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Abstract

We consider billiards in bounded non-polygonal domains of R? with piecewise smooth
boundary. More precisely, we assume that the curves forming the boundary are straight lines
or strictly convex inward curves (dispersing) or strictly convex outward curves of a special
type (absolutely focusing). It follows from the work of Sinai, Bunimovich, Wojtkowski,
Markarian and Donnay [S, Bu2, W2, M1, Do, Bu4] that these billiards are hyperbolic (non-
vanishing Lyapunov exponents) provided that proper conditions are satisfied. In this paper,
we show that if some additional mild conditions are satisfied, then not only these billiards
are hyperbolic but are also Bernoulli (and therefore ergodic). Our result generalizes previous
works [Bud4, Sz, M3, LW, CT] and applies to a very large class of planar hyperbolic billiards.
This class includes, among the others, the convex billiards bounded by straight lines and
absolutely focusing curves studied by Donnay [Do].
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1 Introduction

Let @ be a bounded connected open subset of the Euclidean plane R? whose boundary T is an
union of finitely many compact curves of class C3. The billiard in Q is the dynamical system
generated by the motion of a point particle that, inside @}, moves along straight lines with unit
speed, and it is reflected by I' so that the angle of reflection equals the angle of incidence when
there is a collision with I'. The billiard in @ is endowed with a natural invariant measure that
is the Liouville measure on the unit tangent bundle of Q).

In this paper, we consider a large class of planar hyperbolic billiards, and prove that they
are Bernoulli with respect to the Liouville measure. A billiard is called hyperbolic if all its
Lyapunov exponents are non-zero almost everywhere. It is well known from Pesin’s theory for
smooth systems [P] and its extension to systems with singularities due to Katok and Strelcyn
[KS] that a hyperbolic system has positive entropy and countably many ergodic components of
positive measure. In addition, each ergodic component is an union of finitely many disjoint sets
of positive measure with the properties that they are cyclically permuted by the dynamics, and
the first return map on each of them is K-mixing, and by general results of [CH, OW], Bernoulli.
These sets are called Bernoulli components of the system. We say that a system is Bernoulli if



it has only one Bernoulli component. We recall that a Bernoulli system is also ergodic, since
ergodicity, mixing, K-mixing and the Bernoulli property form a hierarchy of increasingly strong
statistical properties [CFS].

The proof that a hyperbolic system is Bernoulli can be achieved by demonstrating that its
ergodic components are open modulo a set of zero measure. A system having this property
is called locally ergodic. Local ergodicity can be proved by using a simple and yet powerful
argument devised by Hopf back in the 30’s to show that geodesic flows on surfaces of negative
curvature are ergodic with respect to the volume [Ho].

The billiards considered here are not smooth systems, and some serious complications arise
when one tries to apply Hopf’s argument to them. In fact, on the one hand Hopf’s argument
relies on the existence of uniformly “long” stable and unstable manifolds, on the other, for
billiards, these manifolds are arbitrarily “short” as the singularities prevent them from growing
in size. The way of overcoming this major obstacle was found by Sinai at the end of the
60’s. In his seminal paper [S], he considered a special class of hyperbolic billiards consisting of
two-dimensional tori with strictly convex inwards scatterers, and managed to show that they
have “enough” stable and unstable manifolds sufficiently “long” to carry over Hopf’s argument.
Sinai then went on to prove that these billiards are locally ergodic and K-mixing. The Bernoulli
property of Sinai’s billiards was proved later in [GO].

Since the publication of Sinai’s paper, his method of proving local ergodicity has been
improved and extended to larger and larger classes of hyperbolic systems. The papers [SC, KSS,
C, M2, LW] contain extensions of Sinai’s argument valid for some classes of multidimensional
billiards and systems with singularities (non only billiards). We will refer to results of this type
as local ergodic theorems, LET’s for short. Our proof of the Bernoulli property for the billiards
considered in this paper relies on a modified version of the LET proved in [LW]. We will come
back on this later.

Besides Sinai’s billiards, another important class of hyperbolic billiards is represented by
semifocusing billiards. A billiard is called semifocusing if its boundary is formed by straight
lines and strictly convex outwards curves, which we will call focusing. In his famous papers
[Bul, Bu2], Bunimovich gave several examples of semifocusing billiards that are hyperbolic;
the most celebrated one is certainly the so called stadium, i.e., a billiard with the shape of
a stadium. The geometry of Bunimovich’s billiards is somewhat rigid, because their focusing
curves can only be arcs of circles. The mechanism generating hyperbolicity in semifocusing
billiards was further clarified by Wojtkowski using invariant cones. He also discovered many
other focusing curves besides arcs of circles that can be used to design hyperbolic billiards
[W2]. Markarian further enlarged this class of curves and also elaborated a technique to prove
hyperbolicity based on quadratic forms [M1]. Another class of focusing curves that can be used
to construct hyperbolic billiards was introduced by Bunimovich and independently by Donnay
[Do, Bu4]. These curves are called absolutely focusing, and indeed form a large class, as it
turned out that Wojtkowski’s and Markarian’s curves of class C® and any sufficiently short
piece of a C% focusing curve are of this type.

The billiards considered in this paper are characterized by the following properties:

e the boundary of the billiard table is formed by finitely many curves chosen among straight
lines, dispersing curves and absolutely focusing curves,

e each pair of non-flat boundary components are sufficiently apart,



e the subset of billiard trajectories that eventually hit only straight lines has measure zero.

The main result of this paper is the proof that the billiards just described are locally ergodic,
and moreover Bernoulli if additional conditions on the smallness of the set of the non-hyperbolic
billiard trajectories are verified. Previous results of this type were obtained for dispersing and
certain semidispersing billiards [S, SC], and for semifocusing billiards like Bunimovich’s billiards
and some generalizations of these [Bu2, Bu3, Sz, LW, CT, De, DM]. We stress the fact that,
in all the results just mentioned, there is a limitation on the generality of the focusing curves
admitted in the billiard boundary, which is dropped in the results presented in this paper.

As already mentioned, to obtain our results, we use a modified version of the LET proved
by Liverani and Wojtkowski [LW]. The application of this theorem in its original form or any
other LET found in literature [SC, KSS, Bu3, M2, C, LW] is not allowed in our situation,
since not all the hypotheses of these theorems are verified by all the billiards that we consider.
More precisely, the hypotheses of the LET in [LW] not being true for all our billiards are two:
the existence of a continuous invariant cone field on the tangent bundle and a nondegenerate
noncontracting semimetric defined on stable and unstable spaces. This is so because general
absolutely focusing boundary components have invariant cone fields that are only piecewise
continuous [Do], and the only noncontraction semimetric we found for them is degenerate (see
Subsection 8.1). For similar reasons, we cannot use the other LET’s. To solve this problem, we
prove a slight generalization of the LET of [LW] (only for two dimensional systems) that applies
to billiards with general absolutely focusing curves. In this version of the LET, the original
conditions on the continuity of the cone field and the nondegeneracy of the noncontraction
metric are replaced by weaker ones. We have to warn the reader that the proof that the
hypotheses of this LET are verified by our billiards requires lengthy and sometimes involved
computations. And this is due, to the generality of the billiards considered.

To exemplify our results, we apply them to several hyperbolic billiards: dispersing and
focusing billiards, stadia and semidispersing billiards and billiards in polygons with pockets
and bumps. We prove that all these systems are Bernoulli. Some of our conclusions, like
those concerning dispersing and Bunimovich’s billiards, are not new. The others concerning
hyperbolic billiards with general absolutely focusing curves in their boundaries are new instead.
One of these new results is the proof that the convex billiards bounded by straight lines and
absolutely focusing curves studied by Donnay in [Do| are Bernoulli.

The paper is organized as follows. In Section 2, we provide some background information
on planar billiards. Section 3 is devoted to the description of the billiards studied and the
formulation of the the main results of the paper. In Section 4, we introduce the first return
map induced by the billiard map on a suitable region of the billiard phase space. We do so,
because the LET that we prove applies only to the induced system rather and not to the
original billiard map. More generalities concerning billiards, geometric optics and invariant
cone fields are given in Section 5. In particular, a detailed description of Donnay’s construction
of invariant cone fields for absolutely focusing curves is provided in Subsection 5.3. In this
subsection, we also introduce the invariant cone field for billiards used throughout this paper.
One of the conditions characterizing our billiards is quite technical, and its precise formulation
is given in Section 6. In this section, we also prove several results, like the hyperbolicity of our
billiards and some properties concerning their stable and unstable manifolds used in subsequent
proofs. In Section 7, we prove a LET building on the LET demonstrated in [LW]. Then in
Section 8, we prove that the induced system of the billiards considered verify the hypotheses



of the new LET, and derive our main result: billiards with absolutely focusing curves in the
boundary are locally ergodic, and moreover Bernoulli if they satisfy a mild additional condition
on the topology of the non-hyperbolic billiard trajectories. In Section 9, we consider several
examples of billiards which our result apply to. We also study a class of billiards in polygons
with pockets and bumps that do not satisfy the additional condition mentioned above. Despite
this, we prove that they are Bernoulli. Donnay’s billiard are included in this class. Finally the
appendixes contain several technical results: in Appendixes A and B, we study the regularity
of the singular sets of the billiard map T and its induced system, whereas in Appendix C, we
prove a lemma, certainly known but which we did not find in the literature, concerning the
relation between the measure of a compact subset of a smooth curve and the volume of tubular
neighborhoods of this subset.
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2 Generalities

Let Q be a bounded connected open subset of the Euclidean plane R%. Let k > 2. We
assume that its boundary T' of is an union of n compact C**! curves I'y,..., T, that will be
called components of I'. We also assume that I' is a finite union of disjoint Jordan curves
(homeomorphic images of the unit circle) intersecting only at their endpoints. Note that, under
these hypotheses, () is not necessarily simply connected as it may contain a finite number of
two-dimensional scatterers. Given a C? curve, let s denote its curvature. A component of
I is called dispersing (focusing) if it is strictly convex inward (outward) and its curvature is
everywhere non-zero. We adopt the convention that x(-) < 0 (k(-) > 0) on a dispersing curve
(focusing curve). A point ¢ € T is called a corner of T' if it belongs to several components of
I, otherwise it is called a regular point of I'. For any regular point ¢ of I', the symbol n(q)
denotes the unit normal of I' at ¢ pointing inside Q.

