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Zürich



Inverse spectral problem for singular AKNS operator on [0, 1]. 2

1. Introduction

The Schrödinger operator H = −∆+q(‖x‖) with a radial potential q, acting on the unit

ball of R3, through a decomposition via spherical harmonics (see [19], p. 160− 161), is

unitary equivalent to a collection of singular differential operators Ha(q), a ∈ N acting

on L2
R(0, 1), with Dirichlet boundary conditions, defined by

Ha(y)(x) :=

(
− d2

dx2
+

a(a + 1)

x2
+ q(x)

)
y(x) = λy(x), x ∈ [0, 1], λ ∈ C.

With this splitting, it makes sense to study inverse spectral problems not for H itself

but for each Ha.

The inverse spectral problem for these operator is the construction for each a ∈ N,

of a regular coordinate system λa×κa for potentials q ∈ L2
R(0, 1) where λa represent the

spectrum of Ha and κa are convenient complementary data (regularity means stability

of the inverse spectral problem).

This question is not new and has been answered: Borg [6] and Levinson [15]

first, proved that λ0 × κ0 was one-to-one on L2
R(0, 1); then Pöschel and Trubowitz [18]

completed this result obtaining λ0 × κ0 as a global real-analytic coordinate system on

L2
R(0, 1). Guillot and Ralston [13] extended their results to λ1 × κ1, passing through

the singularity inside the equation. Next Zhornitskaya and Serov [24], and Carlson [7],

proved that for all real a ≥ −1/2, λa × κa is one-to-one on L2
R(0, 1). Finally, the author

[21] completed theses works proving that for all a ∈ N the map λa × κa was a local

(hence global) diffeomorphism on L2
R(0, 1).

Then, it is natural and interesting to wonder if these kind of results can be found

for an other physical equation: the Dirac equation. Hence, as the radial Schrödinger

operator, the Dirac operator with a radial electric potential acting on the unit ball of R3

is decomposed (see for instance [23]) into a collection of operators Ha defined on [0, 1]

by

Ha(V )Y (x) :=

([
0 −1

1 0

]
d

dx
+

[
0 −a

x

−a
x

0

]
+ V (x)

)
Y (x) = λY (x), (1)

where Y = (Y1, Y2), λ ∈ C and

V (x) =

[
q(x) + m 0

0 q(x)−m

]
, m ∈ R;

with general boundary conditions

Y2(0) = 0; Y (1) · uβ = 0 uβ =

[
sin β

cos β

]
, β ∈ R. (2)

Written this way, the Dirac operator seems to be unadapted in view of inverse

spectral problems. Indeed for a = 0, as raised by Levitan and Sargsjan in [16](Chap. 7)

and pointed out more generally by Clark and Gesztesy in [8] (section 6), the existence

of a gauge transformation on the potential V leaving the spectrum invariant leads to
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choose a normal form for the problem, namely, the AKNS system, obtained from (1)

considering potentials V of the following shape:

V (x) =

[
−q(x) p(x)

p(x) q(x)

]
, (p, q) ∈ L2

R(0, 1)× L2
R(0, 1). (3)

Moreover, there are some clues showing that the inverse spectral problem is kind

of degenerated: for instance, the Ambarzumian type theorem obtained by Kiss [14] who

proves that for all m 6= 0 and q ∈ C([0, 1]; R), if H0(V ) has the same eigenvalues as H0(0)

then q = 0. An other reason, to turn to the AKNS operator, is it similarity with the

Schrödinger operator as figured out the papers of Grébert and Guillot [11] and Amour

and Guillot [3]. And finally, technical difficulties arise when computing asymptotics for

solutions of the Dirac equation, see remark page 9.

Our purpose is the stability of the inverse spectral problem for Ha ((1)-(2)-(3)).

For this, we construct for each a ∈ N, a spectral map λa × κa for potentials V with

spectral data λa and some norming constant κa. The framework is the work of Grébert

and Guillot [11] for the regular operator (a = 0). They constructed a local coordinate

system λ0 × κ0 on L2
R(0, 1) × L2

R(0, 1) and proved it is global on Hj
R(0, 1) × Hj

R(0, 1)

for j = 1, 2. With the singularity, interesting problem arise and add supplementary

difficulties, especially when we study the invertibility of the Fréchet derivative of λa×κa.

For this, we use some transformation operators who, roughly speaking, reduce the

singularity.

Our result is that for all a ∈ N , λa × κa is a local diffeomorphism on L2
R(0, 1) ×

L2
R(0, 1) and one-to-one on H1

R(0, 1) × H1
R(0, 1). Moreover, we locally describe sets

of isospectral potentials as smooth submanifolds of L2
R(0, 1) × L2

R(0, 1) with explicitly

tangent and normal spaces.

2. The direct spectral problem

We will omit proofs which are nearly repetitions of the regular case (for details see [22]).

2.1. Solutions Properties

In this section, V is any 2× 2 matrix with L2
C(0, 1) coefficients. A fundamental system

of solutions for (1) when V = 0 is given by

R(x, λ) =
1

λa

[
ja−1 (λx)

−ja (λx)

]
, S(x, λ) = λa

[
−ηa−1 (λx)

ηa (λx)

]
,

where ja and ηa are spherical Bessel functions (see section 4.1). These functions are

called fundamental since their wronskian is equal to 1. From their behavior near x = 0,

R(x, λ) is called the regular solution, it is analytic on [0, 1] × C; S(x, λ) is called the

singular solution, it is analytic on (0, 1]× C.

Following Blancarte, Grébert and Weder [5], we construct solutions for (1) by a

Picard’s iteration method from R and S.
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Let R and S̃ be defined by

R(x, λ, V ) =
∑
k≥0

Rk(x, λ, V ), S̃(x, λ, V ) =
∑
k≥0

Sk(x, λ, V )

with  R0(x, λ, V ) = R(x, λ),

Rk+1(x, λ, V ) =

∫ x

0

G(x, t, λ)V (t)Rk(t, λ, V )dt, k ∈ N;
(4)

 S0(x, λ, V ) = S(x, λ),

Sk+1(x, λ, V ) = −
∫ 1

x

G(x, t, λ)V (t)Sk(t, λ, V )dt, k ∈ N.
(5)

G is called Green function and is given by (see [4])

G(x, t, λ) = S(x, λ)R(t, λ)> −R(x, λ)S(t, λ)>. (6)

This construction is justified with the following

Lemma 2.1 Series defined by (4), respectively by (5), uniformly converge on bounded

sets of [0, 1]×C× (L2
C(0, 1))

4
, respectively of (0, 1]×C× (L2

C(0, 1))
4
, towards solutions

of (1). Moreover, they satisfy the integral equations

R(x, λ, V ) = R(x, λ) +

∫ x

0

G(x, t, λ)V (t)R(t, λ, V )dt,

S̃(x, λ, V ) = S(x, λ)−
∫ 1

x

G(x, t, λ)V (t)S̃(t, λ, V )dt,

and the estimates

|R(x, λ, V )| ≤ Ce|Im λ|x
(

x

1 + |λ|x

)a

,∣∣∣S̃(x, λ, V )
∣∣∣ ≤ Ce|Im λ|(1−x)

(
1 + |λ|x

x

)a

,

with C uniform on bounded sets of (L2
C(0, 1))

4
.

Proof. We give it for R, it is similar for S̃. Estimate (A.2) for Bessel functions gives

|R(x, λ)| ≤ Ce|Im λ|x
(

x

1 + |λ|x

)a

. (7)

Iterative relation (4) leads to

R1(x, λ, V ) =

∫ x

0

G(x, t, λ)V (t)R(t, λ)dt, (8)

which, combining (7) and the Green function estimates (A.4), is bounded by

|R1(x, λ, V )| ≤ C2e|Im λ|x
(

x

1 + |λ|x

)a ∫ x

0

|V (t)|dt,

By successive iterations and recurrence, for all positive integer n, we get

|Rn(x, λ, V )| ≤ Cn+1

n!
e|Im λ|x

(
x

1 + |λ|x

)a(∫ x

0

|V (t)|dt

)n

.
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This proves uniform convergence on bounded sets of [0, 1] × C × (L2
C(0, 1))

4
for R and

the estimate. Integral equation follows from (4). �
This uniform convergence gives us the following

Proposition 2.1 (Analyticity of solutions)

(a) For all x ∈ [0, 1], R(x, λ, V ) is analytic on C × (L2
C(0, 1))

4
. Moreover, it is real

valued on R× (L2
R(0, 1))

4
.

(b) The map R : (λ, V ) 7→ R(·, λ, V ) is analytic from C× (L2
C(0, 1))

4
to H1([0, 1], C2).

(c) For all x ∈ (0, 1], S̃(x, λ, V ) is analytic on C × (L2
C(0, 1))

4
and real valued on

R× (L2
R(0, 1))

4
.

Let W(λ, V ) be the wronskian of R and S̃, defined by:

W(λ, V ) := W
(
R(x, λ, V ), S̃(x, λ, V )

)
= det

(
R(x, λ, V ), S̃(x, λ, V )

)
.

Recall that W(λ, V ) is independent of x. We follow the construction of a similar solution

by Guillot and Ralston in [13]: W(λ, V ) is not equal to 1. However, as we will see further,

for |λ| large enough, W doesn’t vanishes (see Theorem 3.2). Thus we may define the

so-called singular solution by

S(x, λ, V ) =
S̃(x, λ, V )

W(λ, V )
, x ∈ (0, 1].

Regularity of R leads to existence of derivatives, obtained following [18]:

Proposition 2.2 For all v ∈ (L2
C(0, 1))

4
, we have

[dVR(x, λ, V )] (v) =

∫ x

0

G̃(x, t, λ, V )v(t)R(t, λ, V )dt, (9)

∂R
∂λ

(x, λ, V ) = − [dVR(x, λ, V )] (Id), (10)

where

G̃(x, t, λ, V ) = S(x, λ, V )R(t, λ, V )> −R(x, λ, V )S(t, λ, V )>.

