u ∈ Cn|∆(u) =
J2

P (z) = 0}, on which P carries the stratification.
Finally, let us recall that there are only finitely many types of irreducible finite Coxeter

groups defined by their connected graph types. Even when these groups are Weyl groups
of roots systems or of Lie algebras, we will follow the general usage and denote them with
upper case letters: An, Bn, Dn, I2(m),H3, H4, F4, E6, E7, E8 (we omit Cn and G2 since
the Weyl groups of Bn and Cn are the same and G2 = I2(6)). For these groups explicit
integrity bases are given in [16].

3. Whitney Functions and r-regular, m-continuous jets

The Whitney regularity property of the image P (Rn) is a likely conjecture but since
there is no proof available, we need an extension of the invariant regular fields to P−1(Rn).
The Whitney regularity of P (Rn) would make the extension useless but the proof of
theorem 1 would be basically the same. The reader familiar with these questions may skip
this section. A complete study may be found in [18].

Let k = (k1, ..., kn) ∈ Nn and x = (x1, ..., xn) ∈ Rn. We shall put: |k| = k1 + ... + kn,
k! = k1!...kn! and xk = xk1

1 ...xkn
n . Analogously for the indeterminate X = (X1, ..., Xn), we

put Xk = Xk1
1 ...Xkn

n . In Nn, we write k ≤ l, if and only if for all j, kj ≤ lj , and in this
case l − k = (l1 − k1, ..., ln − kn). The Euclidean norm of x will be denoted by | x |.

A jet of order m on a closed set E ⊂ Rn is a collection A = (ak)|k|≤m of real
valued functions ak continuous on E. The vector space Jm(E) of all jets of order m on
E is naturally provided with the Fréchet topology defined by the family of semi-norms:
|A|Kn

m = sup x∈Kn
|k|≤m

|ak(x)| where Kn runs through a countable exhaustive collection of
compact sets of E.
Example. Let Em(Rn) be the algebra of real valued functions of class Cm on Rn. To each

f ∈ Em(Rn) we may associate the m-jet on E defined by (
∂|k|f
∂xk

)|k|≤m.
There is a ‘formal’ derivation of jets:

Dq : Jm(E) 3 A → Dq(A) = (ak+q)|q|≤m−|k| ∈ Jm−|q|.

and since Dq((
∂|k|f
∂xk

)|k|≤m) = (
∂|q+k|f
∂xq+k

)|k|≤m−|q| is the jet of
∂|q|f
∂xq

in Jm−|q| we may
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identify Dq and
∂|q|

∂xq
.

At each point x ∈ E the jet A determines a polynomial Ax denoted Ax(X) when studying
questions relevant to point-wise properties of the jet. As a function, Ax acts upon vectors
x′ − x tangent to Rn at x. To avoid introducing the notation T r

xA, we write somewhat
inconsistently:

Ax : x′ 7→ Ax(x′) =
∑

k

1
k!

ak(x) (x′ − x)k.

Formal derivation of A brings jets of the form (aq+k)|k|≤m−|q| inducing polynomials

(DqA)x(x′) =
(

∂|q|A
∂xq

)

x

(x′) = aq(x) +
∑

k>q

1
(k − q)!

ak(x) (x′ − x)k−q.

For | q |≤ r ≤ m, we put:

(RxA)q(x′) = (DqA)x′(x′)− (DqA)x(x′).

Definition 1. Let A be an m-jet on E. For r ≤ m,A is r-regular on E, if and only
if for all compact set K in E,for (x, x′) ∈ K2, and for all q ∈ Nn with | q |≤ r, it satisfies
the Whitney conditions.

(Wr
q ) (RxA)q(x′) = o(| x′ − x |r−|q|), when | x− x′ |→ 0.

Remark. Even if m > r there is no need to consider the truncated field Ar in stead of
A in the conditions (Wr

q ). Actually (RxAr)q(x′) and (RxA)q(x′) differ by a sum of terms
[ak(x)/(k − q)!] (x′ − x)k−q, with ak uniformly continuous on K and |k| − |q| > r − |q|.

The space of r-regular jets of order m on E, is naturally provided with the Fréchet
topology defined by the family of semi-norms:

‖A‖Kn
r,m = sup

x∈Kn
|k|≤m

| 1
k!

ak(x) | + sup
(x,x′)∈K2

n
x6=x′,|k|≤r

( | (RxA)k(x′) |
| x− x′ |r−|k|

)

where Kn runs through a countable exhaustive collection of compact sets of E. Provided
with this topology the space of r-regular, m-continuous polynomial fields on E is a Fréchet
space that will be denoted by Er,m(E).

If r = m, Er(E) is the space of Whitney fields of order r or Whitney functions of class
Cr on E. If A ∈ Er(E) there exists a function f ∈ Cr(Rn) such that A is the r-jet of f on
E.

Theorem 2. Whitney extension theorem ([20]). The restriction mapping of the space
Er(Rn) of functions of class Cr on Rn to the space Er(E) of Whitney fields of order r on
E, is surjective. There is a linear section, continuous when the spaces are provided with
their natural Fréchet topologies.
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Let E be a closed subset of Cn ' R2n, we may consider jets A on E with complex
valued coefficients ak. Let z be in E, the polynomial determined by A in z is defined by:

Az(X,Y ) =
∑

|k|+|l|≤m

1
k!l!

ak,l(z) XkY l ∈ C[X, Y ].

The questions of continuity and regularity discussed in the real case may be reproduced
here and we may define the Fréchet space of complex valued Whitney functions of class
Cr. This space will be denoted by Er(E;C).

Definition 2.[14] [19] A Whitney function A ∈ Er(E;C) is formally holomorphic if
it satisfies the Cauchy-Riemann equalities:

i
∂A

∂Xj
=

∂A

∂Yj
, j = 1, ..., n.

Let Z = (Z1, . . . , Zn), Zj = Xj + iYj , j = 1, . . . . , n. The field A is formally holomor-

phic if and only if
∂A

∂Zj

= 0, j = 1, ..., n. Thus for all z ∈ E the polynomial Az belongs to

C[Z] and is of the form Az(Z) =
∑

k

1
k!

ak(z)Zk.

