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Abstract. Given a normally hyperbolic invariant manifold Λ for a map f , whose sta-
ble and unstable invariant manifolds intersect transversally, we consider its associated
scattering map. That is, the map that, given an asymptotic orbit in the past, gives
the asymptotic orbit in the future.

We show that when f and Λ are symplectic (resp. exact symplectic) then, the
scattering map is symplectic (resp. exact symplectic). Furthermore, we show that, in
the exact symplectic case, there are extremely easy formulas for the primitive function,
which have a variational interpretation as difference of actions.

We use this geometric information to obtain efficient perturbative calculations of
the scattering map using deformation theory. This perturbation theory generalizes
and extends several results already obtained using the Melnikov method. Analogous
results are true for Hamiltonian flows. The proofs are obtained by geometric natural
methods and do not involve the use of particular coordinate systems, hence the results
can be used to obtain intersection properties of objects of any type.

We also reexamine the calculation of the scattering map in a geodesic flow perturbed
by a quasi-periodic potential. We show that the geometric theory reproduces the results
obtained in [DLS06b] using methods of fast-slow systems. Moreover, the geometric
theory allows to compute perturbatively the dependence on the slow variables, which
does not seem to be accessible to the previous methods.

1. Introduction

A remarkable tool introduced in [DLS00] to study the problem of Arnold diffusion was
the scattering map of a normally hyperbolic invariant manifold with intersecting stable
and unstable invariant manifolds along a homoclinic manifold. (The paper [Gar00]
introduced the homoclinic map to a center manifold.)

The use of the scattering map was crucial for the applications in [DLS03, DLS06a,
GL06a, GL06b]. In those papers, it was shown that the perturbative computations of
the scattering map are a convenient improvement of the Melnikov method since they
are geometrically natural. In this paper, we aim to present a much more systematic
development of the perturbative formulas. We note that:

• The perturbative formulas are given by integrals which converge uniformly (in-
deed exponentially fast).
• Most of the calculations are done in a geometrically natural form.

Hence, there is no need of assuming that our objects admit a good coordinate
systems and one can use the method to discuss the existence of heteroclinic
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intersections among objects of different topological types. This advantage was
crucial for [DLS03, DLS06a].
• As we will detail, it is possible to compute the perturbative expansions of the
effect of the intersections on some fast variables.

The scattering map relates the past asymptotic trajectory of any orbit in the ho-
moclinic manifold to its future asymptotic behavior. This is extremely similar to the
scattering matrix in quantum mechanics [New02, RS79]. Indeed, we have followed a
notation that matches the definitions in quantum mechanics. For a comparison with
the quantum mechanics scattering theory see Appendix A.

The first goal of this paper is to provide a more global definition of the scattering
map (in [DLS00, DLS03, DLS06b] it was only defined perturbatively) that applies to
normally hyperbolic invariant manifolds for which appropriate transversality conditions
are met.

More importantly, we will show that, under very general circumstances, the scattering
map of a normally hyperbolic invariant manifold inherits the geometric properties of
the dynamical system. That is, under transversality properties, if the map is (exact)
symplectic then the scattering map is (exact) symplectic. (See Theorem 8 for a precise
formulation.) These geometric properties allow us to obtain very compact perturbative
formulas and several global topological consequences.

The more general definition of the scattering map as well as some elementary prop-
erties is considered in Section 2. First we introduce the wave operators

Ω± : W s,u
Λ −→ Λ

x −→ x±

which assign to each point x in the stable (or unstable) manifold, the unique point x+
(or x−) in Λ with the same asymptotic trajectory in the future (or the past).

In the case that the invariant manifolds W s,u
Λ intersect transversally one can choose

an “homoclinic channel” Γ where both wave operators are well defined diffeomorphisms
with their images (see Definition 3).

For such homoclinic channel Γ the scattering map is defined as

σ = σΓ = Ω+(Ω−)
−1 : Ω−(Γ) −→ Ω+(Γ)

and its regularity and invariance properties are described. Notice that the scattering
map as well as the wave operators depend on the homoclinic channel Γ chosen. The
same happens with its domain and image that, in general, are strictly contained in
Λ. Nevertheless we will suppress it from the notation unless it causes confusion. The
end of Section 2 is devoted to adapt the definitions to autonomous flows and their
non-autonomous perturbations.

In Section 3 we prove that the scattering map is (exact) symplectic provided that the
map f and the normally hyperbolic invariant manifold Λ are (exact) symplectic. Some
of these results were also established in [Gar00] by other methods.

The main tool for the proof of the symplectic properties is a result about the geometric
properties of holonomy maps on stable manifolds (see Lemma 9) which may be of
independent interest. For simplicity of presentation, we will just discuss the case of
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maps. Analogous formulations for flows of the results can be obtained by considering
time one-maps.

In the case that the map is exact, in Section 3.4 we show that there is a very com-
pact formula (29) for the primitive function of the scattering map. The formula (29)
gives the primitive function of the scattering map as a uniformly (indeed exponentially)
convergent sum along the connecting orbits. The proof is coordinate independent.

The goal of sections 4 and 5 is to develop perturbative formulas for the scattering
map. In Section 4 the general set up for deformation theory for symplectic families of
maps is introduced. A perturbation theory for normally hyperbolic invariant manifold
of these families is also presented.

With all these ingredients, Section 5 is devoted to obtain perturbative formulas for the
Hamiltonian generating the deformation of the scattering map for a family of symplectic
maps. An analogous formula is obtained for Hamiltonian flows.

We note that the perturbative formulas obtained are in terms of absolutely (indeed
exponentially convergent) integrals and that they have a geometric character. We will
show that these perturbative formulas can be used to establish the existence of hete-
roclinic intersections between invariant objects. The fact that they are geometrically
natural allows to establish the existence and compute intersections for objects that have
different topological types and hence, cannot be fit into a system of coordinates. These
perturbative formulas, generalize and unify many of the calculations that are usually
done using Melnikov theory.

Finally, in Section 6, we apply the perturbative formula of the scattering map in the
case of quasiperiodically perturbed geodesic flows already considered in [DLS06b]. In
particular, we show that for geodesic flows the scattering map is globally defined in Λ,
nevertheless, for the perturbations, there are considerations of domains and monodromy.
Even if these considerations were already presented in [DLS00], the global theory of
this paper allows to discuss them more fully. We show that the calculations obtained
by the formalism in this paper agree with the calculations in [DLS00, DLS06b]. The
calculations in [DLS00, DLS06b] were done using the fact that some of the variables are
slow and that there is a standard perturbation theory for systems with fast-slow The
fast-slow methods obtain information on the slow variables component of the scattering
map, but are unable to obtain any information on the fast variables components on the
scattering map. The geometric methods presented in this paper, obtain at the same
time information of the scattering map both for fast and for slow variables.

2. General theory of the scattering map

We will start by recalling some definitions and results from the theory of normally
hyperbolic invariant manifolds. The definition of the scattering map of a normally
hyperbolic invariant manifold will be introduced in Section 2.2. We will show that, as
a consequence of the standard theory of normally hyperbolic invariant manifolds, the
scattering map is smooth and depends smoothly on parameters.

2.1. Notation and known results from the theory of normally hyperbolic in-

variant manifolds. Standard references on the theory of normally hyperbolic invariant
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manifolds are [HP70, HPS77, Fen72, Fen74, Pes04]. The proofs of all the facts men-
tioned in this section can be found in these references. Hence, the purpose of this section
is just easy reference and setting notation.

Let M be a smooth m-dimensional manifold, f : M → M a Cr diffeomorphism,
r ≥ 1.

Definition 1. Let Λ ⊂ M be a submanifold invariant under f , f(Λ) = Λ. We say
that Λ is a normally hyperbolic invariant manifold if there exist a constant C > 0, rates
0 < λ < µ−1 < 1 and a splitting for every x ∈ Λ

TxM = Es
x ⊕ Eu

x ⊕ TxΛ
in such a way that

v ∈ Es
x ⇔ |Dfn(x)v| ≤ Cλn|v| n ≥ 0

v ∈ Eu
x ⇔ |Dfn(x)v| ≤ Cλ|n||v| n ≤ 0

v ∈ TxΛ⇔ |Dfn(x)v| ≤ Cµ|n||v| n ∈ Z
(1)

We will assume that Λ is compact or that f is uniformly Cr in a neighborhood of Λ.
We will also assume without loss of generality that Λ is connected. In the case that Λ is
not compact, one has to pay attention to the properties of the map f in a neighborhood
of Λ and work out issues such as regularity of extensions, etc.

It follows from (1) that Es
x, E

u
x depend continuously on x. In particular, the dimension

of Es
x, E

u
x is independent of x. In fact, these splittings are C `−1 with ` being any number

such that

(2) ` < min

(
r,
| log λ|
log µ

)
.

We recall that it is possible to introduce a smooth metric (the adapted metric) in M
in such a way that C = 1 in (1) at the only price of redefining slightly λ, µ.

Given a normally hyperbolic invariant manifold Λ we define

W s
Λ = {y ∈M | d(fn(y),Λ) ≤ Cyλ

n, n ≥ 0}
W u
Λ = {y ∈M | d(fn(y),Λ) ≤ Cyλ

|n|, n ≤ 0}
Furthermore, for each x ∈ Λ, we define

W s
x = {y ∈M | d(fn(x), fn(y)) ≤ Cx,yλ

n, n ≥ 0}
W u

x = {y ∈M | d(fn(x), fn(y)) ≤ Cx,yλ
|n|, n ≤ 0}

and we note that Es
x = TxW

s
x and Eu

x = TxW
u
x . It is a fact that

W s
Λ =

⋃

x∈Λ
W s

x

W u
Λ =

⋃

x∈Λ
W u

x

(3)

Moreover, x 6= x̃⇒ W s
x ∩W s

x̃ = ∅, W u
x ∩W u

x̃ = ∅.
The decomposition (3) can be expressed as saying that {W s

x}x∈Λ, {W u
x }x∈Λ give a

foliation of W s
Λ, W

u
Λ , respectively.
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We recall that in these circumstances we have that

(1) Λ is a C` manifold with ` given in (2).
(2) W s

Λ, W
u
Λ are C`−1 manifolds

(3) W s
x , W

u
x are Cr manifolds

(4) The maps x 7→ W s
x , W

u
x are C`−1−j , when W s

x , W
u
x are given the Cj topologies.

Note, in particular, that there are limitations for the regularity of the manifolds besides
the regularity of the map which depend on the ratios of the exponents | log λ| and log µ.
These obstructions are sharp in the sense that, for typical maps, the foliations W s

Λ, W
u
Λ

do not have any more regularity than that claimed above.
Note that the leaves of the foliation {W s

x}x∈Λ of W s
Λ are as smooth as the map.

Nevertheless, the dependence of these leaves on the point x can be considerably less
smooth than the map. This is the reason why the regularity of W s

Λ is limited by ratios
of exponents.

Note that the definition of normal hyperbolicity implies that ` ≥ 1, but in this paper
we assume ` ≥ 2 in order to have W s

Λ, W
u
Λ C

1 manifolds. This is important because we
will use the implicit function theorem for C `−1 regular objects.

For a point x ∈W s
Λ (resp. x ∈W u

Λ), we denote by x+ (resp. x−) the point in Λ which
satisfies x ∈W s

x+
(resp. x ∈W u

x−
).

Note that given a point x, the points x+, x− are uniquely defined. Moreover, denoting

Ω± : W s,u
Λ −→ Λ

x −→ x±,
(4)

these maps, that we call wave operators, are well defined and of class C `.

2.2. Scattering map of a normally hyperbolic invariant manifold. Now, we turn
to the task of defining a scattering map associated to a transversal intersection of W s

Λ,
W u
Λ .
More precisely, we will assume that there is a normally hyperbolic invariant manifold

Λ and a homoclinic manifold Γ ⊂ W s
Λ ∩W u

Λ such that ∀ x ∈ Γ:

TxM = TxW
s
Λ + TxW

u
Λ

TxW
s
Λ ∩ TxW u

Λ = TxΓ
(5)

We will refer to (5) by saying that the intersection of W s
Λ and W u

Λ is transversal along
Γ.

If M is m-dimensional, Λ is c-dimensional and the dimensions of Es
x, E

u
x are ds, du

thenW s
x ,W

u
x are ds, du-dimensional, W s

Λ,W
u
Λ are ds+c, du+c-dimensional, respectively.

Because of Definition 1, we have thatm = c+ds+du and therefore, by (5), the dimension
of Γ has to be (c+ ds + c+ du)−m = c.

As a consequence of (5), for every point x ∈ Γ we have

TxΓ⊕ TxW s
x+

= TxW
s
Λ

TxΓ⊕ TxW u
x−

= TxW
u
Λ

(6)

We will refer to (6) by saying that Γ is transversal to the W s
x , W

u
x foliation.

Because of the persistence under perturbations of normally hyperbolic invariant man-
ifolds and their stable/unstable manifolds and the transversal intersections between
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x+

Wx+
s

Γ

Λ

Figure 1

them, we note that if the assumption (5) is satisfied for a map f and manifolds Λ, Γ,

then it is also satisfied for any map f̃ in a C1 neighborhood and for some manifolds Λ̃,
Γ̃.

Remark 2. By the implicit function theorem, if for some x∗ ∈ W s
Λ ∩W u

Λ it is verified
that Tx∗W

s
Λ∩Tx∗W u

Λ is c-dimensional, we can find a locally unique manifold Γ such that

Tx∗Γ = Tx∗W
s
Λ ∩ Tx∗W u

Λ

Moreover, this Γ is C`−1.
Also by the implicit function theorem, if the transversality condition (6) is satisfied

for certain x∗ in a manifold Γ, then it is satisfied by all x ∈ Γ close enough to x∗.

Given a manifold Γ verifying (5) we can consider the wave operators Ω± of (4) re-
stricted to Γ. Under assumption (5) we have that Ω± are local diffeomorphisms from Γ
to Λ.

Definition 3. We say that Γ is a homoclinic channel if:

(1) Γ ⊂ W s
Λ ∩W u

Λ verifies (5).
(2) The wave operators (Ω±)|Γ : Γ −→ Ω±(Γ) ⊂ Λ are C`−1 diffeomorphisms.

Restricting Γ if necessary, from now on we will only consider Γ ⊂ W s
Λ ∩W u

Λ such it
verifies Definition 3 and then it is a homoclinic channel.

We denote by ΩΓ± = Ω±|Γ, and H
Γ
± = ΩΓ±(Γ) ⊂ Λ, so that

ΩΓ± : Γ −→ HΓ
±

are C` diffeomorphisms. Note that if Γ is a homoclinic channel, so is f n(Γ) for any
n ∈ Z.

Remark 4. Using the fact that the foliation W s
x satisfies f(W s

x) = W s
f(x), and that,

therefore, f(x)+ = f(x+), we have (see Figure 2)

(7) ΩΓ+ = f−1 ◦ Ωf(Γ)
+ ◦ f,

and analogously

(8) ΩΓ− = f ◦ Ωf−1(Γ)
− ◦ f−1.
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F(x+) = f(x+) Λ

F(x) 
F Γ 


 Γ 

x 

x+ Λ

Figure 2

s

u

z

Figure 3. Illustration of the definition of the scattering map. Definition 5

Iterating these formulas, we have for every n ∈ Z,

(9)
ΩΓ+ = f−n ◦ Ωfn(Γ)

+ ◦ fn,
ΩΓ− = fn ◦ Ωf−n(Γ)

− ◦ f−n.

Definition 5. Given homoclinic channel Γ and ΩΓ± : Γ → HΓ
± the associated wave

operators, we define the scattering map associated to Γ

σΓ : HΓ
− → HΓ

+

by

(10) σΓ = ΩΓ+ ◦ (ΩΓ−)−1

2.3. Some elementary properties of the scattering map.
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2.3.1. Regularity properties. We note that, because of the implicit function theorem,
the homoclinic channel Γ is as differentiable as the invariant manifolds W s

Λ, W
u
Λ , that is

C`−1, where ` is given in (2). In some cases—such as in the presence of symmetries or
of reversibility—it could be significantly more.