The billiard in @Q is the dynamical system generated by the motion of a point particle
obeying the rule: inside @), the particle moves along straight lines at unit speed, and when the
particle hits I'; it gets reflected so that the angle of reflection equals the angle of incidence. The
billiard in @ can be described either by a flow (billiard flow) or a map (billiard map). In this
paper, we will focus our attention on the billiard map that is introduced below. For a definition
and detailed discussion of the properties of the billiard flow, we refer the reader to the book
[CFS]. Finally a word about the terminology used throughout the paper: we will use the word
smooth as synonym of C.



Billiard phase space. Consider a smooth component I'; of I, and assign an orientation
to it. For a given unit tangent vector (q,v) € T1R?, let 6(q,v) denote the angle that the
oriented tangent of T'; at ¢ forms with (q,v). If T'; is not a closed curve, and ¢ is an endpoint
of T';, then the one-sided tangent has to be taken in this definition. We assume that the
orientation of T'; is chosen so that 6(q,v) € [0, 7] when (g, v) points inside ). Then the set
M; = {(q,v) € T1R? : 0(q,v) € [0,7]} collects the unit vectors attached to I'; and pointing
inside Q. If s is the arclength-parameter of I';, then the pair (s, 6) forms a a coordinate system
for M;. We see immediately that M; is diffeomorphic to a cylinder or a rectangle whether or
not I'; is closed.

The billiard phase space is the set M that coincides with U;—1M; after having identified
elements of any two sets M; and M; with i # j corresponding to the same vector of TIR?.
Although, in many significant cases, M is a manifolds (with boundary and corners), in general,
it turns out to be a less regular object, namely, a subset of a finite union of smooth manifolds
with boundary and corners identified along subsets of their boundaries.

We close this subsection by giving few more definitions. The map @ : M — I' given
by 7(q,v) = q for all (¢,v) € M is the canonical projection map of M onto I'. Next let
I'_,T4+, [y be the union of the dispersing and focusing curves and the straight lines forming T,
respectively. Then the corresponding subsets of billiard phase space are My := 7~ 1(I'}), M_ :=
77*1(1“_), My = Fﬁl(ro).

Billiard map. In the definition of the billiard map and, above all in the study of its ergodic
properties, four subsets of the billiard phase space play a key role. The first set S; consists of
unit vectors attached at the endpoints of non-closed components of I', and the second set S5
consists of the unit tangent vectors of the components of I'. Formally S; = U;—10T"; x [0, 7]
where the union is taken over all non-closed components of I', and Sy = U;—1I'; x {0, 7}. Let
OM = 51U Sy and int M = M \ OM. For any z = (q,v) € int M, let L(z) = {¢+tv:t > 0}
that is the ray starting at ¢ and parallel to v. Then define ¢g; = ¢i1(2) to be the point in
the set L(z) N T having the smallest distance from ¢ such that ¢; # ¢ and the segment with
endpoints ¢ and ¢; is contained in the closure of Q). Clearly ¢;(z) is the point where z hits
first I'. In order to characterize completely the collision at ¢;(z), we need to compute the
velocity of the particle after this collision. However such a velocity is well defined if and
only if ¢; is a regular point. This fact leads us to introduce the other two subsets of M
mentioned at the beginning of this subsection. Let S3 = {z € int M : ¢i(z) is a corner of I'}
and Sy = {z € int M : L(z) is tangent to I" at ¢1(2)}. In [KS, Part V, Theorem 6.1], it is
proved that S3 and Sy are both unions of finitely many points and finitely many C**! curves of
finite length. We can now define the billiard map T'. Let Dy = int M \ S3. Then T': Dp — M
is given by
T(q,v) = (q1,v1), (g,v) € Dr

where
v1 = v+ 2(v,n(q1))n(q1)

is the velocity of the particle after the collision at ¢;. This map is discontinuous at points of Sy
and a C* diffeomorphism on int M \ (S3 U S;) onto its image.

There is a natural probability measure on M that is T-invariant. In coordinates (s, 6), such
a measure is given by dy = (2length(I"))~!sin #dsdf. Throughout this paper, we will always



have in mind this measure, unless we specify otherwise. We see immediately that p(.S;) = 0 for
1 <i <4sothat u(Dr) = u(M). We finally point out another important feature of the billiard
map T the time-reversing property. More precisely, if R : M — M that reflects vectors of M
about T' given by R(s,0) = (s,m — ) for (s,0) € M, then T~! = RTR on int M \ (S5 U Sy).
Thanks to this symmetry, any property that is proved for T has a counterpart holding for 77~!.

Singular sets. We call S]” := S3 U S, the singular set of T. On this is the subset of M, T
is not defined or C'. Similarly there is a singular set Sy for T ~1 that, by the time-reversing
symmetry, coincides with RS; . By previous observations on S3 and Sy, it follows that ;" and
S| are unions of finitely many points and Ck*1 curves of finite length. In Theorem A.1, we
show that the closures of Sfr , 51 are finite union of smooth compact curves intersecting at most
their endpoints. Since we are interesting in the dynamics of T, we need to understand how
these singular sets evolve under T'. In other words, we have to compute the T-iterates of Sfr
and Sy . For any n > 1, let S}t = ST UT~1S U-.-UT "G, This is the singular set of 7™,
i.e., the subset of M where T™ is not defined or C'. Similarly S,, = S; UTS] U---UT" 1S is
the singular set of 77", and we have S;, = RS,. We collect the singularities of all the positive
and negative powers of T into S& = U,>1S5, and S = U,>1S,,, and denote by Sy their
intersection. The last set consists of elements of M for which both the positive semi-trajectory
and the negative semi-trajectory hits a corner of I' or hits tangentially a dispersing component
of I'. Since all the sets Si,...,54 has zero measure, it follows immediately that all the sets
introduced in this subsection have zero measure as well.

Metrics on M. In this subsection, we introduce two Riemannian metrics g and ¢’ for the
billiard phase space M. Selecting a suitable Riemannian metric for a specific class of billiards is
quite a delicate matter. For a discussion on this issue, see, for example, Section 2.1 of [BCST].

The metric g is just the Euclidean metric ds? + df? in coordinates (s, ). The metric ¢’ is
defined in terms of transversal Jacobi fields J and their derivatives J’. Given a z € M and a
vector u € T, M, let (ds,df) be the components of u with respect to the basis {9/ds,0/00}.
The transversal Jacobi field and its derivate associated to u are given by

J' = —k(s)ds — db. M)

{J — sin ds,
J is a Jacobi field along the billiard trajectory of z and is called transversal, because it is
orthogonal to that trajectory. For further readings on Jacobi fields and billiards, see [W3, Do,
M4]. The metric ¢’ is then given by J? + J'2. This metric! appeared before in several papers
(for instance, [BCST]; see also the references therein) where J and ¢’ are called the p-norm of
u and the invariant metric, respectively. The relevance of ¢’ for the study of our billiards is
due to the fact that it has the Noncontraction property which is crucial for the proof of the
LET (Theorem 7.5). This property is proved in Subsection 8.1. The norms corresponding to g
and ¢’ will be denoted by || - || and || - ||', respectively. We also introduce two distances on M
in the following way: let w,z € M, if w,z € M;, then d(w, 2)(d'(w, 2)) is equal to the distance
generated by g(g') on M;, otherwise d(w, z) = 1(d'(w, z) = 1).

!Actually, ¢’ is a semi-metric, because it degenerates on S.



The differential of 7. It is convenient to refer to element of M in terms of their local
coordinates (s, #). Therefore, throughout the paper, we will use freely both notations (¢q,v) and
(s,0) to denote the same element of M. Let (¢,v) € Dr and (¢1,v1) = T'(¢,v). The functions
s1, 01 are defined by s1(s,0) = s(qi1(s,0)) and 6;(s,0) = 0(v1(s,0)). We denote by

e [ =1(q,v) the Euclidean distance in R? between ¢ and ¢,

e d(q,v) the Euclidean length of the segment of L(q,v) contained in the disk tangent to I’
at ¢ and having radius which is half of the radius of curvature of I" at ¢,

e 79 and rq the radius of curvature of I' at ¢ and ¢,
e dy =d(q,v), i.e., dg = rosinf(q,v),
o dy = dl(‘]av) = d((h,’Ul), Le., dl(qv U) = risin 91((1, U)‘

After choosing proper parameterizations for the boundary components of I'; the matrix of the
differential of T" at z = (s, 0) computed with respect to the coordinates (ds, df) and coordinates
(J,J') takes, respectively, the forms [KS, LW]

l—.do i l -1
D.T = (;”35;291 7111?;) and DT = <2 ’ 1) . (2)
rodi dq

Note that, in the last form, D,T factorizes as follows

1 0\ (1 1
pr= (3 2)6)
1

where the upper triangular matrix evolves vectors between consecutive reflections, whereas the
lower triangular matrix “reflects” the vectors when a collision occurs.

