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Abstract

We revisit the extended Zimanyi-Moszkowski (EZM) model of dense neutron
star (NS) core matter. In contrast to our previous work we treat the vector po-
tentials of baryons on an equal footing with the e¤ective masses, and solve a set
of 6 equations to determine the three independent e¤ective masses and vector po-
tentials and a set of 2 equations to determine the conditions of �-equilibrated NS
matter, simultaneously. According to an expectation that the precisely measur-
able moment-of-inertia of J0737-3039A will impose a signi�cant constraint on the
nuclear equation-of-state (EOS), it is calculated using the two sets of hyperon cou-
pling constants, EZM-SU6 and EZM-P, derived from the SU(6) symmetry and the
empirical data of hypernuclei. We �nd I45 = 1:23 and 1:64 that are close to the
values in the EOSs of "APR" and "MS1" calculated by Morrison et al., while their
mass-radius relations are rather di¤erent from the EZM models. The uniqueness
of the EZM model is also apparent in the correlation map between the maximum
gravitational mass of NS and the moment-of-inertia of J0737-3039A calculated for
the other 25 EOSs by Bejger et al. Consequently, the EZM model is severely tested
by the moment-of-inertia. However, whether the model is ruled out or not, there
still remain some possibilities and problems of improving it.

1 Introduction

The sti¤ness of nuclear equation-of-state (EOS) is still a controversial problem in nuclear

physics. The kaon production in heavy-ion collisions [1] suggests a soft EOS, while the

recent observations of neutron stars (NSs) in RX J1856-3754 [2] and EXO 0748-676 [3]

favor a sti¤EOS. We are however disturbed by the dependence of the former information

on the model of numerical simulation and the uncertainties in the astronomical data.

On the other hand, the recently discovered binary NS system J0737-3039 [4-6] is able

to provide the detailed tests of general relativity and astrophysics. In a view from the

nuclear EOS, it is strongly expected [7-9] that even a moderately accurate measurement

of the NS moment-of-inertia will impose a signi�cant constraint on the EOS.

The paper [7] investigated the expectation by means of typical three classes of EOSs

for NS matter. The �rst is based on the nonrelativistic variational calculations, the second

is based on the relativistic mean-�eld (RMF) theory and the third describes the so-called
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strange quark star. Although there are large ambiguities in the results of the third class

of EOSs, we can see clear di¤erences between the results in the �rst and second classes.

In fact, the EOSs in the �rst class result in relatively smaller crusts, radii and moments-

of-inertia for NSs withMG < 1:6M� while the EOSs in the second class predict relatively

larger values of them.

The paper [8] further investigated 25 EOSs in all. However, the relativistic EOSs in

Refs. [7] and [8] are restricted to the so-called nonlinear Walecka (NLW) models [10,11]

and their parameters of the self-coupling terms were not physically reasonable. It has

been recently shown [12,13] that the NLW model using the reasonable parameters [14] is

not useful to dense nuclear system as NS matter. On the other hand, the RMF models

with the density-dependent meson-nucleon couplings [15] and the nonlinear couplings

are highly promising. In this respect it is also noted that the NLW model is not a

truly nonlinear RMF model in spite of its name. The RMF model with the nonlinear

meson-nucleon couplings was �rst developed by Zimanyi and Moszkowski (ZM) [16]. A

more elaborate nonlinear model has been recently developed in Ref. [17]. It however

includes a lot of parameters and so cannot be applied to hyperons without ambiguities.

The density-dependent coupling model [15] has the same defect. To the contrary, the

extended Zimanyi-Moszkowski model (EZM) [18-26] developed by the present author is

based on the constituent quark model of baryons and so is uniquely applied to strange

hadronic matter.

We have already investigated the NS matter within the EZM model in Ref. [23],

which takes into account the isoscalar-scalar meson [27] and the hidden strange mesons

[28]. There, we �rst expressed the vector potentials of baryons in terms of the three inde-

pendent e¤ective masses of proton, neutron and lambda. Then, the two sets of nonlinear

equations were solved independently but self-consistently. One set was composed of the

three equations to determine the e¤ective masses. Another set was composed of the two

equations for the baryon number conservation and the charge neutral condition. As the

result we encountered an upper limit of the baryon density above which no �-equilibrium

states were found. In the present work we revisit the NS matter in the EZM model by

treating the vector potentials on an equal footing with the e¤ective masses. In this case

the problem of the limiting density will be resolved. Then, we apply the EZM model to

the NS moment-of-inertia.