The algebra of formally holomorphic Whitney functions of class Cr on the closed set
E of Cn will be denoted by Hr(E). It is a closed sub-algebra of Er(E;C) and therefore
a Fréchet space when provided with the induced topology. In practice we shall define the
semi-norms ‖A‖Kn

r on Hr(E) by the same formulas as in Er(E;R), only using moduli
instead of absolute values.

We may also define Fréchet spaces Hr,m(E) of formally holomorphic r-regular jets
of order m ≥ r on E. These spaces will play an important part as intermediary tools,
allowing us to take advantage of compensation phenomenons.

Finally, let L be a C-automorphism of Cn and A ∈ Hr,m(E) where E is a closed
subset of Cn. One may define A ◦ L in Hr,m(L−1(E)) by (A ◦ L)z(Z) = AL(z)(L(Z)).
Analogously if P : Cn → Cn is a polynomial mapping, one may define A ◦ P on P−1(E)
by:

(A ◦ P )z = AP (z)(Pz − P (z)) =
∑ 1

k!
ak(P (z))(Pz − P (z))k

where Pz is the Taylor’s expansion of P in z. If P is of degree m and A is in Hr(E), A ◦P
will be in Hr,mr(P−1(E)). The formal holomorphy and the mr-continuity are obvious.
The r-regularity comes from:

(A ◦ P )z′(z′)− (A ◦ P )z(z′) = a0(P (z′))−
∑ 1

k!
ak(P (z))(Pz(z′)− P (z))k

= o(|P (z′)− P (z)|r) = o(|z′ − z|r)
since Pz(z′) = P (z′) and P (z′)− P (z) = O(|z − z′|).
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4. An extension operation

Definition 3. A real form ([15]) or a really situated subspace ([13], [18]) of Cn is a
real vector subspace E of dimension n such that E ⊕ iE = Cn.

Example. For any involution α, the real subspace Γα = {z ∈ Cn|zα(i) = zi}, is a real form
of Cn.

The reciprocal image P−1(Rn) is a W -invariant finite union of real forms of Cn. This
property is true for any finite group.

A classical theorem of Hilbert states that for any finite subgroup G of O(n) the algebra
of G-invariant polynomials on Rn is finitely generated. There is a finite number d ≥ n of
G-invariant homogeneous polynomials, say q1, . . . , qd, and for all G-invariant polynomial
function f : Rn → R there exists a polynomial function F : Rd → R such that f(x) =
F (q1(x), . . . , qd(x)). The polynomial mapping Q : Rn 3 x 7→ Q(x) = (q1(x), . . . , qd(x)) ∈
Rd is the restriction of a complex mapping from Cn to Cd, still denoted by Q for which
we have:

Lemma 1. Let G be a finite group acting orthogonally on Rn and Q be the associated
polynomial mapping as above. The reciprocal image Q−1(Rd) ⊂ Cn is a G-invariant finite
union of real forms of Cn.

Definition 4.([14], [13], [18]) Two closed sets E and F of an open set Ω ⊂ Rn are
1-regularly separated if either E ∩ F is empty or if for all x0 ∈ E ∩ F there exists a
neighborhood U of x0 and a constant C > 0 such that for all x ∈ U ,

d(x,E) + d(x, F ) ≥ C d(x,E ∩ F ).

An equivalent definition would be: for all x0 ∈ E ∩ F there exists a neighborhood U of x0

and a constant C1 > 0 such that for all x ∈ U ∩ E, d(x, F ) ≥ C1 d(x,E ∩ F ).
Actually E and F are 1-regularly separated if and only if the 0-sequence:

0 → Hr,m(E ∪ F ) → Hr,m(E)⊕Hr,m(F ) → Hr,m(E ∩ F ) → 0

is exact ([18]).
Remark. Any two linear subspaces are regularly separated. In particular any two real

forms in Cn are 1-regularly separated. Moreover the closed strata of the stratification of
P−1(Rn) by the reflecting hyperplanes and their intersections are regularly separated.

Proposition 1.[14] Let E and F be two 1-regularly separated closed sets, and let AE

and AF be r-regular fields on E and F respectively. If AE = AF on E ∩ F , the field A
defined without ambiguity on E ∪F by A = AE on E and A = AF on F is itself r-regular.

Let f ∈ Cr(Rn)W be a W -invariant function of class Cr. It induces on Rn a W -
invariant Whitney field of order r and by complexification a formally holomorphic field in
Hr(Rn)W which will still be denoted by f .

The extension of f to the reciprocal image P−1(Rn) ⊂ Cn of the Chevalley mapping
P will be provided by using the above proposition and the Whitney extension theorem:
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Proposition 2.[1] Let Γ and Γ̃ be two unions of real forms in Cn, with Γ ⊂ Γ̃. There
exists a continuous linear mapping: Hr(Γ) 3 g → g̃ ∈ Hr(Γ̃) such that g = g̃ on Γ.

More precisely, with Γ = Rn and Γ̃ = P−1(Rn), and averaging on W , there exists a
linear and continuous extension:

Hr(Rn)W 3 f → f̃ ∈ Hr(P−1(Rn))W .

5. Some multiplication and division properties.

Lemma 2. Let Γ be a finite union of real forms of Cn, let A be in Hr(Γ), and Q be
a polynomial (s− 1)-flat on S. Let z ∈ Γ and z0 ∈ S ∩ Γ, then for all q ∈ Nn, | q |≤ r:

(Rz0QA)q(z) = (DqQA)z(z)− (DqQA)z0(z) ∈ o(| z − z0 |r−|q|+s).

Moreover QA ∈ Hr+s(S ∩Γ) and is (s− 1)-flat on S ∩Γ ([8]). For all compact K ⊂ S ∩Γ,
there exists a constant c such that ‖QA‖r+s

K ≤ c‖Q‖K‖A‖r
K .

Proof. Let z0 ∈ S ∩ Γ. For all z ∈ Γ, and all q ∈ Nn, | q |≤ r, and p ≤ q, we consider:

(DpQ)z(z)(Dq−pA)z(z)− (DpQ)z0(z)(Dq−pA)z0(z).

Observing that by Taylor’s polynomial formula (DpQ)z(z) = (DpQ)z0(z), we may write
this difference as:

(DpQ)z(z)
[
(Dq−pA)z(z)− (Dq−pA)z0(z)

]
.

By assumption (DpQ)z(z) ∈ O(| z − z0 |s−|p|) when | p |< s and
[
(Dq−pA)z(z)− (Dq−pA)z0(z)

] ∈ o(| z − z0 |r−|q|+|p|).