Later, we will consider a family of mappings fε which are jointly Cr in all the variables
and in the parameters ε. We will show that the scattering map depends on the param-
eters in a C`−j when we give the maps the Cr topology in a compact neighborhood.

2.3.2. Invariance properties. It is clear from its definition that the scattering map de-
pends on the homoclinic channel considered.
• We note that if Γ satisfies Definition 3, so does f(Γ) and we can define a scattering

map corresponding to f(Γ). Using that f(W s,u
x ) = W s,u

f(x), equalities (7) and (8) and the

Definition 5 of the scattering map, we easily obtain:

(11) f ◦ σΓ = σf(Γ) ◦ f
Moreover, iterating f and using (9), we have:

(12) σf
n(Γ) = fn ◦ σΓ ◦ f−n.

We call attention to the fact that in (11) the scattering map on both sides is not the
same.
• If we exchange the map f by f−1, the manifold Λ is still a normally hyperbolic

invariant manifold under f−1. On the other hand, the stable and unstable manifolds

are exchanged. Hence, if Γ is an homoclinic channel verifying Definition 3 for theW
s,(f)
Λ ,

W
u,(f)
Λ , then it is also a homoclinic channel verifying Definition 3 for W

s,(f−1)
Λ , W

u,(f−1)
Λ ,

and

(13) Ω
Γ,(f)
+ = Ω

Γ,(f−1)
− , Ω

Γ,(f)
− = Ω

Γ,(f−1)
+

and
Ω
Γ,(fn)
± = ΩΓ,f± , n ≥ 0.

All these properties give

σΓ,(f) = (σΓ,(f
−1))−1, σΓ,(f

n) = σΓ,f , n ≥ 0

2.4. The scattering map in other contexts.

2.4.1. Autonomous flows. The definition of scattering maps for autonomous flows is
completely analogous to the definition for diffeomorphisms. In this section, we recall
the definitions and introduce the notations needed. We recall that a manifold Λ is a
normally hyperbolic invariant manifold for a flow Φt if there exist a constant C > 0,
exponential rates 0 < α < β and a splitting for every x ∈ Λ

TxM = Es
x ⊕ Eu

x ⊕ TxΛ
in such a way that

v ∈ Es
x ⇔ |DΦt(x)v| ≤ Ce−βt|v| t ≥ 0

v ∈ Eu
x ⇔ |DΦt(x)v| ≤ e−β|t||v| t ≤ 0

v ∈ TxΛ⇔ |DΦt(x)v| ≤ Ceα|t||v| t ∈ R
(14)
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All the properties and definitions given in section 2.1 are analogous in the case of
flows. In particular, the stable and unstable manifolds of Λ are given by

W s
Λ = {y ∈M | d(Φt(y),Λ) ≤ Cye

−βt , t ≥ 0}
W u
Λ = {y ∈M | d(Φt(y),Λ) ≤ Cye

−β|t| , t ≤ 0}

and, for each x ∈ Λ, we define the stable and unstable manifolds of x as

W s
x = {y ∈M | d(Φt(x),Φt(y)) ≤ Cx,ye

−βt , t ≥ 0}
W u

x = {y ∈M | d(Φt(y),Φt(y)) ≤ Cx,ye
−β|t| , t ≤ 0}

The regularity of the stable and unstable manifolds as well as the regularity of the
foliation are the same that in the case of maps.

Another important property is that if Λ is a normally hyperbolic invariant manifold
for a flow {Φt, t ∈ R}, so it is for fT , the time T map, for any T ∈ R.

In the case of flows we can define analogously the wave operators :

Ω± : W s,u
Λ −→ Λ

x 7→ x±

such that |Φt(x)− Φt(x±)| ≤ Cx,x±e
−β|t|, as t→ ±∞.

To define the scattering map in the case of flows we also assume that there exists a
homoclinic channel Γ satisfying Definition 3 and then the maps

ΩΓ± : Γ −→ H± ⊂ Λ

are diffeomorphisms. Hence, analogously to (10), we define the scattering map

σΓ = ΩΓ+ ◦ (ΩΓ−)−1.

It is straightforward to check that these wave operators ΩΓ± for the flow Φt coincide with

the wave operators ΩΓ,fT± , for any time T map fT . That is

ΩΓ± = ΩΓ,fT± = Ω
Γ,fT ′
± , ∀T, T ′ ∈ R

and, consequently:

(15) σΓ = σΓ,fT = σΓ,fT ′ , ∀T, T ′ ∈ R.

From now on, we denote the scattering map for the flow by σΓ,H, H being the vector field
generating the flow Φt. We have that the following properties, completely analogous to
the properties of section 2.3.2, hold:

ΩΓ,H± = ΩΓ,−H∓

ΩΓ,H+ = Φ−t ◦ ΩΦt(Γ),H+ ◦ Φt, Ω
Γ,H
− = Φt ◦ ΩΦ−t(Γ),H− ◦ Φ−t

σΓ,H = (σΓ,−H)−1

σΦt(Γ),H = Φt ◦ σΓ,H ◦ Φ−t
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2.4.2. Non-autonomous flows. One situation that appears in applications is that the
vector field H is a skew product vector field H = (G,L) defined in M̃ = M × N by
H(x, θ) = (G(x, θ),L(θ)), which happens to be “close” to an autonomous vector field,
that is, there exists G0(x) such that

(16) ||G − G0||Cr ¿ 1

We first deal with the product case H0 = (G0,L), which is very simple.

Proposition 6. Let Λ be a normally hyperbolic invariant manifold under a flow Φt on
a manifold M . Let 0 < α < β be the exponential expansion rates corresponding to the
normal hyperbolicity of Λ. Let N be another manifold with a flow ϕt with exponential
expansion rates less or equal than α. Consider the flow Φ̃t := (Φt, ϕt) on the manifold
M ×N .
Then the manifold Λ̃ := Λ × N is a normally hyperbolic invariant manifold for the

flow Φ̃t.
Moreover, W s

Λ ×N =W s
Λ̃
is the stable manifold of Λ̃ for the extended flow Φ̃t.

For x ∈ Λ, θ ∈ N , we have that W s
(x,θ) = W s

x ×N is the stable manifold of the point

(x, θ) ∈M × {θ}.
The same results hold for the unstable manifold.

Therefore, in the product case H0 = (G0,L), we can define a scattering map for
the flow. Since the exponential rates in N are smaller or equal than α, we have that
W̃ s,u
(x,θ) = W s,u

x × {θ}, so that Ω̃±(x, θ) = (Ω±(x), θ) and the scattering map has the

simple form
σ̃(x, θ) = (σ(x), θ).

In the skew product case H = (G,L), provided that H is an small perturbation (16)
of a product flow, we can define a scattering map in the corresponding domain.

The skew product structure of the perturbation implies that the scattering map has
the skew product form

σ̃(x, θ) = (σ(x, θ), θ).

In particular, in the case of quasi-periodic flows coming from a non-autonomous
Hamiltonian vector field of Hamiltonian H(x, θ), θ = νt, ν ∈ Rd, defined in M × Td,
one can recover the symplectic character of the flow simply by adding d extra actions
A ∈ Rd conjugated to the angles θ and working with the autonomous flow of the Hamil-
tonian H∗(x, θ, A) = H(x, θ)+ν ·A in the full symplectic space M ∗ =M ×T ∗N . When
expressing in these complete set of symplectic variables the scattering map, it takes the
form

σ∗(x, θ, A) = (σ(x, θ), θ,A(x, θ, A)).
In the following section we will see that the scattering map for a symplectic map is

also symplectic.

2.4.3. Center manifolds. Many of the results discussed above generalize to center man-
ifolds of a fixed point [Gar00] or to locally invariant manifolds with boundary.

The standard method to study locally invariant manifolds (see [Fen72]) is to construct
an extended system for which the center manifolds (or the locally invariant manifolds)
are invariant.
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Unfortunately, the invariant manifolds thus produced and their stable and unstable
manifolds depend on the extension considered. Indeed, the stable and unstable manifolds
a point in the center manifold can depend on the extension considered. This is because a
trajectory can leave the neighborhood where the original map agrees with the extension.
Therefore, the homoclinic intersections and the scattering maps obtained depend on the
extension considered.

Nevertheless, there are some important cases where there is uniqueness and the re-
sults are independent of the extension. For example in Hamiltonian systems with 2-
dimensional locally invariant manifolds having KAM tori bounding them. In this case
the locally invariant manifolds are indeed invariant and, therefore, unique as well as
their stable and unstable manifolds.

Even if the center manifolds are not unique, some of the objects constructed using
them (e.g. periodic orbits, KAM tori, Aubry Mather sets) remain in any center manifold
and their stable and unstable manifolds are independent of the extension.

3. Symplectic properties of the scattering map

The main result of this section is that, in case that f is symplectic and Λ is a symplectic
manifold (when endowed with the restriction of the symplectic form), the scattering map
preserves the restriction of the symplectic form to Λ. A version of this result for a central
manifold of a fixed point with a different proof can be found in [Gar00]. These geometric
properties will be very important for the perturbative computations of the scattering
map in section 4. In this discussion, we will use Cartan calculus and coordinate free
calculations. See [AM78, Thi97, BG05].

3.1. Notation and some elementary facts on symplectic geometry. When N,M
are symplectic manifolds, we say that f : N →M is symplectic when

f ∗ωM = ωN

where f ∗ is the pull back on forms defined by

(f ∗ωM)(x)(v, w) = ωM(f(x))(Df(x)v,Df(x)w) ∀ v, w ∈ TxN
We note that the definition of the pull back for forms does not require that f is a
diffeomorphism, but only one to one on N .

When ωN = dαN , ωM = dαM , we say that fε is exact when

(17) f ∗αM = αN + dP f

for some function P f : N → R. The function P f is called the primitive function of the
diffeomorphism f .

Remark 7. Note that the function P f is determined uniquely up to constants when N
is connected. When talking about primitive functions, we will identify two functions
which differ on a constant. This justifies that we can talk about the primitive function
of a diffeomorphism.

Specially in the case that N =M = Td×Rd and that f is a twist map, the primitive
function allows to study several geometric properties of the map. See [LM87] and
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specially [Har99, Har00] for a systematic study of the primitive function, including
numerical applications.

3.1.1. Formulation of the symplectic properties of the scattering map.

Theorem 8. Assume thatM is endowed with a symplectic (resp. exact symplectic) form
ω and that ω|Λ is also symplectic (hence, in particular, the dimension m of M and the
dimension c of Λ are even).
Assume that f preserves the symplectic form ω (resp. it is exact symplectic).
Assume that there exists a homoclinic channel Γ and so the scattering map σΓ is well

defined.
Then, the scattering map σΓ is symplectic (resp. exact symplectic).

The main technical tool, from which Theorem 8 follows almost immediately is:

Lemma 9. Assume that, with the notations above, we have that ω|Λ is symplectic, and
that Γ is C1 close to Λ on a neighborhood (hence ω|Γ is also a symplectic form).
Then,

(18) (ΩΓ+)∗ω|Γ = ω|Λ
3.2. Proof of Lemma 9. The proof of Lemma 9 is very similar to the proof of absolute
continuity of Anosov foliation in [PS72].

We will prove that given any two-dimensional cell B ⊂ Γ, we have

(19)

∫

B
ω =

∫

ΩΓ+(B)
ω

To prove (19), we will consider a 3-cell C in W s
Λ whose boundary contains B, ΩΓ+(B).

Let B : [0, 1]× [0, 1]→ Γ be a parameterization of B.
If z ∈ [0, 1]× [0, 1], y = B(z) ∈ B ⊂ Γ and ΩΓ+(y) are, by assumption, close enough, so

that there is one shortest γz geodesic in W s
ΩΓ+(y)

joining y and ΩΓ+(y). We parameterize

these geodesics in such a way that

γz(0) = ΩΓ+(y)

γz(1) = y

We see by the implicit function theorem that the map C : [0, 1]× [0, 1]× [0, 1]→ W s
Λ

defined by

C(z, t) = γz(t)

is a C1 map which is a local diffeomorphism and which gives a parameterization of the
cell C.

We note that

∂C = B − ΩΓ+(B) +R
where R is the two dimensional cell consisting on a union of geodesics in W s

ΩΓ+(∂B)
.

By Stokes theorem ∫

∂C
ω =

∫

C
dω = 0
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Figure 4. Illustration of the proof of Lemma 9

We therefore have

(20)

∫

B
ω =

∫

ΩΓ+(B)
ω −

∫

R
ω

Hence, the desired result (19) will be established when we prove
∫
R ω = 0.

This is a consequence of the following proposition, which we will also find useful in
discussing exactness.

Proposition 10. Let R be a 2-cell in W s
Λ parameterized by

R : [0, 1]× [0, 1]→ W s
Λ

in such a way that

R(z, t) ∈W s
R(0,t) , R(0, t) ∈ Λ

That is, we can think of R as a union of lines each of which lies in the stable manifold
of one point. Then

∫
R ω = 0.

Proof. It consists just in observing that, by the invariance of ω under f , we have for
every n ∈ N ∫

R
ω =

∫

fn(R)
ω

and, by the hyperbolicity of Λ, we also have

Area(fn(R)) ≤ C(λµ)n ,

because the stable coordinates contract at least by Cλn and the coordinates along Λ
expand by a factor not larger than Cµn.

By the normal hyperbolicity assumption, (λµ) < 1, and since ∀n ∈ N we have∫
fn(R) ω ≤ C Area(fn(R)), Proposition 10 is proved. ¤

Proposition 10 finishes the proof of the fact that ΩΓ+ is symplectic.
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Remark 11. We note that Proposition 10 implies that for every x ∈ Λ, and every y ∈ W s
x

ivω = 0 , ∀ v ∈ TyW s
x

In particular

(21) ω|W s
Λ
= 0.

To finish the proof of Lemma 9, the only thing remaining is to prove the claim of
exactness.

If ω = dα and f is exact, we will show that given a path η : [0, 1]→ Γ, we have:

(22)

∫

η

α =

∫

ΩΓ+(η)

α + GΓ(Ω+(η(1))− GΓ(Ω+(η(0))

where GΓ : Ω+(Γ)→ R is a explicit function which we now compute.
Since the path η is arbitrary, (22) is equivalent to

(23) (ΩΓ+)∗α|Γ = α|Λ + dGΓ

Given a point y ∈ ΩΓ+(Γ) ⊂ Λ we consider a path β ⊂ W s
y joining y and (ΩΓ+)

−1(y) ∈ Γ.
Then, set

(24) GΓ(y) =
∫

β

α

The integral defining GΓ in (24) is independent of the choice of the path β because of
Proposition 10 (see also (21)).

As usual, we argue that given two paths β, β̃ joining y to (ΩΓ+)
−1(y), the closing path

resulting from going through one and coming back through the other bounds a two cell
Σ ⊂ W s

y such that β − β̃ = ∂Σ, hence
∫

β

α−
∫

β̃

α =

∫

Σ

dα = 0.

Since the integral defining GΓ is independent of the path, it will be advantageous for
us to choose a path which depends differentially on the base point. For example, we
may choose as βy the shortest geodesic in W s

y joining y and (ΩΓ+)
−1(y).

Denoting y0 = ΩΓ+(η(0)), y1 = ΩΓ+(η(1)), the identity (22) follows because

−η + βy1 + ΩΓ+(η)− βy0 = ∂R
where R is a two cell satisfying the assumptions of Proposition 10. Then,

∫
∂R α =∫

R ω = 0. ¤

3.3. Proof of Theorem 8. By the λ-lemma (see e.g., [PS72]) there is an n ∈ N large
enough so that fn(Γ) satisfies the assumptions of Lemma 9.

Similarly f−n(Γ) satisfies the assumptions of Lemma 9 for f−1 in place of f .
We note that, by equation (9) with n and −n respectively

(25) σΓ = ΩΓ+ ◦ (ΩΓ−)−1 = f−n ◦ Ωfn(Γ)
+ ◦ f 2n ◦ [Ωf−n(Γ)

− ]−1 ◦ f−n
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Also, by (13), we have that

Ω
f−n(Γ),(f)
− = Ω

f−n(Γ),f−1

+

Hence, the map σΓ is symplectic (resp. exact symplectic) as desired.