Because the EZM model is not familiar but has a unique feature, the main purpose of

the present paper is to supplement the investigations of Refs. [7] and [8] with the EZM

model. The next section reviews the EZM model of NS matter including hyperons. In

section 3 we calculate the properties of NS and discuss them in the comparison with the

other EOSs. Finally, in section 4 we summarize our investigations and derive conclusions.
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2 The EZM model of NS matter

In this work we consider the contributions of the isoscalar mesons � and !, their strange

counterparts �� and � mesons [28] and the isovector mesons [27] � and �. Their masses

are taken to be m� = 550MeV, m! = 783MeV, m�� = 975MeV, m� = 1020MeV,

m� = 769MeV and m� = 983MeV, respectively. The masses of baryons are assumed

to be MN = 938:9MeV, M� = 1115:6MeV, M� = 1193:05MeV and M� = 1318:1MeV,

respectively. The Lagrangian of NS matter in the EZM model has the form:

L =
X

B=p;n;�;�+;
�0;��;�0;��

� B
�
=p�M�

B � 
0V0B
�
 B +

X
l=e�; ��

� l
�
=p�ml

�
 l

� 1
2
m2
� h�i

2 � 1
2
m2
� h�3i

2 � 1
2
m2
�� h��i

2 +
1

2
m2
! h!0i

2 +
1

2
m2
� h�03i

2 +
1

2
m2
� h�0i

2 ;

(1)

where  B and  l are the Dirac �elds of baryons and leptons, h�i, h!0i, h�3i, h�03i, h��i
and h�0i are the mean-�elds. The energy density is

E =
1

4

X
B

( 3E�FB�B +M�
B�SB) +

1

4

X
l

( 3EFl�l +ml�Sl) +
X
B

V0B�B

+
1

2
m2
� h�i

2 +
1

2
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2 +
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�� h��i
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2
m2
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2 � 1
2
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� h�03i

2 � 1
2
m2
� h�0i

2 ;

(2)

where �B and � l are the vector densities of baryons and leptons in NS matter, �SN and

�Sl are their scalar densities, and E
�
FN and EFl are the Fermi energies.

The e¤ective mass M�
B of a baryon B in baryon matter is

M�
B = m�

BMB =MB + SB: (3)

Using the renormalized meson-baryon coupling constant g�BB� etc., the scalar potential

SB is given by

SB = �g�BB� h�i � g�BB� h�3i I3B � g�BB�� h��i ; (4)

where I3B = f 1;�1; 0; 1; 0;�1; 1;�1 g for B = f p; n;�;�+;�0;��;�0;��g. On the
other hand, the vector potential V0B is given by

V0B = g�BB! h!0i+ g�BB� h�03i I3B + g�BB� h�0i : (5)

The scalar mean-�elds are expressed [23] in terms of the three independent e¤ective

masses of p, n and �:

��N =

�
1�m�

p

�
g�nn� + (1�m�

n) g
�
pp�

DSN

gNN�; (6)
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��N =
(m�

n � 1) g�pp� �
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m�
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where

DSN = g�pp� g
�
nn� + g�nn� g

�
pp�; (9)

and we have introduced the reduced scalar mean-�elds for each baryon,

��B �
gBB�
MB

h�i ; (10)

��B �
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h�3i ; (11)
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h��i : (12)
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Because ��Y , ��Y and ��
�
Y are expressed bym

�
p,m

�
n andm

�
�, the e¤ective massesm

�
Y (Y 6= �)

are also expressed by them.

The vector mean-�elds are determined from the three independent vector potentials
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of p, n and �:

h!0i =
g�nn�V0p + g�pp�V0n

CV N
; (23)

h�03i =
g�nn!V0p � g�pp!V0n

CV N
; (24)

h�0i =
g�nn�

�
g�pp!V� � g���!Vp

�
+ g�pp� (g

�
nn!V� � g���!Vn)

g����CV N
; (25)

where

CV N = g�pp! g
�
nn� + g�nn! g

�
pp�: (26)

The renormalized coupling constants of nucleons in the above equations are given

[19,20] by

g�pp�(!) =
�
(1� �N) + �Nm

�
p

�
gNN�(!); (27)

g�nn�(!) = [(1� �N) + �Nm
�
n] gNN�(!); (28)

g�pp�(�) =
�
(1� �N) + �N

�
2m�

n �m�
p

��
gNN�(�); (29)

g�nn�(�) =
�
(1� �N) + �N

�
2m�

p �m�
n

��
gNN�(�); (30)

where gNN�(!;�;�) is the free coupling constant and �N = 1=3.