So the product is in o(| z − z0 |r−|q|+s) either because |p| < s and r − |q|+ |p|+ s− |p| =
r − |q|+ s or because |p| ≥ s and r − |q|+ |p| ≥ r − |q|+ s.

The behavior of (Rz0QA)q(z) is now a consequence of the Leibniz derivation formula.

Actually QA ∈ Hr,r+s. On S ∩Γ since | p |< s ⇒ (DpQ)z0(z0) = 0, in the derivatives
of QA of order ≤ r + s the only derivatives of A that are not multiplied by a derivative
of Q that vanishes, are of order ≤ r. Then the above estimates show that the field QA
satisfies Whitney conditions Wr+s

q on S ∩ Γ.
This was already noticed in [8]: when multiplying a field r1-regular and (s1 − 1)-flat

by a field r2-regular and (s2− 1)-flat on S ∩Γ, the product is min(r1 + s2, r2 + s1)-regular
and (s1 + s2 − 1) flat (here r1 = r, s1 = 0, r2 = +∞, s2 = s). ♦

Example 1. If λ 6= 0 is a complex linear form with kernel H, if the field A is in Hr(Γ),
z ∈ Γ and z0 ∈ Γ ∩H, then for all q ∈ Nn, | q |≤ r:

(Rz0λA)q(z) = (DqλA)z(z)− (DqλA)z0(z) ∈ o(| z − z0 |r+1−|q|).
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Moreover λA ∈ Hr+1(Γ ∩H).
More generally if (Hi)k

i=1 are the kernels of the forms (λi)k
i=1, z ∈ Γ and z0 ∈ Γ ∩

(
⋂

i Hi), then for all q ∈ Nn, | q |≤ r:

(Rz0(
k∏
1

λi)A)q(z) ∈ o(| z − z0 |r+k−|q|).

Additionally λ1 . . . λkA ∈ Hr+k(Γ ∩ (
⋂

i Hi)).

Example 2. [3] Let f1, . . . , fk be k formally holomorphic fields in Hr(Γ). For each
i = 1, . . . , k let Qi be the product of si ≥ s forms, L be the intersection of the kernels of all

of these forms, and let ϕ =
k∑

i=1

Qifi ∈ Hr,r+s(Γ). If z ∈ Γ and z0 ∈ Γ ∩ L, |q| ≤ r, then

(Rz0ϕ)q(z) ∈ o(|z − z0|r+s−|q|). Moreover ϕ ∈ Hr+s(Γ ∩ L).

For more specific examples: a) with Γ = R4, ∆ = {z|z1 = z2 = z3 = z4}∩R4, fi ∈ Hr(R4):

(z1− z2)(z2− z3)(z1− z3)f1 +(z1− z3)(z1− z4)(z3− z4)f2 +(z1− z2)(z2− z4)(z1− z4)f3+

(z1 − z2)(z1 − z3)(z2 − z3)f4 ∈ Hr+3(∆)

b) with Γ = R3, fi ∈ Hr(R3) : ϕz(z) = (z2
2 − z2

3)f1 + (z2
1 − z2

3)f2 + (z2
1 − z2

2)f3.
The intersection of all the hyperplanes is the origin and ϕ verifies (R0ϕ)q(z) ∈ o(|z|r+2−|q|)
for all z ∈ R3 and all q, |q| ≤ r.

Example 3. Let Q be an homogeneous polynomial of degree s. It vanishes at the origin
with all its derivatives of order ≤ s−1. If A ∈ Hr(Γ), for all z ∈ Γ and all q ∈ Nn, | q |≤ r:

(R0QA)q(z) = (DqQA)z(z)− (DqQA)0(z) ∈ o(| z |r+s−|q|).

The same result holds if instead of a product QA we have a sum
∑n

i=1 QiAi, with homo-
geneous polynomials Qi of degree si ≥ s and the Ai ∈ Hr(Γ).

Let us recall the following division lemma:
Lemma 3. [1] Let Γ be a finite union of real forms of Cn, and λ 6= 0 be a complex

linear form with kernel H. If A ∈ Hr(Γ) is such that Az(Z) is divisible by λz(Z) whenever
z ∈ Γ ∩H then there exists a field B ∈ Hr−1(Γ) such that Ar = (λB)r. For all compact
K ⊂ Γ, there exists a constant c such that ‖B‖r−1

K ≤ c‖A‖r
K

Actually B ∈ Hr(Γ \H) and if | s |= r, then λ(z)(DsB)z(z) tends to zero with λ(z).

Remark. The lemma still holds if we replace Γ by a closed subspace such as the
intersection of Γ and one or several hyperplanes H ′

i, distinct from H.
The proof of lemma 3 relies upon a consequence of the mean value theorem that will

be instrumental in what follows:

Lemma 4.([13], [18]) Let Γ be a finite union of real forms of Cn, ∆ 6= 0 be a poly-
nomial, and X = {x ∈ Cn | ∆(x) = 0}). If f ∈ Hr(Γ \ X) is r-continuous on Γ, then
f ∈ Hr(Γ).
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By using several times lemma 3, we get:
Consequence 1.Let Γ be a finite union of real forms of Cn, and (λτ )τ∈G be G# = p

non zero complex linear forms with kernels (Hτ )τ∈G. If A ∈ Hr(Γ) is of the form A =∏
τ∈G λτ B, meaning that

∀G′ ⊆ G, Az(Z)is divisible by
∏

τ∈G′
λτ (Z) when z ∈ Γ ∩ (

⋂

τ∈G′
Hτ ),

then B ∈ Hr−p(Γ). For all compact K ⊂ Γ, there exists a constant c such that ‖B‖r−p
K ≤

c‖A‖r
K .

Actually, B ∈ Hr(Γ \⋃
τ∈S Hτ ) and it would be possible to study in the neighborhood of

the Hτ and their intersections the behavior of the derivatives that are lost in the division.

Using the second part of lemma 2 we also get the following:
Consequence 2. In the conditions of consequence 1 and with the same notations,

if A ∈ Hr,r+s(Γ) and if there exists a z0 ∈ Γ ∩ (
⋂

τ∈S Hτ ) such that for all z ∈ Γ and
0 ≤| q |≤ r, (Rz0A)q(z) ∈ o(| z − z0 |r+s−|q|), then for 0 ≤| l |≤ r − p

∀z1 ∈ Γ ∩ (
⋂

τ∈S
Hτ ), (Rz0B)l(z1) ∈ o(| z1 − z0 |r+s−p−|l|).