Absolutely focusing curves. The billiard tables considered in this paper are bounded by
straight lines, dispersing curves and special focusing curves called absolutely focusing.

Consider a C? focusing curve ~ of length £. Let s be its arclength parameter, and we denote
by r(s) and x(s) the radius of curvature and the curvature of -, respectively. An incoming ray
to v is said to be focused by ~ if the infinitesimal family of rays parallel to the incoming ray
focuses (in linear approximation) between any two consecutive reflections and after leaving -y
provided that the ray leaves eventually ~.

Definition 2.1. A focusing curve v is called absolutely focusing if
a) all the incoming rays are focused by 7,
b) foﬁ k(s)ds < .

By a result due to Halpern [Ha|, Condition (b) implies that no billiard trajectory can
undergo an infinite sequence of consecutive reflections at 7. Absolutely focusing curves were
studied independently by Bunimovich [Bu4] and Donnay [Do]; the term absolutely focusing
was introduced in [Bu4]|. Two important classes of curves are known to satisfy Condition (a).



The first class is formed by the so called convex scatterers introduced by Wojtkowski [W2]. A
convex scatterer v is a focusing curve verifying the condition

d(z) +d(z) <l(z)

for any two consecutive collisions z = (¢, v) and z; = (q1,v1) at 7. If v is C*, then this condition
is equivalent to d?r/ds? < 0. The second class of curves satisfying Condition (a) was introduced
by Markarian [M1] (see also [CM1]); these curves have the property that

d(2)(U(2) + (") < 1(2)I(2")

for any two consecutive reflections z and 2z’ on them. Examples of Wojtkowski’s and Markarian’s
curves are arcs of circles, cardioids, logarithmic spirals and the arcs of the ellipse 22 /a%+y?/b* =
1L |z| < a/Vv2 and 22/a® 4+ y?/b% = 1,|z| > b*/(a® + b?) where a,b > 0. An example of an
absolutely focusing curve which is not a Wojtkowski’s or Markarian’s curve is the half-ellipse
22/a® +y?/b? = 1,2 > 0 with a/b < v/2 [Do.

Remark 2.2. In this paper, we will only consider absolutely focusing curves of class C®. We
should however note that our results holds as well for Wojtkowski’s and Markarian’s curves
which are of class C*. The C® regularity is only required for the construction of an invariant
cone fields for general absolutely focusing curves (see [Do] and Section 5.3 of this paper). It
is well known that C* Wojtkowski’s and Markarian’s curves have a continuous or a piecewise
continuous invariant cone field with finite focusing times [W2, M1]; these two properties make
it possible to apply the results of this paper to Wojtkowski’s and Markarian’s curves.

Some important properties of C® absolutely focusing curves are summarized here
1. Sufficiently short arcs of a focusing curve are absolutely focusing (Theorem 1 of [Do]).

2. Consider the space of focusing curves of class C® having the same length £ and satisfying
the condition fO[’ k(s)ds < m. If we endow this space with the C® topology, then the
subset of absolutely focusing curves is open (Theorem 4 of [Do]).

3 Main results

The billiards considered in this paper satisfy the following conditions besides the general ones
described at the beginning of Section 2.

Let NI be the set consisting of elements of int M \ ST whose positive semi-trajectories
hit only I'g eventually. Similarly we define NZ by replacing T' with 7!, In fact, we could
simply define N := RN . Both semi-trajectories of elements of N, := N3 N NJ are infinite
and hits only I'y eventually so that element of N, are not hyperbolic. Finally let £ be the
one-dimensional volume on S; U S; generated by the Euclidean metric.

B1. Each component of the boundary of the billiard table @ is either a straight line or a dispers-
ing curve or an absolutely focusing curve of class C® (C* Wojtkowski’s and Markarian’s
focusing curves are allowed as well). Furthermore @ is not a polygon, i.e, 'y UT_ # ().



B2. The infimum of the length of all trajectories starting at any focusing component of I" and
ending at any other non-flat component of I' is uniformly bounded below by a positive
constant depending on the focusing components of T'.

B3. u(NEf)=0and ¢(NELtNSL)=0.

The description of Condition B2 given here is somewhat vague, and we postpone a more
precise formulation to Section 6. By now we only observe that B2 imposes some restrictions
on the distance and the angle between components of I' (see Remark 6.3). When these are
Wojtkowski’s and Markarian’s curves, B2 has a simple geometrical formulation in terms of the
relative position of the circles of semi-curvature of distinct focusing curves [Bu2, W2], or in
terms of the distance of the circles of curvature of focusing curves from the other curves of I'
[M1]. As we deal with a larger class of focusing components our Condition B2 has to be more
more general, and, consequently, more involved.

Condition B3 concerns the measure of certain subsets of M supporting non-hyperbolic
trajectories. The first part of Condition B3 means that the subset of trajectories which hit only
straight lines eventually is irrelevant from the point of view of the invariant measure. This is a
necessary condition to obtain hyperbolicity over the entire phase space M, and it is generically
true because polygonal billiards are generically ergodic [KMS]. The second part of B3 is a
technical condition, and allows to prove that the Sinai-Chernov Ansatz, one of the hypotheses
of the LET (Condition E4 of Theorem 7.5), is verified. We do not know whether the second
equality of B3 is implied by the first maybe together with some simple geometric conditions on
Q. Note that the time-reversing simmetry implies the symmetric equalities (N ) = (N N
SE£)=0.

Let NS = (NyNSL)U(NENSL). This set, which consists of elements of M for which one
semi-trajectory is finite, and the other hits only I'g eventually, also supports non-hyperbolic
trajectories. The set

H:=int M\ (Sec U Ny UNS)

contains the hyperbolic set of M. We will see that the LET applies not only to hyperbolic
points of M but to every point of H.

A billiard (M, u,T) satisfying B1-B3 is hyperbolic (see Section 6). By general results on
hyperbolic systems [P, KS, CH, OW], any ergodic component E of T has a finite partition
(mod 0) {44,...,Ax} with N depending on E such that TAy = Ag+1, TAy = A; and TN|Ak
is Bernoulli with respect to the probability measure p/u(E). Any set Ay will be called a
Bernoulli component of T.

The main result of this paper is the following theorem.

Theorem 3.1. For any billiard satisfying B1-B3, we have
1. the billiard map T is hyperbolic,
2. every point of H has a neighborhood belonging (mod 0) to one Bernoulli component of T

To ensure that T is globally ergodic and Bernoulli, we need a further condition which
guarantees that the complement of H is topologically small.

B4. The set Soo U Ny U NS does not disconnect int M; for every 1 < i < n.

10



Theorem 3.2. Any billiard satisfying B1-Bj is Bernoulli.

Theorems 3.1 and 3.2 are proved in Subsection 8.2. We will see that Conditions B1-B3 imply
that So is countable so that the validity of B4 depends only on the topological properties of
the sets Ny and NS. Condition B4 can be weaken, and one can still obtain the Bernoulli
property. In Section 9, we will consider several classes of billiards which do not satisfy B4, and
even though Theorem 3.2 cannot be applied directly to them, we will show that these billiards
are Bernoulli.

4 The induced system ({2, v, D)

In all the analysis carried out in this paper, an extremely important role is played by an
invariant cone field for the billiard dynamics. On this topic, we refer the reader to Section 5
and the references therein contained. While certain billiards, like Bunimovich’s billiards and
Wojtkowski’s billiards, admit everywhere continuous invariant cone fields on the phase phase, it
seems that general hyperbolic planar billiards can only admit a piecewise invariant continuous
cone field (see [Do]). The discontinuity set of this field can be particularly complicated on the
subset My of the billiard phase space M; this fact makes very difficult the verification of the
hypotheses (in particular E4) of the LET (Theorem 7.5) which is the central result in the proof
of the Bernoulli property of hyperbolic billiards. To overcome this problem, we will work with
a new system (€2, v, ®) which is the first return map induced by 7" on a suitable subset 2 of M.
It turns out that it is much easier to deal with the discontinuity set of the invariant cone field
of @ (see Subsection 5.3) than with that of T. In Section 8, we will show that ® satisfies the
hypotheses of Theorem 7.5, and then that the conclusion of this theorem is valid for T" as well.
Throughout this section, we will use several results proved in Appendix.

Given a smooth curve v € M, we denote by int-~y, 07,7, respectively, the interior, the
boundary and the closure of v in the relative topology of 7. Given two points ¢, g2 € R2, let
(g1, q2) be the open segment joining qi, go.

Definition 4.1. We say that a set A C M is reqular if its closure is an union of k > 0 smooth
compact curves i, ...,V such that v; Ny; C Oy; NOy; fori # j.

Definition 4.2. A compact and connected set B C M is called a box if B coincides with the
closure of int and OB is a reqular set.

In the following, the symbol B will always denote a finite union of boxes of M intersecting
at most at their boundaries.

Definition 4.3. Let A C B be a regular set, and 1,...,v be smooth compact curves as in
Definition 4.1. We say that A is neat in B if 0y; C 0BU (Uj»y;) for any 1 < i < k. The word
neat alone is used in place of neat in M.

Remark 4.4. If A is neat in B, then it is easy to show that A partitions B, meaning that
there exist k > 0 boxes By, ..., By contained in B such that int By, ...,int By are the connected
components of int B\ A.

11



Definition 4.5. Let Vi = S N My, and for k > 1, define inductively
Vih = (T nMy) u v

We define similarly V, by replacing ST,T_1 by S, T. The sets VkjE consist of elements of
My having at most k — 1 consecutive collisions with Iy before hitting a corner of I' or having a
tangential collision at I'_. Let Vi, =V~ U V,j, and OMy = OM N M.