Notations 1 For simplicity, we name the components of solutions by

R(x, λ, p, q) =

[
Y1(x, λ, p, q)

Z1(x, λ, p, q)

]
, S(x, λ, p, q) =

[
Y2(x, λ, p, q)

Z2(x, λ, p, q)

]
and we introduce the following quantities

a(x, λ, p, q) = − [Y1(x, λ, p, q)Z2(x, λ, p, q) + Z1(x, λ, p, q)Y2(x, λ, p, q)] ,

b(x, λ, p, q) = [Y1(x, λ, p, q)Y2(x, λ, p, q)− Z1(x, λ, p, q)Z2(x, λ, p, q)] .

Now precise derivative expressions for AKNS potentials defined by (3). First, we

define L2
C(0, 1)-gradients for multiple variable functions.
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Definition 2.1 Let H be an Hilbert space. For a continuously differentiable complex

valued map f : (p, q) 7→ f(p, q), the L2
C(0, 1)-gradient with respect to (p, q) is the vector

valued function

∇p,qf =

(
∂f

∂p
,
∂f

∂q

)
where

∂f

∂p
, resp.

∂f

∂q
is the Riesz representant of the partial differential Dpf , resp. Dqf

defined by

dp,qf(v1, v2) = Dpf(v1) + Dqf(v2), (v1, v2) ∈ H ×H.

Remark. If f is valued in Cn, this notation is understood component by component.

Corollary 2.1 (AKNS Gradients) For all (p, q) ∈ L2
C(0, 1), we have[

∂R
∂p

(x, λ, p, q)

]
(t) = ll[0,x](t)

[
S(x, λ, p, q) [2Y1(t, λ, p, q)Z1(t, λ, p, q)]

+R(x, λ, p, q)a(t, λ, p, q)
]
, (11)[

∂R
∂q

(x, λ, p, q)

]
(t) = ll[0,x](t)

[
S(x, λ, p, q)

[
Z1(t, λ, p, q)2 − Y1(t, λ, p, q)2

]
+R(x, λ, p, q)b(t, λ, p, q)

]
, (12)[

∂R
∂λ

(x, λ, p, q)

]
=

∫ x

0

[
− S(x, λ, p, q)

[
Y1(t, λ, p, q)2 + Z1(t, λ, p, q)2

]
+R(x, λ, p, q) [Y1(t, λ, p, q)Y2(t, λ, p, q) + Z1(t, λ, p, q)Z2(t, λ, p, q)]

]
dt.(13)

2.2. Spectra

Condition at x = 0 selects a solution collinear to R, condition at x = 1 reduces spectrum

to an eigenvalues-sequence. To this end, we set:

Notations 2 Let D(λ, V ) be defined by:

D(λ, V ) = R(1, λ, V ) · uβ. (14)

Moreover, for all u = (a, b) ∈ C2, we define u⊥ by

(a, b)⊥ = (b,−a). (15)

Proposition 2.3 D is analytic in λ and V . The roots of λ 7→ D(λ, V ) are exactly the

eigenvalues for (1)-(2). Moreover, if V is real-valued, they are all simple.

Proof. Analyticity of D comes from R. Since {R,S} is a basis for the solutions of (1),

the identification between eigenvalues and roots of λ 7→ D(λ, V ) follows.

Now suppose V is real-valued et let λ0 be an eigenvalue of the problem. Simplicity lies

on

‖R(·, λ0, V )‖2
L2

R(0,1) = −(R(1, λ0, V ) · uβ
⊥)

∂D

∂λ
(λ0, V ). (16)
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Indeed, from (9) and (10) we have

∂D

∂λ
(λ0, V ) = − (S(1, λ0, V ) · uβ) ‖R(·, λ0, V )‖2

L2
R(0,1).

Then, rewriting the wronskian of R(1, λ0, V ) and S(1, λ0, V ) in the orthonormal basis{
uβ, uβ

⊥}, we obtain
(
R(1, λ0, V ) · uβ

⊥) (S(1, λ0, V ) · uβ) = 1. �
From now, V is defined by (3), corresponding to an AKNS operator.

2.3. H1
C(0, 1)-estimates

In order to obtain accurate asymptotics, we add some regularity on potentials. We use

this roundabout method not because of the singularity a/x in the equation, but because

of the AKNS operator itself. Indeed, contrary to the Schrödinger operator, there is no

explicit decreasing for the Green function G with respect to λ; so we have to force it

allowing some derivation. For the regular case (a = 0), see for instance [11].

Theorem 2.1 For (p, q) ∈ (H1
C(0, 1))

2
, we have∣∣∣R(x, λ, p, q)−R(x, λ)

∣∣∣ ≤ C‖V ‖H1
C(0,1)

[
x

1 + |λx|

]a+1

ln [2 + |λx|]e|Im λ|x+C‖V ‖2 , (17)

uniformly on [0, 1]×C×(H1
C(0, 1)×H1

C(0, 1)), where ‖V ‖2
H1

C(0,1) = ‖p‖2
H1

C(0,1)+‖q‖
2
H1

C(0,1).

Proof. From relation (4) at k = 1 and (6), we have

R1(x, λ, p, q) = S0(x, λ)

∫ x

0

R0(t, λ)>V (t)R0(t, λ)dt

−R0(x, λ)

∫ x

0

S0(t, λ)>V (t)R0(t, λ)dt

= S0(x, λ)

∫ x

0

[
q(t)

(
R2

0(t, λ)2 −R1
0(t, λ)2

)
+ 2p(t)R1

0(t, λ)R2
0(t, λ)

]
dt

−R0(x, λ)

∫ x

0

[
q(t)

(
S2

0(t, λ)R2
0(t, λ)− S1

0(t, λ)R1
0(t, λ)

)
+p(t)

(
S1

0(t, λ)R2
0(t, λ) + S2

0(t, λ)R1
0(t, λ)

)]
dt.

We can write R1(x, λ, p, q) = λ−a [X(q) + Y (p)] , where

X(q) =

[
−ηa−1 (λx)

ηa (λx)

] ∫ x

0

{
[ja (λt)]2 − [ja−1 (λt)]2

}
q(t)dt

+

[
ja−1 (λx)

−ja (λx)

] ∫ x

0

[
ηa (λt) ja (λt)− ηa−1 (λt) ja−1 (λt)

]
q(t)dt,

Y (p) =

[
ηa−1 (λx)

−ηa (λx)

] ∫ x

0

[
2ja−1 (λt) ja (λt)

]
p(t)dt

−
[

ja−1 (λx)

−ja (λx)

] ∫ x

0

[
ηa−1 (λt) ja (λt) + ηa (λt) ja−1 (λt)

]
p(t)dt.
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Estimation for X(q):

Integrating by parts, we get

X(q) =
1

λ

[
0

−ja (λx)

]
q(x)

+
1

λ

∫ x

0

[
−ηa−1 (λx) ja−1 (λt) + ja−1 (λx) ηa−1 (λt)

ηa (λx) ja−1 (λt)− ja (λx) ηa−1 (λt)

]
ja (λt) q′(t)dt.

Estimates (A.2),(A.4) and Sobolev inequality ‖q‖∞ ≤ C‖q‖H1
C(0,1) give

|X(q)| ≤ C

|λ|

(
|λx|

1 + |λx|

)a+1

e|Im λ|x‖q‖H1
C(0,1). (18)

Estimation for Y (p):

With notations from lemmas Appendix A.1 and Appendix A.2, integration by parts

gives :

Y (p) =

[
ηa−1 (λx)

−ηa (λx)

]([
1

λ
F1(λt)p(t)

]x

0

− 1

λ

∫ x

0

F1(λt)p′(t)dt

)
−
[

ja−1 (λx)

−ja (λx)

]([
1

λ
F2(λt)p(t)

]x

0

− 1

λ

∫ x

0

F2(λt)p′(t)dt

)
.

When |λx| ≤1. Estimations A.2, A.3 and part (i) from lemmas Appendix A.1 and

Appendix A.2 lead to

|Y (p)| ≤ C

|λ|

(
|λx|

1 + |λx|

)a+1

‖p‖H1
C(0,1)e

|Im λ|x.

When |λx| ≥1. Now, we only consider Y (p) second component, the proof is similar

for the first one. Terms to estimate contain :

g(x, t) := ηa (λx) F1(λt)− ja (λx) F2(λt), 0 ≤ t ≤ x.

If |λt| ≤1. As for |λx| ≤ 1, we get |g(x, t)| ≤ 2C

(
|λx|

1 + |λx|

)a+1

e|Im λ|x.

If |λt| ≥1. Using points (ii) from lemmas Appendix A.1 and Appendix A.2,

expressions (A.6) and (A.7), it follows :

g(x, t) = ηa(λx)ra(λt)

−a
[
cos
(
λx− aπ

2

)
ci(2λt) + sin

(
λx− aπ

2

)
Si(2λt)

]
Pa(λx)

+a
[
sin
(
λx− aπ

2

)
ci(2λt)− cos

(
λx− aπ

2

)
Si(2λt)

]
Ia(λx)

+ (Pa(λx)pa(λt)− Ia(λx)qa(λt)) cos
[
λ(x− 2t)− aπ

2

]
− (Pa(λx)qa(λt) + Ia(λx)pa(λt)) sin

[
λ(x− 2t)− aπ

2

]
.

(To lighten, the polynomial variable X is replaced by 1/X.) First term is bounded

by Ce|Im λ|x thanks to (A.3). The last two terms are uniformly bounded by

Ce|Im λ|(x−2t) on the considered area. Now remains the following expression

h(x, t) := cos
(
λx− aπ

2

)
ci(2λt) + sin

(
λx− aπ

2

)
Si(2λt).
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According to [1] and [2], we have

ci(z) = −γ − log(z2)

2
+

sin z

z

(
1 +O1

(
1

z2

))
− cos z

z2

(
1 +O2

(
1

z2

))
,

Si(z) =
π
√

z2

2z
− cos z

z

(
1 +O1

(
1

z2

))
− sin z

z2

(
1 +O2

(
1

z2

))
.