Proof. The derivatives of (
∏

τ∈S λτ ) of order greater than p vanish identically while
the derivatives of order less than p still containing at least one factor λτ , vanish on Γ ∩⋂

τ∈S Hτ . So by Leibniz derivation formula when z1 ∈ Γ ∩ (
⋂

τ∈S Hτ ), the derivatives
(DqA)z1(z1)− (DqA)z0(z1) of order |q| = p + |l| ≤ r are linear combinations of derivatives
(DlB)z1(z1) − (DlB)z0(z1) of order |l|. By solving an over determined but consistent
linear system with constant coefficients we get that for z1 ∈ Γ∩ (

⋂
τ∈S Hτ ) the derivatives

(DlB)z1(z1)− (DlB)z0(z1) of order |l| ≤ r − p are in o(| z1 − z0 |r+s−p−|l|). ♦
Lemma 5. Let Γ be a finite union of real forms of Cn, and consider A =

∑n
i=1 QiAi,

for some polynomials Qi and Ai ∈ Hr(Γ). Let λ1 and λ2 be two non zero complex linear
forms with kernels H1 and H2, H1 ∩H2 = S. We assume the Qi to vanish on S and A to
be of the form λ1 λ2 B, meaning that if z ∈ Γ ∩Hi, i = 1, 2, Az(Z) is divisible by λi(Z)
and when z ∈ Γ ∩ (H1 ∩ H2), Az(Z) is divisible by λ1(Z) λ2(Z). Then B ∈ Hr−1(Γ).
If additionally, the Qi are (s − 1)-flat on S1 ⊂ S, B is (s − 3)-flat on S1 ∩ Γ, and if
Az(Z) = (

∑
QiAi)z(Z) is divisible by some λ(Z), λ 6= λi, i = 1, 2, when λ(z) = 0, then

Bz(Z) is divisible by λ(Z).
Finally for all compact K ⊂ Γ, there exists a constant c such that ‖B‖r−1

K ≤ c‖∑
QiAi‖r

K .

Proof. By lemma 3 and its consequence 1, B ∈ Hr−2(Γ) but it is in Hr−1 in the
complement of S in Γ, and in Hr in the complement of H1 ∪ H2 in Γ. By lemma 2,
A =

∑n
i=1 QiAi ∈ Hr+1(Γ ∩ S), so that B ∈ Hr+1−2(Γ ∩ S). We just have to check the

continuity of B on S and more precisely the continuity of the coefficients of order r − 1
since we already know that B ∈ Hr−2(Γ).

Let z ∈ Γ \S and let z1 be its orthogonal projection on Γ
⋂

(H1 ∪H2). It may happen
that z = z1, but in any case the coefficients of order r − 1 of B are continuous in z1.
Assume for an example that z1 ∈ H1 and let z0 be its orthogonal projection on S.

9



By consequence 2 with A ∈ Hr,r+1(Γ),
⋂

Hτ = H1, and z0 ∈ H1 ∩H2, for |l| ≤ r− 1,
(Rz0λ2B)l(z1) ∈ o(|z1−z0|r−1+1−l). When |l| = r−1 using Leibniz derivation of a product
we have:

bλ2(z1)(DlBz1(z1)−DlBz0(z1)) +
∑

ai(DmiBz1(z1)− (DmiBz0(z1)) ∈ o(|z1 − z0|)

where the Dmi are derivations of order r − 2. Since |λ2(z1)| is equal to |z1 − z0| up to a
multiplicative constant we get that for |α| = r− 1, bα(z1)− bα(z0) tends to 0 with |z− z1|
and this shows that B ∈ Hr−1(Γ).

The existence of a cK such that ‖B‖r−1
K ≤ cK‖

∑
QiAi‖r

K is a consequence of this
proof. The remaining properties of B are pointwise properties that Bz clearly inherits
from Az = (

∑
QiAi)z. ♦

Remark. If m hyperplanes Hi, i = 1, . . . , m, intersect along S = H1 ∩H2, assuming
the same pointwise divisibility properties on the Hi and if the Qi vanish on S, we would
show in the same way that the class of differentiability of B would be r −m + 1.

Example. Let Ai ∈ Cr(R2), i = 1, 2 and θ =
π

m
, consider

A = A1

m∑

j=1

cos 2jθ(x1 cos 2jθ + x2 sin 2jθ) + A2

m∑

j=1

cos 2jθ(x1 cos 2jθ + x2 sin 2jθ)m−1

and assume that A is of the form
∏m

k=1(x1 sin kθ − x2 cos kθ)B, then B is of class Cr−1

outside of the origin and globally in Cr−m+1(R2).

Lemma 6. Let Γ be a finite union of real forms of Cn, and (λτ )τ∈D be D# = d
non zero complex linear forms with kernels (Hτ )τ∈D, and Sd = Γ ∩⋂

τ∈D Hτ . Let G ⊂ D,
G# = p, and Sp = Γ ∩ (

⋂
τ∈G Hτ ) ⊃ Sd be the intersection of Γ and the p hyperplanes

(Hτ )τ∈G. Let Sp be the set of points of Γ contained in these p hyperplanes but no other.
For i = 1, . . . , n let Ai be in Hr(Γ) and Qi be homogeneous polynomials of degree si ≥ s that
are (sp − 1)-flat on Sp and (sd − 1)-flat (sd ≥ sp) on Sd. Assume that A =

∑n
i=1 QiAi =

(
∏

τ∈D λτ )C, meaning that

∀U ⊆ D, Az(Z)is divisible by
∏

τ∈U
λτ (Z) when z ∈ Γ ∩ (

⋂

τ∈U
Hτ ).

Then the field C which is in Hr+sp−p(Sp) is in Hr+sd−d(Sp).