The renormalized meson-� coupling constants are

g����(!) =
2� ����
DS�

g���(!): (31)

g�����(�) =
2� (1=2) ���

DS�

g����(�); (32)

where

DS� = 2 +
1

2
(1� ����) ���: (33)

The renormalized meson-�0 coupling constants have the same forms as those of �:

g��0�0�(!) =
2� ����
DS�0

g���(!): (34)

g��0�0��(�) =
2� (1=2) ���

DS�0
g����(�): (35)

For charged �s we have

g��+�+�(!;�;�) =
2� ����
DS�+

g���(!;�;�); (36)

g��+�+��(�) =
2� (1=2)

�
��� +

���
�

DS�+
g����(�); (37)

g������(!;�;�) =
2� ����
DS��

g���(!;�;�); (38)
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g�������(�) =
2� (1=2)

�
��� � ���

�
DS��

g����(�): (39)

The renormalized meson-� coupling constants are

g��0�0�(!;�;�) =
2� (1=2) ����

DS�0
g���(!;�;�); (40)

g��0�0��(�) =
2�

�
��� +

���
�
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2� (1=2) ����
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��� � ���
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DS��

g����(�): (43)

Because ��Y , ��Y and ��
�
Y are expressed by m

�
p, m

�
n and m

�
�, the renormalized coupling

constants (31)-(43) are also expressed by them.

Then, the three independent e¤ective masses m�
p, m

�
n and m

�
�, and the three inde-

pendent vector potentials V0p, V0n and V0� are determined from extremizing the energy

density (2) by them:
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X
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CV N�n +
X
Y 6=�

�
g�pp� g

�
Y Y ! � g�pp! g

�
Y Y �I3Y � CV �g
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�
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2
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Y
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� h�0i

@ h�0i
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X
Y

@m�
Y

@m�
�

MY �SY +
X
Y 6=�

@VY
@M�

�

M��Y +m2
�� h��i

@ h��i
@m�

�

�m2
� h�0i

@ h�0i
@m�

�

= 0; (49)

where CV � = g���!=g
�
���. We omit the explicit expressions of the derivatives in the above

equations because their derivations are tedious but straightforward tasks.

3 Numerical analyses

The present work investigates the cold �-equilibrated NS. The baryon and scalar densities

in Eqs. (44)-(49) are determined from the chemical potentials �B through the Fermi

momentum kFB:

�B =
�
k2FB +M�

B
2
�1=2

+ V0B: (50)

The �-equilibrium condition requires

�i = b i �n � qi �e; (51)

where �i is the chemical potential of all the baryons and leptons, and bi and qi are the

corresponding baryon number and charge. There exist only two independent chemical

potentials of neutron and electron. They are determined so as to satisfy the baryon

number conservation

�T =
X

B=p;n;�;�+;
�0;��;�0;�+

�B; (52)

and the charge neutral condition X
i=B;l

q i �i = 0: (53)

We solve nonlinear simultaneous equations (44)-(49), (52) and (53) for a given value of

�T by means of the 8-rank Newton-Raphson method.

For calculating in RMF model, we have to specify the meson-baryon coupling con-

stants. The NN� and NN! coupling constants, (gNN�=m�)
2 = 16:9 fm2 and

(gNN!=m!)
2 = 12:5 fm2, have been determined [18] so as to reproduce the nuclear matter

saturation energy �15:75MeV at the saturation density 0:16 fm�3. The resultant e¤ec-

tive nucleon mass and the incompressibility of saturated nuclear matter are m�
N = 0:605

and K = 302MeV. The NN� coupling constant (gNN�=m�)
2 = 0:39 fm2 is assumed to

be the same as the Bonn A potential in Ref. [29]. On the other hand, the NN� cou-

pling constant (gNN�=m�)
2 = 1:433 fm2 is determined so as to reproduce the empirical

symmetry energy of nuclear matter Es = 32:0MeV [30].

Next, the meson-hyperon coupling constants have to be determined. Unfortunately, at

present, there is little reliable information on the nucleon-hyperon (NY) and the hyperon-

hyperon (YY) interactions. In this work we will investigate the two sets of the coupling

constants. First, all the meson-hyperon coupling constants are related to the meson-
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Table 1: The two sets of meson-hyperon coupling constants used in the calculations of
NS matter.