Thus, we get

h(x, t) = −
[
γ +

log (2λt)2

2

]
cos
(
λx− aπ

2

)
+

π
√

(2λt)2

2λt
sin
(
λx− aπ

2

)
− 1

2λt

(
1 +O1

(
1

(2λt)2

))
sin
[
λ(x− 2t)− aπ

2

]
− 1

(2λt)2

(
1 +O2

(
1

(2λt)2

))
cos
[
λ(x− 2t)− aπ

2

]
.

The last three terms are also uniformly controlled by Ce|Im λ|(x−2t); the first one is

bounded by C ln |λt|e|Im λ|x. Combining the above estimates, we obtain the following

uniform estimate

|Y (p)| ≤ C

|λ|

(
|λx|

1 + |λx|

)a+1

ln [2 + |λ|x]‖p‖H1
C(0,1)e

|Im λ|x. (19)

Relations (18)-(19) and the concavity rule

∀(x, y) ∈ R2,
|x|+ |y|

2
≤
√
|x|2 + |y|2

2
,

imply

|R1(x, λ, p, q)| ≤ C

|λ|a+1

(
|λx|

1 + |λx|

)a+1

ln [2 + |λ|x]‖V ‖H1
C(0,1)e

|Im λ|x. (20)

From this estimate, as in the proof of lemma 2.1, we deduce estimate (17). �
Remark. A similar computation for the Dirac operator is not easy, even if a = 0.

Indeed, when we compute the term R1, we do not only get a term, loosely speaking,

in O(1/λ) but also in O(1). And when iterating this, we get at each time a new

term O(1) and O(1/λ). A way through this problem is given in [22] using the latter

gauge transformation to deduce, for any a ∈ N, some partial results from AKNS to

Dirac operator: spectrum, asymptotic expansion for eigenvalues and eigenvectors, Borg-

Levinson theorem type. . .

2.4. L2
C(0, 1)-Estimates

To transform H1
C(0, 1)-estimates into L2

C(0, 1)-estimates, we need an auxiliary lemma

(for the regular case, see [3], [17] and [10]).

Lemma 2.2 Let V0 ∈ L2
C(0, 1)×L2

C(0, 1), r0 ≥ 0, ε ≥ 0 and let Vε ∈ H1
C(0, 1)×H1

C(0, 1)

such that ‖V0 − Vε‖2 < ε. Then, for all V ∈ L2
C(0, 1)×L2

C(0, 1) such that ‖V − V0‖2 < r0



Inverse spectral problem for singular AKNS operator on [0, 1]. 10

and for all (x, λ) ∈ [0, 1]× C∗, we have

|R(x, λ, p, q)−R(x, λ)| ≤ C

(
r0 + ε +

ln |λ|
|λ|

‖Vε‖H1
C(0,1)

)
×
(

x

1 + |λx|

)a

e|Im λ|x+C‖V ‖2 . (21)

Proof. Since Vε ∈ H1
C(0, 1) × H1

C(0, 1), estimate (20) obtained during the proof of

Theorem 2.1 becomes

|R1(x, λ, Vε)| ≤
C

|λ|a+1

(
|λx|

1 + |λx|

)a+1

ln [2 + |λ|x]‖Vε‖H1
C(0,1)e

|Im λ|x.

Using ‖V0 − Vε‖2 < ε and ‖V − V0‖2 < r0 in (8), estimations (A.4) and (A.2) lead to

|R1(x, λ, p, q)−R1(x, λ, Vε)| ≤
C

|λ|a

(
|λx|

1 + |λx|

)a

(r0 + ε)e|Im λ|x.

Combining these two inequalities, we get

|R1(x, λ, p, q)| ≤ C

(
x

1 + |λx|

)a(
r0 + ε +

ln [2 + |λ|x]

|λ|
‖Vε‖H1

C(0,1)

)
e|Im λ|x.

Iterating this with (4), we deduce for every n ∈ N

|Rn+1(x, λ, p, q)| ≤ Cn+1

n!

(
r0 + ε +

ln [2 + |λ|x]

|λ|
‖Vε‖H1

C(0,1)

)
×
(

x

1 + |λx|

)a

e|Im λ|x
(∫ 1

0

|V (t)|dt

)n

.

Then, summing up, estimation (21) follows. �
We now deduce the following

Proposition 2.4 Let (p, q) ∈ (L2
C(0, 1))

2
, we have uniformly on [0, 1],

R(x, λ, p, q) = R(x, λ) + o

[(
x

1 + |λx|

)a

e|Im λ|x
]

, |λ| → ∞. (22)

Proof. From Lemma 2.2 with r0 = 0, given δ > 0 there exists λδ > 0 such that

|R(x, λ, p, q)−R(x, λ)| ≤ δ

(
x

1 + |λx|

)a

e|Im λ|x+C‖V ‖2 ,

for all λ such that |λ| > λδ. �

2.5. Spectrum localization

Theorem 2.2 (Counting Lemma)

Let (p0, q0) ∈ L2
C(0, 1)× L2

C(0, 1), there exist ε > 0 and an integer N0 > 0 such that for

all (p, q) ∈ L2
C(0, 1)×L2

C(0, 1) with ‖(p, q)− (p0, q0)‖L2
C(0,1) < ε, the following statements

hold:

• For all |n| > N0, λ 7→ D(λ, p, q) has exactly one root in
∣∣λ− (nπ + aπ

2
+ β

)∣∣ < π
2
,
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• λ 7→ D(λ, p, q) has exactly 2N0 + 1 − a root counted with multiplicity in∣∣λ− (aπ
2

+ β
)∣∣ < (N0 + 1

2

)
π,

• λ 7→ D(λ, p, q) has no root elsewhere.

Proof. Let ε > 0, from estimate (21) and using Lemma 2.2 notations, we have

|R(1, λ, p, q)−R(1, λ)| ≤ Ce|Im λ|+C‖V ‖2

|λ|a

(
2ε +

ln |λ|
|λ|

‖Vε‖H1
C(0,1)

)
.

Bessel functions relation (A.6) implies the following uniform estimate on |λ| > 1

R(1, λ) =
1

λa

[
cos
(
λ− aπ

2

)
− sin

(
λ− aπ

2

) ]+O
(

e|Im λ|

|λ|a+1

)
, (23)

which leads, together with the previous one, to∣∣∣λaD(λ, p, q)− sin
(
β +

aπ

2
− λ
)∣∣∣ ≤ (2ε +

ln |λ|
|λ|

‖Vε‖H1
C(0,1) +

1

|λ|

)
CeC‖V ‖2e|Im λ|.

Now introduce the circles:

• for n ∈ Z, γn is defined by ∣∣∣λ− (nπ +
aπ

2
+ β

)∣∣∣ =
π

2
.

• for n ∈ N, Cn is defined by∣∣∣λ− (aπ

2
+ β

)∣∣∣ =

(
n +

1

2

)
π.

We choose ε > 0 such that CeC‖V ‖22ε < 1
8
. Moreover, on each circle we have

|λ| >
(

N0 +
1

2

)
π −

∣∣∣aπ

2
+ β

∣∣∣
and since the map t 7→ ln t

t
decreases on ]e,∞[, we can pick up N0 > 0 such that

CeC‖V ‖2
ln |λ|
|λ|

‖Vε‖H1
C(0,1) <

1

8
.

Thus, we get the following∣∣∣λaD(λ, p, q)− sin
(
β +

aπ

2
− λ
)∣∣∣ < 1

4
e|Im λ| =

1

4
e|Im (λ−aπ

2
−β)|.

Using the following estimate for all k ∈ Z (see Lemma 2.1 in [18])

e|Im z| < 4| sin z| for |z − kπ| ≥ π

4
,

on the sets γn and CN0 , with z = λ− aπ
2
− β, we obtain∣∣∣λaD(λ, p, q)− sin

(
β +

aπ

2
− λ
)∣∣∣ < ∣∣∣sin(β +

aπ

2
− λ
)∣∣∣ .
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Now, the use of the Rouché Theorem let us conclude that the analytical functions

λ 7→ λaD(λ, p, q) and λ 7→ sin
(
β + aπ

2
− λ
)

have the same number of roots counted

with multiplicity inside theses circles. To show there is no other elsewhere, we just have

to consider an other circle CN with N > N0 and apply again the Rouché Theorem. �
Now, we can order eigenvalues: when n > N0, λa,n(p, q) is the eigenvalue surrounded

by γn. Next, we order lexicographically the 2N0 + 1 − a eigenvalues lying in CN0 , in

other words, for k = a−N0, . . . , N0 − 1:

Re λa,k(p, q) < Re λa,k+1(p, q)

or

Re λa,k(p, q) = Re λa,k+1(p, q) and Im λa,k(p, q) ≤ Im λa,k+1(p, q).

To continue the numbering, the eigenvalue included in γ−n, for n > N0, must be λa,−n+a.

To put it directly, we say that for n > N0 − a, λa,−n is the eigenvalue surrounded by

γ−(n+a).

The localization gives us the following locally uniform estimates on L2
C(0, 1) ×

L2
C(0, 1)

λa,n(p, q) =
(
n +

a

2

)
π + β +O(1), n →∞, |O(1) | ≤ π

2
, (24)

λa,−n(p, q) = −
(
n +

a

2

)
π + β +O(1), n →∞, |O(1) | ≤ π

2
. (25)

Proposition 2.5 Let (p, q) ∈ L2
C(0, 1)× L2

C(0, 1).