Proof. By lemma 2,
∑n

i=1 QiAi ∈ Hr+sp(Sp) and in Hr+sd(Sd), so the field C is
in Hr+sp−p(Sp) and in Hr+sd−d(Sd). All we have to show is the continuity on Sp of
its coefficients of order ≤ r + sd − d. The field B defined by A = (

∏
τ∈S λτ ) B is in

Hr+sp−p(Sp). Let z ∈ Sp and z0 its orthogonal projection on Sd.
For |q| ≤ r, (Rz0A)q(z) ∈ o(|z − z0|r+sd−|q|), and by consequence 2, for z ∈ Sp and

0 ≤| l |≤ r − p, (Rz0B)l(z) ∈ o(| z − z0 |r+sd−p−|l|).
To get the conclusion on C it is sufficient to give a proof when d−p = 1, for only one form
λ with kernel H such that Sp ∩H = Sd, since we could reiterate the process.
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In this case for z ∈ Sp

Bz(z)−B0(z) = λ(z)Cz(z)− λ(z)Cz0(z) ∈ o(| z − z0 |r+sd−p)

The regular separation of the linear subspaces Sp and H brings the existence of a constant c
such that |z−z0| ≤ c d(z, H) = c1|λ(z)|. Therefore Cz(z)−Cz0(z) ∈ o(| z−z0 |r+sd−(p+1)).
Let us assume that for | l |≤ k − 1 < r + sp − p:

DlCz(z)−DlCz0(z) ∈ o(| z − z0 |r+sd−(p+1)−|l|).

For j, |j| = k, we have:

DjBz(z)−DjBz0(z) ∈ o(| z − z0 |r+sd−p−k).

By Leibniz’ derivation formula:

aλ(z)(DjCz(z)−DjCz0(z)) +
∑

ai(DkiCz(z)−DkiCz0(z)) ∈ o(| z − z0 |r+sd−p−k)

where the Dki are derivations of order k−1 for which we may use the induction assumption
to get:

aλ(z)(DjCz(z)−DjCz0(z)) ∈ o(| z − z0 |r+sd−p−k).

Using as above the regular separation, we obtain:

(DjCz(z)−DjCz0(z)) ∈ o(| z − z0 |r+sd−(p+1)−k),

thus completing the induction. ♦
In particular we will be interested in the following situation:

Consequence 3. Let Γ be a finite union of real forms of Cn, and (λτ )τ∈D be D# = d
non zero complex linear forms with kernels (Hτ )τ∈D, such that

⋂
τ∈D Hτ = {0}. Let

Sp = Γ ∩ (
⋂

τ∈S Hτ ) where S ⊂ D and S# = p, be the intersection of real dimension one
of Γ and p of these hyperplanes. Sp = Sp \ {0} is the set of points of Γ contained in the p
hyperplanes of S but no other.
For i = 1, . . . , n let Ai be in Hr(Γ) and Qi be homogeneous polynomials of degree si ≥ s
that are (sp − 1)-flat on Sp and (sd − 1)-flat (sd = sp + sq) on Sd. Assume that A =∑n

i=1 QiAi = (
∏

τ∈D λτ )C, meaning that

∀U ⊆ D, Az(Z)is divisible by
∏

τ∈U
λτ (Z) when z ∈ Γ ∩ (

⋂

τ∈U
Hτ ).

Then the field C which is in Hr+sp−p(Sp) is in Hr+sd−d(Sp).

Example. Let Γ = R4 ⊂ C4, and consider the set D of d = 24 hyperplanes of
equations:

xi = 0, 1 ≤ i ≤ 4, xi = ±xj , 1 ≤ i < j ≤ 4, x1 ± x2 ± x3 ± x4 = 0.

11



Let S be the subset of p = 9 hyperplanes of equations xi = 0, 1 ≤ i ≤ 3, xi = ±xj , 1 ≤
i < j ≤ 3. The intersection Sp of these 9 hyperplanes is the x4-axis but if one adds to S
anyone of the hyperplanes in D \S the intersection will be {0} which is the intersection of
the 24 hyperplanes in D.

6. Proof of Theorem 1.

Let f ∈ Hr(P−1(Rn))W , the following lemma gives a pointwise solution by providing
in each point of x ∈ Rn a F̃x of degree r such that f̃z = (F̃P (z) ◦ P )r.

Lemma 7. ([3]) For all W -invariant, formally holomorphic Whitney function f̃ ∈
Hr(P−1(Rn)) , there exists a formally holomorphic field of polynomials F̃ of degree ron
Rn such that for all z ∈ P−1(Rn), f̃z = (F̃P (z) ◦ P )r

z.

Proof. On the complement of Γ ∩ ⋃
τ∈RHτ in Γ, the mapping P is a local analytic

isomorphism and this yields the construction of F̃ = (f̃ ◦ P−1)r, unambiguously since
both f̃ and P are W -invariant. On the regular image of P , F̃ is r-regular and verifies
f̃r = (F̃ ◦ P )r.

Let x ∈ Γ∩(
⋃

τ∈RHτ ) and let Wx be the isotropy subgroup of W at x. The polynomial
f̃x is Wx-invariant since for all w0 ∈ Wx ⊂ W : f̃x(X) = f̃w0x(w0X) = f̃x(w0X) where the
first equality results from the W -invariance of the field f̃ and the second from w0x = x.
As a consequence, f̃x is a polynomial in the Wx-invariant generators v = (v1, . . . , vn) of
the subalgebra of Wx-invariant polynomials, and we have f̃x = Qx ◦ v.

The polynomial Q depends of x through P (x). Let y be in P−1(P (x)), there exists a
w ∈ W such that y = wx and the isotropy groups Wx and Wy are conjugate by w: for all
w1 ∈ Wy, there exists a w0 ∈ Wx such that w1 = ww0w

−1. The mapping

w∗ : R[X]Wy 3 S 7→ S ◦ w ∈ R[X]Wx

is an isomorphism and a basis of the subalgebra of Wy-invariant polynomials will be given
by v′ = (v′1, . . . , v

′
n) with v′i = vi ◦ w−1, i = 1, . . . , n.

So f̃wx = Qwx◦v′ = Qwx◦v◦w−1, and therefore: f̃wx(wX) = Qwx◦v(X). Since f̃ = f̃ ◦w
we also have f̃wx(wX) = f̃x(X) = Qx ◦ v(X) and thus Qwx ◦ v = Qx ◦ v. The polynomial
mapping v being surjective, this entails that Qx = Qwx and then that the polynomial Q
does not depend on the choice of x in P−1(P (x)).