Lemma 4.6. V,, partitions My into N = N(n) > 0 boxes By,..., By such that for every
1 <¢ < N only one of the following possibilities can occur:

1. T9int B; C My for any 0 < j<n—1,
2. 30 <k <n—1 such that T? int B; C My forany 0 <j <k and Tl int B; C M_UM,.
The same is true if T is replaced by T~'.

Proof. To prove that V,, partitions My, it is enough to show that V,, is neat. This is a conse-
quence of Corollary A.5 and the finiteness of V.- NV,~. The last fact can be proved as follows.
By Corollary A.5, the sets V,;7,V,;” are finite unions of proper sets of type CI* (see Definition
A.2). Consider two of such sets C;”,C?ﬁl such that CI" € VI and C’fﬂl € V, . Let 71 be the
closure of a connected component of C}", and 2 be the closure of a connected component of
C’ff/. We are done, if we show that v N~s is finite. For ¢ = 1,2, let I; 5 t — ~;(t) be a regular
parametrization of ; where I; is a closed interval. We have ~;(t) = (s;(¢), 0;(t)) in coordinates
(s,0). It is easy to check that s76] > 0 for any ¢ € int I}, and s46% < 0 for any ¢ € int I5. There-
fore, in coordinates (s, #), the curves v, and o are strictly increasing and strictly decreasing,
respectively. It follows that y; N~ can contain at most one element.

We only prove the second statement of the lemma for T, because the proof for 7! is the
same. Let

k:max{Oglgn—lszintBiCMo for any 0 <j <I}.

If K =n —1, then (1) is verified, and there is nothing to prove. Thus assume that £k < n — 1.

Since V,, Nint B; = 0, the definition of k implies that T% int B; N S;" = 0. It follows that either
T++lint B; ¢ M_UM, or T*int B; C My. The latter possibility is ruled out by the definition
of k. 0

Definition 4.7. Let A, be the union of boxes B; for which the conclusion (1) of Lemma 4.6
holds, i.e.,

N
Ap = | J{Bi: T""int B; C My for all |k| < n}.
i=1
Let A, be the infimum of the length of the trajectories connecting A,, and M_ U M. There
are two possibilities: either there is a n > 0 such that A, = 0 or not, i.e., A, # 0 for every
n > 0. In the second case, we claim that lim,,—, ., A, = +00: this fact is only not immediately
evident for trajectories entering one or more wedges formed by straight lines of I', which, one
could think, may have lots of reflections in a short amount of time. However it is easy to
show that this is not the case: such trajectories, in fact, leave a wedge after a finite number of
collisions which only depends on the angle of wedge and not on the trajectory [CM2].
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An example of the dichotomy pertaining A,, is the following: if @ is a stadium-like billiard
with parallel straight lines, then we have A,, # ) for any n > 0, but if the two straight lines
are not parallel, then A,, = () for any n sufficiently large. Note that Ny, C N, A,.

We choose 7 > 0 sufficiently large so that Az > max; ; + 7 where the maximum is taken
over all the focusing components of I'. The constants 7; and 7 will be introduced in Section 6;
they depend on the geometry of the billiard table @ and its invariant cone field (see Subsection
5.3).

We can now define the induced system (2, v, ®). Let A = Aj.

Definition 4.8. Let Q = M_U M, UA and @ : QQ — Q be the first return map on § induced
by T, i.e., if t(z) =inf{k > 0:2 ¢ S} and T"z € Q} is the first return time of z to €0, then

Pz =Tz e

Also let v = (u(2)) "L be a probability measure on §). Since ® preserves the measure p, it also
preserves v.

We stress again that the reason for introducing this new system is that for a general bil-
liard satisfying B1-B3, the invariant cone field (see Section 5.3) could vary on My in a quite
complicated way. For the induced systems, instead, the cone field turns out to be much nicer.

As a consequence of the definition of A, the space € is a finite union of boxes with boundaries
lying on OM U V5. This is an important property because it allows us to apply the LET to
(Q,v,®). Let OA be the boundary of A and int A = A\ OA. Furthermore let 992 be the union
of A and every OM; such that M; C M_ UM, and let int Q = Q\ 9. It is easy to check that
1 <t(z) <2n—1 for every z € Q. Like T, the induced map ® has singularities. In fact, during
the process of inducing, in addition to the singularities produced by taking powers of T, new
singularities are created as the return time ¢ is not constant. We denote by Sf the singularity
set of @, i.e., the set of points of  where ® is not defined or is not C'. The singular set for ! is
defined similarly. For k > 1, the singular set of ®* is given by S;" = S U® 1S U- - -UP~FHLST
and the singular set of ®* is given by S, =S UdS U---U <I>k_181_. The union of all S,j
is denoted by SZ;, and the union of all S;” by S,. Note that the map ® inherits from T the
time-reversing property, i.e., ®! = R®R, so that the singular sets of ®~! are just the image
under R of the singular sets of ® and vice-versa. We also define S, = S, N SL. By previous
observations, S,;t are union of finitely many smooth curves contained in S;t(gﬁ_l). It follows that

all the sets just defined have zero v-measure. In Proposition 8.2, we will show that S,j and S
are neat (as we deal now with Q, M has to be replaced by 92 in the definition on neatness).

5 Geometric optics and cone fields

Invariant cone fields are used to prove hyperbolicity and statistical properties of dynamical
systems like ergodicity, decay of correlations, etc. [W1, LW, Li]. In this section, we give the
necessary definitions, and recall some general concepts from geometrical optics. In Subsection
5.3, we will introduce an invariant cone field for billiards satisfying Conditions B1 and B2.
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5.1 Geometric optics

Variations. A variation {n(a)}aecs is an one-parameter smooth family of lines in R?

(@) = {q(@) + tv(a),t € R}

where I = (—¢,€),e > 0, ¢,v : I — R? are smooth, and v(«) is a unit vector for every a € I.
Let n(a,t) = g(a) +tv(a), and let v+ be a vector orthogonal to v(0). We say that the variation
{n(a)} focuses along 7(0) if

<@(O,t),vl> =0 for somet € R. (3)
Oa

If v/(0) # 0, then

(¢'(0),v'(0))

(v(0),(0))

is the unique solution of (3), and we call it the focusing time of {n(«)}. When v/(0) = 0, the
variation consists, in linear approximation, of parallel lines. If {¢’(0),v) # 0, then (3) does
not have a solution, and we set ¢t = co. Finally if (¢/(0),v) = 0, then we set t = 0. We say
that a variation is convergent, divergent or flat if its focusing time is positive, non-positive and
infinite, respectively.

t=—

Focusing times. For every vector u € T,M, z € M, there is a family of curves in M associated
to it. Each curve ¢ = (q,v) : (—€,¢) — M of this family has the property that ((0) =
(¢(0),v(0)) = 0 and ¢'(0) = (¢’(0),v'(0)) = u. One can associate to such a curve (, the
variation n(a) = {q(a) + tv(a),t € R}. The focusing time is the same for every curve ¢ in the
same family so that it only depends on u, and it makes sense to call it the focusing time of
u. We say that wu is convergent or divergent or flat if a variation n(«a) associated to u has the
corresponding property.

For a vector u € T, M, let (us,up) and (J,J') be its components with respect to the two
bases described in Section 2. A straightforward computation gives (see for instance [W2])

sin 0 J

COES
the focusing time is a local coordinate of the projectivization of 7,M (the space of lines in
T.M) and it will be uses to describe cone fields on M. Recall that the R(s,0) = (s, — 0) for
any (s,0) € M. The vector —u = D,Ru € Tr,M is obtained by reflecting u about I at 7(z).
Its focusing time is given by

sin 0

/ﬁ(s)—ﬁ—z'

For any u € T,M,z € M, let 77(z,u) be the the focusing time of u, and let 77 (z,u) be the
focusing time of —u. Hence
sin 6

EOED <4>

Us

(2, u) =
The proof of the next statements can be found in [W2, Do].
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Reflection Law. Let z = (s,0) € Dy, and Tz = (s1,61). For any uw € T,M, let 79 = 77 (2, u),
and let 71 = 77(T2, D, Tu). The relation between 7y and 71 is given by
1 1 _ 2k(s1)

- + I(2) =10  sinfy

()

Ordering property. Let z € Dy such that Tz € M4, and let u,w € 7,M. Assume that
0<7(2,w) <I(z) and 0 < 7 (T2, D, Tw). Then, as a direct consequence of (5), we obtain

7 (z,u) <71 (z,w) = 0 < 77 (T2, D, Tu) < 77 (T2, D, Tw).

The implication is also true if we replace the inequalities with strict inequalities.

5.2 Cone fields

Let V' be a two dimensional vector space. A cone in V' is the subset C'(X1, X3) = {aX1 +bXs :
ab > 0} where X; and Xy are linearly independent vectors of V' and a,b real numbers. If 0
denotes the zero element of V, then int C'(X1, X3) = {aX1 +bXs : ab > 0} U {0} is the interior
of C. The cone C’'(X1, X2) := C(X1, X2) is called the complementary cone of C(X7, X3).

Definition 5.1. A measurable cone field C' on the billiard phase space M is a family of cones
C(z) = C(X1(2),X2(2)) C T.M defined for p-almost z € M such that the vectors Xi(z)
and X5(z) vary measurably with z. We say that the cone field C is invariant (strictly) if
D,TC(z) C C(Tz) (int C(Tz)) for p-almost every z € M. We say that C is eventually strictly
invariant if it is invariant, and for p-almost every z € M there exists a positive integer m(z)
such that D,T™?)C(z) C int C(T"™3)2). Let C' denote the complementary cone field of C.

For every z € M, define

(z) = sup 7 (z,u),
uel(z)

T (2) = sup 7 (2,u).
ueC’(z)

The next lemma provides a simple criterion for checking whether a cone field on M, is
invariant. For its proof, see [Do].