3.4. The scattering map and the primitive function. The goal of this section
is to show that, when the map f is exact symplectic and Λ is an exact symplectic
manifold, we can obtain formulas for the primitive function of the scattering map. The
main result of this section is the formula (29), which gives the primitive function of
the scattering map in terms of the primitive function of f and (30) which gives the
analogous formula for flows. The formula is given by the difference of two integrals
computed along the homoclinic intersection. In Theorem 15, we show that the formula
(29) converges exponentially fast together with some of its derivatives.

3.4.1. Some elementary properties. We recall that in Section 3.1, we reviewed the stan-
dard definition of primitive function.

The next proposition recalls some elementary properties of the primitive of composi-
tion that will be useful in the sequel.

Proposition 12. If f : N → M and g : M → V are exact symplectic diffeomorphisms
with primitives P f : N → R and P g :M → R, respectively, then we have:

(1) The primitive P g◦f of g ◦ f is given by

(26) P g◦f = P f + P g ◦ f.

(2) If g ◦ f = Id then

(27) P g + P f ◦ g = 0

(3)

(28) P fn =
N−1∑

j=0

P f ◦ f j

Proof. The proof is only the following computation. First, we observe that it is imme-
diate from the definition that

(g ◦ f)∗αV = f ∗g∗αV = f ∗(αM + dP g)

= αN + dP f + df ∗P g

= αN + d(P f + P g ◦ f)

The other parts of the proposition are easy consequences of (26). ¤

We also observe that the primitive function behaves well under restriction to an exact
symplectic submanifold invariant under f . The primitive function of the restriction is
the restriction of the primitive function in the whole manifold.
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3.4.2. Formulas for the primitive function of the scattering map. In this section we study
a Cr symplectic diffeomorphism f : M → M such that it has a normally hyperbolic
invariant manifold Λ such that ω|Λ is non-degenerate, and also a homoclinic channel Γ
verifying Definition 3, so that there exists a scattering map σ = σΓ : H− → H+ as in
(10). Again, we are assuming that the map f is uniformly Cr in a neighborhood of the
manifold Λ and of the homoclinic channel Γ.

In the case that the map f is exact symplectic we know that the same is true for the
scattering map. The next Theorem 13 gives us a very effective formula for the primitive
of the scattering map σ in terms of the primitive of f and the orbit appearing in the
connection.

The main results of this section are Theorem 13 which establishes (29), a formula for
the primitive function of σ, Theorem 14, which provides an analogous formula (30) for
flows, and Theorem 15 which guarantees the convergence of the series (and the integrals)
defining the primitive function and their derivatives.

As we will see later in Section 5, we will obtain formulas very similar to (29) and (30)
for other objects. The results of Theorem 15 will therefore, have further applicability.

Theorem 13. Let f : M → M be a Cr exact symplectic diffeomorphism such that it
has a normally hyperbolic invariant manifold Λ such that ω|Λ is non-degenerate, and
a homoclinic channel Γ verifying Definition 3, so that, there exists a scattering map
σ = σΓ : H− → H+ as in (10).
Then, the primitive for σ is given by

P σ = lim
N±→∞

N+−1∑

j=0

P f ◦ f j ◦ (ΩΓ+)−1 ◦ σ − P f ◦ f j ◦ σ

+

N−∑

j=1

P f ◦ f−j ◦ (ΩΓ−)−1 − P f ◦ f−j
(29)

In the case that the map f corresponds to the time T flow of a Hamiltonian vector
field H of Hamiltonian H we can adapt the previous result to obtain a formula for the
primitive of the scattering map σ = σΓ,H, that was shown in (15) that is independent
of T .

Theorem 14. Let Φt(x) be the flow of a Hamiltonian vector field of Hamiltonian H(x)
and consider the time T map of this flow, that is, f(x) = ΦT (x). Assume that this
map has a normally hyperbolic invariant manifold Λ such that ω|Λ is non-degenerate,
and a homoclinic channel Γ verifying Definition 3, so that, there exists a scattering map
σ = σΓ : H− → H+ as in (10). Then, the primitive P σ is given by

P σ = lim
T±→∞

∫ 0

−T−
(αH +H) ◦ Φt ◦ (ΩΓ−)−1 ◦ (σ)−1

− (αH +H) ◦ Φt ◦ (σ)−1

+

∫ T+

0

(αH +H) ◦ Φt ◦ (ΩΓ+)−1 − (αH +H) ◦ Φt

(30)
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The convergence of the series in (29) and the integrals in (30) is guaranteed by the
following result.

Theorem 15. Under our standing assumptions let Ψ be a Cm function in a neighborhood
of Λ.
We have the following bounds for all j ∈ N, 0 ≤ k ≤ min(m, `, r). For any λ̃ > λ,

µ̃ > µ, we have:

||Dk(Ψ ◦ f j ◦ (ΩΓ+)−1 ◦ σ −Ψ ◦ f j ◦ σ)||C0(H−) ≤ C||Ψ||Ck(λ̃µ̃k)j

||Dk(Ψ ◦ f−j ◦ (ΩΓ−)−1 −Ψ ◦ f−j)||C0(H−) ≤ C||Ψ||Ck(λ̃µ̃k)j
(31)

Analogous inequalities are valid for the case of flows.

Of course, to apply Theorem 15 to (29) and (30), we just have to take Ψ = P f ∈ Cr−1

(or Ψ = αH +H), hence m = r − 1.

3.4.3. A variational interpretation. We recall that the well known Hamilton variational
principle says that x = {xn} is an orbit of the map f if and only if it is a stationary
point of the formal action functional

L(x) =
∑

i∈Z
P f (xi)

For flows, γ(t) is an orbit of the Hamiltonian flow of Hamiltonian H if and only if it is
a stationary point of the formal action

L(γ) =
∫ +∞

−∞
(−αγ̇(t) +H ◦ γ(t))dt

or, if α = pdq, and γ(t) = (γq(t), γp(t)),

L(γ) =
∫ +∞

−∞
(−γp(t)γ̇q(t) +H ◦ γ(t))dt

Hence, Theorems 13 and 14 tell us that the primitive function of the scattering map
is the limit of the difference between the action of the homoclinic orbit and the action
of the asymptotic orbits.

We hope that this variational interpretation of the scattering map can lead to a closer
interaction between variational and geometric methods. It seems quite possible that
the conditions of Cheng and Yan [CY04b] can be easily interpreted as a transversality
conditions between the scattering map and the inner map.

The difference in action plays a fundamental role in the variational approach to
diffusion. Certainly, in the variational theories concerned with local critical points
([Bes96, BCV01, BBB03]) the difference between primitive functions plays a role.

In more global variational theories, it seems that the definition of Peierls barrier
is roughly similar to the infimum of all the differences of action over all homoclinic
intersections. Hence, in our language, it would be the infimum of P σ over all homoclinic
intersections ([CI99, CY04b, CY04a, Mat96, Mat04, Kal03]).
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3.4.4. Proof of Theorem 13. The formula (29) is closely related to the following formula,
which is true for any N−, N+ ∈ N:

(32) σ = f−N+ ◦ ΩΓN++ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

The formula (32) is a consequence of the formula (9) for the wave operators.
To compute the primitive function P σ of the scattering map σ, we start from (32)

and apply equations (26), (27) and (28). We obtain, for any N−, N+ ∈ N, the following
formula in the reference manifold N .

P σ =P f−N− + P (Ω
Γ
−N−
− )−1 ◦ f−N− + P fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

+ PΩ
Γ
N+
+ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

+ P f−N+ ◦ ΩΓN++ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

=−
(
P f ◦ f−N− + · · ·+ P f ◦ f−1

)

+ P (Ω
Γ
−N−
− )−1 ◦ f−N−

+
(
P f + · · ·+ P f ◦ fN++N−−1

)
◦ (ΩΓ−N−− )−1 ◦ f−N−

+ PΩ
Γ
N+
+ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

−
(
P f ◦ f−N+ + · · ·+ P f ◦ f−1

)
◦ ΩΓN++ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N−

Now, we use formula (9) for the wave operators, obtaining

(ΩΓ
−N−

− )−1 ◦ f−N− = f−N− ◦ (ΩΓ−)−1

fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N− = fN+ ◦ (ΩΓ−)−1

ΩΓ
N+

+ ◦ fN++N− ◦ (ΩΓ−N−− )−1 ◦ f−N− = ΩΓ
N+

+ ◦ fN+ ◦ (ΩΓ−)−1 = fN+ ◦ σ

which give, using them in the formula for the primitive P σ:

P σ =−
(
P f ◦ f−N− + · · ·+ P f ◦ f−1

)

+ P (Ω
Γ
−N−
− )−1 ◦ f−N−

+
(
P f ◦ f−N− + · · ·+ P f ◦ f−1

)
◦ (ΩΓ−)−1

+
(
P f + · · ·+ P f ◦ fN+−1

)
◦ (ΩΓ−)−1

+ PΩ
Γ
N+
+ ◦ fN+ ◦ (ΩΓ−)−1

−
(
P f + · · ·+ P f ◦ fN+−1

)
◦ σ

Now we observe that, by Lemma 9 and the λ- Lemma applied to the normally hy-

perbolic invariant manifold Λ, the wave operators ΩΓ
±N±

± are exact symplectic and con-
verge to the identity map when N± →∞. Therefore, we can ensure that the primitives
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P (Ω
Γ
−N−
− )−1 and PΩ

Γ
N+
+ converge to zero. So, if we take limits as N± →∞, we obtain

P σ = lim
N±→∞

N+−1∑

j=0

P f ◦ f j ◦ (ΩΓ+)−1 ◦ σ − P f ◦ f j ◦ σ

+

−N−∑

j=−1
P f ◦ f j ◦ (ΩΓ−)−1 − P f ◦ f j

(33)

which is formula (29). ¤

3.4.5. Proof of Theorem 14. The proof of Theorem 14 is an easy consequence of the fact
that the primitive of the Hamiltonian flow Φt is given by

PΦT =

∫ T

0

(αH +H) ◦ Φtdt

whereH is the Hamiltonian vector field of HamiltonianH. This formula can be obtained,
for instance, by differentiating with respect to time the definition of the primitive:

d
d

dt
PΦt =

d

dt
(Φt)

∗α

= (Φt)
∗(diHα + iHdα) = d((Φt)

∗(αH +H))

Once we know the primitive of the Hamiltonian flow ΦT , we can consider the cor-
responding scattering map σ = σΓ,H. Recall that in Section 2.4.1 we prove that σ is
independent of T . We compute the primitive of σ simply applying formula (29) for this
case and using the following facts for this case:

PΦT ◦ ΦjT =

∫ T

0

(αH +H) ◦ Φt ◦ ΦjTdt =

∫ (j+1)T

jT

(αH +H) ◦ Φtdt

PΦT ◦ Φ−jT =

∫ T

0

(αH +H) ◦ Φt ◦ Φ−jTdt =
∫ −(j−1)T

−jT
(αH +H) ◦ Φtdt

N+−1∑

j=0

PΦT ◦ ΦjT =

∫ TN+

0

(αH +H) ◦ Φtdt

N−∑

j=1

PΦT ◦ Φ−jT =

∫ 0

−TN−
(αH +H) ◦ Φtdt

With these expressions one easily obtains formula (69) by calling T± = TN± → ±∞.

3.4.6. Proof of Theorem 15. We present the proof for the first estimate in (31). Then,
the second estimate follows by applying the first estimates to a system whose dynamics
is given by f−1.

We start by proving the case k = 0.
The reason why (29) converges exponentially fast is that the general term in the

formula is the difference of a function evaluated in two points which are exponentially
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close. Recall that by the definition of the wave operators and Definition 1 we have:

d(f j ◦ (ΩΓ+)−1 ◦ σ(x), f j ◦ σ(x)) ≤ Cλj

d(f−j ◦ (ΩΓ−)−1(x), f−j(x)) ≤ Cλj

For higher derivatives the argument is more complicated.
We start by choosing a system of coordinates on a neighborhood U of Λ inW s

Λ. Similar
choices are quite standard in [Fen72].

We observe that we can identify U with a neighborhood of the zero section of the
stable bundle. More concretely, we associate to (x, ξ), with x ∈ Λ, ξ ∈ Es

x, |ξ| ≤ δ, the
point

(34) expW
s
x

x (ξ)

where exp
W s

x
x denotes the Riemann geometry exponential mapping associated to the

manifold W s
x .

We recall that our standing assumptions include that we have a metric which is
uniformly differentiable in a neighborhood of Λ and that the map f is also uniformly
differentiable in a neighborhood of Λ. These assumptions are automatic if Λ is com-
pact, but they hold in many other situations. As a consequence, exp

W s
x

x defines a Cr

diffeomorphism from a ball of radius δ > 0, which is independent of x.
In these system of coordinates, the map f restricted to U takes the form

(35) (x, ξ)→ (f0(x), fx(ξ))

For the purposes that follow, it is convenient to consider x as a parameter, since we
have different mappings for each stable manifold. We also note the points representing
Λ have ξ coordinate equal to zero and that the invariance of Λ amounts to fx(0) = 0.

In this system of coordinates, f j is represented by

(f j0 (x), ffj−10 (x) ◦ · · · ◦ fx(ξ)),

and we will denote ffj−10 (x) ◦ · · · ◦ fx(ξ) ≡ fx,j(ξ).

The following adjustments can be made without loss of generality.
1) We can assume that ||Dξfx(ξ)||C0(U) ≤ λ̃, ||Dxfx(ξ)||C0(U) ≤ µ̃, by taking U suffi-

ciently small, where λ̃, µ̃ are the numbers appearing in the conclusions.
2) We also note that, by multiplying the metric by a constant, we can assume without

loss of generality that ||Dk
xD

i
ξfx(ξ)||C0(U) ≤ 1. This will simplify slightly some estimates.

3) We can assume that

(ΩΓ+)
−1(H+) ⊂ U

Indeed, by the λ-lemma, we have that for some finite J , Γ±j = f±j(Γ) ⊂ U , for j ≥ J .
Then, we will obtain the estimate (31) for j ≥ J . The desired result follows just changing
the constant C.

In the system of coordinates, we can write (ΩΓ+)
−1 by

(x, 0) 7→ (x,Φ(x)).
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Hence, in the system of coordinates, the desired result, formula (31) is implied by
estimates

(36) |Dk
x(Ψ(f j0 (x), fx,j(Φ(x)))−Dk

xΨ(f j0 (x), 0)| ≤ C||Ψ||Ckjk(λ̃µ̃k)j

The main idea in the proof of (36) is that, if we apply the Faa-Di-Bruno formula for the
derivatives in (36) we will obtain derivatives of highly iterated functions (except for one
term). The derivatives of highly iterated functions will be estimated in Propositions 16
below. The remaining term will be estimated because it is the difference of two terms
that have close arguments.

Proposition 16. With the notations above we have:
For n ≥ 1:

(37) ||Dnf j0 (x)||C0(Λ) ≤ (n− 1)!jn(µ̃n)j

For m ≥ 1, n ≥ 0:

(38) ||Dn
xD

m
ξ fx,j(ξ)||C0(U) ≤ Cn,mj

n+m(λ̃µ̃n+m)j

where Cn,m is an explicit expression depending on n,m, λ̃, µ̃ but independent of j.

Proof. The proof of estimates for highly iterated functions is very similar to estimates
appearing in [LMM86]. The dependence on parameters of the derivatives of highly
iterated functions were considered in [BLW96, CFL03].

We start by observing that if we apply the chain rule and the product rule to Dnf j0 (x)
we obtain an expression containing Tn terms all of which are factors of the form Dif0 ◦
fk(x) for some 1 ≤ i ≤ n, 0 ≤ k ≤ j. We denote by Fn the maximum number of factors
that appear in each of the terms in the expression above.