Coupling constants EZM-SU6 EZM-P
g��! (2=3) gNN!
g��! (2=3) gNN!
g��! (1=3) gNN!
g��� (2=3) gNN� 0:604 gNN�
g��� (2=3) gNN� 0:461 gNN�
g��� (1=3) gNN� 0:309 gNN�
g��� � (

p
2=3) gNN!

g��� � (
p
2=3) gNN!

g��� � (2
p
2=3) gNN!

g���� (
p
2=3) gNN� 0:558 gNN�

g���� (
p
2=3) gNN� 0:558 gNN�

g���� (2
p
2=3) gNN� 1:128 gNN�

g��� 2 gNN�
g��� gNN�
g��� 2 gNN�
g��� gNN�

nucleon coupling constants through the SU(6) symmetry. Hereafter the result using this

set will be referred as EZM-SU6. Because the EZM model is based on the constituent

quark model, this set seems to be consistent to the model. However, the NY interactions

from the SU(6) symmetry become too attractive to be consistent with the existing data of

hypernuclei. Especially, no observation of � hypernuclei strongly suggests the repulsive

N� potential. In addition the detailed theoretical analyses of �� atomic data [31] and

(��; K+) inclusive spectra [32,33] predict a repulsive �-nucleus optical potential in the

nuclear interior.

Another set of the coupling constants is determined in a phenomenological way to-

gether with the SU(6) symmetry. First, the Y Y !, Y Y �, Y Y � and Y Y � coupling con-

stants are determined through the SU(6) symmetry. Then, the Y Y � coupling constants

are determined [11,34] so as to reproduce the empirical hyperon potentials in saturated

nuclear matter of the density �nm = 0:16 fm
�3:

U
(N)
� (�nm) = �28MeV, U

(N)
� (�nm) = 30MeV, U

(N)
� (�nm) = �18MeV; (54)

where U (B
0)

B

�
�
B0

�
is the potential of a single baryon B embedded in a bath of baryon B0

with density �
B
0 . The Y Y � coupling constants from Eq. (54) are the most plausible at

present.

Next, the Y Y �� coupling constants are adjusted [35] so that the potential of a single
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Figure 1: The particle fractions in NS as functions of the total baryon density using the
EZM-SU6 coupling set.

hyperon, embedded in a bath of � matter at �nm, becomes

U
(�)
� (�nm) = U

(�)
� (�nm) = �10MeV: (55)

The resultant coupling constants predict a weak attractive �� interaction, which is con-

sistent to the recent data [36] of 6
��He. Hereafter the result using this second set of

the coupling constants will be referred as EZM-P. The values of meson-hyperon coupling

constants of each set are summarized in Table I.

Using the above two sets of meson-baryon coupling constants, we calculate the prop-

erties of the cold NS matter. There are the upper limits of the total baryon densities,

�T = 1:202 fm
�3 and 1:706 fm�3 for EZM-SU6 and EZM-P, above which an e¤ective mass

of one baryon becomes negative. However, in contrast to Ref. [23] we do not encounter

before the negative mass the upper limits of the densities, above which there are no �-

equilibrium states. In Ref. [23] we �rst solved Eqs. (44)-(46) so as to obtain the explicit

expressions for the three independent vector potentials of p, n and �. Then, they were

substituted into Eqs. (47)-(49). As well as the resultant set of nonlinear equations we

have another set of equations (52) and (53). Because Eq. (50) determining the baryon

densities contains the vector potentials, the two sets of nonlinear equations were solved

consistently but independently by means of iteration. To the contrary, if we treat the
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Figure 2: The same as Figure 1 but for the EZM-P coupling set.

vector potentials on an equal footing with the e¤ective masses, the 8 nonlinear equations

(44)-(49), (52) and (53) can be solved simultaneously. The present work has adopted this

method.

Figures 1 and 2 show the particle fractions in NS as functions of the total baryon

density using the two sets of meson-baryon couplings, respectively. Due to the attractive

N� interaction the � hyperons are abundant in the EZM-SU6. The �� appears earlier

than � because of its negative charge. To the contrary, the �s appear above �T = 1:5 fm
�3

in the EZM-P. On the other hand, due to the baryon number conservation the � hyperons

appear earlier and are more abundant in the EZM-P than the EZM-SU6.