Lemma 5.2. Let 2 € My N Dy such that Tz € M. Suppose that 0 < 7F(2), 77 (Tz) < I(2).
Then
0<7r(2)+77(T2) < (<)I(2) = D, TC(2) C C(Tz) (int C(T2)).

5.3 Cone fields for billiards

Following [S, W1, Do|, we introduce a cone field C on the restricted phase space 2 for billiards
satisfying Condition B1. In Section 6, we will show that if Condition B2 and B3 are also verified,
then C is eventually strictly invariant. This cone field is not everywhere continuous, and so, in
the last part of this section, we study its discontinuity set.
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Consider a focusing component I'; of I'. We adopt the convention that if a vector z € M; hits
along its orbit an endpoint of I';, then it gets reflected by I'; in the usual way. This assumption
makes the map T a diffeomorphism from M; N T~1M; to M; N'TM; (see [KS]).

Let

]%1+ = {Z € int M; : ql(Z) S 81—‘2},

and for n > 1, define inductively
RS =(T'R}  nM;)UR].

The set R, consists of elements of M; having at most n— 1 consecutive collisions with I'; before

hitting OI';; it is somewhat the singular set of T for trajectories moving only along I';. Also

let R, = U,~oR,". The sets R, , Ry, are defined similarly by considering trajectories backward

in time. It follows from that the time-reversing symmetry that R,, = RR;} and R = RRZ..
The function ¢ : M; — N U {+o0} is defined as follows

( +00 if TFz € M, k=1,2,...,

Z) =

¢ min{k > 0: ¢ (T*2) ¢ T;}  otherwise.

This function gives the number of consecutive reflections of z along I'; before leaving it. Thus
E:=Rg'(0)\ S,

is the subset of M; consisting of vectors entering I';, i.e., vectors leaving I'; in the past. For
every m > 0, the set E,, := ENp~!(m) is made of entering vectors of M; which leave T'; exactly
after m consecutive collisions. Clearly E = Up,>0E),, and we will see at the end of the next
subsection that the closure of each set E and E,, is a box (see Fig. 1).

/2
Rf
Es Ey
Ry
R3
Ry

E;
R,

Unizrms1 Em

S

Figure 1: The sets R and E,, in a neighborhood of s =6 =0
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A cone field for absolutely focusing curves. We construct now the cone field C' on M, .
This construction is due to Donnay [Do] and is done for a single focusing component of I';. By
repeating it for every focusing component of I'; we obtain C on the entire M.

For every z € E, let X~ (z) and X (z) be vectors of 7,M; such that their s-component is
non-negative and

T (2, X (2) = T*(T"(z)z,DzTQ(Z)XJF(z)) = +o0.

The second condition means that the evolution of X~ (z) backward in time gives raise to a
parallel variation, and that the o(z) iteration of X (z) forward in time, i.e., when it leaves I[';,
is a parallel variation. Given a tangent vector u = (us,ug), let m(u) := wup/us be its slope.
Using the fact that I'; is absolutely focusing, one can easily check that

o —k(2) <m(XT(2)) <m(X (2)) =k(z) for any 2 € E,

e X~ is continuous on F, and X is continuous on every E,,.

Suppose now that there exists a unit vector field X; on E such that

1. m(XT(2)) < m(X;(z)) <m(X(z)) for any z € E,

2. sup,ecp, 7 (2, Xi(2)) and sup, g, 7H(@23) 2, D, ®2*) X;(z)) are both finite.

These conditions say that the vector X;(z) leaves I'; after finitely many collisions, that it focuses
between any two of such collisions and after the last one, and that the focusing times before
the first and the last collisions are uniformly bounded on z € E. If we define

Cole) = C (g2 3(2)) . =€ B\S,

06
or, equivalently, Cg(z) := {u € T,E : m(X;(2)) < m(u)}, then Donnay’s cone field on M; \ Sa
is given by
C={D.T*Cp(z): 2 € Eand 0 < k < p(2)}.

By the properties above, and using the ordering property (see the previous subsection), we see
that every vector of C has forward and backward focusing times which are uniformly bounded.

To show the existence of a vector field X;, we first observe that for every fixed m > 0, any
linear combination aX~ 4+ bX ™ such that ab > 0 verifies Properties (1) and (2) on Up<m<mFEm
(not on the entire £). We introduce now Lazutkin’s coordinates (x,y) on M;; these are given
by

S
r=C / r_%(t)dt, Y= 02’/‘%(8) sin — (6)
0
where C and Cj are constants depending on I'; (see [La, Do| for more details). Lemma 5.9

of [Do] implies that the vector d/dz verifies Properties (1) and (2) on Up—m41Em, for m > 0
sufficiently large depending on I';. Therefore a choice for the vector field X; is given by

X(2) aX~(2) +bXT(2) ifzeUl_yEm,
Z) =
: 2(2) if ze Ut® | Enm,

m=m-+1

for any positive a,b and m > 0 sufficiently large.
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In this way, we obtain a family of cone fields on M; depending on the parameters a, b, m.
Note that m is the lower bound for the number of consecutive reflections of vectors in E \
um_ En,. We select now a specific cone field, which will be used through all this paper, by
choosing a, b, m as follows: a,b are any two positive reals, whereas m is any sufficiently large
positive integer such that the results of Section 5 of [Do] 2 apply to 8/9z(z) on E\U™_,E,,, and
the right-hand side of (10) in the proof of Lemma 8.15 is greater than e~2017)5s /9 (which is
a constant depending only on I' ). We observe that the smallness of the Lazutkin’s coordinate
y in (8.15) is controlled by m, and that the numbers b/, b}, bs depend on I';. This choice of m
is technical and serves to simplify the proof of Lemma 8.15.

We introduce now a quantity 7; which measure how far the focusing component I'; has to
be placed from other non-flat components of I' in order to obtain hyperbolicity. This quantity
plays an important role in Condition B2 (see Section 6). Here the notation is as at the end the
previous section. Let

H= sup 77(2) and 7 = max{7;", 7; }. (7
ZGMi\Sz

It follows from Property (2) that 7; is finite.

Remark 5.3. We observe that the choice of a,b,m effects the value of 7. We do not know
how these parameters in order to obtain the optimal, i.e., the smallest 7;. For a discussion on
this point, see also Section 4 of [Do].

By repeating the construction just described for every focusing component of I', we obtain
a cone field on My \ Sy. If m is the maximum of m over all focusing components of I, then
we can assume that all values m are equal to m. Finally denote by 7 the maximum of 7; where
over all the focusing components of I'.

A cone field for dispersing curves and straight lines (A). To complete the construction
of C on M, it remains to define it on M_ U A. Using coordinates (s, 6), we set

C(z) = {(us,up) € T,M : usug <0}, ze€ M_UA.

This means that the cone C(z) consists of divergent vectors of 7,M which focus inside the
half-osculating disk of I' at 7(z) for z € M_, whereas C(z) consists of all divergent vectors of
T.M for z € A. We could have equivalently defined C on int M_ Uint A as follows

c( {ue T.M: —|d(2)| <77 (2,u) <0} if 2z €int M_
Z) =
{ue T.M : 7" (z,u) <0} if z € int A.

This finishes the construction of the cone field C' for billiards satisfying B1.

2Donnay’s results are formulated in terms of the closeness of the angle 6 to 0 or . Large m’s correspond to
0’s close to 0 or .
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5.4 Discontinuities of cone fields

We investigate now the discontinuity set C and its iterates under the map ®.

Let RTiL and &£ be, respectively, the union of the sets Rff and E corresponding to every
focusing component of T'. The sets RZ, &, are defined similarly. We will show, in Proposition
8.2, that S, S, are neat in €, and that their intersection consists of finitely many points.
The sets R}, R, have the same properties, because they are union of smooth compact curves
contained in S, and S;;, respectively. It follows immediately that any set of the form R UR,,
partitions M, into finitely many boxes. Results contained in Section 5 and Appendix A2 of
[Do] imply that lim,, . 1o dist(R:, S2) = 0, where dist is the distance generated by the metric
ds® + do>.

Using the previous observations and keeping in mind the construction of C, one can easily
prove the next proposition that collects several useful facts concerning the continuity of C.

Proposition 5.4. The cone field C' has the following properties:
1. C 1is continuous on (Uogkngkgm) UM_UA for any m > 0,
2. the restriction of C|prg, has a continuous extension to TFEy,,

3. if Dg is the set of the discontinuities of C, then Dy C R;%H URL,

B

. for k>0, let D, = Dy U®*Dy, and we have Dj, C S%+1+k URL,

R

the closure of S;{Hrkﬂ URS s a countable union of smooth compact curves intersecting
at their endpoints such that only finitely many curves can intersect at points of int €.

6 Condition B2 and hyperbolicity

In this section, we give a precise formulation of Condition B2 and give a proof of the hyperbol-
icity of billiards satisfying Conditions B1-B3. The cone field C' considered in this section (and
the remaining sections of this paper) is the one defined in the previous section.

6.1 Condition B2

Definition 6.1. Consider two distinct non-flat components I';,I'; of I'. Let d; ; be the infimum
of the length of the trajectories starting at I'; and ending at I'; possibly after hitting Lo finitely
many times. Also define

T+ 75 ifri,FjCF+,
Tig = T if Iy ey, Ty I,
0 T, T,
where T; is defined in (7).

Definition 6.2. We say that a corner of I' is polygonal if it does not belong to any focusing or
dispersing component of I'. Given a focusing component I';, let p; be the distance with respect
to the Euclidean metric in R? between I'; and the set of polygonal corners of T.
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Condition B2: A billiard in a domain @ satisfies Condition B2 if there exists 7 > 0 such
that

1. djj >7;+7forany I';,['; CT LU,
2. pi>7+7forany I'; C T'y.