We observe that the number of factors increases only when we apply the chain rule
and the number of terms increases only when we apply the product rule. Therefore,

Tn ≤ Tn−1Fn−1

Fn ≤ Fn−1 + j

We also have T1 = 1, F1 = j from the chain rule. It follows that Fn ≤ nj, Tn ≤ (n−1)!jn.
We also observe that each of the factors can be estimated by ||Dif0 ◦fk0 (x)||C0(U) ≤ µ̃.

(Recall that µ̃ ≥ 1 is an upper bound for the case i = 1 and that we have arranged
that for i > 1 we can estimate the term by δ < 1). Therefore, each of the terms can be
estimated from above by µ̃Fn which in turn is estimated by (µ̃n)j. We obtain the upper
estimate (37) for the derivative by multiplying the upper estimate for each of terms by
the upper estimate for the number of terms.

The other estimate is proved along similar lines. Again, we observe that, applying
the chain rule and the product rule as often as possible, we can express Dn

xD
m
ξ fx,j(ξ) as

a sum of Tn,m terms, each of which contains not more than Fn,m factors. Each of the
factors is of the form (Dñ

xD
m̃
ξ ff j̃0 (x)

(ξ) for some ñ ≤ n, m̃ ≤ m, j̃ ≤ j.

Again, noting that the number of terms increases only when we apply the product
rule, and the number of factors when we apply the chain rule, we obtain:

Tn,m ≤ Tn−1,mFn−1,m; Tn,m ≤ Tn,m−1Fn,m−1;

Fn,m ≤ Fn−1,m + j; Fn,m ≤ Fn,m−1 + j;
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Since

Dξfx,j(ξ) = Dξffj0x
(ξ) ◦ fx,j−1(ξ)Dξffj−10 (x)(ξ) ◦ fx,j−2(ξ) · · ·Dξfx(ξ)

we have that F0,1 = j, T0,1 = 1. Hence, we obtain from the recursion relations that
Fn,m ≤ (n+m)j and, therefore, Tn,m ≤ ((n+m)− 1)!jn+m.

In this case, however, we have to observe that there are factors in the terms that can
be bounded by λ̃. Indeed, these factors are, in some sense rather abundant.

For instance, each of the factors in the derivative Dξfx,j(ξ) above can be bounded by

λ̃ so that we have ||Dξfx,j(ξ)||C0(U) ≤ λ̃j.
We observe that, when we take derivatives (with either x or ξ) we obtain a sum of

terms in which only one of the factors is affected.
Therefore, we conclude that in the expression of Dn

xD
m
ξ fx,j(ξ) alluded before, each of

the terms contains at least j−m−n+1 factors in which the derivative with respect to
ξ is of first order.

We obtain that, therefore, each of the terms is bounded by λ̃j−m−n+1µ̃(n+m)j. We
therefore, obtain the desired bounds (38) by multiplying the upper bound for each of
the terms by the upper bound on the number of terms. ¤

The bound (36) is an easy consequence of Proposition 16.
It follows by induction (or by Faa-Di-Bruno formula) that

Dm
x fx,j(Φ(x)) =

∑

m1+m2=m

Cm1,m2
Dm1

x Dm2

ξ fx,j(ξ)|ξ=Φ(x)Pm1,m2

where Cm1,m2
is a combinatorial coefficient and Pm1,m2

is a polynomial on the derivatives
of Φ up to orderm. We call attention that the combinatorial coefficients are independent
of j. For the purposes of this calculation we are treating fx,j as a single function.

Therefore, we have

(39) ||Dm
x fx,j(Φ(x))||C0(U) ≤ Cjm(λ̃µ̃m)j

where C depends on the Cm norm of Φ and the combinatorial coefficients, but is inde-
pendent of j.

Coming back to the proof of inequality (36), we compute the derivatives of the ex-
pression Ψ(f j0 (x), fx,j(Φ(x))) and see that most of the terms that we obtain are already
considered in Proposition 16 or in (39). The terms not considered will exhibit cancella-
tions with the derivatives of Ψ(f j0 (x), 0)).

We will do first the case of first derivatives explicitly. This will be the basis of the
induction.

DxΨ(f j0 (x), fx,j(Φ(x))) = (D1Ψ)(f j0 (x), fx,j(Φ(x)))Dxf
j
0 (x)

+ (D2Ψ)(f j0 (x), fx,j(Φ(x)))Dxfx,j(Φ(x)))(40)

The second term of (40) above is controlled in (39).

|(D2Ψ)(f j0 (x), fx,j(Φ(x)))Dxfx,j(Φ(x)))| ≤ C||Ψ||C1(U)j(λ̃µ̃)j
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For the first term, we note that DxΨ(f j0 (x), 0)) = (D1Ψ)(f j0 (x), 0))Dxf
j
0 (x), so that, by

the mean value theorem and Proposition 16

|(D1Ψ)(f j0 (x),fx,j(Φ(x)))Dxf
j
0 (x)− (D1Ψ)(f j0 (x), 0))Dxf

j
0 (x)|

≤ ||Ψ||C2(U)||fx,j ◦ Φ||C0(Λ)||Dxf
j
0 ||C0(U)

≤ ||Ψ||C2(U)j(λ̃µ̃)j

These last two bounds imply immediately inequality (36) for k = 1.
For higher derivatives, we note that all the derivatives of the second term in (40)

satisfy the desired bounds, so these terms are dealt with.
Hence, when we take higher derivatives, we see that the only terms that we have not

shown to satisfy bounds of the desired type are terms in which the second argument of
Ψ is not differentiated. The collection of these terms is of the form:

(41)
∑

k=i1+···+ik

Ck,i1,...,ik(D
i1
1 Ψ)(f j0 (x), fx,j(Φ(x)))D

i2
x f

j
0 (x) · · ·Dik

x f
j
0 (x)

The combinatorial coefficients Ck,i1,...,ik are the same coefficients that appear in the

Faa-di-Bruno expansion of Dk
xΨ(f j0 (x), 0)). Namely,

Dk
xΨ(f j0 (x), 0)) =∑

k=i1+···+ik

Ck,i1,...,ik(D
i1
1 Ψ)(f j0 (x), 0)D

i2
x f

j
0 (x) · · ·Dik

x f
j
0 (x)

Therefore, we see that

Dk
xΨ(f j0 (x), fx,j(Φ(x)))−Dk

xΨ(f j0 (x), 0)) =∑

k=i1+···+ik

Ck,i1,...,ik

[
(Di1

1 Ψ)(f j0 (x), 0)− (Di1
1 Ψ)(f j0 (x), fx,j(Φ(x)))

]
·

·Di2
x f

j
0 (x) · · ·Dik

x f
j
0 (x)

+O(||Ψ||Ck(U)j
k(λ̃µ̃k)j

We can use the mean value theorem and (39) for m = 0, to obtain

|(Di1
1 Ψ)(f j0 (x), 0)− (Di1

1 Ψ)(f j0 (x), fx,j(Φ(x)))| ≤ C||Ψ||Ck+1(U)λ̃
j

The other factors are bounded in Proposition 16.

4. A geometric framework for a perturbative calculation of the

scattering map

In the applications in [DLS00, DLS03, DLS06a, DLS06b] the scattering map was
computed perturbatively in several models.

The goal of this section is to present a geometrically natural set up for a perturbative
calculation of the scattering map which will be carried out in next section. As we will see,
the final results in Theorem 32 and Theorem 33 are a generalization and simplification
of several results that go under the name of Melnikov theory.

There are two basic ingredients in our calculations that will be developed along this
section. First, the theory of normally hyperbolic invariant manifolds shows that the
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scattering map depends smoothly on parameters. Second, a family of (exact) symplectic
mappings σε is conveniently described by observing that d

dε
σε is a Hamiltonian vector

field which, of course, is determined by just a Hamiltonian function.
Along this section we discuss the theory of persistence of normally hyperbolic invariant

manifolds and the deformation theory of symplectic mappings. This section does not
contain proofs but refers to the literature. The more experienced reader may want to
skip them except to get familiar with our notation.

4.1. Deformation theory. Deformation theory was introduced in singularity theory
[TL71] but soon was used in volume and symplectic geometry [Mos65, Wei79, Ban78].
In [LMM86, BLW96] we can find applications to dynamical systems and normal form
theory which are particularly close to our applications.

Let N,M be two connected manifolds. In some applications later, it could happen
that N =M , but in some other applications, N and M may have different dimensions.

When N,M are assumed to be symplectic (respectively exact symplectic) we will
denote the symplectic forms on N,M by ωN , ωM (respectively ωN = dαN , ωM = dαM).

Given a Cr family of one to one mappings

fε : N →M

that is, the map (x, ε) 7→ fε(x) is a Cr map in all its arguments for r ≥ 1, we can define
vector fields Fε by

(42)
d

dε
fε = Fε ◦ fε

Note that Fε = ( d
dε
fε) ◦ f−1ε is a vector field defined only on fε(N).

If fε is C
r, r ≥ 1, we can determine a unique Fε which is Cr−1. Conversely, from the

theory of ODE’s, given f0 ∈ Cr and Fε ∈ Cr, as above, we can find a unique fε ∈ Cr

satisfying (42).
In what follows, we will assume that the regularity is high enough so that we can

identify fε with the pair (f0,Fε).
One should heuristically think of Fε as infinitesimal deformations.
We will refer to Fε as the generator of the family fε. We will use the convention that,

given a family denoted by italic letters fε, its generator will be denoted the same letter
in calligraphic capitals.

A perturbative calculation of the family fε will be for us, a prescription to compute
Fε.
Remark 17. One could think that higher order perturbation theory provides with a way
of computing d

dε
Fε, d2

dε2
Fε, etc. We note, however, that in the case that fε(N) is an strict

submanifold of M of positive codimension it could well happen that fε(N)∩ fε̃(N) = ∅
when ε 6= ε̃. Hence, the vector fields Fε have disjoint domains. Of course, one can
make a geometrically natural definition of these higher derivatives, but it is not quite
straightforward.

A Proposition which will be very useful for us is the following

Proposition 18. If fε : N →M and gε :M → V are one to one mappings and Fε and
Gε are their generators, we have:
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(1) If we define hε = gε ◦ fε, we have that its generator Hε is given by

(43) Hε = Gε + (gε)∗Fε
where (gε)∗ is the push-forward:

(44) (gε)∗Fε = Dgε ◦ g−1ε Fε ◦ g−1ε = (DgεFε) ◦ g−1ε .

(2) If gε ◦ fε = Id then

(45) Gε + (gε)∗Fε = 0

The proof of the first item of Proposition 18 is a simple computation. The second
item is a consequence of (43) and allows us to compute the generator of the inverses of
a family of maps.

It will be important for us to recall that the definition of the push-forward of vector
fields (44) does not require that gε is a diffeomorphism, but only one to one on fε(N).

Note that Hε is defined on hε(N) = gε(fε(N)) ⊂ gε(M) so, it could well happen that
Gε is defined in a larger set than Hε.

Note that if fε is a smooth family so is dP fε . The function P fε is defined uniquely
up to additive constants. We will assume that these constants are chosen in such a way
that P fε is also smooth.

To study the relations with geometry, we are interested in studying conditions on Fε
that guarantee that fε remains symplectic (resp. exact symplectic) when f0 is.

Proposition 19. Let fε : N → M be a smooth family of one to one maps between
symplectic manifolds. We have:

(1) If f0 is symplectic, the necessary and sufficient condition for fε to be symplectic
is:

(46) diFεωM ∈ Kerf ∗ε

(2) If f0 is exact symplectic, the necessary and sufficient condition for fε to be exact
symplectic is that there exists a family of functions ψε : N →M such that:

(47) f ∗ε (iFεωM) = dψε

(3) In the case that fε are diffeomorphisms, we have:
(a) If f0 is symplectic, fε is symplectic if and only if

(48) diFεωM = 0

(b) If f0 is exact symplectic, fε is exact symplectic if and only if there exists a
family of functions Fε :M → R such that:

(49) iFεωM = dFε

Proof.

If f0 is symplectic, fε is symplectic if and only if d
dε
f ∗εωM = 0. Using Cartan’s magic

formula, we rewrite

d

dε
f ∗εωM = f ∗ε [−diFεωM − iFεdωM ]

= f ∗ε [−diFεωM ]



26 AMADEU DELSHAMS, RAFAEL DE LA LLAVE, AND TERE M. SEARA

Hence, fε remains symplectic if and only if f ∗ε [diFεωM ] = 0, which is condition (46).
In the case that fε is a diffeomorphism, the necessary and sufficient condition for fε to
verify (46) is (48).

In the case that f0 is exact symplectic, proceeding as before and recalling the definition
of the primitive of fε (17), we see that a necessary and sufficient condition for fε to be
exact symplectic is that

d

(
d

dε
P fε

)
=

d

dε
f ∗εαM = f ∗ε [−iFεdαM − diFεαM ]

That is

f ∗ε [iFεωM ] = d

[
− d

dε
P fε − f ∗ε iFεαM

]
= dψε

which is condition (47) with ψε = − d
dε
P fε − f ∗ε iFεαM .

In the case that fε is a diffeomorphism, this is equivalent to (49), if we take

(50) Fε = −(fε)∗
(
d

dε
P fε

)
− iFεαM

¤

Remark 20. If fε is an immersion and fε(N) has positive codimension (48) implies that
fε is symplectic, but it is not necessary. It suffices that diFεωM is in the kernel of f ∗ε .
As we will see in Lemma 30, this phenomenon happens in the study of deformations of
normally hyperbolic invariant manifolds.

Analogously, we remark that in the case that f ∗ε has a kernel, (47) remains a sufficient
condition for exactness of the deformation but it is not necessary.

For exact symplectic deformations, we will refer to Fε in (49) as the Hamiltonian for
fε (note, however that is defined uniquely up to additive constants). We will also use the
convention that the Hamiltonian for a family is denoted by the same letter in capitals.

The formula (43) simplifies enormously in the case that the two families are exact
and admit Hamiltonians.

Proposition 21. If fε : N →M and gε :M → V are exact symplectic diffeomorphisms
generated by their Hamiltonians Fε : M → R and Gε : V → R respectively, then we
have:

(1) If we define hε = gε ◦ fε, we have that its Hamiltonian Hε is given by

(51) Hε = Gε + Fε ◦ g−1ε
(2) If gε ◦ fε = Id then,

(52) Gε + Fε ◦ g−1ε = 0

In the case of families of exact symplectic diffeomorphisms fε, sometimes will be useful
to work with the primitive function of the family P fε . The next Proposition 22 gives us
the effect deformation of the primitive, and it is a direct consequence of (50).
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Proposition 22. If fε : N →M is a smooth family of exact symplectic diffeomorphisms
generated by its Hamiltonian Fε : M → R and P fε is its primitive, then we have the
following formula:

(53)
d

dε
P fε = −f ∗ε (αMFε + Fε)

4.2. Perturbation theory of normally hyperbolic invariant manifolds. The per-
turbation theory for normally hyperbolic invariant manifolds is a very classical subject
[Sac65, Fen72, HPS77, Pes04]. In this section we will just summarize the properties of
the parameterization method and obtain formulas for geometric objects, especially in
the symplectic case.

The goal of this section is to present a convenient framework for the perturbation
theory of invariant manifolds.

We recall that the standard perturbation theory of normally hyperbolic manifolds
shows that if f0 has a normally hyperbolic invariant manifoldsN , then there is a C1

open set of manifolds that also possess a normally hyperbolic invariant manifoldsΛf .
Furthermore, these manifolds are C1 close to the original one.

It follows from the above considerations using the implicit function theorem, that
given any map f in a the C1 neighborhood of f0, one can find a diffeomorphism k :
N → Λf in such a way that

(54) f ◦ k = k ◦ r
where k = N →M , r : N → N .

Remark 23. Note, however, that the solutions of (54) are far from unique. If k, r are
solutions of (54) and h : N → N is any diffeomorphism, we have

f ◦ (k ◦ h) = (k ◦ h) ◦ (h−1 ◦ r ◦ h)
so that

k̃ = k ◦ h
r̃ = h−1 ◦ r ◦ h

(55)

is also a solution of (54).
The idea is that k is a parameterization of the manifold Λ, r is the dynamics on

the manifold in the chosen coordinates, and h represents the possibility of changing
coordinates in the reference manifold N .