λa,n(p, q) =
(
n + sgn(n)

a

2

)
π + β + o(1) , |n| → +∞. (26)

Proof. Relation (22) at x = 1 and definition (14) give

D(λ, p, q) = R(1, λ) · uβ + o

(
e|Im λ|

|λ|a

)
then, estimate (23) implies

D(λ, p, q) =
1

λa
sin
(
β +

aπ

2
− λ
)

+ o

(
e|Im λ|

|λ|a

)
.

According to the counting lemma, we have

λa,n(p, q) =
(
n + sgn(n)

a

2

)
π + β +O(1) , |n| → ∞,

knowing that |O(1) | < π
2
. We evaluate D(λ, p, q) at λ = λa,n(p, q) and use the above

estimates to get

0 =
1

λa,n
a sin (O(1)) + o

(
1

|λa,n|a

)
.

By identification, we found the result. �
Remarks Theses results have to be compared with those in the regular case (a = 0):

• Asymptotics of solutions and eigenvalues localization for L2
C(0, 1)-potentiels are only

locally uniform. This is due to the operator by itself and not to the singularity.

In [12] is given a pair of potentials with identical L2
C(0, 1)-norm whose eigenvalues

numbering (localization) are different.
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• A new phenomenon, relative to the numbering, is this loss of a eigenvalues lying

near 0. It may be seen as the analogue of the shift by a/2 in the eigenvalues

asymptotics of the radial Schrödinger operator (see for instance [13] when a = 1

and [21] for general a).

3. Spectral Data

From this point, (p, q) are real-valued. Thus, (λa,n(p, q))n∈Z is a strictly increasing

sequence of real numbers. We set some notations :

Notations 3 We define

Rn(t, p, q) = R(t, λa,n(p, q), p, q) and Sn(t, p, q) = S(t, λa,n(p, q), p, q).

Let Gn(t, p, q) be the normed eigenvector with respect to λa,n(V ) defined by

Gn(t, p, q) =
Rn(t, p, q)

‖Rn(·, p, q)‖2

.

We also define

An(x, p, q) = (an(x, p, q), bn(x, p, q))

where an(x, p, q) = a(x, λa,n(p, q), p, q) and bn(x, p, q) = b(x, λa,n(p, q), p, q) (a and b are

given on page 5).

3.1. Regularity, derivatives

Eigenvalues regularity and associated derivatives follows like in [11] and [18] as pictured

by the next proposition.

Proposition 3.1 For all n ∈ Z, (p, q) 7→ λa,n(p, q) is a real-analytic map on

L2
R(0, 1)× L2

R(0, 1). Its L2
R(0, 1)-gradient is given by

∇p,qλa,n =

(
∂λa,n

∂p
,
∂λa,n

∂q

)
with


∂λa,n

∂p
= 2 Gn,1(t, p, q) Gn,2(t, p, q),

∂λa,n

∂q
= Gn,2(t, p, q)

2 −Gn,1(t, p, q)
2.

(27)

Like in [18], or simply following [11], we need more information to recover a complete

parametrization of (L2
R(0, 1))

2
. Boundary condition at x = 1 defining each eigenvalue

is an orthogonality relation following one direction. It sounds reasonable that the

knowledge of a similar data in a complementary (here orthogonal) direction is enough.

Definition 3.1 For all n ∈ Z, we call normalization constants the quantities

κa,n(p, q) = Rn(1, p, q) · uβ
⊥. (28)

Following [11], we get :
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Proposition 3.2 For all n ∈ Z, (p, q) 7→ κa,n(p, q) is a real-analytic map on

L2
R(0, 1)× L2

R(0, 1). Its L2
R(0, 1)-gradient is given by

∇p,qκa,n

κa,n

= An(x, p, q) +
〈
Rn(·, p, q),Sn(·, p, q)

〉
∇p,qλa,n(p, q). (29)

Now, precise the behavior of theses normalization constants.

Proposition 3.3 Let (p, q) ∈ L2
C(0, 1)× L2

C(0, 1), we have

κa,n(p, q) =
(−1)n([

|n|+ a
2

]
π
)a (1 + o(1)) =

(−1)n

|nπ|a
(1 + o(1)) , |n| → +∞. (30)

Proof. Introducing (22) in the κa,n definition leads to

κa,n =
1

λa,n
a

(
ja−1 (λa,n) cos β + ja (λa,n) sin β + o(1)

)
.

Relation (A.6) implies

κa,n =
1

λa,n
a

(
cos
(
λa,n −

aπ

2
− β

)
+ o(1)

)
.

Now, with (26), we get

κa,n =
1

(n + sgnna
2
)aπa

(
cos
(
nπ + (sgn(n)− 1)

aπ

2

)
+ o(1)

)
,

=
(−1)n

(n + sgnna
2
)aπa

(
cos

[
aπ

sgn(n)− 1

2

]
+ o(1)

)
.

Setting the signum of n gives the result. �

3.2. Orthogonality relations

The following results, especially the corollary, confirm the choice of the additional data:

we have added only complementary data. As in [11], we obtain

Proposition 3.4 For all (j, k) ∈ Z2, we have

(i)
〈
∇p,qλa,j,∇p,qλa,k

⊥〉 = 0,

(ii)
〈
Aj(·, p, q),∇p,qλa,k

⊥〉 = δj,k,

(iii)
〈
Aj(·, p, q), Ak(·, p, q)⊥

〉
= 0.

Before giving the corollary, be more specific:

Definition 3.2 A vector family (uk)k∈Z of an Hilbert space is called free or its elements

are linearly independent if each element of the family is not in the closed span of the

others. More precisely:

∀k ∈ Z , uk /∈ Span {uj|j ∈ Z, j 6= k}.

Corollary 3.1 For all (j, k) ∈ Z2, we have

(i)
〈
∇p,qκa,j,∇p,qκa,k

⊥〉 = 0,

(ii)
〈
∇p,qκa,j,∇p,qλa,k

⊥〉 = κa,j(p, q)δj,k.

(∇p,qλa,n)n∈Z ∪ (∇p,qκa,n)n∈Z is a free family in L2
R(0, 1)× L2

R(0, 1).
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3.3. The spectral map

Introduce the quantities λ̃a,n(p, q) and κ̃a,n(p, q) such that

λa,n(p, q) =
(
n + sgn(n)

a

2

)
π + β + λ̃a,n(p, q).

κa,n(p, q) =
(−1)n[(

|n|+ a
2

)
π
]a (1 + κ̃a,n(p, q)) .

Now, with the estimates (26) and (30), we define the spectral map λa × κa : L2
R(0, 1)×

L2
R(0, 1) → c0(Z)× c0(Z) by

[λa × κa] (p, q) =
(
(λ̃a,n(p, q))n∈Z, (κ̃a,n(p, q))n∈Z

)
, (31)

where c0(Z) is the space of sequences (un)n∈Z which tend to 0 when |n| → ∞.

Following [18] or [13], to obtain regularity of λa × κa from its components, some

uniformity is needed. To this end, we introduce some transformation operators.

3.4. Transformations operators

Such operators were first introduced by Guillot and Ralston in [13] for the inverse

spectral problem of the radial Schrödinger operator when a = 1; then used and extended

to any integer a by Rundell and Sacks in [20] and by the present author in [21].

We construct similar operator adapted to the AKNS operator. An important

difference, excepted the matrix form, is a better structure of the converse operators

compared to the Schrödinger operator. These operators turn to be adapted to the

spectral data, since both vectors family corresponding to λa and κa are well transformed.

The proofs of the following lemmas are similar to those in [20]. The main tool is the use

of Bessel function’s properties (for a detailed proof see [22]). Now, give some notations.

Notations 4 For all n ∈ N, let Un and Vn be defined by

Un(x) =

[
0

xn

]
and Vn(x) =

[
xn

0

]
x ∈ [0, 1].

Lemma 3.1 For all a ∈ N, let

Sa+1 : L2
C(0, 1)× L2

C(0, 1) −→ L2
C(0, 1)× L2

C(0, 1)

(p, q) 7−→
(
Sa,1[p] , Sa,2[q]

)
with Sa,1[p](x) = p(x)− 2(2a + 1)x2a

∫ 1

x

p(t)

t2a+1
dt,

and Sa,2[q](x) = q(x)− 2(2a + 1)x2a+1

∫ 1

x

q(t)

t2a+2
dt.

Moreover, we set S0 := IdL2
C(0,1)×L2

C(0,1). We have the following properties:

(i) The adjoint of Sa+1 is Sa+1
∗[f, g] =

(
Sa,1

∗[f ] , Sa,2
∗[g]
)

where

Sa,1
∗[f ](x) = f(x)− 2(2a + 1)

x2a+1

∫ x

0

t2af(t)dt,

Sa,2
∗[g](x) = g(x)− 2(2a + 1)

x2a+2

∫ x

0

t2a+1g(t)dt.
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(ii) The family {Sa} pairwise commutes: SaSb = SbSa for all (a, b) ∈ N2.

(iii) Sa is bounded on L2
C(0, 1)× L2

C(0, 1).

(iv) Let Na+1 := ker Sa+1
∗, then Na+1 = Vect(U2a, V2a+1).

(v) Sa+1 is a linear isomorphism between L2
C(0, 1)× L2

C(0, 1) and Na+1
⊥.

Its inverse is the bounded operator on L2
C(0, 1)× L2

C(0, 1) defined by

Aa+1[f, g] :=
(
Sa,2

∗[f ] , Sa,1
∗[g]
)
.

(vi) Φa and Ψa defined by

Φa(x) =

[
−2ja−1(x)ja(x)

ja(x)2 − ja−1(x)2

]
and

Ψa(x) =

[
−ηa−1(x)ja(x)− ηa(x)ja−1(x)

−ηa−1(x)ja−1(x) + ηa(x)ja(x)

]
satisfy the relations

Φa+1 = −Sa+1
∗[Φa] and Ψa+1 = −Sa+1

∗[Ψa].