The hyperbolicity of ® (and T') is just a consequence of (1). The second condition is
required for the local ergodicity of ®. This condition, in fact, rules out billiard tables for
which the singular sets S;; and S, may have smooth components which coincide, and when
this occurs, the singular sets may separate ergodic components of ®. Consider, for example, a
mushroom-like billiard where the cap of the mushroom is a semi-ellipse (which can be chosen to
absolutely focusing, see Subsection 2), and the stem is a rectangle such that one side coincides
with the segment joining the foci of the semi-ellipse and the other side is sufficiently long (say
larger than twice the major axis of the semi-ellipse). This billiard is not locally ergodic, and,
in fact, it is an example of coexistence of regular and ergodic behavior. Its phase space consists
of three invariant sets of positive measure: the billiard map is regular on two of them, and
is ergodic on the third. The problem here is that two polygonal corners of this billiard lie at
the foci of the semi-ellipse. This geometry - we leave the computations to the reader - violates
Condition (2) and creates components of Sf and &, which coincide. To be more specific, we
observe that (2) allows us to prove the Neatness and the Proper Alignment of the singular
sets Sf and &), Properties E2 and E3 of the hypotheses of Theorem 7.5. One may wonder
whether the first condition of B2 indeed implies the second. The first condition imposes some
restrictions on the distance between focusing curves and polygonal corners, but it is not difficult
to construct examples of billiard tables for which only (1) (and B1) is satisfied.

Remark 6.3. Condition B2 imposes several constrains on the geometry of a billiard table Q).
Here are listed some of these constrains to which we will refer several times in the rest of this
paper:

i) the distance between any two non-adjacent non-flat components of I such that one is focusing
sufficiently large,

ii) the internal angles between two adjacent focusing curves is greater than ,
iii) the internal angle between a focusing curve and a dispersing curve is greater than ,

iv) the internal angle between a focusing curve and a straight line is greater than /2.

6.2 Hyperbolicity

We prove now the billiards verifying B1-B3 are hyperbolic, and the we discuss some properties
of the stable and unstable manifolds of T" and ®. For billiards in convex domains bounded by
absolutely focusing curves and straight lines, the hyperbolicity was first proved in [Do].

Lemma 6.4. The maps ® and T of billiards satisfying Conditions B1-B3 are hyperbolic.
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Proof. First we show that the hyperbolicity of T is a consequence of the hyperbolicity of ®.
Denote by Ap(2z) and Ar(z) the positive Lyapunov exponents of 7" and ® at the z € Q provided
they exist. By Birkhoff’s Theorem

n—1

_ 1 "

f(2):= lim > 4T 2)
k=0

exists for v-a.e. z € ) where ¢(z) is the first return time to © (see Section 4). The relation

between \¢ and Ar reads as follows
Ao (2) =t(2)Ar(2), wv-a.e. z €.

We have 0 < #(z) < 27+ 1 if #(2) exists (see Section 4). Thus if A\g(z) > 0 for v-a.e. z € Q,
then Ap(z) > 0 for p-a.e. z € Q. For p-a.e. z € M\ Q, there exists an integer 1 < k < 2n 4+ 1
such that T%z € Q. The invariance of the Lyapunov exponents implies that Ar(z) > 0 for p-a.e.
ze M.

To prove that ® is hyperbolic, it suffices to show that the cone field C' is eventually strictly
invariant on . By Theorem 1 of [W2], then ® has non-zero Lyapunov exponents. The proof
that C' is eventually strictly invariant is standard, and we only sketch it. We have to consider
three cases: (1) z,®z € My, (2) z € My and ®z € M_UA, and (3) z € M_ UA. Using
Lemma 5.2, one can easily show that D,®C(z) C C(®z) in all cases. This is a straightforward
consequence of Condition B2. In fact, C(z) is pushed strictly inside C(®z) in all cases except
when 7(z),m(®z) belong to the same focusing arc or to A. To finish, we observe that the
absolutely focusing property implies that every vector leaves a focusing curve after a finite
number of reflections and, by B3, u-a.e. vector with base point on A eventually hits a focusing
or dispersing curve of I'. O

Local manifolds. The fact that (2, ®,v) has non-zero Lyapunov exponents v-a.e. does not
automatically imply the existence of local stable manifolds and local unstable manifolds v-a.e..
According to general results on systems with singularities, this happens if (Q, ®,v) satisfies
Conditions 1.1-1.3 of [KS, Part I]. It turns out that we do not need to check whether (2, ®,v)
satisfies these conditions, because we know that the billiard map T does, and we can use this
fact to show that the local stable manifolds and local unstable manifolds of T are also local
stable manifolds and local unstable manifolds of ®. This is done in the next lemma.

Lemma 6.5. The map ® of billiards satisfying B1-B3 has local stable manifolds and local
unstable manifolds v-a.e. on ). These manifolds are the intersection of the stable and unstable
manifolds of T with € and are absolute continuous.

Proof. In [KS, Part V], it is proved that T satisfies Conditions 1.1-1.3 of [KS, Part I]. We can
then apply Pesin’s theory to T'. Since T' is hyperbolic, it has local stable manifolds and local
unstable manifolds p-a.e. on M which are absolutely continuous. We claim that the connected
components of these manifolds contained in €2 are local stable manifolds and local unstable
manifolds of ®. This implies automatically that the local stable and unstable manifolds of ®
are absolute continuous.

We prove the claim only for local unstable manifolds. The proof for the local stable manifolds
is similar. Let z € Q, and let W}“_(2) be the local unstable manifold of 7" at z. The connected
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component of W (z) N Q containing z is a local stable manifold of ® if the set S,” N W} (2)
does not accumulate at z as k — +o0o. In fact, this intersection is empty for any k > 0, because

W.(2) is a local stable manifold of 7" and, by Proposition 8.2, S, C Sk_(%il). O

7 A local ergodic theorem

In this section, we prove a LET valid for two-dimensional hyperbolic systems with singularities.
As explained in the introduction, the LET’s found in literature [SC, KSS, Bu3, M2, C, LW]
do not apply to the generality of the billiards satisfying B1-B3 and their induced systems. In
fact, many of these billiards and their induced systems do not have a continuous invariant
cone field and a special type of noncontracting metrics on their tangent stable and unstable
spaces, which are among the hypotheses of the mention LET’s. Thus the need for a LET with
less restrictive assumptions. The LET presented here builds on the LET proved in [LW], and
applies to systems having a piecewise continuous invariant cone field and satisfying a weak form
of the Noncontraction Property (explained later in this section). We point out that even this
new LET do not apply directly to all the billiards satisfying B1-B3, and we will use it with the
induced systems of these billiards rather than with the billiard maps themselves.

We start by describing the hypotheses of this theorem and introducing the new mathematical
objects involved in its formulation. Let (M, m, f) be a smooth system with singularities having
the following properties.

The phase space M. The set M is an union of n > 0 boxes My,..., M, of R? (see
Definition 4.2) which can only intersect along their boundaries. The union of the interior and
the union of the boundary of the boxes of M are denoted by int M and M respectively. The
space M has a natural Riemannian metric which is the restriction of the Euclidean metric of
R? to M. We assume that M is endowed with another Riemannian metric § which can be
degenerate on M and have to satisfies certain conditions described later (see E5 and E6, later
in this subsection). We denote by || - || and | - | the norms generated by the Euclidean metric
and g, respectively. We assume that m is absolutely continuous with respect to the volume of
the Euclidean metric, and has bounded density which is positive on int M.

Singular sets. Let A] and A be neat subsets of M such that f : int M\ A — int M\ A7
is a diffeomorphism. Af and A are called the singular sets of f and 1, respectively. For
any k> 0, let Af = AT U fFLAT UL U fRR-DAE

Cone field. We assume that there exists an eventually strict invariant cone field C' on int M.
Let Dy denote the set of the discontinuity points of C, and for any k € Z \ {0}, let Dy =
Do U f~%Dy. We assume that for any k € Z \ {0}, there exists a set Dy C M consisting of
at most countably many smooth compact curves intersecting at most at their endpoints such
that Dy C Dy and Dy, partitions M into countably many boxes {B;};en. We also assume that
Clint B, has a continuous extension from int B; up to B;. We recall that C' was assumed to be
everywhere continuous in [LW].

The previous assumptions imply that the system (M, m, f) has non-zero Lyapunov expo-
nents m-a.e.. We also assume that (M, m, f) satisfies the Conditions 1.1-1.3 of [KS]. This
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implies that there exit local stable and unstable manifolds at m-a.e. point of M, and that they
are absolutely continuous.

We introduce now two quantities that measure the expansion generated by f on the vectors
in the cone field C'. These are the analogues of 0,0, of [LW]. Let z € int M and u € T,M. If
Xi1(z) and Xo(z) are the vectors belonging to the edges of C(z), then u = u3 X1(2) + uaX2(2)
for suitable uq,us € R. Following [LW, W2], we define a quadratic form @, : 7,M — R as
follows

Qz(u) = A(Xl(z),XQ(Z))U1UQ, ue M,

where A(,-) is the area form of g.

Definition 7.1. Let {o}}k=0, {0} } k>0 be two families of functions oy, 0% : int M \ A —
[1,4+00) given by

D, fk
or(z) = lizninf ing kaz;(y“)fu), z €int M\ Af,
% u€in U
y¢Dx cintCl) v
and
Q iy (Dy fFu)
op(z) =liminf  inf vy . z€int M\ Af.
Vo2 ueint C(y) [l
y¢ Dy

For k <0, the functions oy, 0, : int M\ A, — [1,+00) are defined similarly after replacing C
by its complementary cone.