It is a classical result that the manifolds themselves are unique. Hence, all the solu-
tions of (54) can be obtained from a solution (k, r) by applying (55) with a conveniently
chosen h.

Remark 24. The study of equation (54) provides with an alternative way of establishing
the persistence, regularity etc. properties of invariant manifolds.

It is possible to show existence, regularity etc. of normally hyperbolic invariant man-
ifoldsby studying the functional analysis properties of (54). This method has several
desirable properties. For example, it can be used to validate numerical calculations and
it leads to efficient algorithms. See [HL06].
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For the purposes of this paper, it is enough to point out that the classical persistence
theory of normally hyperbolic invariant manifoldss implies the existence of solutions of
(54).

For the purposes of this paper, the use of (54) is very convenient since it is a geo-
metrically natural equation. Hence, it will be very easy to use it to study geometric
properties. Also, the geometric naturalness, will allow us to compute derivatives in a
very efficient manner.

Relatedly, one can study stable and unstable invariant manifolds by studying the
equation

(56) f ◦ ks,u = ks,u ◦ rs,u

where ks,u : Es,u → M and Es,u is a bundle over N , rs,u : Es,u → Es,u is a bundle map
and

ks,u(ξ, 0) = k(ξ)

rs,u(ξ, 0) = r(ξ)

D2k
s,u(ξ, 0)Es,u

ξ = Es,u
x

where Es
x, E

u
x are the stable and unstable spaces at the point x = k(ξ) in the usual

sense of the theory of normally hyperbolic invariant manifolds, see Definition 1.
The following is a reformulation of the classical results in the above language (see

[Fen72, HPS77]).

Theorem 25. Let fε : M → M be a Cr family of diffeomorphisms, r ≥ 2. Assume
that Λ ⊂ M is a normally hyperbolic invariant manifold for f0 with rates λ, µ as in

Definition 1. Then for any ` < min(r, | log λ|
log µ

) there exists an ε0 > 0 such that for |ε| < ε0
there exist C`−1 families kε, rε satisfying (54), and C` families ks,uε , rs,uε defined on the
unit ball bundle, satisfying (56).
Moreover, there is an open set U ⊃ k0(N) = Λ in such a way that the set Λε ≡ kε(N)

is a normally hyperbolic invariant manifold and verifies

Λε ≡ kε(N) =
⋂

n∈Z
fnε (U) ∩ U

The parameterizations kε, rε provided by Theorem 25 are non unique. We now
proceed to fix a suitable ones.

If fε, kε, rε satisfy (54), taking derivatives with respect to ε we obtain that their
generators (see Proposition 18) verify on kε(N) = Λε

(57) Fε + (fε)∗Kε = Kε + (kε)∗Rε

where

Rε : N → TN

Fε : M → TM

Kε : kε(N) = Λε → TM

If x ∈ Λε, by Definition 1, we have that

(58) TxM = Es,ε
x ⊕ Eu,ε

x ⊕ TxΛε
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If we define the projections Πs,ε
x , Πu,ε

x , Πc,ε
x associated to (58), we will call

Fα
ε (x) = Πα,ε

x Fε(x), Kα
ε (x) = Πα,ε

x Kε(x)

for α = s, u, c.
Due to the fact that (58) is invariant under fε we have that

Πα,ε ◦ (fε)∗ = (fε)∗ ◦ Πα,ε.

Writing (57) as

Fε = Kε − (fε)∗Kε + (kε)∗Rε ,

and taking projections over the splitting (58) we obtain that

Πα,εFε = Πα,εKε − Πα,ε(fε)∗Kε +Πα,ε(kε)∗Rε

for α = s, u, c. Since (kε)∗Rε is tangent to the invariant manifold Λε, (57) is equivalent
to

F s
ε = Ks

ε − (fε)∗Ks
ε

Fu
ε = Ku

ε − (fε)∗Ku
ε

F c
ε = Kc

ε − (fε)∗Kc
ε + (kε)∗Rε.

(59)

We know that kε, rε are not unique. A particularly useful choice of them is the
following.

Theorem 26. There exist unique kε, rε such that

(60) Kc
ε = 0 .

Proof. If we fix (60), then the solution of the third equation in (59) is clearly F c
ε =

(kε)∗Rε. The Ks
ε, Ku

ε are determined uniquely by (59) because, by the definition of
the invariant bundles, a sufficiently large power of fε∗ is a contraction on Es

ε and a
sufficiently large power of f−1ε∗ is a contraction on Eu

ε . ¤

In some ways, one can think that the deformation thus selected is the most economi-
cal one since Kε, the change of the embedding, moves only on the stable and unstable
directions. As we will see in Section 4.3 when we discuss symplectic properties, the nor-
malization (60) is also natural from the symplectic point of view and leads to interesting
symplectic consequences.

Remark 27. The equation (57) can be used as the basis of a formal perturbation expan-
sion that can be carried out to high orders in ε.

If we assume that fε, Fε can be expanded in powers of ε, we obtain equating terms
of order n in ε

(61) (f0)∗Kn −Kn = Fn + (k0)∗Rn +An( )

where An is a polynomial expression involving K1, · · · ,Kn−1, R1, · · · ,Rn−1 and their
derivatives up to an order not bigger than n− 1.

Since Λ = k0(N) is a normally hyperbolic invariant manifold, we know that f0 verifies
(1), and then equation (61) admits C0 solutions provided that the right hand side is a
C0 function.
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Indeed, the theory of cohomology equations over hyperbolic systems shows that the
solutions are Cs when the right hand side is Cs and s ≤ `.

Hence, it follows that the perturbation theory (61) can be carried out up to the order
` which appears as a limit of the regularity of the manifold in Theorem 25.

An interesting particular case is when the motion given by f0 is integrable when
restricted to the invariant manifold Λ = k0(N). This situation occurs in the problems
considered in [DLS00, DLS03, DLS06a, DLS06b, GL06a, GL06b]. In such a case, the
dynamics by f0 on Λ has a simple expression and one can carry the perturbation theory
to all orders in ε less or equal than r. In those papers, one can find detailed perturbative
formulas to order m ≤ r with error estimates. However, there are examples that show
that, even if the family fε is analytic, the manifold Λε is not C∞ in ε and much less
analytic.

4.3. Symplectic properties of normally hyperbolic manifolds. In this section we
study the effect of symplectic properties of fε on the manifold Λε. Since the deformation
method deals very well with geometric properties [Ban78, LM87, BLW96], we will obtain
very simple formulas.

The main result of this section is:

Theorem 28. In the same conditions of Theorem 25, assume furthermore that

A) M is endowed with a symplectic form ω (resp. ω = dα is an exact symplectic
form) and ω|Λ is a symplectic form.

B) (fε)∗ω = ω (resp. (fε)∗α = α + dP f),

Let kε, rε be as in Theorem 26, that is, Kε satisfies (60). Then:

1) k∗εω ≡ ωN is a symplectic form (resp. exact symplectic form) in N . It is inde-
pendent of ε.

2) The vector field Rε is Hamiltonian (resp. exact Hamiltonian) with respect to
ωN . Moreover, its local Hamiltonian (resp. global Hamiltonian) is

(62) Rε = Fε ◦ kε
where Fε is a local Hamiltonian for fε (resp. a global Hamiltonian).

Formula (62) can be considered as a perturbative calculation of the map rε since it
allows us to compute the Hamiltonian of R0 = drε

dε
|ε=0 ◦ r−10 , the derivative of the map

rε, once we know the unperturbed manifold and F0 = dfε
dε
|ε=0 ◦ f−10 .

Remark 29. Note that the choice of the identification kε in such a way that it is sym-
plectic from N to Λε endowed with the restrictions of the global symplectic forms is a
generalization of the constructions in Section 8.1 of [DLS06a]. There, as Λ = N and k0
was simply the trivial inclusion, the system of coordinates on Λε was chosen in such a
way that k∗εω|Λε took the standard form, which in the case considered was just ω|N .
Proof

If ω is a 2-form on M invariant under fε, for every u, v ∈ TxM and n ∈ Z we have

(63) ω(x)(u, v) = ω(fnε (x))(Df
n
ε (x)u,Df

n
ε (x)v)
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Applying repeatedly (63) and taking into account the different rates of growth in
definition 1, we have that,

ω(x)(u, v) = 0

in the following cases

u ∈ Ec,ε
x = TxΛε, v ∈ Es,u,ε

x (or vice versa)
u ∈ Es,ε

x , v ∈ Es,ε
x

u ∈ Eu,ε
x , v ∈ Eu,ε

x

So that, with respect to the decomposition

TxM = Es,ε
x ⊕ Eu,ε

x ⊕ Ec,ε
x

The symplectic form ω(x) is represented by a matrix

(64)

( 0 ωsu 0
−ωsu 0 0
0 0 ω|Ec

)

Since dω = 0 (resp. ω = dα) and Λε is an invariant manifold for fε we obtain
that dΛεω|Λε = 0 where dΛε denotes the exterior differential in Λε (resp. we have
ω|Λε = dΛεα|Λε).

Because of the openness of non-degeneracy and using that ω|Λ is a symplectic form,
and the stability properties of normally hyperbolic invariant manifolds, we obtain that
the perturbed normally hyperbolic invariant manifolds Λε are symplectic.

Hence, we can define a symplectic form ωε,N on N by

(65) ωε,N = k∗ε(ω|Λε)
Note that ωε,N depends on kε, which is not uniquely determined. Nevertheless, we

will not include the kε in the notation unless it can lead to confusion. In Lemma 30 we
will show that if kε is chosen to satisfy (60), ωε,N is constant. This reinforces the notion
that (60) is a very natural normalization to avoid the non-uniqueness in (63).

A consequence of (54) is that

(fε ◦ kε)∗ω = (kε ◦ rε)∗ω .

Therefore

k∗εf
∗
εω = r∗εk

∗
εω

using that f ∗εω = ω and the definition of ωε,N , we obtain

(66) ωε,N = r∗εωε,N

In other words, rε is a symplectic map with respect to the form ωε,N .
If ω is exact and f ∗ε is exact we have

k∗εf
∗
εα = k∗ε(α+ dP fε) = k∗εα + dN(k

∗
εP

fε)

Hence, as k∗εf
∗
εα = r∗εk

∗
εα, denoting αε,N = k∗εα,

(67) r∗εαε,N = αε,N + dN(k
∗
ε + dP fep

so that r∗ε is also exact symplectic.
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To prove that Rε = Fε ◦ kε is only a computation:

d(Fε ◦ kε) = k∗εdFε = k∗ε(iFεω|Λε)

= k∗ε(iFc
ε
ω|Λε) + iFuε ω|Λε + iFsεω|Λε)

= k∗ε(iFc
ε
ω|Λε) = ik∗εFc

ε
k∗εω = iRε

ωε,N

The only thing remaining to obtain Theorem 28 is the following:

Lemma 30. With the notations above, if we choose kε satisfying (60) as in Theorem 26,
we have that ωε,N is independent of ε, that is

ωε,N = ω0,N

Proof. We compute d
dε
ωε,N using Cartan’s “magic” formula

d

dε
ωε,N =

d

dε
k∗εω

= −k∗ε(iKε
dω + diKε

ω)

= −k∗εdiKε
ω

= −dNk∗ε iKε
ω

Now, we claim that
k∗ε iKε

ω = 0 .

We have that, by definition, the 1-form k∗ε iKε
ω acting on a vector v ∈ TxN is defined by

(k∗ε iKε
ω(x))v = (iKε

ω(kε(x))(dkε(kε(x))v) = ω(kε(x))(Kε(kε(x)), dkε(kε(x))v)

Now, we observe that, by (60)

Kε ◦ (kε(x)) ∈ Es
kε(x) ⊕ Eu

kε(x)

whereas
dkε(kε(x)) ∈ Ec

kε(x)

By (64) we obtain the desired result. ¤

5. Perturbative formulas for the scattering map

In this section we are going to study a Cr family of symplectic diffeomorphisms fε :
M → M such that f0 has a normally hyperbolic invariant manifold Λ such that ω|Λ is
non-degenerate and a homoclinic channel Γ verifying Definition 3, so that, there exists
a scattering map σ0 = σΓ : H− → H+ as in (10).

Then, if ε is small enough, the theory of normally hyperbolic invariant manifolds (see
Theorem 25) and the persistence of condition (5) ensures that there exist a normally
hyperbolic invariant manifold Λε and a homoclinic channel Γε and then it is possible to
consider the scattering map σε := σΓεε : H−

ε → H+
ε defined in some domain H−

ε ⊂ Λε

close to H−.
By Theorem 8 the scattering map σε defined in (10) is symplectic, so it is very natural

to develop formulas for the Hamiltonian that generates its deformation d
dε
σε.

Unfortunately, in doing so, we are faced with the annoyance that the domain of σε
is contained in Λε. Since Λε is a submanifold of positive codimension, it could happen
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that Λε is disjoint from Λε′ when ε 6= ε′, hence there is no common domain for all σε,
so that the d

dε
σε is not easy to interpret.

Fortunately, the cure of this annoyance is rather easy. We have shown in Theorems 26
and 28 that there is a unique symplectic parameterization kε between the reference
manifold N and the normally hyperbolic invariant manifold Λε. So, we consider

sε = k−1ε ◦ σε ◦ kε : (kε)−1(H−
ε ) ⊂ N −→ (kε)

−1(H+
ε ) ⊂ N

Hence, our goal in this section is to give formulas for the Hamiltonian function Sε
which determines the deformation Sε of the scattering map sε.

The main result of this section is Theorem 32, which contains formula (68) which
expresses the Hamiltonian Sε of the deformation of the scattering map sε in terms of
the orbit appearing in the connection, and the Hamiltonian Fε of the change of the map.
We note that the formula and the calculation leading to it are coordinate independent.

In Section 5.2 we derive formula (73) which expresses the primitive P sε of the de-
formation of the scattering map sε in terms of the primitive P fε of the change of the
map.

An analogous result to Theorem 32 for the case of Hamiltonian flows is provided in
Theorem 33. The proofs of theorems 32 and 33 are given respectively in sections 5.1
and 5.3, and some heuristic considerations relating the proofs of theorems 32 and 13 are
given in section 5.4.

Remark 31. From the point of view of applications it is very natural to study the Hamil-
tonian Sε. In [DLS00, DLS03, DLS06a, DLS06b] the mechanism of diffusion involved
comparing the inner dynamics of the map rε = k−1ε ◦ fε ◦ kε with the outer dynamics of
the scattering map sε. Roughly, one could get diffusion provided that the inner dynam-
ics and the scattering map were transversal. This comparison can be achieved in any
system of coordinates provided that we choose the same coordinates for both maps.

In Theorem 28 we computed the Hamiltonian for rε so that, the combination of
formula (62) for Rε and formula (68) for Sε will provide the desired comparison. In the
above papers one can find calculations up to first order in ε which agree with the ones
presented here. See Section 6 for a detailed comparison in the case of geodesic flows.

The main result of this section is

Theorem 32. Let fε :M →M be a Cr family of symplectic diffeomorphisms such that
f0 has a normally hyperbolic invariant manifold Λ such that ω|Λ is non-degenerate and
a homoclinic channel Γ verifying Definition 3, so that, there exists a scattering map
σ0 = σΓ : H− → H+ as in (10).
Assume also that the parameterization kε of the perturbed normally hyperbolic in-

variant manifold Λε verifies (60), and denote sε = k−1ε ◦ σε ◦ kε, where σε is the per-
turbed scattering map associated to the perturbed homoclinic channel Γε. Then, denoting
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ΓNε = fNε (Γε), the Hamiltonian for sε is given by

Sε = lim
N±→+∞

N−−1∑

j=0

Fε ◦ f−jε ◦ (ΩΓεε−)−1 ◦ σ−1ε ◦ kε − Fε ◦ f−jε ◦ σ−1ε ◦ kε

+

N+∑

j=1

Fε ◦ f jε ◦ (ΩΓεε+)−1 ◦ kε − Fε ◦ f jε ◦ kε

= lim
N±→+∞

N−−1∑

j=0

Fε ◦ f−jε ◦ (ΩΓεε−)−1 ◦ kε ◦ s−1ε − Fε ◦ kε ◦ r−jε ◦ s−1ε

+

N+∑

j=1

Fε ◦ f jε ◦ (ΩΓεε+)−1 ◦ kε − Fε ◦ kε ◦ rjε

(68)

In the case that our family of maps fε correspond to the time T flow of a Hamiltonian
vector field Hε of Hamiltonian Hε we can adapt the previous result to obtain a formula
for the Hamiltonian of the scattering map sε = sΓ,Hε , that was shown in (15) that is
independent of T .