Figure 3 shows the EOSs of NS matter using the EZM-P (the solid curve) and the

EZM-SU6 (the dashed curve). The pressure is calculated by means of the Gibbs-Duhem

relation P = �n�T�E . The kinks in the curves correspond to the appearances of hyperons.
Due to the early appearance of �� the EZM-SU6 is softer than the EZM-P in the region

of 250MeV�fm�3 < E < 800MeV�fm�3. It is therefore expected that the di¤erence in the

two models is revealed for low-mass NSs as in J0737-3039. We will tabulate our EOSs in

the appendix.

In Figure 4 we calculate the mass sequence of non-rotating NSs by integrating the
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Figure 3: The EOSs of cold non-rotating NS matter using the two sets of meson-baryon
coupling constants.

Tolman-Oppenheimer-Volkov (TOV) equation [37].

dM (r)

d r
=
4�2

c2
r2 E (r) ; (56)

dP (r)

d r
= � G

c2

[ E(r) + P (r) ]
h
M (r) + 4�r3P (r)=c

2
i

r
�
r � 2GM (r)=c2

� ; (57)

where P (r), E (r) and M (r) are the radial distributions of pressure, energy and mass

of NS. The EOSs from the EZM models are for the high-density core-region of NS. For

the outer region below �T = 0:1fm�3, we employ the EOSs by Feynman-Metropolis-

Teller, Baym-Pethick-Sutherland and Negele-Vautherin in Ref. [38]. The maximum

gravitational masses of NSs in the EZM-SU6 and EZM-P are 1:353M� and 1:566M�,

respectively. The former appears just on the upper limit of �T and exceeds barely the

masses of NSs in J0737-3039. The EZM-SU6 however cannot reproduce the famous

canonical value 1:441M� of the relativistic binary pulsar B1913+16 [39], while the EZM-

P reproduces the most massive NS PSR J1518+4904 residing in the six known binary

radio pulsar systems [40] that provide NSs with the most accurately determined masses.

This is due to the soft EOS of EZM-SU6 in the medium-density region. It is remarkable

that in the EZM-P the radii of all the NSs are larger than 13km. Especially, the radius

11
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Figure 4: The mass-radius relation of NSs using the EOSs from the two EZM models.
The blue holizontal line indicates the gravitational mass of J0737-3039A.

remains approximately constant for MG � 0:5M�. On the other hand, the EZM-SU6

predicts smaller radii of NSs with MG > M�. Among the mass-radius relations of the

various modern EOSs presented in Fig. 7 of Ref. [41], only the EOS labeled "MS0"

predicts larger radii than 13km for all the NSs. However, the MS0 [10] takes into account

nucleons only and predicts a larger radius of NS with MG = 1:4M� than the upper limit

R = 14:4 km derived recently from J1748+2446ad [42]. We can therefore see that the

EZM-P has a unique feature in all the models of dense nuclear matter.

According to the suggestions in Refs. [7-9] we next investigate the moment-of-inertia

I of J0737-3039A. Under the slow-rotation approximation [7,37,43] it is calculated by a

numerical quadrature:

I =
8�

3

G

c4

RZ
0

dr r4
[ E(r) + P (r) ] e��(r)�
1� 2GM(r)

c2 r

�1=2 �!(r)



; (58)

whereR is the NS radius and 
 is the observed stellar rotational frequency. The quantities

�!(r) and �(r) are calculated by integrating the following di¤erential equations together
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Figure 5: The NS moment-of-inertia I45 � I=1045g�cm2 with angular velocity 
 =
276:8 s�1 as functions of the gravitational mass. The solid and dashed curves are the
results of EZM-P and EZM-SU6, respectively. The blue vertical line indicates the gravi-
tational mass of J0737-3039A.

with the TOV equations (56) and (57):

d�(r)

dr
= � 1

E (r) + P (r)

dP (r)

dr
; (59)

1

r3
d

dr

�
r4j(r)

d �!(r)

dr

�
+ 4 �!(r)

d j(r)

dr
= 0; (60)

where

j(r) =

�
1� 2GM(r)

c2 r

�1=2
e��(r): (61)

Figure 5 shows the moments-of-inertia I45 � I=1045g�cm2 with angular velocity 
 =

276:8 s�1 as functions of the gravitational mass. They increase linearly as long as the

radius remains approximately constant. The linearity is prominent in the EZM-P below

MG = 1:5M�. After the maximum value I45 = 1:95 withMG = 1:55M� in the EZM-P and

I45 = 1:38 with MG = 1:25M� in the EZM-SU6 they turn to decrease. The phenomenon

is striking in the EZM-SU6 because the radius decreases rapidly above MG = 1:3M�.