Note that o4 (z), o}(2) coincide with the quantities o(D, f*), 0.(D, f*) defined in [LW] when
z € int M\ Dy.

Lemma 7.2. For k > 0, the functions oy, 0}, have the following properties:
1. oy, 0} are lower semicontinuous on int M \A:,
2. ok, 0} are continuous on int M\ (A; U Dy),

3. for any smooth compact curve v forming Dy (see the definition of Dy ), the restrictions
Oklint~ 95 continuous on inty \ AZ‘.

The same properties holds for k < 0 with A; replaced by A, .
Proof. 1t is enough to prove the lemma for o, and when k > 0. Define

or(y) = inf —kay(Dyfku)

, €int M\ (4 UDg).
u€int C(y) Qy(u) Y \( k k)

We recall that Dy, partitions M into at most countably many boxes {B;};cz. The assumptions
made on C guarantee that g3 can be continuously extended from int B; \ Ai to B; \ AZF. For

every ¢ > 0, we define the function 6,(:) : int M\ A" — RU{+o00} to be the continuous extension
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of oy to B; \ S, and +oo on int M \ (A} U B;). Each 6,(;) is lower semicontinuous. We can

express 0 in terms of the quantities 61(;) as follows
or(z) = min{&,(ci) 1z € B;} (8)

for every z € int /M\A;gIr Note that the minimum here makes sense, because we assume that only
finitely many boxes B;’s can share the same vertex. It follows that oy is lower semicontinuous.
This proves the first statement of the lemma.

To prove the second statement, it is enough to observe that if z € int M \ (Az U Dy), then
o (2) = o%(2), and that &y, is continuous on M \ (A U Dy).

It remains to prove the third statement of the lemma. Let v be one of the curves forming

Dy; clearly « belongs to the boundary of two boxes B;’s. As 6,(5) is continuous on B; \ A,j, it

follows that 6,(; )]int AT is continuous for the (two) j’s for which v C 0B;. For z € int~y, we
have @
Uk‘inm\Ag(Z) = min{z,’ \int,y\Az(z) 2z €inty \ A}

We then see that oy, . A is continuous. O
Lemma 7.3. The function oy has the following properties:
1. op > 1,
2. oy, is supermultiplicative, i.e., Ok, 11y (2) > ok, (f¥12)0k, (2) for any positive integers ki, ka2,
3. limy 400 0k (2) = +00 if and only if limy_, 4 0} (2) = 400.

Proof. Statements 1 and 2 are valid for oy, 5,(;) (see [LW, W2]). Hence they are also valid for
o) in virtue of (8). The proof of Statement 4 is as the proof of Theorem 6.8 of [LW]. O

The rest of the hypotheses of the LET are listed below.
El. (Regularity) The singular sets Aki are neat for any k > 0.

E2. (Discontinuities of 05;) For k > 0, let Ef be the subset of AT where the restriction
okl AF is not defined or discontinuous. We assume that EZE is finite.

E3. (Proper Alignment) For every z € A}, the tangent spaces of every smooth component
of A] at z is contained in C(z). A similar condition holds for points of A] with C(2) replaced
by its complementary cone.

E4. (Sinai-Chernov Ansatz) Let m; be the one-dimensional measure on A7 UA] generated
by the Euclidean metric on R?. We have

lim ox(z) =400, m-ae. z € AT.
k—+oo
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E5. (Noncontraction) There exists a real number a > 0 such that for every k& > 0
|D:f*ul > alul

for any z € int M and any u € C(z). Furthermore a similar condition holds for & < 0 and
points of int M \ A" with C replaced by its complementary cone.

E6. (Volume estimates) Denote by £ the length generated by g. Let A be a subset of A7 .
Given 6 > 0, let
AS = {zeint M : IWE,(2) and a curve v C W (2)
such that 0y N A # 0 and L(v) < 6}.

We assume that for any A closed in the relative topology of A7, there exists a positive number
¢ = ¢(A) such that
m(A7)

lim sup < cmy(A).

§—0+
We also assume that the same condition is verified by A? for any A C A closed in the relative
topology of AT where A is defined as A9 after replacing W, by Wi .

Definition 7.4. Let

H= |J o' ((3,+)).
kez\{0}

The points of H will be called sufficient.

Theorem 7.5. Let (M, m, f) be a smooth system with singularities with a cone field C' verifying
all the hypotheses described earlier in this section. Then every sufficient point of M has a
neighborhood contained (mod 0) in one Bernoulli component of (M, m, f).

Proof. This proof is adapted from the proof of the Main Theorem of [LW]. We assume the
reader to be familiar with this proof, because, while we will describe in detail the modifications
needed by our more general setting, we will only mention the steps of the original proof which
are still valid.

The proof of the Main Theorem occupies Sections 8-13 of [LW]. The first step of this proof
is Proposition 8.4 (in Section 8). To extend the validity of this proposition to our setting, we
have to modify the part of its proof where a suitable “reference” neighborhood U C int M of
a sufficient point z is constructed. The original construction of U has to be replaced by the
following. We can assume without loss of generality that there exists & > 0 such that z ¢ A,
and o_j(2z) > 3. Set 2= f~*z and p = 1/o_4(2). Since z ¢ A4, , we can find a neighborhood U
of Z such that f* is a diffeomorphism from U to f*U. Let By,..., By, be the boxes generated
by Dy, and containing z. If Z ¢ Dy, then there is only one box as above, and Z is contained in its
interior: in this case, the original construction in [LW] gives &. We continue with the general
case: let C; be the continuous extension of C|(ynins B,)usk (Unint B;)» a0d Qi be the corresponding
quadratic form. Then define

k
G) _ nf Qi(Dz fFu)
g = 11 —_— .
u€int C;(Z) Q; (u)
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It is easy to see that o_j(z) = min{c(®, ... o™ }. For every map f*: UNnB; — f*(UNB;) and
the cone field C;, we construct a neighborhood U; of z in the relative topology of f*(U N B;)
using the original argument of [LW]: we obtain a cone field C, on U; where p satisfies the
relation p < p < 1, and a priori depends on i. Since o) > o_x(2), it is easy to see that we can
choose the same p for every i. Let U = U;l4;. It is easy to check that Proposition 8.4 of [LW] is
also valid in our setting with the cone field C), on U just constructed.

All the results contained in Sections 9 and 10 of [LW] rely on Proposition 8.4 and general
properties of hyperbolic systems, thus they are also valid for (M, m, f).

Section 11 of [LW] contains an improved version of the Hopf’s argument based on Sinai’s
approach [S] and valid for hyperbolic systems with singularities. This argument is the last step
of the Main Theorem of [LW]. Since it is general and relies on the results of Sections 8-10 and
12-13 of [LW], it carries over to (M, m, f) if we show that the results of Sections 12 and 13
extend to (M, m, f).

Sections 12 and 13 form the so called Sinai’s Theorem. This theorem provides an estimate
of the m-measure of the set of the points of &/ which have “short” stable manifolds or unstable
manifolds (see [LW]). It consists of two parts: the first part is Proposition 12.2, the only
result contained in Section 12, and the second part is the Tail Bound Lemma in Section 13.
Proposition 12.2 tuns out to be valid for (M, m, f) because it is a consequence of the results
contained in Sections 8-10 [LW], and these results, as we have seen, extend to our setting. Note
that in the proof of this proposition, it is used the fact that the transformation f is a symplectic,
and, since our setting is two-dimensional, the volume form generating m is a symplectic form
(preserved by f).

The Tail Bound Lemma of [LW] is not valid for (M, m, f) because, among its hypotheses,
there are a stronger form of our Property E5 and the continuity of C'. Hence we explain now
how the proof of this lemma has to be modified in order to work in our setting. As in [LW], we
will only deal with the unstable version of this lemma, since the stable version can be proved
exactly in the same way.

Property E4 and part (4) of Lemma 7.3 imply that for mi-a.e z € A}, we have

kEToo o (z) = +o0. 9)

Given two positive numbers M, ¢, let
Ey={z€ Al : o}(2) <t +1}.

It follows from (9) that for any pair h,t > 0 there exists an integer M = M (h,t) > 0 such that
ml(Et) S h. Let

By =%, U (T;maM) .
If B%/[ denotes the (-neighborhood of Bjs in A] with respect to the Euclidean metric, i.e.,
Bﬁ/l ={z€ A] :d(z,Bm) < (},

then E1 and E2 implies that there exists a ¢ > 0 such that the mj-measure of BJCVI is less than

h. Another consequence of B2 is that o}| A- 1s continuous on AT\ Bg/l which in turns implies
that the sets
Et:{ZEAl_\BEJ:U}kW(Z) <t+1}
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and
Si={z€ AT\ B, : oly(2) >t + 1}

are compact. Furthermore since E; C E;, we have mi(Ey U B§4) < 2h. Finally the semiconti-
nuity of o3, (part (1) of Lemma 7.2) implies that there exists a r > 0 such that o},(z) > t for
any z € S; where S] is the r-neighborhood of S; with respect to the Euclidean metric.

The proof now continues as in Section 13 of [LW] up to the point where CASE 1 and CASE
2 are discussed. In order for the analysis of CASE 1 done in [LW] to work in our setting, we
need to make the following change: use the metric g instead of the Euclidean metric in order
to evaluate the length of f~"~ (see [LW]; note that f corresponds to T' in that paper). We
can always choose U such that its closure does not intersect dM. Since g can only degenerate
on OM, the Euclidean metric and § are equivalent on /. Thus using Property E5, we obtain
that the length of f~"~ with respect to g differs from the value obtained in [LW] by a positive
factor accounting for the equivalence of the two metrics on U. To conclude the analysis of
CASE 1, we have to use Property E6, as the radius of the neighborhood of E; C E; is now
computed with respect to g. The analysis of CASE 2 in [LW] can be repeated word by word in
our setting. However the final estimate is obtained for the Lebesgue measure, whereas we need
a similar estimate for m. This follows from the latter, because, by assumption, the density of
m is bounded.