Concretely, we have the following

Theorem 33. Let Φt,ε(x) be the flow of a Hamiltonian vector field of Hamiltonian Hε(x)
and consider the family given by the time T map of this flow, that is, fε(x) = ΦT,ε(x).
Assume that this map has a normally hyperbolic invariant manifold Λε and that its
parameterization verifies (60). Denoting by Sε the Hamiltonian of the deformation of
sε, it is given by

Sε = lim
T±→∞

∫ 0

−T−

dHε

dε
◦ Φu,ε ◦ (ΩΓεε−)−1 ◦ (σε)−1 ◦ kε

− dHε

dε
◦ Φu,ε ◦ (σε)−1 ◦ kε

+

∫ T+

0

dHε

dε
◦ Φu,ε ◦ (ΩΓεε+)−1 ◦ kε −

dHε

dε
◦ Φu,ε ◦ kε

(69)

Remark 34. We call attention to the similarities between the formulas (68) and (68)
and the formula (29). In Appendix A, we remark the analogy with the perturbative
formulas for the scattering matrix in quantum mechanics. Some heuristic reason which
can explain these similarities is discussed in Section 5.4

It is important to note that the sums and the integrals in (68) and (69) converge
uniformly together with several of their derivatives. The argument is the same as in the
discussion of theorem 13.

The formula (68) is closely related to the following formula, which is true for any
N−, N+ ∈ N:

(70) sε = k−1ε ◦ f−N+ε ◦ ΩΓ
N+
ε

ε+ ◦ fN++N−ε (ΩΓ
−N−
ε

ε− )−1 ◦ f−N−ε ◦ kε
The formula (70) is a consequence of the formula (9) for the wave operators.
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Formulas (68) and (69) are analogous to formula (91) in quantum mechanics in the
appendix.

5.1. Proof of Theorem 32. The proof will be based on studying (70), computing the
Hamiltonian of its deformation and taking limits when N± →∞.

One minor annoyance is that it is hard to adjust the domains because the wave
operators ΩΓεε± are defined in Γε and then, their domains depend on ε.

As it turns out, it is possible to introduce identification maps for all the Γn
ε with Γn0 ,

so that the calculation can be referred to the Γn
0 ’s. Even if this technology could be

interesting on its own right, we have followed another technically simpler route.
We will perform an extension of Ω

Γnε
ε± to open sets of the manifold M independent of

ε. This will allow us to consider the maps in (70) as defined in open sets of the whole
manifoldM and not only in Γnε . Then, applying Proposition 21 we will obtain a formula
for finite N±. When we take limits as N± →∞, we will obtain the desired formula (68).

In particular, the terms corresponding to the wave operators Ω
Γnε
ε± will disappear in the

limit as N± →∞.
We start the proof by establishing a technical extension result that we will use to

extend ΩΓεε±.
Recall that, by the λ-lemma, the manifolds Γn

ε are getting C l close to Λε when n →
±∞. The dependence on parameters is also C l.

Given a submanifold N let ρ > 0 be small enough such that its exponential mapping
is a local diffeomorphism in a neighborhood in any ball of radius ρ centered at any
x ∈ N .

We denote N̂ρ = {y ∈M | dist(y,N) < ρ}.
Proposition 35. Let (M,ω) be a symplectic manifold. Let N , Γn

ε ⊂ M be symplectic
submanifolds. Assume that:

a) there exist Cr families of maps hnε : N → Γnε such that ‖hnε‖Cr ≤ δ. (The
Cr-norm is understood in all the variables including ε.)

b) hnε are symplectic from N to Γnε .
c) ‖∂εhnε‖Cr−1 → 0, when n→∞ (as n→ −∞)

Then, it is possible to find ĥnε : N̂ρ →M such that:

i) ĥnε |N = hnε
ii) ‖ĥnε‖Cr(N̂ρ)

≤ 2δ

iii) ‖∂εĥnε‖Cr−1(N̂ρ)
→ 0, when n→∞ (or n→ −∞)

iv) ĥε are symplectic

Proof. Given ρ > 0 small enough, as TxM = TxN ⊕E⊥x , (where we use E⊥x ≡ Es
x ⊕Eu

x ,

we have that given p ∈ N̂ρ, there exists x ∈ N and v ∈ E⊥x such that expx(v) = p.

We can extend the families of diffeomorphisms hnε to some families h̃nε satisfying i), ii),
iii) using e.g., the identifications given by the exponential mapping and the Levi-Civita
connection

h̃nε (expx(v)) = exphnε (x)(ṽ)



36 AMADEU DELSHAMS, RAFAEL DE LA LLAVE, AND TERE M. SEARA

where ṽ denotes the transportation of v along the shortest geodesic connecting x to
hnε (x).

Of course, the resulting mapping will not be symplectic. Nevertheless we note that

‖(h̃nε )∗ω − ω‖Cl−1(N̂ρ)
= O(ρ)

Now, we can apply the global Darboux theorem with dependence on parameters
[BLW96] to find families of diffeomorphisms gnε such that

(gnε )∗(h̃
n
ε )∗ω = ω

The desired diffeomorphism is ĥnε = gnε ◦ h̃nε . ¤

Denoting hnε,± = (Ω
Γnε
ε±)

−1 ◦ kε we now, by Lemma 9, Theorem 28 and the λ- lemma
applied to the normally hyperbolic invariant manifold Λε, that the diffeomorphisms hnε,±
verify the hypothesis of Proposition 35. Therefore, we obtain extensions ĥnε and (ĥnε )

−1

of their inverses.
Using this notation, formula (70) reads:

sε = r−N+ε ◦ (kε)−1 ◦ ΩΓ
N+
ε

ε+ ◦ fN++N−ε (ΩΓ
−N−
ε

ε− )−1 ◦ kε ◦ r−N−ε

= r−N+ε ◦ (hN+ε+ )−1 ◦ fN++N−ε h
−N−
ε− ◦ r−N−ε

As the extensions of h
N±
ε± coincide with the original functions in their domain of

definition N , we have that the formula for the scattering map does not change if we use
the extensions ĥ

N±
ε± . So we have the diffeomorphism sε : N → N defined by

(71) sε = r−N+ε ◦ (ĥN+ε+ )−1 ◦ fN++N−ε ◦ ĥ−N−ε− ◦ r−N−ε

Applying repeatedly Proposition 21 to formula (71), we obtain that the Hamiltonian
of sε is

Sε =−
(
Rε ◦ rN+ε + · · ·+Rε ◦ rε

)

−HN+
ε+ ◦ ĥN+ε+ ◦ rN+ε

+
(
Fε + Fε ◦ f−1ε + · · ·+ Fε ◦ f−N+−N−+1ε

)
◦ ĥN+ε+ ◦ rN+ε

+H
N−
ε− ◦ f−N−−N+ε ◦ ĥN+ε+ ◦ rN+ε

−
(
Rε ◦ rN−ε + · · ·+Rε ◦ rε

)
◦ (ĥ−N−ε− )−1 ◦ f−N−−N+ε ◦ ĥN+ε+ ◦ rN+ε

As the parameterization for the invariant manifold verifies normalization (60), we
know that the Hamiltonian of the restricted map rε is given in formula (62) by Rε =

Fε ◦ kε, and using that Sε is defined in N , we have that ĥnε± = hnε± = (Ω
Γnε
ε±)

−1 ◦ kε, and
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using also formula (9) for the wave operators Ω
Γnε
ε±, we can obtain easily that

Rε ◦ rnε = Fε ◦ kε ◦ rnε
= Fε ◦ fnε ◦ kε

ĥ
N+
ε+ ◦ rN+ε = (ΩΓ

N+
ε

ε+ )−1 ◦ kε ◦ rN+ε
= (ΩΓ

N+
ε

ε+ )−1 ◦ fN+ε ◦ kε
= fN+ε ◦ (ΩΓεε+)−1 ◦ kε

f−N−−N+ε ◦ ĥN+ε+ ◦ rN+ε = f−N−−N+ε ◦ fN+ε ◦ (ΩΓεε+)−1 ◦ kε
= f−N−ε ◦ (ΩΓεε+)−1 ◦ kε

(ĥ
−N−
ε− )−1 ◦ f−N−−N+ε ◦ ĥN+ε+ ◦ rN+ε = k−1ε ◦ ΩΓ

−N−
ε

ε− ◦ f−N−ε ◦ (ΩΓεε+)−1 ◦ kε
= (kε)

−1 ◦ f−N−ε ◦ ΩΓεε− ◦ (ΩΓεε+)−1 ◦ kε
= (kε)

−1 ◦ f−N−ε ◦ σ−1ε ◦ kε
And we obtain the following formula, for any N±

Sε =

N+∑

j=1

Fε ◦ f jε ◦ (ΩΓεε+)−1 ◦ kε − Fε ◦ f jε ◦ kε

+

N−−1∑

j=0

Fε ◦ f−jε ◦ (ΩΓεε−)−1 ◦ σ−1ε ◦ kε − Fε ◦ f jε ◦ σ−1ε ◦ kε

− H
N+
ε+ ◦ fN+ε ◦ (ΩΓεε+)−1 ◦ kε

+ H
N−
ε− ◦ f−N−ε ◦ (ΩΓεε+)−1 ◦ kε

Now we observe that, by property (iii) in Proposition 35, the Hamiltonians H
N±
ε± ,

corresponding to the projections ĥ
N±
ε± , which are the extensions of h

N±
ε± = (ΩΓ

N±
ε

ε± )−1 ◦ kε
converge to zero in the sense of families. Then, taking the limit when N± → ∞ we
obtain the desired formula (68).

The second expression for the Hamiltonian in formula (68) is a simple consequence
of the fact that σε ◦ kε = kε ◦ sε and that fε ◦ kε = kε ◦ rε.
5.2. The primitive function of the scattering map sε. In Theorems 13 and 14
we have obtained formulas for any scattering map σ on a normally hyperbolic invariant
manifold. On the other hand, in applications, it is useful to deal with families of maps
(or flows) and invariant manifolds. As we have already mentioned in Section 4.2, to deal
with functions defined in families of mappings, it is natural to use a parameterization
to reduce the family of maps to maps defined on a reference manifold. Moreover, the
applications to diffusion in [DLS06a] rely on the interplay between the scattering map
and the dynamics restricted to the manifold.

Therefore, the goal of this section is to obtain expressions for the primitive function
of the map sε, which is the expression of the scattering map in the reference manifold.
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The primitive function of the inner map rε is very easy from the properties of restric-
tion. Recall that, since k∗αΛ = αN (see Theorem 28), we have P kε = 0. Therefore,
using the formula (26) for the primitive of compositions, we have:

(72) P rε = P fε ◦ kε.
Proceeding as in Theorems 13 and 14 we obtain the primitive for sε, using (71) instead
of (32). This gives, in the case of families of maps fε:

P sε = lim
N±→∞

N+−1∑

j=0

P fε ◦ f jε ◦ (ΩΓεε+)−1 ◦ sε ◦ kε − P fε ◦ f jε ◦ sε ◦ kε

+

N−∑

j=1

P fε ◦ f−jε ◦ (ΩΓεε−)−1 ◦ kε − P fε ◦ f−jε ◦ kε

(73)

and in the case of a family of flows Φt,ε:

P sε = lim
T±→∞

∫ 0

−T−
(αHε +Hε) ◦ Φt,ε ◦ (ΩΓε−ε)−1 ◦ (sε)−1 ◦ kε

− (αHε +Hε) ◦ Φt,ε ◦ (sε)−1 ◦ kε

+

∫ T+

0

(αHε +Hε) ◦ Φt,ε ◦ (ΩΓεε+)−1 ◦ kε
− (αHε +Hε) ◦ Φt,ε ◦ kε

(74)

There are two ways to obtain the derivative of the primitive P sε with respect to ε.
We can differentiate this formula (74) with respect to ε or we can apply proposition
(53) to sε to obtain the derivative of its primitive in terms of its hamiltonian Sε given
in Theorem 68. Of course, both formulas give the same result. In general, when we
compute the derivative of a sum (or an integral) there are two terms. One due to the
change of the function being integrated and another due to the change of the orbit
of intersection. The variational Hamilton principle (see Section 3.4.3) tell us that this
second term vanishes. So that, for instance, in the case of flows, one obtain:

(
d

dε
P sε)|ε=0 = lim

T±→∞

∫ 0

−T−

d

dε
(αHε +Hε)|ε=0 ◦ Φt,0 ◦ (ΩΓ0−0)−1 ◦ (s0)−1 ◦ k0

− d

dε
(αHε +Hε)|ε=0 ◦ Φt,0 ◦ (s0)−1 ◦ k0

+

∫ T+

0

d

dε
(αHε +Hε)|ε=0 ◦ Φt,0 ◦ (ΩΓ00+)−1 ◦ k0

− d

dε
(αHε +Hε)|ε=0 ◦ Φt,0 ◦ k0

(75)

5.3. The case of flows: proof of Theorem 33. In this section we adapt formula
(68) for the case of flows. First, we need to know the hamiltonian Fε of the deformation
in the case that our family fε corresponds to the time T flow of a Hamiltonian vector
field Hε of Hamiltonian Hε. Concretely, we have the following
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Proposition 36. Let Φt,ε(x) be the flow of a Hamiltonian vector field of Hamiltonian
Hε(x) and consider the family given by the time T map of this flow, that is, fε(x) =
ΦT,ε(x). Then, the Hamiltonian FT,ε of its deformation is given by

(76) FT,ε =

∫ T

0

d

dε
Hε ◦ Φs−T,εds

Proof. We start from the consideration that the flow Φt,ε verifies the corresponding
differential equation

d

dt
Φt,ε = Hε ◦ Φt,ε

Φ0,ε = Id.

We will assume that the flow is differentiable enough with respect to the point and with
respect to parameters.

Moreover, we have formulas for the derivatives. We denote by · the derivative with
respect to ε andD the derivative with respect to x. So, we have the variational equations:

d

dt
Φ̇t,ε = (DHε ◦ Φt,ε)Φ̇t,ε + Ḣε ◦ Φt,ε

d

dt
DΦt,ε = (DHε ◦ Φt,ε)DΦt,ε

The proof of (76) is based on thinking on DΦt,ε as a set of fundamental solutions of
the homogeneous equation associated to the first non-homogeneous equation.