For J0737-3039A we �nd I45 = 1:64 with the radius R = 13:54 km in the EZM-P and

I45 = 1:23 with R = 12:03 km in the EZM-SU6. Another remarkable di¤erence in the

13
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two models is the central baryon density of J0737-3039A. Its value in the EZM-P is

�C = 0:352 fm
�3, which is somewhat lower than the threshold �T = 0:36 fm

�3 of �. To

the contrary, the central baryon density in the EZM-SU6 is �C = 0:844 fm�3, which is

higher than �C = 0:670 fm
�3 of the most massive NS in the EZM-P. The J0737-3039A is

composed of only nucleons in the EZM-P, while it contains all the baryon octets in the

EZM-SU6.

Then, compared with Table 1 in Ref. [7] the moment-of-inertia in the EZM-SU6 is

found to be nearly equal to I45 = 1:24 in the EOS labeled "APR" [44]. However, the

mass-radius relations in both the EOSs are quite di¤erent from each other. On the other

hand, the moment-of-inertia in the EZM-P is close to I45 = 1:66 in the EOS labeled

"MS1" [10]. However, the radius of the most massive NS is R = 13:1 km in the former

but is smaller than R = 12 km in the latter. In the comparison with Table 1 in Ref.

[8] we �nd that the EZM-P perfectly agrees with the empirical EOS labeled "BGN2H1"

[45]. This is reasonable because both the EOSs are relatively sti¤ and take into account

� and � hyperons. However, the BGN2H1 predicts the most massive NS being heavier

than MG = 1:8M�.

The above results indicate that the EOSs in the EZMmodels have quite unique nature

and so are clearly di¤erent from the other EOSs. In fact, our results �ll in the blank on the

correlation map of Fig. 3 in Ref. [8] between the NS maximummass and the J0737-3039A

moment-of-inertia presented for 25 EOSs in all. Therefore, the expected measurement

of the moment-of-inertia has a serious e¤ect on the EZM model. If I45 � 1:2 should be
proved, the present EZM model is ruled out because the EZM-SU6 cannot reproduce the

canonical NS massMG = 1:441M�. In this case the nuclear matter should be much softer

[1] than K ' 300MeV in the EZM model. The observations [2,3,46] suggesting the soft

EOS should be also rejected. However, the EOS by APR [44] is not readily supported

because its moment-of-inertia becomes smaller than I45 � 1:2 if the hyperons are taken
into account.

Inversely, if I45 � 1:6 is proved, the EZMmodel turns out to be a physically reasonable

model of dense baryon matter because it naturally rejects the unphysical strong NY

attractive interactions in the EZM-SU6 that leads to the unphysical small moment-of-

inertia I45 � 1:2. Nevertheless, the EZM model still has problems because the EZM-P

cannot reproduce the recently observed massive NS [47] and the redshift [48] of EXO 0748-

676. This indicates that the YY interactions in the EZM-P should be largely modi�ed. In

fact, the Y Y �� coupling set 4 in Ref. [23], which is somewhat di¤erent from the EZM-P,

merely produces the almost the same results as the EZM-P, while the EZMmodel without

hyperons [13] is satisfactory. Even if we construct a hybrid model, in which the Y Y �

coupling constants are the same as EZM-P while the Y Y �� coupling constants are the

same as EZM-SU6, the most massive NS with MG = 1:67M� and R = 12:6 km cannot

yet reproduce the observations in Refs. [47,48]. It is however noted that the arti�cial

adjustment of the coupling constants as in the recent work [49] has no physical meanings.

14
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Finally, we have to mention the results of Ref. [23], in which four sets of meson-

hyperon coupling constants were considered. Are they revised in the new calculus of NS

matter developed in the present work? Of course, the new calculus provide the same

results as the old one in Ref. [23] below the upper limits of �-equilibrium states. Thus,

there is no physical revision in the result using the set 4 of coupling constants because the

central baryon density of the most massive NS was lower than the upper limit. Moreover,

the set 2 remains to be invalid because the unphysical behavior of EOS occurred far below

the upper limit. To the contrary, the result using the set 1 is slightly revised. In the new

calculus we can �nd the most massive NS above the upper limit in Ref. [23]. However,

the mass is still lower than the canonical value MG = 1:441M�. For the set 3 in the new

calculus we can also �nd the most massive NS. However, above its central density there

appears an unphysical behavior of EOS as in the set 2. Consequently, we can conclude

that the essential results of Ref. [23] are still valid.