There exists a neighborhood of x in Cn which does not meet any of the hyperplanes Hτ

but those containing x. In this neighborhood we may write P = q ◦ v for some polynomial
q, since P is Wx-invariant. Up to a multiplicative constant the jacobian of q at v(x) is
the product

∏
λs(x)6=0 λs and q is an analytic isomorphism in a neighborhood of v(x). We

define the jet at P (x) by F̃P (x) = [Q ◦ q−1]r and we get:

[F̃ ◦ P ]rx = [(Q ◦ q−1)r ◦ (q ◦ v)]rx = [(Q ◦ q−1) ◦ (q ◦ v)]rx = (Q ◦ v)r
x = f̃x = Q ◦ vx.

At x where the isotropy group is Wx with a polynomial of highest degree hx among the
invariants v, Q ◦ v = f̃ implies that Q of weight r is of degree [r/hx] with respect to this
polynomial.
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In particular when the isotropy subgroup is W itself which happens at the origin (and
only at the origin if W is essential), ∀w ∈ W, f̃0(X) = f̃w0(wX) = f̃0(wX). This means
that f̃0(X) is a W -invariant polynomial and using the polynomial Chevalley’s theorem,
we have f̃0(X) = Q(P (X)). The polynomial F̃0 = Q of weight r is of degree [r/h] in the
invariant polynomial p of highest degree h. ♦

Remark. The point-wise solution already shows that in general we should expect a
loss of differentiability from r to [r/h].

When the highest degree of the coordinate polynomials of P is 2, theorem 1 is the
Whitney’s even function theorem. By induction assume that theorem 1 is true for any
reflection group such that h ≤ K − 1, and let us consider a W with h = K.

In the neighborhood of x with isotropy subgroup Wx such that its hx ≤ K − 1, the
regularity of F̃ is given by the induction assumption. More precisely from the proof of
lemma 7, in a neighborhood of x we have f̃ = [G̃ ◦ v]r, with a field G̃ the regularity of
which is determined by the induction assumption. In a neighborhood of v(x), G̃ is locally
of class H[r/hx]. Then from F̃ ◦P = F̃ ◦q◦v = G̃◦v, we get F̃ = G̃◦q−1 without additional
loss of differentiability since q is an analytic isomorphism in a neighborhood of v(x). So,
F̃ is in H[r/hx] in a neighborhood of P (x).

The field F̃ is r-regular on the complement of the critical image {u ∈ Cn | ∆(u) = 0},
where the discriminant ∆ is a polynomial. By using Lemma 4, it will be sufficient to
prove that F̃ is [r/h]-continuous on Rn to get its [r/h]-regularity. Moreover thanks to the
induction assumption we just have to show that F̃ is [r/h] continuous at the points where
the isotropy subgroup has the same kn = K as W itself.

Since P is proper the continuity of any F̃α ◦ P , entails the continuity of F̃α. So let us
check the continuity of the F̃α ◦ P when | α |≤ [r/h]. Clearly F̃0 ◦ P = f̃0 is continuous.
For the first derivatives, it is natural to consider the partial derivatives of f̃ , and get the
system:

(I)

(
∂f̃

∂z

)
=

( (
∂pi

∂zj

)
1≤i≤n
1≤j≤n

) (
∂F̃

∂P
◦ P

)
.

In the chosen bases (see section 2) the jacobian matrix of P is block diagonal. The upper
block is the identity n0×n0, while the others are the jacobian matrices of the mappings P i

associated with the irreducible components W i. The jacobian determinant is the product
of the determinants of the P i. When solving system (I) it is sufficient to study the system
for each block and the global loss of differentiability will be determined by the block that
brings the greatest one. The class of F is determined by the irreducible component which
brings the largest loss of differentiability at each step. Therefore we may and will assume
from now on that W is an irreducible Coxeter group acting on Rl with h = K. In this
case we just have to study the continuity of the F̃α ◦ P of order |α| ≤ [r/h] at the origin.

We consider the l × l-dimensional system associated with this Coxeter group:

(I′)

(
∂f̃

∂z

)
=

( (
∂pi

∂zj

)
1≤i≤l
1≤j≤l

) (
∂F̃

∂P
◦ P

)
.
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Using Cramer’s method as in [1] and [3], we multiply both sides by the comatrix of the
system and since the jacobian is c(

∏

τ∈R
λτ ), we have :

(II′)

{
c(

∏

τ∈R
λτ )

∂F̃

∂pj
◦ P =

l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi.
, j = 1 . . . , l

From (II’) we see that ∀τ ∈ R, if λτ (z) = 0 the polynomial

(
l∑

i=1

(−1)i+jMi,j
∂f̃

∂zj

)

z

(Z) is

divisible by λτ (Z).
The minor Mi,j is an homogeneous polynomial of degree sj =

∑

1≤u≤l,u 6=j

(ku − 1) ≥ s =

∑

1≤u≤l−1

(ku − 1) and then the field
l∑

i=1

(−1)i+jMi,j
∂f̃

∂zj
is in Hr−1,r−1+s(P−1(Rl)).

Actually Mi,j is the jacobian of the polynomial mapping:

(z1, . . . , zi−1, zi+1, . . . , zl; zi) 7→ (p1(z), . . . , pj−1(z), pj+1(z), . . . , pl(z); zi).

As already noticed in [2], this mapping is invariant by the sub group Wi of W that leaves
invariant the ith coordinate axis in Rl, say R ei. This sub group Wi is generated by the
subset Ri ⊂ R of the reflections it contains [10]. These are the reflections α in W such
that α(ei) = ei, about the hyperplanes Hα containing ei the equations of which do not
contain xi. (*)

Example.([3]) The reflections contained in W (Bl) are the reflections about the hyper-
planes of equations xi ± xj = 0, 1 ≤ i < j ≤ l and xi = 0, 1 ≤ i ≤ l. Their number is
R# = l(l − 1) + l = l2. The hyperplanes containing e1 are those such that x1 does not
appear in their equation, say the hyperplanes of equations xi ± xj = 0, 2 ≤ i < j ≤ l and
xi = 0, 2 ≤ i ≤ l. Their number is R#

1 = (l − 1)(l − 2) + (l − 1) = (l − 1)2.

The Mi,j , j = 1, . . . , l, as jacobian of Wi-invariant polynomial mappings are polyno-
mial multiples of (

∏
τ∈Ri

λτ ). For the Weyl groups of the infinite series An and Bn using
lemma 2 (see Example 2) these considerations bring the result ([3]).