Therefore, we can use the formula of “variation of parameters” obtaining the solution
Φ̇t,ε, using that Φ̇0,ε = 0 and that (DΦt,ε)

−1 = DΦ−t,ε ◦ Φt,ε:

Φ̇t,ε =

∫ t

0

(DΦt−s,ε ◦ Φs,ε)Ḣε ◦ Φs,εds

Or, what is the same

Φ̇t,ε =

(∫ t

0

(Φt−s,ε)∗Ḣεds

)
◦ Φt,ε

So that the deformation vector field for Φt,ε is
∫ t

0

(Φt−s,ε)∗Ḣεds

In the Hamiltonian case, to compute the Hamiltonian we just compute the contraction
with the symplectic form ω. Using the linearity of the contraction and that iHε

ω = dHε,
we have

i∫ t
0
(Φt−s,ε)∗Ḣεds

ω =

∫ t

0

i(Φt−s,ε)∗Ḣε
ωds =

∫ t

0

(Φt−s,ε)∗iḢε
ωds

=

∫ t

0

(Φt−s,ε)∗dḢεds = d

∫ t

0

(Φt−s,ε)∗Ḣεds

= d

∫ t

0

Ḣε ◦ Φt−s,εds

¤
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Once we know the Hamiltonian of the deformation of the time T map of a flow
fε = ΦT,ε, we can consider the corresponding scattering map σε = σΓ,Hε , that was
shown in Section 2.4.1 that is independent of T . We compute the Hamiltonian Sε of its
deformation simply by “translating” formula (68) for this case and using the following
facts

FT,ε ◦ ΦjT,ε =

∫ T

0

dHε

dε
◦ Φs−T,ε ◦ ΦjT,εds =

∫ jT

(j−1)T

dHε

dε
◦ Φu,εdu

FT,ε ◦ Φ−jT,ε =

∫ T

0

dHε

dε
◦ Φs−T,ε ◦ Φ−jT,εds =

∫ −jT

−(j+1)T

dHε

dε
◦ Φu,εdu

N−−1∑

j=0

FT,ε ◦ Φ−jT,ε =

∫ 0

−TN−

dHε

dε
◦ Φu,εds

N+∑

j=1

FT,ε ◦ ΦjT,ε =

∫ TN+

0

dHε

dε
◦ Φu,εds

With these expressions one easily obtains formula (69).

5.4. Heuristic considerations about the proof of Theorems 32 and 13. We
think that it is quite remarkable that the formulas derived in Theorems 32 and 13
are so similar. Indeed, it is even much more remarkable that very similar formulas
appear in other contexts. Notably, these formulas are very similar to the formulas
for the convergent Melnikov functions [Rob88, Tre94, Eli94, DR97], and for the other
quantities appearing in variational calculus, [Mat96]. In Appendix A we also note
the similarities between these formulas and the perturbative calculations of Scattering
matrices in quantum mechanical scattering theory.

In the following, we present some heuristic argument – still not a proof – that argues
that, all the geometrically natural formulas are determined uniquely up to constant fac-
tors. This would imply that the geometric theories and the variational methods have to
agree at least in the perturbative cases.

The scattering map can be considered approximately as the junction of three long
trajectories: one going backwards N− units of time along the manifold Λε, a second one
going forward N− +N+ units of time along the homoclinic trajectory in Γε and a third
orbit going backwards N+ units of time along the manifold Λε.

The following heuristic argument (not a complete proof) will perhaps make reasonable
why one can expect formulas such as (68) or (29).

We make the following observations:

1. By definition, the first order term in perturbation theory has to be linear in the
first order term of the perturbing transformation.

2. The first order perturbative term has to depend only on the values of the per-
turbation on the unperturbed obit.

3. From the previous two items, it is reasonable to conclude that the Hamiltonian
S0 is expressed as a linear combination of the F0 evaluated at the points of the
unperturbed orbit.
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4. By the invariance of the origin of time, we note that the coefficients have to
be independent of the index in the homoclinic orbit, and in the forward and
backwards orbits.

5. If the coefficients on the forward and backward orbits do not agree up to a sign
we do not obtain a convergent sum.

The above heuristic considerations determine the formula up to a constant multiple.
Of course, these arguments, even if we hope illuminating, are not a complete proof.
For example, there are other linear functionals on f j0 (x) besides

∑
f j0 (x)wj (e.g. func-

tionals “at infinity” such limits, asymptotic averages).
In item 5, we assume that there is indeed a well defined formula.
Perhaps the above argument can be completed into a complete proof.
We point that the above considerations apply not only to the proof of Theorem 32

and Theorem 13.

6. Example: Scattering maps in geodesic flows

In this section we will describe in greater detail the scattering map of a quasi-
periodically perturbed geodesic flow considered in [DLS00, DLS06b].

For this particular example, we will show the existence of a homoclinic channel (see
Definition 3) that will allow us to define its associated scattering map. In the unper-
turbed situation we will see that the scattering map of the geodesic flow can be globalized
to the whole manifold Λ. Nevertheless, in the perturbed case this globalization leads to
monodromies so that, the scattering map is not well defined in the whole Λ.

We deal with a n-dimensional manifold M , and we will consider a Cr metric g on it
(r sufficiently large).

We recall that a geodesic “λ” is a curve “λ” : R → M , parameterized by arc length
which is a critical point for the length between any two points. It is also possible to
consider a dynamical system given by the geodesic flow in S1M , the unit tangent bundle
of M . We denote the parameterized curve in S1M corresponding to the geodesic “λ”
as λ(t), and we denote by λ̂ = Range(λ) ⊂ S1M.

We will assume that the metric g verifies:

H1: There exists a closed geodesic “Λ” such that its corresponding periodic orbit
Λ̂ under the geodesic flow is hyperbolic.

H2: There exists another geodesic “γ” such that γ̂ is a transversal homoclinic orbit
to Λ̂.

That is, γ̂ is contained in the intersection of the stable and unstable manifolds
of Λ̂, W s

Λ̂
, W u

Λ̂
, in the unit tangent bundle.

Moreover, we assume that the intersection of the stable and unstable manifolds
of Λ̂ is transversal along γ̂. That is

(77) Tγ(t)W
s
Λ̂
+ Tγ(t)W

u
Λ̂
= Tγ(t)S1M, t ∈ R.

We will assume without loss of generality and just to avoid typographical clutter that
the period of Λ is 1. This, clearly, can be achieved by choosing the units of time.
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We recall that the hyperbolicity of Λ̂ implies that there exist C > 0, β0 > 0 such that

(78) dist (“Λ”(s+ a±), “γ”(s)) ≤ Ce−β0|s|, as s→ ±∞.
Standard perturbation theory for periodic orbits of ordinary differential equations (see
e.g. [CL55]) shows that the asymptotic phase shift ∆ := a+ − a− exists and is unique
modulo an integer multiple of the period of “Λ”.

We recall that the geodesic flow is Hamiltonian in T∗M and the Hamiltonian function
is

H0(p, q) =
1

2
gq(p, p),

where gq is the metric in T∗M . We will denote by Φt this geodesic flow.
Since the energy H0 is preserved and gq is not degenerate, for each E the energy level

ΣE = {(p, q) , H0(p, q) = E} is a (2n − 1)-dimensional manifold invariant under the
geodesic flow.

Given an arbitrary geodesic “λ” : R→M we will denote

λE(t) = (λpE(t), λ
q
E(t))

the orbit such that H0(λE(t)) = E, Range(“λ”) = Range(λqE) and “λ”(0) = λqE(0). It
is easy to check that the above conditions determine uniquely the orbit of the geodesic
flow in the cotangent bundle corresponding to a geodesic “λ”. We use λ̂E to denote the
range of the orbit λE(t).

It is very important to recall that a characteristic property of the geodesic flow is that
the orbits rescale with energy as

(79) (λpE(t), λ
q
E(t)) =

(√
2Eλp1/2

(√
2Et

)
, λq1/2

(√
2Et

))
.

Since Λ1/2 has period 1 (with our conventions that the geodesic “Λ” is normalized to

have length 1), ΛE has period 1/
√
2E .

The hypotheses H1, H2 of the geodesic flow when formulated in the Hamiltonian
formalism for the Hamiltonian H0 translate into:

H1’: For any E > 0, there exists a periodic orbit ΛE(t), as in (79), of the Hamil-

tonian H0 whose range Λ̂E is a normally hyperbolic invariant manifold in the
energy surface

(80) ΣE := {(p, q) ∈ T∗M , H0(p, q) = E}.
H2’: The stable and unstable manifolds W s,u

Λ̂E
of Λ̂E are n-dimensional, and there

exists a homoclinic orbit γE(t). That is, the range of γE satisfies

γ̂E ⊂
(
W s
Λ̂E
\ Λ̂E

)
∩
(
W u
Λ̂E
\ Λ̂E

)
.

Moreover, this intersection is transversal as intersection of invariant manifolds
in the energy surface ΣE along γ̂E.

As a consequence of the hyperbolicity of Λ̂1/2, we have that, analogously to (78), for
some a± ∈ R, there exist C > 0 and an exponential rate β0 > 0, such that

(81) dist (Λ1/2(t+ a±), γ1/2(t)) ≤ Ce−β0|t|, as t→ ±∞.
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We consider any fixed value E0 > 0, and introduce the manifold Λ =
⋃

E≥E0 Λ̂E for
all values of the energy larger than E0 which is a 2-dimensional normally hyperbolic
invariant manifold with boundary, diffeomorphic to [E0,∞) × T1. Moreover, its stable
and unstable manifolds, W s

Λ and W u
Λ , are (n + 1)-dimensional manifolds diffeomorphic

to [E0,∞)× T1 × Rn−1, intersecting transversally along γ, defined by:

γ =
⋃

E≥E0

γ̂E ⊂ (W s
Λ \ Λ) ∩ (W u

Λ \ Λ)

which is diffeomorphic to [E0,∞)× R.
By inequality (81) and the rescaling properties (79) we have:

(82) dist

(
ΛE

(
t+

ϕ0 + a±√
2E

)
, γE

(
t+

ϕ0√
2E

))
≤ C
√
2Ee−β0

√
2E|t| as t→ ±∞.

Given a point x ∈ γ, it can be written as x = γE(τ) = γE(
ϕ√
2E

) for some (ϕ,E) ∈
R × [E0,∞]. Then, by (82) the corresponding x± ∈ Λ such that x ∈ W s

x+
∩W u

x−
are

given by

x± = ΛE

(
ϕ+ a±√

2E

)
,

so that, the definition (4) of the wave operators gives that Ω±(x) = x±. Indeed, one can

easily see that if we move x− = ΛE

(
ϕ+a−√
2E

)
around ΛE up to ΛE

(
ϕ+a−+1√

2E

)
= x−, then

(Ω−)
−1(x−) moves from one point x = γE(

ϕ√
2E

) to its image under the time one map

γE(
ϕ+1√
2E

).

In order to make this monodromy more apparent, by using that ΛE is 1/
√
2E periodic,

if we take

xn = γE

(
ϕ+ n√

2E

)
= Φn/

√
2E(x),

property (82) gives
Ω±(x

n) = xn± = x±

so that the maps Ω±|γ : γ → Λ are not global diffeomorphisms.

In order to study the monodromy of these maps, for any t ∈ R, we define

Γt =

{
γE

(
ϕ+ t√
2E

)
, |ϕ| < 1/2, E ≥ E0

}

which are homoclinic channels, that is

ΩΓ
t

± : Γt → H t
± = ΩΓ

t

± (Γt)

are global diffeomorphisms.

As ΛE is 1/
√
2E periodic, the sets H t

± can be written as H t
± = Λ\∪E≥E0ΛE(

1/2+t+a±√
2E

).

For any fixed t, we can construct the scattering map σt = ΩΓ
t

+ (ΩΓ
t

− )−1, which assigns

x+ = ΛE(
ϕ+t+a+√

2E
) to x− = ΛE(

ϕ+t+a−√
2E

), for (ϕ,E) ∈ (−1/2, 1/2)× [E0,∞).

It is remarkable that the scattering map in this case is globally defined in the whole
manifold γ because the monodromy of (Ω−)

−1 is exactly cancelled out by applying to it
Ω+.
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The monodromy of (Ω−)
−1 is precisely an application of Φ1, the time 1 map of the

geodesic flow. Since Ω+ ◦Φ1 = Ω+ we see that σ has no monodromy and is globally well
defined in Λ for the geodesic flow.

Concretely, we observe that σt = σt
′

in H t
− ∩ H t′

−, and that ∪t∈RH
t
− = Λ, so it is

possible to define globally the scattering map

σ : Λ → Λ

x− = ΛE

(
ϕ+ a−√

2E

)
7→ x+ = ΛE

(
ϕ+ a+√

2E

)

We use now the notations of Section 4.2 for the parameterizations of Λ and introduce
the (symplectic) system of coordinates (ϕ, J), J =

√
2E in the reference manifold N =

[E0,∞] × T, so that x = k(ϕ, J) = ΛE(ϕ/
√
2E). The scattering map, when written in

these coordinates, is given by:

s : N −→ N(83)

(ϕ, J) 7→ (ϕ+∆, J)

where ∆ = a+ − a− is called the phase shift.

Remark 37. It is worth mentioning that the scattering map for the geodesic flow is a very
degenerate integrable non-twist map with the same phase shift for all the points. This
is a consequence of the fact that the energy H0 is preserved and the scaling properties
(79) which are a very particular feature of the geodesic flow. See [CDMRss] for an
example, in the planar restricted three body problem, of an integrable scattering map
which verifies the twist condition.

6.1. Perturbations of geodesic flows. In order to deal with the quasi-periodic per-
turbations of the geodesic flow of the form Hε(p, q, t) = H0(p, q) + ε2U(q, ενt), for some
vector ν ∈ Rd considered in [DLS06b], we first study the product vector field of the

geodesic flow H0(p, q) on T∗M and the quasi-periodic flow θ̇ = εν in Td, defined in
the extended phase space T∗M × Td. In (83) we have computed the formulas for the
scattering map associated to this geodesic flow, and, as we saw in Section 2.4.2, the
scattering map on Λ̃ = Λ×Td is given, in the extended reference manifold Ñ = N ×Td,
by

s̃ : Ñ −→ Ñ

(J, ϕ, θ) 7→ (J, ϕ+∆, θ)

If we want to make apparent the symplectic character of the scattering map, we add
the extra actions A, conjugated to the angles θ, obtaining the autonomous Hamiltonian
H0(p, q) + εν · A in the full symplectic space T∗M × Rd × Td. We have a (2d + 2)-
dimensional manifold Λ∗ = Λ× Rd × Td whose projection to the extended phase space
T∗M × Td is Λ̃. Using the extended symplectic coordinates (J, ϕ,A, θ), the reference
manifold of Λ∗ is given by N ∗ = N × Rd × Td, and its parameterization is given by

k∗ : N∗ −→ Λ∗

(J, ϕ,A, θ) 7→ (k(J, ϕ), A, θ).
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Moreover, the scattering map in this full symplectic space is symplectic and it is given,
in the reference manifold N ∗, by:

s∗ : N∗ → N∗

(J, ϕ,A, θ) 7→ (J, ϕ+∆, A, θ).

Before applying perturbation theory we fix some homoclinic channel Γ∗0 = Γt0×Rd×Td

for some fixed t0 ∈ R, in the homoclinic manifold γ∗ = γ × Rd × Td.
When we consider the perturbed Hamiltonian H∗

ε (p, q, θ, A) = H0(p, q) + ε2U(q, θ) +
εν · A, standard perturbation theory with respect to the parameter ε2 guarantees the
transversal intersection of W s

Λ∗ε
∩W u

Λ∗ε
along a homoclinic channel Γ∗ε, ε

2-close to Γ∗0 of

γ, for a normally hyperbolic invariant manifold Λ∗ε ⊂ T ∗M × Rd × Td and the local
existence of a perturbed scattering map σ∗ε . Nevertheless, all the considerations about
the global definition of the scattering map σ∗ are only valid for the extended geodesic
flow H∗

0 (p, q, θ, A) = H0(p, q) + εν · A. Indeed, the cancellations between the different

perturbed maps (Ω
Γ∗ε
−ε)

−1 and Ω
Γ∗ε
+ε are not satisfied in general providing an obstruction

to the global definition of σ∗ε = σ
∗,Γ∗ε
ε and only guarantee the existence of σ∗ε in a set H∗

−ε
of relative measure 1− ε2 in Λ∗ε.

We will now compare the perturbative calculation of the scattering map which was
already done in [DLS00] and [DLS06b] and formula (69).

Remark 38. In order to compare the perturbative formulas for the scattering map in
[DLS06b] and the ones obtained applying the method of section 5 we need to take into
account the following fact. In the example considered here, the perturbed Hamiltonian
is given by H∗

ε (p, q, θ, A) = H0(p, q)+ ε
2V (q, θ)+ εν ·A, so, it depends on the parameter

ε in two different ways. On one side, the term ε2 in front of the potential makes the
perturbation small. On the other hand, the term εν · A makes the potential is slow in
the angular variable θ. So, as it was proved in [DLS06b], the perturbation theory is
done with respect to the small parameter, which in this case is ε2. So, when we apply
formula (69) we will replace the parameter ε by ε2 in all the formulas.