Lemma 3.2 For all a ∈ N we define Ta by

Ta = (−1)a+1SaSa−1 · · ·S1 , T0 = −S0. (32)

Let Ta[f, g] =
(
T 1

a [f ] , T 2
a [g]
)
, then

(i) Ta is a bounded, one-to-one operator on L2
C(0, 1) × L2

C(0, 1) such that for all

p, q ∈ L2
C(0, 1) and all λ ∈ C∫ 1

0

Φa(λt) ·
[

p(t)

q(t)

]
dt =

∫ 1

0

[
sin(2λt)

cos(2λt)

]
· Ta[p, q](t)dt, (33)∫ 1

0

Ψa(λt) ·
[

p(t)

q(t)

]
dt =

∫ 1

0

[
cos(2λt)

− sin(2λt)

]
· Ta[p, q](t)dt. (34)

(ii) The adjoint of Ta, T ∗
a [f, g] =

(
T 1

a
∗
[f ] , T 2

a
∗
[g]
)

verifies

Φa(λx) = T ∗
a

[
sin(2λx)

cos(2λx)

]
and Ψa(λx) = T ∗

a

[
cos(2λx)

− sin(2λx)

]
(35)

and

Ker(T ∗
a ) =

a⊕
k=1

Nk.

(iii) Ta defines a linear isomorphism between L2
C(0, 1)× L2

C(0, 1) and

(
a⊕

k=1

Nk

)⊥
.

Its inverse is the bounded operator on L2
C(0, 1)× L2

C(0, 1) defined by

Ba[f, g] :=
(
T 2

a
∗
[f ] , T 1

a
∗
[g]
)
.
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3.5. Asymptotics upgrade

The following asymptotics are delicate to obtain since we want them to figure both

asymptotic behavior with respect to n and singular behavior with respect to x.

Transformation operator will help us to handle this difficulty.

First, give a tool ensuring us some uniformity with respect to potentials. It is a

Riemann-Lebesgue type lemma:

Lemma 3.3 (Lemma A.1. in [3](See also [17]))(∫ 1

0

f(t)e2ıπ(k+εk)tdt

)
k∈Z

∈ `2
C(Z)

uniformly with respect to (f, (εk)k∈Z) on bounded sets of L2
C(0, 1)× `∞C (Z).

Give an useful writing shortcut:

Notations 5 Let (fn)n∈Z a sequence of L∞C (0, 1) functions. The equality

fn(x) = `2(n), x ∈ [0, 1], n ∈ Z

means

(‖fn‖∞)n∈Z ∈ `2
R(Z).

Theorem 3.1 Uniformly on [0, 1] and locally uniformly on L2
C(0, 1)×L2

C(0, 1) we have

the following estimate:∣∣∣R(x, λa,n(p, q), p, q)−R(x, λa,n(p, q))
∣∣∣ ≤ C

[
x

1 + |λa,n|x

]a

`2(n), |n| → ∞, (36)

and locally uniformly on L2
C(0, 1)× L2

C(0, 1), we have

λa,n(p, q) =
(
n + sgn(n)

a

2

)
π + β + `2(n), |n| → ∞. (37)

Proof. We first prove a similar estimate for R1(x, λa,n(p, q), p, q). For this, recall (see

the proof of Theorem 2.1) that R1(x, λ, p, q) = λ−a[X(q) + Y (p)]. Thus notations from

Lemma 3.1 give

R1(x, λ, p, q) =
1

λa

[
−ηa−1 (λx)

ηa (λx)

] ∫ 1

0

Φa(λt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

+
1

λa

[
ja−1 (λx)

−ja (λx)

] ∫ 1

0

Ψa(λt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt.

Estimate (24) implies that λa,n = nπ + εn with (εn)n ∈ `∞C (Z). Then, lemmas 3.2 and

3.3 give uniformly on [0, 1] and locally uniformly on L2
C(0, 1)× L2

C(0, 1):(∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

)
n∈Z

∈ `2
C(Z),(∫ 1

0

Ψa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

)
n∈Z

∈ `2
C(Z),
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in other words

R1(x, λa,n(p, q), p, q) =
`2(n)

λa,n
a

[
−ηa−1 (λa,nx)

ηa (λa,nx)

]
+

`2(n)

λa,n
a

[
ja−1 (λa,nx)

−ja (λa,nx)

]
.

From (A.2), we obtain∣∣∣∣∣`2(n)

λa,n
a

[
ja−1 (λa,nx)

−ja (λa,nx)

]∣∣∣∣∣ ≤ C

(
x

1 + |λa,n|x

)a

`2(n). (38)

For the first term in R1(x, λa,n(p, q), p, q) we split [0, 1] in two:

|λa,nx| ≥ 1: Since uniformly on [0, 1],∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt = `2(n)

and

1 =
1 + |λa,n|x
1 + |λa,n|x

≤ 2|λa,n|x
1 + |λa,n|x

,

we get ∣∣∣∣∣
∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

∣∣∣∣∣ ≤
(

2|λa,n|x
1 + |λa,n|x

)2a

`2(n).

|λa,nx| ≤ 1: Estimate (A.2) gives∣∣∣∣∣
∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

∣∣∣∣∣ ≤ C

(
|λa,n|x

1 + |λa,n|x

)2a ∫ x

0

[
|p(t)|
|q(t)|

]
dt,

where C > 0 is uniform in x and n, then∣∣∣∣∣
∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

∣∣∣∣∣ ≤ C

(
|λa,n|x

1 + |λa,n|x

)2a∫ |λa,n|−1

0

[
|p(t)|
|q(t)|

]
dt.

Lemma Appendix A.3 gives the good bound.

Combining theses two estimates, we get uniformly on [0, 1] and locally uniformly on

L2
C(0, 1)× L2

C(0, 1):∣∣∣∣∣
∫ 1

0

Φa(λa,nt) ·
[

ll[0,x](t)p(t)

ll[0,x](t)q(t)

]
dt

∣∣∣∣∣ ≤ C ′
(

|λa,n|x
1 + |λa,n|x

)2a

`2(n). (39)

Estimate (A.3) together with (38) and (39) gives∣∣∣R1(x, λa,n(p, q), p, q)
∣∣∣ ≤ ( x

1 + |λa,n|x

)a

`2(n)

locally uniformly on L2
C(0, 1)× L2

C(0, 1) and uniformly on [0, 1].

With the recurrence relation and the estimation for G(x, t, λ), follows uniformly on

[0, 1] and locally uniformly on L2
C(0, 1)× L2

C(0, 1):∣∣∣Rk+1(x, λa,n(p, q), p, q)
∣∣∣ ≤ Ck

k!

(∫ x

0

(|p(t)|+ |q(t)|) dt

)k (
x

1 + |λa,n|x

)a

`2(n),
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summing up, we get the result. Eigenvalues estimate is deduced directly from

R(x, λa,n(p, q), p, q)’s estimate and from (24)-(25). �
In a very similar way, we upgrade the control of the singular solution and doing it

justify the choice and existence of the singular solution as announced in the first remark.

Theorem 3.2 Let (p, q) ∈ L2
C(0, 1) × L2

C(0, 1), then uniformly on (0, 1] and locally

uniformly on L2
C(0, 1)× L2

C(0, 1) we have:∣∣∣S(x, λa,n(p, q), p, q)− S(x, λa,n(p, q))
∣∣∣ ≤ C

[
1 + |λa,n|x

x

]a

`2(n). (40)

Proof. As for the regular solution, we obtain (see [22]) the uniform estimate in x ∈ [0, 1]

and locally uniform on L2
R(0, 1)× L2

R(0, 1):

S̃(x, λa,n(p, q), p, q) = S(x, λ) +O
([

1 + |λa,n|x
x

]a)
`2(n).

Then, we get easily W(λa,n(p, q), p, q) = W(λa,n(p, q), 0)+`2(n) = 1+`2(n) and through

S(x, λ, p, q) =
S̃(x, λ, p, q)

W(λ, p, q)
, we reach the result. �

Straightforward calculations let us deduce the following estimations:

Corollary 3.2 Uniformly on [0, 1] and locally uniformly on L2
R(0, 1) × L2

R(0, 1), when

|n| → ∞, we have

‖Rn(·, p, q)‖2 =
1

λa,n
2a

(
1 + `2(n)

)
, (41)〈

Rn(·, p, q),Sn(·, p, q)
〉

= `2(n), (42)

Gn(x, p, q) =

[
ja−1 (λa,nx)

−ja (λa,nx)

]
+ `2(n), (43)

∇p,qλa,n(p, q) = Φa(λa,nx) + `2(n), (44)

κa,n(p, q) =
(−1)n[(

|n|+ a
2

)
π
]a [1 + `2(n)

]
=

(−1)n

|nπ|a
[
1 + `2(n)

]
, (45)

An(x, p, q) = Ψa(λa,nx) + `2(n), (46)

∇p,qκa,n(p, q)

κa,n(p, q)
= Ψa(λa,nx) + `2(n). (47)

Now, the spectral map can be correctly defined by

λa × κa : L2
R(0, 1)× L2

R(0, 1) −→ `2(Z)× `2(Z)

(p, q) 7−→
(
(λ̃a,n(p, q))n∈Z, (κ̃a,n(p, q))n∈Z

)
,

and, following [18] and [13], previous analyticity results and the local uniformity with

respect to the potentials give us:

Theorem 3.3 λa × κa is a real-analytic map on L2
R(0, 1)× L2

R(0, 1).

Its Fréchet derivative is given by the linear map from L2
R(0, 1)×L2

R(0, 1) to `2(Z)×`2(Z):

dp,q(λ
a × κa)(v) =

(
(〈∇p,qλa,n, v〉)n∈Z , (〈∇p,qκ̃a,n, v〉)n∈Z

)
.
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4. The inverse spectral problem

Now, give the main result

Theorem 4.1

dp,q(λ
a × κa) is an isomorphism between L2

R(0, 1)× L2
R(0, 1) and `2(Z)× `2(Z).