4 Summary

We revisit the EZM model of dense NS core matter. In our previous work we solved

a set of equations to determine the e¤ective masses of strongly interacting baryons in

dense baryon matter consistently but independently together with a set of equations to

determine the conditions of �-equilibrated NS matter. There we encountered an upper

limit of the total baryon density above which no �-equilibrium states were found. In the

present work this problem has been resolved by treating the vector potentials of baryons

on an equal footing with the e¤ective masses. The 8 nonlinear equations (44)-(49), (52)

and (53) are solved simultaneously using 8-rank Newton-Raphson method. Nevertheless,

we want to emphasize that the essential results and conclusions in Ref. [23] are still valid.

We have investigated the two sets of hyperon coupling constants, EZM-SU6 and EZM-

P. The former is due to SU(6) symmetry while the latter is derived from the empirical data

of hypernuclei. There are still the upper limits of the density above which an e¤ective

mass of one baryon becomes negative. This problem is intrinsic to all the RMF models.

It is a crucial issue to the EZM-SU6 where the maximum gravitational mass of NS is

lower than the canonical value 1:441M�, while it does not bother the EZM-P where the

central baryon density in NS of the maximum mass is lower than the upper limit.

Next, inspired by an expectation that the precisely measurable moment-of-inertia of

J0737-3039A will be able to constrain the nuclear EOS severely, we calculate it in the

EZM models using Hartle�s slow-rotation approximation. We �nd I45 = 1:23 and 1:64 in

EZM-SU6 and EZM-P, respectively. Compared with the result of Ref. [7], the former is

close to the value in the EOS of "APR", while the latter approximately equals to the value

in the EOS of "MS1". However, their mass-radius relations of NS are rather di¤erent

from the EZMmodels. Moreover, the EZMmodels �ll in the blank on the correlation map

in Ref. [8] between the maximum gravitational mass of NS and the moment-of-inertia of

15



Neutron star moment-of-inertia in the EZM model

J0737-3039A for many other EOSs.

Consequently, we have found that the EZM models have quite unique features being

di¤erent from the other EOSs. This implies that the moment-of-inertia of J0737-3039A

impose a severe test on the EZM model. However, whether I45 � 1:2 or 1:6 will be

proved, there still remain the problems in the nuclear EOS, especially about the strange

contents of NS matter. In this respect our future work will investigate the quark matter

core in NS within the EZM model.

Appendix: Table of the EOSs

For the reproduction of our results we here tabulate the EOSs, the pressure P vs. the

baryon density �T and the energy density E , of the EZM models in the core region

0:08 fm�3 � �T � 1:20 fm�3 of NSs. For the crust we have used the EOSs in Ref. [38].

EZM-SU6 EZM-P
�T (cm

�3) E(g � cm�3) P (dyn � cm�2) E(g � cm�3) P (dyn � cm�2)
8.00E+37 1.347325E+14 7.471047E+32 1.347325E+14 7.471048E+32
1.00E+38 1.687169E+14 1.542228E+33 1.687169E+14 1.542228E+33
1.20E+38 2.029225E+14 2.763049E+33 2.029225E+14 2.763049E+33
1.40E+38 2.373981E+14 4.468760E+33 2.373981E+14 4.468760E+33
1.60E+38 2.721813E+14 6.653920E+33 2.721813E+14 6.653920E+33
1.80E+38 3.073065E+14 9.410092E+33 3.073065E+14 9.410092E+33
2.00E+38 3.428106E+14 1.280365E+34 3.428106E+14 1.280365E+34
2.20E+38 3.787297E+14 1.689086E+34 3.787297E+14 1.689086E+34
2.40E+38 4.150990E+14 2.172127E+34 4.150990E+14 2.172127E+34
2.60E+38 4.519518E+14 2.733817E+34 4.519518E+14 2.733817E+34
2.80E+38 4.892745E+14 3.210948E+34 4.893200E+14 3.377866E+34
3.00E+38 5.269368E+14 3.633898E+34 5.272335E+14 4.107359E+34
3.20E+38 5.649225E+14 4.057874E+34 5.657202E+14 4.924762E+34
3.40E+38 6.032022E+14 4.415922E+34 6.048062E+14 5.831936E+34
3.60E+38 6.417722E+14 4.769202E+34 6.445155E+14 6.826471E+34
3.80E+38 6.806488E+14 5.132332E+34 6.848203E+14 7.607459E+34
4.00E+38 7.198526E+14 5.512048E+34 7.256889E+14 8.272574E+34
4.20E+38 7.594060E+14 5.912693E+34 7.671369E+14 8.699069E+34
4.40E+38 7.993309E+14 6.337615E+34 8.089685E+14 9.008271E+34
4.60E+38 8.396485E+14 6.789683E+34 8.511292E+14 9.312604E+34
4.80E+38 8.803787E+14 7.271513E+34 8.936116E+14 9.624756E+34
5.00E+38 9.215393E+14 7.785569E+34 9.364142E+14 9.951342E+34
5.20E+38 9.631459E+14 8.334204E+34 9.795375E+14 1.029701E+35
5.40E+38 1.005205E+15 8.908970E+34 1.022983E+15 1.066548E+35
5.60E+38 1.047661E+15 9.460620E+34 1.066752E+15 1.105996E+35
5.80E+38 1.090506E+15 1.002570E+35 1.110848E+15 1.148328E+35
6.00E+38 1.133735E+15 1.061737E+35 1.155271E+15 1.193800E+35
6.20E+38 1.177348E+15 1.124231E+35 1.200025E+15 1.242647E+35
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continued