On the reciprocal image P−1(Rn), there is a natural stratification determined by
the hyperplanes Hτ and their intersections. Each stratum is characterized by the forms
vanishing on it. Its points are stabilized by the same isotropy group, subgroup of W
generated by the hyperplanes containing the stratum. In what follows a stratum Sp is a

(*) The description of Wi given in [3] was not accurate. Although not essential to the
reasoning it was misleading. The explicit computations were correct however and gave the
best result for the loss of differentiability in the case of An and Bn.The case of Dn might
also be taken care of by this method but would need some technical although elementary
computations on determinants.
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connected component of the intersection of Γ and exactly p reflecting hyperplanes. The
different possible isotropy subgroups and then strata types may be determined from the
Dynkin diagram. The strata of dimension 0 is the origin. The strata of dimension 1 are
those determined by removing only one point in the Dynkin diagram, they are strata Sp

such that their closure is Sp = Sp ∪ {0}. At the other end the strata of dimension n are
the connected components of the regular set in Γ.

Example. The reflections contained in H3 are reflections about the hyperplanes of
equations zi = 0, 1 ≤ i ≤ 3 and τz1 ± τ−1z2 ± z3 = 0, τz2 ± τ−1z3 ± z1 = 0, and
τz3 ± τ−1z1 ± z2 = 0 where τ is the golden ratio. d = R# = 3 + 4 × 3 = 15. Using
the fundamental invariants given in [16] and computing with Maple, we see that the 2× 2
minors of the jacobian are homogeneous polynomials of degree at least 6, of the form
zizjQk with an irreducible Qk. For instance:

M3,3 = 3(15 + 7
√

5) x1x2(2x4
1 − 2(5−

√
5) x2

2x
2
1

+(3−
√

5) x4
2 + (

√
5− 5) x4

3 + 2(5− 3
√

5) x2
3x

2
1 + 4

√
5 x2

3x
2
2).

Let us consider the real form R3 itself. The number of linear factors vanishing at x0 is
0 on the 3 dimensional strata (regular set), and 1 on the 2 dimensional strata (contained in
one and only one hyperplane). For the one dimensional strata there are several possibilities:

- 2 linear forms vanish. The one dimensional strata S2 are the connected components
of intersections of the form {xi = 0} ∩ {xj = 0} after removing the origin. The isotropy
subgroup is A1 ×A1. Observe that this subgroup is reducible.

- 3 on the intersections of type {x2 = 0}∩ {τ−1x1± x2− τx3 = 0} after removing the
origin. The isotropy subgroup is A2.

- 5 after removing the origin from intersections of type {x3 = 0}∩{τ−1x1−x2±τx3 =
0} since this intersection is also contained in x1− τx2± τ−1x3 = 0. The isotropy subgroup
is I2(5).

In each case it is clear that if we take the intersection of the above hyperplanes and
one more, then all the linear forms vanish and we get the origin which is the intersection
of the 15 reflecting hyperplanes S15 = {0} where the isotropy subgroup is H3 itself.
If we consider real forms other than Rn the situation is slightly different, since the con-
ditions for belonging to this real form may interfere with the equations of the reflecting
hyperplanes. Then some of the reflection subgroups may not be isotropy sub groups
for any point of such real forms. For instance let us consider A4 and the real form
Γ = {z ∈ C5|z1 = z2, z3 = z4, z5 = z5}. If z ∈ Γ is in the hyperplane z1 = z3, it
will automatically be in the hyperplane z2 = z4. ♦

By the induction assumption, in a neighborhood of z 6= 0, F̃ is of class C[r/hz ], where
hz is the Coxeter number of the isotropy subgroup of z. We will strengthen this induction

assumption by assuming that in a neighborhood of z, ∂F̃
∂pj

◦P is of class Cr−1−(p−p1). The

loss of differentiability is 1 + p− p1 = hz, where p is the number of hyperplanes through z
and p1 is a compensation given by the polynomials Mi,j that are (p1 − 1)-flat in z). This
new induction assumption implies the previous one, since if we apply the same process to
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∂F̃
∂pj

◦ P instead of F̃ ◦ P , at the next step there will again be a loss of differentiability of

hz units. By an other induction for |α| ≤ [
r

hz
] the derivatives ∂αF̃

∂p
|α|
j

◦ P are continuous in

a neighborhood of z, and since P is proper, the derivatives ∂αF̃
∂p
|α|
j

of F̃ are continuous in a

neighborhood of P (z).
The compensation from the Mi,j does not happen when h = 2 (even function theorem),

it does for the first time when h = 3, with A2 = I2(3). The result h = 3 = 1 + (p − p1)
with p = 3, and p1 = 1 is a particular case of a computation done in [3] for An and in [1]
about the symmetric group Sn+1. One may also observe that the remark following lemma
5 gives the result for I2(m) and in particular I2(3).

Example. As above we consider H3. There is no compensation on the strata of
dimension 3 or 2. On the strata of dimension 1 of type S2, p = 2, say x1 and x2 vanish for
instance, but we have either x1 or x2 (or both) in factor in the Mi,j (directly from their
above description). So p = 2, p1 = 1, and the loss of differentiability is r−1−(2−1) = r−2
as expected since Wz is A1 ×A1.

On the strata of type S3 defined by the intersection of {x2 = 0}∩{τ−1x1±x2−τx3 = 0}
for instance, using Maple to get the Mi,j we see that if they do not contain x2 as a factor,
they vanish on {τ−1x1 ± x2 − τx3 = 0} when {x2 = 0}. So p1 = 1, and since p = 3, the
loss of differentiability is r − 1− (3− 1) = r − 3 as expected since Wz is A2.

On the strata of type S5 defined by the intersection of {x3 = 0}∩{τ−1x1−x2±τx3 = 0}
for instance, using Maple to get the Mi,j we see that if they do not contain x3 as a factor,
they vanish on {τ−1x1 − x2 ± τx3 = 0} when {x3 = 0}. So p1 = 1, and since p = 5, the
loss of differentiability is r − 1− (5− 1) = r − 5 as expected since Wz is I2(5). ♦

Let z 6= 0 be in some real form Γ ⊂ P−1(Rn), more precisely let z belong to some
strata S of positive dimension. Let z1 ∈ Sp be the point nearest of z in the union of strata
of dimension 1. As noticed Sp = Sp ∪ {0}.