Proof. In view of the relation

∇p,qκ̃a,n = (−1)n
[(
|n|+ a

2

)
π
]a
∇p,qκa,n,

corollary 3.1 implies that (∇p,qλa,n)n∈Z ∪ (∇p,qκ̃a,n)n∈Z is a free family in L2
R(0, 1) ×

L2
R(0, 1). Let define rn and sn by

rn(x) = ∇p,qλa,n(x)− Φa(λa,nx), (48)

sn(x) = ∇p,qκ̃a,n(x)−Ψa(λa,nx). (49)

With lemma 3.2, we have for all v ∈ L2
R(0, 1)× L2

R(0, 1),〈
∇(p,q)λa,n(V ), v

〉
=

∫ 1

0

([
sin (2λa,nt)

cos (2λa,nt)

]
+ Rn(t)

)
· Ta[v](t)dt, (50)

〈
∇(p,q)κ̃a,n(V ), v

〉
=

∫ 1

0

([
cos (2λa,nt)

− sin (2λa,nt)

]
+ Sn(t)

)
· Ta[v](t)dt, (51)

where Rn = B∗
a[rn] and Sn = B∗

a[sn]. Introduce operator F defined by

F (w) =

({〈[
sin (2λa,nt)

cos (2λa,nt)

]
+ Rn(t), w

〉}
n∈Z

,

{〈[
cos (2λa,nt)

− sin (2λa,nt)

]
+ Sn(t), w

〉}
n∈Z

)
,

in order to get dp,q(λ
a × κa)(v) = F ◦ Ta[v]. From lemma 3.2, Ta is a bijection between

L2
C(0, 1)×L2

C(0, 1) and

(
a⊕

k=1

Nk

)⊥
. Thus, we have to prove that F is a bijection between(

a⊕
k=1

Nk

)⊥
and `2(Z) × `2(Z). To this end, we will show that the operator F sending

functions in L2
R(0, 1) × L2

R(0, 1) into their Fourier coefficients (or, in other words, the

scalar products) with respect to the family

F =

(
{U2k}a−1

k=0 ,

{[
sin (2λa,nt)

cos (2λa,nt)

]
+ Rn(t)

}
n∈Z

,

{V2k+1}a−1
k=0 ,

{[
cos (2λa,nt)

− sin (2λa,nt)

]
+ Sn(t)

}
n∈Z

)
, (52)

is a invertible map from L2
R(0, 1)×L2

R(0, 1) to `2(Z)×`2(Z). For this, recall the following

property (see [18]: Appendix D, theorem 3).

Lemma 4.1 Let {fn}n∈Z be a free family of vectors in an Hilbert space H close to an

orthonormal basis {en}n∈Z of H, ie
∑
‖fn − en‖2

2 < ∞.

Then {fn}n∈Z is a basis for H and the map F : x 7→ {(fn, x)}n∈Z is a linear isomorphism

from H onto `2(Z).
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Estimates (44), (45) and (47) lead to rn = `2(n) and sn = `2(n). Boundedness of B∗
a

thus gives Rn = `2(n) and Sn = `2(n) which, together with the orthogonal basis of

L2
R(0, 1)× L2

R(0, 1)

F0 =

{[
sin
(
2
(
(n + a

2
)π + β

)
t
)

cos
(
2
(
(n + a

2
)π + β

)
t
) ], [ cos

(
2
(
(n + a

2
)π + β

)
t
)

− sin
(
2
(
(n + a

2
)π + β

)
t
) ], n ∈ Z

}
, (53)

and a correct arrangement of each vectors family (see remark bellow ), prove the

closeness of F and F0. Lemma 4.2 gives the freedom of F and thus lemma 4.1 is

applicable. �
Remark. At first sight, the “loss” of eigenvalues appeared in the counting lemma

and the non-zero kernel of the transformation operator seem to be barriers to solve

the inverse problem. In fact, it is not, it helps us to fit correctly vectors family F
and F0. Be more specific: let f 0

n,1 and f 0
n,2 be defined by (53), in other words, we

just write F0 =
{
f 0

n,1, f 0
n,2, n ∈ Z

}
. For F we choose the following numbering: set

F = {fn,1, fn,2, n ∈ Z} where for any integer n ≥ 0,

fn,1(t) =

[
sin (2λa,nt)

cos (2λa,nt)

]
+ Rn(t), fn,2(t) =

[
cos (2λa,nt)

− sin (2λa,nt)

]
+ Sn(t),

for any integer n such that n ∈ [[−a,−1]],

fn,1 = U−2n−2, fn,2 = V−2n−1,

and for all integer n such that n ≤ −a− 1,

fn,1(t) =

[
sin (2λa,n+at)

cos (2λa,n+at)

]
+ Rn+a(t), fn,2(t) =

[
cos (2λa,n+at)

− sin (2λa,n+at)

]
+ Sn+a(t).

With this notation and using the eigenvalue estimate (37), for j = 1, 2, (fn,j)n is

asymptotically `2-close to (f 0
n,j)n whenever n → ±∞.

In order to prove the freedom of F , give a little extension with the following

Proposition 4.1 Let (En,1, En,2)n∈Z be a free vector family in L2
R(0, 1) × L2

R(0, 1)

satisfying the following properties:

(i) Duality : there exists a bounded vector family (Fn,1, Fn,2)n∈Z in L2
R(0, 1)×L2

R(0, 1),

such that

〈En,j, Fm,j〉 = 0, (n,m) ∈ Z2, j = 1, 2.

〈En,1, Fm,2〉 = 〈En,2, Fm,1〉 = δn,m, ∀(n,m) ∈ Z2.

(ii) Asymptotics:

En,1 = T ∗
a

([
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1

)
, En,2 = T ∗

a

([
cos (2λa,nt)

− sin (2λa,nt)

]
+ en,2

)

with
(
‖en,j‖L2

R(0,1)×L2
R(0,1)

)
n∈Z

∈ `2
R(Z), j = 1, 2.
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(iii) Summability: for any k ∈ [[0, 2a− 1]], there exists ω ∈ C∞0 ([0, 1], R2) such that for

all m ∈ [[0, 2a− 1]], 〈ω,Wm〉 = δk,m and

(〈ω, en,j〉)n∈Z ∈ `1
R(Z), j = 1, 2.

Then, the following family is free in L2
R(0, 1)× L2

R(0, 1)

F =

(
{U2k}a−1

k=0 ,

{[
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1(t)

}
n∈Z

,

{V2k+1}a−1
k=0 ,

{[
cos (2λa,nt)

− sin (2λa,nt)

]
+ en,2(t)

}
n∈Z

)
.

Proof. Since T ∗
a is bounded and (En,1, En,2)n∈Z is free, condition (ii) implies the freedom

of the following family{[
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1(t)

}
n∈Z

∪
{[

cos (2λa,nt)

− sin (2λa,nt)

]
+ en,1(t)

}
n∈Z

.

Let k ∈ [[0, 2a− 1]], we define Wk by Wk = Uk if k is even and Wk = Vk otherwise.

Show that Wk is not in the closure of Vect (F \ {Wk}). (Precisely, we should prove

iteratively that Wk /∈ Span {F \ {Wj, j ∈ [[k, 2a− 1]]}}, which is not necessary since it

suffices to set α
(j)
m = 0 for m ∈ [[k, 2a− 1]] in the next expression.) For this, suppose the

contrary: there exists a vector sequence defined for j ∈ N by

W
(j)
k (t) =

∑
m∈[[0,2a−1]],m 6=k

α(j)
m Wm(t) +

∑
n∈[[−Nj ,Nj ]]

a(j)
n

([
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1(t)

)

+
∑

n∈[[−Nj ,Nj ]]

b(j)
n

([
cos (2λa,nt)

− sin (2λa,nt)

]
+ en,2(t)

)
,

with Nj < ∞, α
(j)
m , a

(j)
n , b

(j)
n ∈ R such that W

(j)
k −→

j→∞
Wk in L2

R(0, 1) × L2
R(0, 1). Recall

that T ∗
a (Wm) = 0 for m = 0, . . . , 2a− 1, thus the sequence

w(j) := T ∗
a (W

(j)
k ) =

∑
n∈[[−Nj ,Nj ]]

a(j)
n En,1 + b(j)

n En,2

converges towards 0 in L2
R(0, 1)× L2

R(0, 1) when j →∞, and point (i) leads to

a(j)
n =

∫ 1

0

w(j) · Fn,2 dt −→
j→∞

0, (54)

b(j)
n =

∫ 1

0

w(j) · Fn,1 dt −→
j→∞

0. (55)

and gives the uniform boundedness of (a
(j)
n ) and (b

(j)
n ) with respect to n and j.

Now consider ω ∈ C∞0 ([0, 1], R2) as in (iii). Its smoothness and support property

imply that for all N ∈ N,∫ 1

0

ω(t) ·
[

sin (2λa,nt)

cos (2λa,nt)

]
dt,

∫ 1

0

ω(t) ·
[

cos (2λa,nt)

− sin (2λa,nt)

]
dt = O

(
1

nN

)
.
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Thus, second part of (iii) shows the summability of{〈
ω, t 7→

[
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1(t)

〉}
n∈Z

and {〈
ω, t 7→

[
cos (2λa,nt)

− sin (2λa,nt)

]
+ en,2(t)

〉}
n∈Z

.

We complete the proof writing〈
ω,W

(j)
k

〉
=

∑
n∈[[−Nj ,Nj ]]

a(j)
n

〈
ω,

([
sin (2λa,nt)

cos (2λa,nt)

]
+ en,1(t)

)〉

+
∑

n∈[[−Nj ,Nj ]]

b(j)
n

〈
ω,

([
cos (2λa,nt)

− sin (2λa,nt)

]
+ en,2(t)

)〉
,

indeed, this shows, by dominated convergence, that〈
ω,W

(j)
k

〉
−→
j→∞

0,

which is in contradiction with the definition of ω. So F is a free family. �

Lemma 4.2 F is a free family in L2
R(0, 1)× L2

R(0, 1).