EZM-SU6 EZM-P
�T (cm

�3) E(g � cm�3) P (dyn � cm�2) E(g � cm�3) P (dyn � cm�2)
6.40E+38 1.221376E+15 1.188151E+35 1.245110E+15 1.295082E+35
6.60E+38 1.265794E+15 1.254042E+35 1.290529E+15 1.351299E+35
6.80E+38 1.310563E+15 1.322127E+35 1.336316E+15 1.402747E+35
7.00E+38 1.355611E+15 1.386781E+35 1.382404E+15 1.452648E+35
7.20E+38 1.400942E+15 1.452809E+35 1.428756E+15 1.504423E+35
7.40E+38 1.446557E+15 1.521535E+35 1.475365E+15 1.558850E+35
7.60E+38 1.492455E+15 1.593523E+35 1.522226E+15 1.616342E+35
7.80E+38 1.538649E+15 1.668010E+35 1.569338E+15 1.677180E+35
8.00E+38 1.585138E+15 1.744593E+35 1.616699E+15 1.741585E+35
8.20E+38 1.631909E+15 1.824464E+35 1.664311E+15 1.809764E+35
8.40E+38 1.678958E+15 1.907947E+35 1.712171E+15 1.882008E+35
8.60E+38 1.726285E+15 1.995234E+35 1.760288E+15 1.958137E+35
8.80E+38 1.773889E+15 2.086468E+35 1.808665E+15 2.038161E+35
9.00E+38 1.821769E+15 2.181802E+35 1.857303E+15 2.122177E+35
9.20E+38 1.869931E+15 2.281216E+35 1.906204E+15 2.210277E+35
9.40E+38 1.918374E+15 2.384746E+35 1.955370E+15 2.302542E+35
9.60E+38 1.967101E+15 2.492446E+35 2.004802E+15 2.399047E+35
9.80E+38 2.016113E+15 2.604365E+35 2.054503E+15 2.499861E+35
1.00E+39 2.065411E+15 2.720543E+35 2.104474E+15 2.605048E+35
1.02E+39 2.114996E+15 2.841013E+35 2.154717E+15 2.714663E+35
1.04E+39 2.164871E+15 2.965806E+35 2.205234E+15 2.828759E+35
1.06E+39 2.215035E+15 3.094945E+35 2.256028E+15 2.947381E+35
1.08E+39 2.265492E+15 3.228449E+35 2.307100E+15 3.070571E+35
1.10E+39 2.316241E+15 3.366333E+35 2.358453E+15 3.198365E+35
1.12E+39 2.367284E+15 3.508606E+35 2.410089E+15 3.330795E+35
1.14E+39 2.418623E+15 3.655273E+35 2.462010E+15 3.467887E+35
1.16E+39 2.470258E+15 3.806334E+35 2.514218E+15 3.609663E+35
1.18E+39 2.522192E+15 3.961782E+35 2.566716E+15 3.756143E+35
1.20E+39 2.574424E+15 4.121603E+35 2.619505E+15 3.907340E+35
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