We may directly consider z1 or reach it stepwise taking first the orthogonal projection
of z onto S \S, say zq belonging to some strata Sq, then the projection of zq onto Sq \Sq,
and so forth until we reach z1. The induction assumption and lemma 6 show that it would
not make any difference.
We may observe that |z − z1| ≤ |z| and by the triangular inequality we also have |z1| ≤
|z− z1|+ |z| ≤ 2|z|. Therefore if z tends to 0, so do both z1 and z− z1. Between z and z1

the continuity of the derivatives of ∂F̃
∂pj

◦P on Sp, is granted by the induction assumption

up to an order > r −K. We just have to study the continuity between z1 ∈ Sp and the
origin.
Let S be the set of p forms vanishing on Sp and T = R \ S. Considering:

l∑

i=1

(−1)i+jMi,j
∂f̃

∂zi.
= c(

∏

τ∈R
λτ )

∂F̃

∂pj
◦ P = (

∏

τ∈S
λτ ) B,

and B = (
∏

τ∈T λτ ) ∂F̃
∂pj

◦ P , with Mi,j homogeneous polynomial of degree at least s, we
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are in the situation of Consequence 3, the derivatives of ∂F̃
∂pj

◦ P of order ≤ r − 1− d + s

are continuous on Sp and therefore on P−1(Rn) by using the above triangular inequality .

So the ∂F̃
∂pj

◦ P ∈ Hr−1−d+s(P−1(Rn)) even in the reducible case since we have

considered the greatest loss of differentiability induced by an irreducible component. This
loss of differentiability is given by:

r − 1 + s− d = r − 1 +
∑

1≤j≤l−1

(kj − 1)−
∑

1≤j≤l

(kj − 1) = r − 1− kl + 1 = r − kl = r −K.

Now applying the same process to ∂F̃
∂pj

◦ P instead of F̃ ◦ P , at the next step there will

again be a loss of differentiability of kl units. By induction for |α| ≤ [
r

kl
] with kl = K, the

derivatives ∂αF̃
∂p
|α|
j

◦ P are continuous on P−1(Rn) and since P is proper, the derivatives

∂αF̃
∂p
|α|
j

of F̃ are continuous on Rn. We may now use lemma 4 to reach the conclusion that

the formally holomorphic field F̃ is in H[r/h](Rn) and therefore induced by a function F
of class C[r/h] with h = K. The proof by induction is now complete. ♦

We may observe that all the operations from f ∈ Cr(Rn)W up to F ∈ C[r/h](Rn) are
linear. It is a consequence of paragraphs 4 and 5 that they are also continuous when using
the natural Fréchet topologies (*). Then Chevalley’s theorem in class Cr may be reworded
as:

Theorem 1’. Let W be a finite group generated by reflections acting orthogonally on
Rn, P the Chevalley polynomial mapping associated with W , and h = kn the highest degree
of the coordinate polynomials in P (equal to the greatest Coxeter number of the irreducible
components of W ). There exists a linear and continuous mapping:

Cr(Rn)W 3 f → F ∈ C[r/h](Rn)

such that f = F ◦ P .

7. Counter Example.

Let us give a counter example which applies to any finite reflection group. Clearly it
is sufficient to consider essential irreducible groups.

We consider F : Rn → R defined by F (y) = ys+α
n for some integer s and an α ∈]0, 1[.

F is of class Cs but not of class Cs+1 in any neighborhood of the origin. Let P be the
Chevalley mapping associated with some finite irreducible Coxeter group W acting on Rn

(*) Using a modulus of continuity in the Whitney conditions we could follow it from ‖f‖r

to ‖F‖[r/h].

17



and consider the composite mapping F ◦ P (x) = ps+α
n (x). We study the differentiability

of this mapping when pn(x) = 0 which happens only when x = 0.
Some of the fundamental invariant polynomials pn, or integrity bases, were given by

Coxeter and all of them are available in [16]. For each finite irreducible Coxeter group W ,
a W -invariant set of linear forms {L1, . . . , Lv} is chosen. Symmetric functions

∑v
i=1 Lj

i of
the Li are W -invariant and the pi are the symmetric functions of degree ki as determined
in [6]. As usual, Dn does not follow the general line but as far as pn(x) =

∑n
1 x

2(n−1)
i is

concerned the computations and as a consequence the results of the general case apply.
We have pn(x) =

∑v
1[Li(x)]kn , and since |Li(x)| ≤ ai|x|, i = 1, . . . , v for some

numerical constants ai, we have the estimate |pn(x)| ≤ (
∑v

1 akn
i )|x|kn = A|x|kn .

Analogously, since |D1Li(x)| ≤ bi for some numerical constants bi, we get:

|Djpn(x)| ≤
v∑
1

bj
i

(
kn

j

)
|Li(x)|kn−j = Bj |x|kn−j

for some numerical constants Bj .
The derivatives of the composite mapping ps+α

n (x) are given by the Faa di Bruno
formula:

Dkps+α
n (x) =

∑ k!
µ1! . . . µq!

Dpys+α
n (pn(x))

(D1pn(x)
1!

)µ1
. . .

(Dqpn(x)
q!

)µq
,

where the sum is over all the q-tuples (µ1, . . . µq) ∈ Nq such that 1µ1 + . . .+ qµq = k, with
p = µ1 + . . . + µq. There are constants C(µ1,...,µq) such that:

|(D1pn(x)
1!

)µ1
. . .

(Dqpn(x)
q!

)µq | ≤ C(µ1,...,µq)|x|(kn−1)µ1+...+(kn−q)µq = C(µ1,...,µq)|x|knp−k,

and therefore constants A(µ1,...µq) and A such that:

|Dkps+α
n (x)| ≤

∑
A(µ1,...µq)|x|kn(s+α−p)|x|knp−k ≤ A|x|kns+knα−k.

This shows that the derivatives of order k ≤ kns tend to 0 at the origin while the derivatives
of order kns + 1 will not if α < 1/kn. This means that the composite mapping f = F ◦ P
is of class Ckns but not of class Ckns+1 at x = 0 and it factors through F which is of class
Cs and not of class Cs+1. The loss of differentiability is as expected from theorem 1 and
cannot be reduced.

Gérard P. Barbançon Austin, July 2005,

Institut deRecherche Mathematique Avancee, University of Texas at Austin,
7 rue ReneDescartes, Department of Mathematics,

67084 Strasbourg Cedex, France Austin, TX78712, USA
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