Proof. Let us apply proposition 4.1. For this, we consider the following vectors

En,1 = ∇p,qλa,n, En,2 = ∇p,qκ̃a,n, n ∈ Z,

Fn,1 = ∇p,qλa,n
⊥, Fn,2 = −∇p,qκ̃a,n

⊥, n ∈ Z.

Results from section 3.2 show that (En,1, En,2)n∈Z are linearly independent and that

condition (i) is verified.

Relations (50), (51) and estimates (44), (47) give us condition (ii) with

en,1 = Ba
∗[rn], en,2 = Ba

∗[sn],

where rn and sn are defined by (48) and (49).

Now, condition (iii) is left to be proved.

First, there exists ω ∈ C∞0 ([0, 1], R2) compactly supported in [δ, 1] for some δ > 0, such

that m ∈ [[0, 2a− 1]], 〈ω,Wm〉 = δk,m. Second, from the definition of S∗a given in lemma

3.1, Ba[ω] is in C∞([0, 1], R2) and supported in [δ, 1]. We are now able to prove the

summation properties.

Let εn = (ε1
n, ε

2
n) be defined by εn(x, V ) = Rn(x, V )−R(x, λa,n(V )) and plug it in

∇p,qλa,n via (27). We get

2Gn,1(x, V )Gn,2(x, V ) = 2(R1(x, λa,n) + ε1
n)(R2(x, λa,n) + ε2

n)‖Rn(·, p, q)‖−2
2 ,

=
(
2R1(x, λa,n)R2(x, λa,n) + 2R1(x, λa,n) ε1

n + 2R2(x, λa,n) ε2
n

+ ε1
nε

2
n

)
‖Rn(·, p, q)‖−2

2 .
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From (36), we have

∣∣εj
n(x)

∣∣ ≤ ( x

1 + |λa,n|x

)a

`2(n), j = 1, 2.

Thus, using (41), we get

2Gn,1(x, V )Gn,2(x, V ) = − 2ja(λa,nx)ja−1(λa,nx)(1 + `2(n))

+ 2λa,n
a
(
ja−1(λa,nx) ε2

n − ja(λa,nx) ε1
n

)
+ `1(n)

and

Gn,2(x, V )2 −Gn,1(x, V )2 = (ja(λa,nx)2 − ja−1(λa,nx)2)(1 + `2(n))

+ 2λa,n
a
(
− ja−1(λa,nx) ε1

n − ja(λa,nx) ε2
n

)
+ `1(n),

then, we obtain uniformly for x ∈ [0, 1],

rn(x, V ) = 2λa,n
a
[
ja−1 (λa,nx) εn(x, V )⊥ − ja (λa,nx) εn(x, V )

]
+ Φa(λa,nx)`2(n) + `1(n).

With the uniform estimation on [δ, 1], ja (λa,nx) = sin
(
λa,nx− aπ

2

)
+O

(
1

λa,n

)
, we get

〈ω, en,1〉 = 〈ω,Ba
∗[rn]〉 = 〈Ba[ω], rn〉

=

∫ 1

0

cos
(
λa,nt−

aπ

2

)
2λa,n

aεn(t, V )⊥ ·Ba[ω](t)dt

−
∫ 1

0

sin
(
λa,nt−

aπ

2

)
2λa,n

aεn(t, V ) ·Ba[ω](t)dt

+
〈
`2(n)Ba[ω], Φa(λa,nx)

〉
+ `1(n).

Now, with lemma 3.3, notice that for all f ∈ L2
R(0, 1), we have uniformly on the bounded

sets of L2
R(0, 1),∣∣∣∣∫ 1

0

cos (λa,nx) f(t)dt

∣∣∣∣ = ‖f‖2

∣∣∣∣∫ 1

0

cos (λa,nx)
f(t)

‖f‖2

dt

∣∣∣∣ ≤ ‖f‖2 `2(n).

This leads for instance to∣∣∣∣∫ 1

0

sin
(
λa,nt− aπ

2

)
2λa,n

aεn(t, V ) ·Ba[ω](t)dt

∣∣∣∣ ≤ 2`2(n)‖λa,n
aεn ·Ba[w]‖2,

≤ 2`2(n)`2(n)‖Ba[w]‖2,

≤ `1(n)‖Ba[w]‖2.

And with the transformation operator, we get 〈`2(n)Ba[ω], Φa(λa,nx)〉 = `1(n).

Consequently, we have 〈ω, en,1〉 = `1(n).

Now let Σn = (Σ1
n, Σ

2
n) be defined by Σn(x, V ) = Sn(x, V )− S(x, λa,n). With (40),

we have ∣∣Σj
n(x)

∣∣ ≤ (1 + |λa,n|x
x

)a

`2(n), j = 1, 2.



Inverse spectral problem for singular AKNS operator on [0, 1]. 25

First, with the definition of An(x, p, q) and relations (36) and (40), we have

An(x, p, q) = Ψa(λa,nx)− λa,n
−a(ja−1(λa,nx)Σn(x, V )⊥ − ja(λa,nx)Σn(x, V ))

+ λa,n
a(ηa−1(λa,nx)εn(x, V )⊥ − ηa(λa,nx)εn(x, V )) + `1(n),

which leads, using (29) with (42), to

∇p,qκa,n

κa,n

= Ψa(λa,nx) + `2(n)Ψa(λa,nx)

− λa,n
−a
(
ja−1(λa,nx)Σn(x, V )⊥ − ja(λa,nx)Σn(x, V )

)
+ λa,n

a
(
ηa−1(λa,nx)εn(x, V )⊥ − ηa(λa,nx)εn(x, V )

)
+ `1(n).

Then, we get

sn(x) = − λa,n
−a(ja−1(λa,nx)Σn(x, V )⊥ − ja(λa,nx)Σn(x, V ))

+ λa,n
a(ηa−1(λa,nx)εn(x, V )⊥ − ηa(λa,nx)εn(x, V ))

+ `2(n)Ψa(λa,nx) + `2(n)Ψa(λa,nx) + `1(n).

Now, with the same arguments as previously, using the transformation operator we find

that

{〈ω, en,2〉}n∈Z ∈ `1(Z).

Thus, proposition 4.1 proves the result. �
We can go further in solving the inverse spectral problem. Indeed, we can give

explicitly the inverse of the spectral map’s differential. But first some notations:

Notations 6 For all n ∈ Z, we set

Xa,n(p, q) =
−∇p,qκa,n

⊥

κa,n(p, q)
, Ya,n(p, q) =

(−1)n∇p,qλa,n
⊥[(

|n|+ a
2

)
π
]a

κa,n(p, q)
.

Notice that, according to estimations from corollary 3.2, we have

Xa,n(p, q) = −Ψa(λa,nx)⊥ + `2(n), Ya,n(p, q) = Φa(λa,nx)⊥ + `2(n). (56)

Corollary 4.1 λa × κa is a local real analytic diffeomorphism at every point in

L2
R(0, 1) × L2

R(0, 1). Moreover, the inverse of dp,q (λa × κa) is the linear map from

`2
R(Z)× `2

R(Z) onto L2
R(0, 1)× L2

R(0, 1) given by

(dp,q (λa × κa))−1 (ξ, η) =
∑
n∈Z

ξnXa,n +
∑
n∈Z

ηnYa,n.

Proof. First point comes directly from the theorem and the definition of a local

diffeomorphism. Now consider (ξ, η) ∈ `2
R(Z)× `2

R(Z) and let

u =
∑
n∈Z

ξnXa,n +
∑
n∈Z

ηnYa,n.
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Thanks to relation (35), the transformation operator lets us write estimations (56) in

the following way

Xa,n(p, q) = Ba

[[
sin(2λa,nx)

cos(2λa,nx)

]
+ `2(n)

]
, Ya,n(p, q) = Ba

[[
cos(2λa,nx)

− sin(2λa,nx)

]
+ `2(n)

]
.

Since Ba is bounded and ξ, η are in `2
R(Z), the sum defining u exists in L2

R(0, 1)×L2
R(0, 1)

. Orthogonality relations from section 3.2 imply that for all n ∈ Z

〈∇p,qλa,n, u〉 = ξn et 〈∇p,qκ̃a,n, u〉 = ηn.

Thus we have dp,q (λa × κa) (u) = (ξ, η), which proves the corollary. �
We finish the local inverse spectral problem with the description of isospectral sets.

For (p0, q0) ∈ L2
R(0, 1) × L2

R(0, 1), we define the set of AKNS potentials with same

spectrum as (p0, q0), called isospectral set of (p0, q0), by:

Iso(p0, q0, a) =
{
(p, q) ∈ L2

R(0, 1)× L2
R(0, 1) : λa(p, q) = λa(p0, q0)

}
.

Theorem 4.2 Let (p0, q0) ∈ L2
R(0, 1)× L2

R(0, 1), then

(a) Iso(p0, q0, a) is a real analytic submanifold of L2
R(0, 1)× L2

R(0, 1).

(b) At every point (p, q) of Iso(p0, q0, a), the tangent space is

Tp,qIso(p0, q0, a) =

{∑
n∈Z

ηnYa,n(p, q) : η ∈ `2
R(Z)

}

and the normal space is

Np,qIso(p0, q0, a) =

{∑
n∈Z

ηnYa,n(p, q)⊥ : η ∈ `2
R(Z)

}
.

Proof. Notice that the local real-analytic diffeomorphism λa×κa defines a chart at each

point (p, q) ∈ Iso(p0, q0, a), the definition of a submanifold gives point (a).

Since Tp,qIso(p0, q0, a) = (dp,q (λa × κa))−1 ({0`2R(Z)} × `2
R(Z)), corollary 4.1 gives the

expression of the tangent space. Now, the family (Ya,n)n∈Z is free since (∇p,qλa,n)n∈Z is.