In order to perform this comparison, we can choose the parameterization of the per-
turbed normally hyperbolic invariant manifold Λ∗ε verifying hypothesis (60). In the
notation of [DLS06b], any point in this manifold is given by

x∗ε = (p, q, A, θ) = k∗ε(J, ϕ,B, θ) = (F(J, ϕ, θ, ε2),A(J, ϕ,B, θ, ε2), θ)

for some parameterizations F = ΛE(ϕ/
√
2E) +O(ε2), A, that, under assumption (60),

verifies A(J, ϕ,B, θ, ε2) = B.
In those papers, a perturbative formula for the difference of the actions A of the points

x∗+(ε) = σ∗ε(x
∗
−(ε)) and x∗−(ε) were obtained. Concretely, if we call (J±, ϕ±, B±, θ±) to

their coordinates in the reference manifold N ∗, we have, first of all, applying standard
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first order perturbation theory that

ϕ± = ϕ+ a± +O(ε2)

J± = J +O(ε2)(84)

B± = B +O(ε2)

θ± = θ,

for some ϕ ∈ R, J ∈ R, B ∈ Rd, and θ ∈ Td, and where a± were introduced in
hypotheses H2’, in formulas (78) and (81).

Now, denoting z∗(ε) = (Ω
Γ∗ε
ε+)

−1(x∗+(ε)) = (Ω
Γ∗ε
ε−)

−1(x∗−(ε)) in the homoclinic channel
Γ∗ε, standard first order perturbation theory gives, by (82), that z∗(0) = γE(ϕ/J). Using
all these facts, Lemma 4.18 of [DLS06b] gives

(85) A(x∗+)− A(x∗−) = ε2
∂L

∂θ
(E,ϕ, θ) + OC1(ε

4),

with

L(E,ϕ, θ) = lim
T1,T2→∞

[
−
∫ T2

−T1
dt Ũ

(
γqE

(
t+

ϕ√
2E

)
, θ + ενt

)

+

∫ 0

−T1
dt Ũ

(
Λq
E

(
t+

ϕ+ a−√
2E

)
, θ + ενt

)

+

∫ T2

0

dt Ũ

(
Λq
E

(
t+

ϕ+ a+√
2E

)
, θ + ενt

)]

(86)

where the functions U(θ), and Ũ(q, θ) are defined by:

(87) U(θ) =

∫ 1

0

U(Λq
1/2(ϕ), θ)dϕ, Ũ(q, θ) = U(q, θ)− U(θ).

Remark 39. In this perturbative formula we can see that L(E,ϕ + 1, θ) is not equal
to L(E,ϕ, θ). This is, when ϕ increases by 1, the scattering map changes. Note that
changing ϕ by 1, amounts to shifting the unperturbed homoclinic channel. Therefore,
the cancellations on the monodromy that happened in the geodesic flow, are destroyed
by perturbations whose effect is different on the shifted orbits.

Indeed, we are going to see that the Poincaré function L(E,ϕ, θ) corresponds to the
Hamiltonian S0 of formula (69). Concretely, in this case, we have, using that σ∗0 ◦
k∗0(J, ϕ,B, θ) = s∗0(J, ϕ, θ, B) = (J, ϕ+∆, θ, B), with ∆ = a+− a−, and k∗0(J, ϕ,B, θ) =
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(ΛE(ϕ/J), B, θ), where E = J2/2, and (Ω
Γ∗0
0±)

−1 ◦k∗0(J, ϕ,B, θ) = (γE((ϕ−a±)/J), B, θ):

S0(J, ϕ,B, θ) = lim
T±→∞

∫ 0

−T−
U ◦ Φu,0 ◦ (ΩΓ

∗
0

0−)
−1 ◦ (σ∗0)−1 ◦ k∗0(J, ϕ,B, θ)

− U ◦ Φu,0 ◦ (σ∗0)−1 ◦ k∗0(J, ϕ,B, θ)

+

∫ T+

0

U ◦ Φu,0 ◦ (ΩΓ
∗
0

0+)
−1 ◦ k∗0(J, ϕ,B, θ)

− U ◦ Φu,0 ◦ k∗0(J, ϕ,B, θ)

= lim
T±→∞

∫ 0

−T−
U ◦ Φu,0 ◦ (ΩΓ

∗
0

0−)
−1 ◦ k∗0(J, ϕ−∆, B, θ)

− U ◦ Φu,0 ◦ k∗0(J, ϕ−∆, B, θ)

+

∫ T+

0

U ◦ Φu,0 ◦ (ΩΓ
∗
0

0+)
−1 ◦ k∗0(J, ϕ,B, θ)

− U ◦ Φu,0 ◦ k∗0(J, ϕ,B, θ)

= lim
T±→∞

∫ 0

−T−
U ◦ Φu,0 ◦ (γE((ϕ− a+)/J), B, θ)

− U ◦ Φu,0(ΛE((ϕ−∆)/J), B, θ)

+

∫ T+

0

U ◦ Φu,0 ◦ (γE((ϕ− a+)/J), B, θ)

− U ◦ Φu,0 ◦ (ΛE(ϕ/J), B, θ)

= lim
T±→∞

∫ T+

−T−
U(γqE(u+ (ϕ− a+)/J), θ + ενu)

−
∫ 0

−T−
U(Λq

E(u+ (ϕ−∆)/J), θ + ενu)

+

∫ T+

0

U(Λq
E(u+ (ϕ/J)), θ + ενu).

So that, we obtain:

(88) S0(J, ϕ,B, θ) = L(J, ϕ− a+, θ)
Observe that S0(J, ϕ + a+, B, θ) = L0(J, ϕ, θ). So that, taking into account that the
perturbation of the geodesic flow is of order ε2, the first order perturbative term of the
scattering map is

s∗ε(J, ϕ,B, θ) = s∗0(J, ϕ,B, θ) + ε2s∗1(J, ϕ,B, θ) +O(ε4)

and, deformation theory gives that,

s∗1(J, ϕ,B, θ) = S0 ◦ s∗0(J, ϕ,B, θ) = S0(J, ϕ+∆, B, θ) = J∇S0(J, ϕ+∆, B, θ)

Finally, using the notation of those papers, we denote the coordinates of x∗−, by (J, ϕ+
a−, B−, θ) as in (84) and we obtain that s∗1(J, ϕ+a−, B, θ) = J∇S0◦s∗0(J, ϕ+a−, B, θ) =
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J∇S0(J, ϕ+ a+, B, θ) = L0(J, ϕ, θ), and then:

s∗ε(J, ϕ+ a−, B−, θ) = (J, ϕ+ a+, B−, θ) + ε2L0(J, ϕ, θ) +O(ε4)

In particular, for the coordinates B we have

B+ = B− + ε2
∂S0
∂θ

(E,ϕ+ a−, B−, θ) +O(ε4) = B− + ε2
∂L0
∂θ

(J, ϕ, θ) +O(ε4)

Finally, using that A± = B± with the used parameterization, we obtain that this formula
agrees with (85) provided in [DLS06b].

The calculations in those papers were done by very different methods using averaging
theory which relies on the fact that the energy is a slow variable. The method in
[DLS00, DLS06b], also used in [DLS03, DLS06a], allowed only to compute the energy
component of the scattering map but it does not allow to compute the ϕ component
since ϕ is not a slow variable. The method of this paper, also gives the ϕ component of
the first order correction of the scattering map.
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We finish the computations of this example by noting that the primitive function Pε
of the scattering map takes the form:

Pε = P0 + ε2P1 +O(ε4)

where the leading term P1 can be controlled from equation (75). It is worth noting that
d

d(ε2)
(αHε)|ε=0 = 0, so that P1(J, ϕ, θ) = L(J, ϕ−a+, θ) as in the computations that lead

to formula (88).
The expression L had played an important role in the variational calculation in

[Mat96]. This is related to the variational interpretation of the scattering map dis-
cussed in Section 3.4.3.

Appendix A. An informal comparison with quantum mechanical

scattering theory

Since quantum mechanical scattering theory has been part of the scientific culture
for many decades, it is perhaps useful for some readers, already familiar with quan-
tum mechanical scattering theory, to develop the analogy between this theory and the
scattering theory for normally hyperbolic invariant manifolds developed in this paper.

Of course, readers whose background does not include quantum mechanical scattering
theory are urged to skip this section since our treatment will be extremely sketchy and
informal.

There are two main versions of quantum scattering theory: time independent and
time dependent. We will consider only the time dependent version.

Standard references on quantum mechanical scattering theory are [GW64, New02].
These references emphasize more the time independent scattering theory. Books which
emphasize more the time dependent scattering theory are [RS79], [Thi81]. We should
also mention the papers [Hun68, NT81, Thi83] which develop a classical scattering
theory for systems of particles interacting with repulsive potentials, which is somewhat
different from our context, but many of the ideas apply.

Some applications of scattering methods to problems in dynamics appear in [Nel69].
Chierchia and Gallavotti [CG94] also uses the name scattering to describe heteroclinic
connections between whiskered tori and mentions the analogy with quantum mechan-
ical scattering. Mart́ınez and Pinyol [MP94] use similar methods for the detection of
transversal heteroclinic orbits which tend to periodic orbits on the infinity manifold for
t→ ±∞ in the planar restricted elliptic three body problem.

We recall that the time-evolution in quantum mechanics is generated by a self-adjoint
operator H. The Schrödinger equation is

d

dt
U(t) = −iH U(t) ; U(0) = Id

where U(t) is a group of unitary operators implementing the evolution U(t + s) =
U(t)U(s).

The classical analogue of H is the vector field generating the evolution and the ana-
logue of U(t) is the flow Φt. In particular U(1) will be the analogue of the maps f in
the discrete time case.
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In the systems considered in quantum scattering theory, particles move freely in the
distant future and in the distant past but in the mean time they interact.

The asymptotic free motion in the future is, in general, different from the asymptotic
free motion in the past and the relation is given by the scattering operator.

We denote by Hf , Hi the Hamiltonian operators generating the free and interacting
dynamics and by Uf , Ui the corresponding free and interacting semigroups.

The wave operators are defined as

Ω± = lim
t→±∞

Uf (−t)Ui(t)

(We ignore, in this sketchy exposition, what is the precise sense in which the limits have
to take place. This is also customarily ignored in the Physical literature.)

The intuition is that for large t

Uf (t)Ω+ψ ≈ Ui(t)ψ

so that Ω+ψ describes the initial condition that, under the free evolution would have
behaved as ψ under the interacting evolution.

For example, in the case that the free dynamics is just a particle moving at constant
velocity, the Ω+ψ gives the asymptotic velocity (and some “initial” position).

Similarly Ω−ψ gives the asymptotic behavior in the past.
Note that from the definition it is clear that

Ω±Ui(s) = lim
t→±∞

Uf (−t)Ui(t+ s)

= lim
t→±∞

Uf (−t+ s)Ui(t)

= Uf (s)Ω±

(89)

The relations (89) are called the intertwining relations. From the dynamical point of
view, (89) semiconjugate the free dynamics to the interacting dynamics.

This method of producing conjugacies has appeared several times in dynamical sys-
tems, e.g., [Ste59]. The analogy with quantum mechanics is emphasized in [Nel69].

Notice that for classical particles interacting with repulsive potential, the existence
of wave operators gives a conjugacy to the free particle, so that the results of [Thi83]
imply that systems interacting by repulsive potentials are integrable. This includes as
a particular case the celebrated Calogero-Moser system which can be integrated also by
algebraic methods [Cal75, Cal79, Mos75, Mos80]. Relations of this type of algorithms
for linearization can be found in [BDT88].

The scattering operator is defined as

σ = Ω+Ω
−1
−

and, given the asymptotic state in the past, gives the asymptotic state in the future.
We also have

(90) σ = lim
T±→∞

Uf (−T+)Ui(T+ + T−)Uf (−T−)

The perturbation theory for the quantum mechanical scattering can be derived very
easily. We note that if

Hi = Hi,0 + εHi,1(t) +O(ε2)
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is a time dependent perturbation of the interacting Hamiltonian operator the variation
of parameters formula gives:

Ui(t) = Ui,0(t)− εUi,0(t)

∫ t

0

ds Ui,0(−s)iHi,1(s)Ui,0(s) +O(ε2)

where we have used the notation Ui, Ui,0 to denote the evolution groups corresponding
to Hi, Hi,0 respectively.

Substituting in (90) we obtain

(91) σ = σ0 + ε lim
T±→∞

Uf (−T+)
∫ T++T−

0

iHf (s)Ui(s)Uf (−T0)

The perturbation from the case in which the unperturbed interaction is the free one
is sometimes called Fermi formula and it can be found in most books in quantum
mechanics.

For the applications to the scattering map of a normally hyperbolic invariant manifold
it is useful to think of the dynamics restricted to the invariant manifold as the free
dynamics. The dynamics during the homoclinic excursion is the interacting dynamics.

Both in the future and in the past, there is free dynamics and the scattering map
relates the dynamics in the future and in the past.

If we consider the Hamiltonian operator as an analogue of the vector field and the
unitary operators as analogues of the flow, we see that many of the formulas for quantum
mechanics are analogues to the corresponding formulas in the classical case.

We also note that the proof of the fact that the scattering map is symplectic is very
analogous to the proof of unitarity of scattering matrix in quantum mechanics.

One can pursue the analogy between quantum mechanics scattering and classical me-
chanics scattering. For example, we have emphasized that the scattering map depends
on the homoclinic channel Γ ⊂ W s

Λ ∩W u
Λ considered.

One can therefore consider Γ as a rough analogue of the “channels” in quantum
scattering theory.

The analogy cannot, however be carried too far. One of the most important properties
of the quantum mechanics scattering matrix is that it commutes with the free dynamics.

(92) σUf (t) = Uf (t)σ

The analogue of (92) and (89) in the context of the scattering map of a normally
hyperbolic invariant manifold is more complicated.

In the scattering map for a normally hyperbolic invariant manifold we have

W u
x− t W

s
x+ ⇐⇒

f(W u
x−) t f(W

s
x+)

⇐⇒ W u
f(x−) tW

s
f(x+)

Unfortunately, this does not allow us to conclude that the f commutes with σΓ. Note
that if the intersection alluded to in the first line occurs in a manifold Γ, the intersection
in the last line occurs in a manifold f(Γ).
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This means that the analogue of (89) and (92) are

f ◦ ΩΓ± = Ω
f(Γ)
± ◦ f

f ◦ σΓ = σf(Γ) ◦ f
Since f(Γ) 6= Γ, in general, when we use only one scattering map, we have σΓ ◦ f 6=

f ◦ σΓ.
In the applications to diffusion in [DLS00, DLS03, DLS06a] we have, for the unper-

turbed system the commutation of the inner map f0 and the scattering map σ0, so

σΓ00 ◦ f0 = f0 ◦ σΓ0
Nevertheless for 0 < |ε| < 1 we have:

σΓεε ◦ fε 6= fε ◦ σΓεε
provided that the family satisfies some mild non-degeneracy assumptions. (See Section 6
for more details of a perturbative computation of σε in these cases.) Note that, if the
first order perturbation of both sides do not agree, then the true maps do not commute.

The last of commutation between the inner map and the scattering map is a crucial
ingredient in the approach to diffusion in [DLS00, DLS03, DLS06a].
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[Gar00] Antonio Garćıa. Transition tori near an elliptic fixed point. Discrete Contin. Dynam. Sys-
tems, 6(2):381–392, 2000.

[GL06a] Marian Gidea and Rafael de la Llave. Arnold diffusion with optimal time in the large gap
problem. Preprint, 2006.

[GL06b] Marian Gidea and Rafael de la Llave. Topological methods in the instability problem of
Hamiltonian systems. Discrete Contin. Dyn. Syst., 14(2):295–328, 2006.

[GW64] Marvin L. Goldberger and Kenneth M. Watson. Collision theory. John Wiley & Sons Inc.,
New York, 1964.



54 AMADEU DELSHAMS, RAFAEL DE LA LLAVE, AND TERE M. SEARA
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