Moreover, it is orthogonal to (Ya,n
⊥)n∈Z. Then we have the first inclusion{∑

n∈Z

ηnYa,n(p, q)⊥ : η ∈ `2
R(Z)

}
⊂ Np,qIso(p0, q0, a).

Now, every vector orthogonal to (Ya,n
⊥)n∈Z is orthogonal to the gradients (∇p,qλa,n)n∈Z,

in other words, is in the kernel of dp,qλ
a. Thus the second inclusion follows and so does

point (b). �
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4.1. A Borg-Levinson theorem on H1
R(0, 1)×H1

R(0, 1)

Theorem 4.3 λa × κa is one-to-one on H1
R(0, 1)×H1

R(0, 1).

As in the case of a radial Schrödinger operator (see for instance [7]), we introduce

another solution to (1) with boundary condition at x = 1.

Lemma 4.3 Let ρ(x, λ, V ) be the solution of (1) such that

ρ(1, λ, V ) = uβ
⊥. (57)

Then ρ verifies the following properties

(i) For V = (p, q) ∈ L2
C(0, 1)× L2

C(0, 1) and δ > 0, uniformly on [δ, 1],∣∣∣∣∣ρ(x, λ, V )−
[

cos (λ(1− x)− β)

sin (λ(1− x)− β)

]∣∣∣∣∣ ≤ K(x)e|Im λ|(1−x)

where K(x) = exp

[∫ 1

x

(
|p(t)|+ |q(t)|+ a

t

)
dt

]
.

(ii) For V = (p, q) ∈ H1 ×H1 and δ > 0, uniformly on [δ, 1],∣∣∣∣∣ρ(x, λ, V )−
[

cos (λ(1− x)− β)

sin (λ(1− x)− β)

]∣∣∣∣∣ ≤ Ca
K(x)

λx
(‖V ‖H1 + 1)e|Im λ|(1−x)

(iii) For all x ∈ (0, 1], ρ(x, λ, V ) is analytic on C× L2
C(0, 1)× L2

C(0, 1).

(iv) For n ∈ Z and λ = λa,n(V ), we have

Rn(x, V ) = κa,n(V )ρ(x, λa,n(V ), V ). (58)

Lemma’s proof.

Points (i), (ii) et (iii) follow directly from a Picard iteration construction of ρ. Indeed,

we define as in the regular case (see for instance [11]) ρ with

Now prove point (iv): when λ = λa,n(V ), according to (2) and (57), ρ(1, λa,n(V ), V )

and R(1, λa,n(V )) are collinear. Then ρ(x, λa,n(V ), V ) and R(x, λa,n(V )) solutions of (1)

with the same eigenvalue λ are also collinear, in other words there exists Cn ∈ R such

that Rn(x, V ) = Cn ρ(x, λa,n(V ), V ). Using again (2) then (57) and (28), we deduce

that κa,n(V ) = Cn. �
Proof of Theorem 4.3. Let V, W ∈ L2

R(0, 1) × L2
R(0, 1) such that (λa × κa)(V ) =

(λa × κa)(W ). For u ∈ R2, introduce the function

f(x, λ, V, W ) =
[R(x, λ, V )·u−R(x, λ, W )·u] [ρ(x, λ, V ) · u− ρ(x, λ, W ) · u]

D(λ, V )
.

For all x ∈ (0, 1], f : λ 7→ f(x, λ, V, W ) is a meromorphic function on C which has

simple poles λa,n(V ), n ∈ Z. From the simplicity of poles and since f(λ) = h(λ)/g(λ),

the residue of f at λa,n(V ) is

Res(f, λa,n(V )) =
h(λa,n(V ))

g′(λa,n(V ))
.
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Using that λa,n(V ) = λa,n(W ) and κa,n(V ) = κa,n(W ), together with relations (58)

and (16), we obtain

Res(f, λa,n(V )) = − [Rn(x, V ) · u−Rn(x, W ) · u]2

‖Rn(·, V )‖2
2

.

To conclude, we make use of a complex analysis result

Lemma 4.4 (Lemma 3.2 [18]) Let f be a meromorphic function on C such that

sup
|λ|=rn

|f(λ)| = o

(
1

rn

)
for an unbounded sequence of positive real numbers (rn). Then, the sum of the residues

of f is zero.

Let N > 0 be an integer and CN be the circle defined by∣∣∣λ− (aπ

2
+ β

)∣∣∣ =

(
N +

1

2

)
π.

Estimate |λf(x, λ, V, W )| on CN . From (17) and (22) with the help of lemma (4.3), we

have for N large enough

|R(x, λ, V ) · u−R(x, λ, W ) · u| ≤ C(‖V ‖H1 + ‖W‖H1)e
|Im λ|x ln |λ|

|λ|a+1
,

|ρ(x, λ, V ) · u− ρ(x, λ, W ) · u| ≤ K(x)

|λ|x
(‖V ‖H1 + ‖W‖H1)e

|Im λ|(1−x),

|D(λ, V )| ≥ |R(1, λ) · uβ| − |(R(1, λ, V )−R(1, λ)) · uβ| ≥
C

|λ|a
e|Im λ|.

We deduce that uniformly for x ∈ [δ, 1] and λ ∈ CN , |λf(λ, V, W )| ≤ C
ln |λ|
|λ|

. Thus,

result from lemma 4.4 is valid for f . Since residues of f have the same sign, they

are all zero. In conclusion, we have for all n ∈ Z, u ∈ R2, δ ∈ (0, 1] and x ∈ [δ, 1],

Rn(x, V ) ·u−Rn(x, W ) ·u = 0. We can deduce, recalling continuousness of eigenvectors

at x = 0, that for all x ∈ [0, 1] and all n ∈ Z

Rn(x, V ) = Rn(x, W ).

Plug this in (1) to deduce that V = W almost every where on [0, 1]. �
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Appendix

Spherical Bessel functions ja and ηa are defined through

ja(z) =

√
πz

2
Ja+1/2(z), ηa(z) = (−1)a

√
πz

2
J−a−1/2(z), (A.1)

where Jν is the first kind Bessel function of order ν (see [9] for precisions).

The following estimates can be found in [22].

• Uniform estimates on C:

|ja(z)| ≤ Ce|Im z|
(

|z|
1 + |z|

)a+1

, (A.2)

|ηa(z)| ≤ Ce|Im z|
(

1 + |z|
|z|

)a

. (A.3)

• Estimations for the Green function G(x, t, λ) when 0 ≤ t ≤ x:

|G(x, t, λ)| ≤ Ce|Im λ|(x−t)

(
x

1 + |λ|x

)a(
1 + |λ|t

t

)a

. (A.4)

• Estimations for the Green function G(x, t, λ) when 0 ≤ x ≤ t ≤ 1:

|G(x, t, λ)| ≤ Ce|Im λ|(t−x)

(
1 + |λ|x

x

)a(
t

1 + |λ|t

)a

. (A.5)

• Trigonometric expression ([9] formulas (1− 2) section 7.11 p.78),

ja(z) = sin
(
z − aπ

2

)
Pa(z

−1) + cos
(
z − aπ

2

)
Ia(z

−1), (A.6)

ηa(z) = cos
(
z − aπ

2

)
Pa(z

−1)− sin
(
z − aπ

2

)
Ia(z

−1) (A.7)

where Pa and Ia are even, resp. odd, polynomials given by

Pa(z) =

≤a/2∑
m=0

(−1)m(a + 1/2, 2m)(2z)2m, (Pa(0) = 1), (A.8)

Ia(z) =

≤(a−1)/2∑
m=0

(−1)m(a + 1/2, 2m + 1)(2z)2m+1, (Ia(0) = 0), (A.9)

where (ν, m) =
Γ(ν + 1/2 + m)

m!Γ(ν + 1/2−m)
is the Hankel symbol.

Appendix A.1. Technical lemmas

Lemma Appendix A.1 Let f1(z) = 2ja−1(z)ja(z). Then F1 =
∫

f1(z)dz such that

F1(0) = 0 verifies the properties

(i) |F1(z)| ≤ C

(
|z|

1 + |z|

)2a+2

for |z| ≤ 1;

(ii) F1(z) = −aci(2z) + pa

(
z−1
)
cos (2z) + qa

(
z−1
)
sin (2z) + ra

(
z−1
)

if z 6= 0,

Where ci(z) =

∫ z

0

cos t− 1

t
dt and pa, qa, ra are resp. even, odd and even, polynomials.
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Lemma Appendix A.2 Let f2(z) = ηa−1(z)ja(z)+ηa(z)ja−1(z). Then F2 =
∫

f2(z)dz

such that F2(0) = 0 satisfies the properties

(i) |F2(z)| ≤ C
|z|

1 + |z|
for |z| ≤ 1;

(ii) F2(z) = aSi(2z)− pa

(
z−1
)
sin (2z) + qa

(
z−1
)
cos (2z) if z 6= 0.

Where Si(z) =

∫ z

0

sin t

t
dt and pa, qa are the previous polynomials.

Appendix A.2. Calculation lemma

The following lemma is adapted from [7], its proof lies on some Hardy inequalities (for

details see [7] and [22]). Together with the transformation operator, it is an essential

tool for the computation of asymptotics for L2
R(0, 1) potentials.

Lemma Appendix A.3 (Carlson [7]) Let f ∈ L2
C(0, 1) and (zn)n∈N a strictly

positive real sequence such that

z0 > 0 and ∃(C1, C2) ∈ R∗
+ × R∗

+, ∀n ∈ N, C1 ≤ zn+1 − zn ≤ C2.

Then, uniformly on bounded set in L2
C(0, 1),(∫ 1/zn

0

|f(t)|dt

)
n∈N

,

(∫ 1

1/zn

∣∣∣∣f(t)

znt

∣∣∣∣ dt

)
n∈N

∈ `2
R(N).
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