This concludes the proof of the Tail Bound Lemma and so the proof of Sinai’s Theorem for
(M, m, f). To finish our proof, we need a final remark. In the formulation of the theorem of
Liverani and Wojtkowski, there is no reference to Bernoulli components of f, only to ergodic
components of f. Nevertheless since local stable and unstable manifolds of f are also local
stable and unstable manifolds of any positive power of f, we see that as the property that I/
contains a full m-measure set of points such that any pair of them is connected by a Hopf’s chain
of stable and unstable manifolds implies that ¢/ is contained (mod 0) in one ergodic component
of f so it implies that U is contained (mod 0) in one ergodic component of an arbitrary positive
power of f (in fact, any power). Thus U is contained (mod 0) in one Bernoulli component of

g O

Remark 7.6. Using the same argument at the end of Section 7 in [LW], one can show that if a
system (M, m, f) verifies E1-E6, then m-a.e. points of M satisfies the hypothesis of Theorem
7.5 which, in turn, implies that Bernoulli components of f are open (mod 0).

8 Bernoulli property of planar billiards

We go back to billiards satisfying Conditions B1-B3. In this subsection, we prove that the
hypotheses of Theorem 7.5 are verified by the induced system (€2, v, ®) of these billiards endowed
with the invariant cone field C' introduced in Subsection 5.3. Of course, the space (2, the singular
sets S,j of ® and C verify the basic hypotheses of the theorem, and we are going to check only
that Conditions E1-E6 are verified. Once this is done, in the next subsection, will use Theorem
7.5 and Condition B4 to prove that the billiard map 7" is Bernoulli. As we are now dealing with
billiards, the notation used through this and the following subsections is as in Sections 2-5.
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8.1 Verification of Conditions E1-E6

Before directing our attention the proof of Conditions E1-E6, we make a remark which will
simplify our task. By the time-reverse symmetry of the billiard dynamics, we see that every
result valid for any object defined in terms of 7', is also valid for the symmetric object defined
in terms of T—!. Examples of such objects are the local stable and unstable manifolds W#*, W
and the singular sets S, S,j . This symmetry is somewhat incorporated in Conditions E1-EG6,
as each of these conditions consists of two symmetric parts. We then see that to prove E1-E6
for the billiards considered in this paper, it is enough only to check one part of each condition.
This is what we will do in this section.

Consider a billiard satisfying B1-B3. Let (€2, v, ®) be the corresponding induced system (see
Section 4), C' the invariant cone field of (Q,v,®) (see Section 5.3), and set g = ¢’ where ¢’ is
the semimetric introduced in Section 2.

Theorem 8.1. The system (2, v, ®) verifies Conditions E1-E6.

Proof. We will show that (2, v, ®) satisfies the unstable part of E1-E6. The proof is subdivided
into Propositions 8.2, 8.5, 8.7, 8.19 and 8.22. O

El. (Regularity)
Proposition 8.2. The singular sets S,;t of ® have the following properties:

1. S,;t are neat in Q, and S,‘:E C Sff(%il). In particular, (Q, v, ®) verifies Condition E1.

2. 85 ﬂS,:r is finite for any j,k > 0,
3. S is at most countable.

Proof. Part (1). We will only prove this part of the proposition for sets S;; in virtue of the
relation S, = RS;T , the result extends automatically to the sets S, as well. We say that
Slj verifies the property (P) if it has finitely many smooth components, and it is the union
of these components. It follows from Lemma B.2 that if S,j verifies (P), then the closure of
Slj is regular. Accordingly, to prove the regularity of the closure of S,j , we will show that S,j
verifies (P). Once this has been done, it is simple to show that S,j is neat in €2: it is enough

to note that if the closure of a smooth component of § does not intersect any other smooth

component of S,j , then it can be extended up to 0.

We use an induction argument. Let us start by analyzing the case k = 1. It is clear that
it suffices to prove that S N A and S N (M- U M) both verify (P). We first consider the
set S N'A. The initial step is to show that (int A\ V;7) N S§ = 0 (see Section 4 for the
definition of the quantities involved here). Suppose that this is not true, i.e., there exists an
integer 0 < j < f — 1 such that (int A\ V;") N TS # 0. As a consequence of the definition
A, then one obtains that 77 (int A\ V5) N V" # 0 and T7(int A \ Vi) N Vi = 0 are verified
simultaneously. Thus (int A \ V;7) NS = . We recall that ®z = T*(*)z (see Definition
4.8). Since t on A (where it is defined) has only value 1 or n, the restriction of ® to every
connected component of int A \ V" is smooth, and therefore S;” N A C V5" Nint A. Tt follows
from the definition of ® that V" Nint A € 8§ N'A. Hence S N A = V;m Nint A. We have
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n _—
A.5. Every C}" has finitely many connected components whose properties are described in

Lemma A.3. These properties are inherited by the sets CJ" Nint A, as one can easily check
after recalling the definition of A, and that V:F NV, is finite. Then it is not difficult to see that

the connected components of C7* Nint A are smooth components of Sf N A, and that Sf NA
verifies (P).

We consider now S; N M’ where M’ := M_ U M. Let W;; = S{ uT~ 1V, ,. To prove
(1) for S N M’, we use an argument similar to the one used above for S N A. We start
by showing that S;" N (M’ \ W5) = (). Let B be any connected component of int M’ \ W.
Since B N Sf = (), it follows that T'|p is smooth and either TB C M’ or TB C My. In the
first case, ®|p = T|p and ®|p is smooth so that S;” N B = (. In the second case, we have
TBnN SIL = () because BN Wy = 0, and there are two possibilities: the first is that 72B C M’
which implies that ®|p = T?|p and Sfr N B = (), and the second is that T?B C M, which
implies T2B N Sf‘ = () since BN Wy = 0. Then we apply the same argument to T?B C M,
and then to the higher images of B under T'. We conclude that there are three possibilities for
B: i) TB C M', ii) there is a 1 < j < 2i — 1 such that T°B C M for every 1 < i < j and
T'B C M', and iii) T'B C M for every 1 <i < 2n — 1. Accordingly, we have ®|p = T7|p for
1<j<2n—1or ®p=T"p Inall cases, ®|p is smooth so that S; N B = (). This allows
us to obtain the wanted equality (M’ \ W5) = 0. It is easy to check that Wy N M’ C 8§ N M,
and hence S N M’ = W, N M’. Corollary A.5 implies that Wy, = Ui<m<an—2 Uier,, CI" where
the union over the #’s is restricted as explained in Lemma A.3. Every connected component of
CTT” C M’ is a smooth component of Sfr N M'. By recalling the properties of the sets C* and
their connected components (Lemma A.3 and A.4), we see that S N M’ verifies (P).

We complete now the induction argument. We assume that S,j verifies (P), and show

that S,jﬂ verifies (P). We have S,;LH = o155 U § The set S, is the union of its smooth

components, i.e., S = U v, Hence ®-1SF = U™ &~ linty,. As Sy verifies (P), g is

V> = Ut<m<n Uier,, C;" where the union over the 4’s is restricted as explained in Corollary

the union of its smooth components, ie., & = U?:w;-. The map ®~! is not defined at
inty; NS C %NSy C Ujy% Nvj Using Lemma B.3, we then see that inty; N Sy is
finite, and so is the number of disjoint smooth open curves §§i), e ,fl((ii)) forming int~; \ S .
This, of course, implies that ®—lintv; = Ug»(i)q)—%j(-i). Each set @‘15]@ is smooth by Theorem
B.4, and, in fact, it is easy to see that it is contained in a smooth component of S,;:_l. Since

o187 = up UL @-1el?),

contained in smooth components of S,IH. The set § is a finite union of smooth components

it follows that @‘18; is a finite union of smooth compact curves

of S,j 1 because S; verifies (P). We have just proved that 82’ 1 consists of a finite union of its
smooth components, and so S;- ., verifies (P).
To finish the proof, we observe that Part (2) follows from Part (1) and Lemma B.3, and

that Part (3) is a consequence of Parts (1) and (2). O
Lemma 8.3. The singular set Soo of T' is at most countable.

Proof. Given a z € Sy, there are two integers j,k > 0 such that z € TkSl_ N T*ij'. If
T'z ¢ Q for any —k < i < j, then z € V, otherwise 7"z € Sy for some —k < i < j. Hence
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Soo C Voo U (UieZT*iSoo), and all we need to do is to show that V, andiuieziT*iSoo are both
at most countable. The neatness (Lemma A.5) and transversality of Vo, Vab (see the proof

of Lemma 4.6) imply that VTg N Va5 is at most countable which, it turn, implies the same for
Vo since Voo C Vig N Vsb. Proposition 8.2 implies immediately that UjezT 'Sy is at most
countable. 0

E2. (Discontinuities of C)
Proposition 8.4. (Q,v, ®) verifies Condition E2.

Proof. According to the analysis carried out in Subsection 5.4, we can set Dy = S;L thr1 YR
To estimate the cardinality of ¥, , we argue as follows. The set of points where oy| sy is not

defined is given by S; N S,j. Let B be a box in the partition of 2 generated by Dy, and v be

the intersection of int {2 and a smooth component of § Using Statements 2 and 3 of Lemma
7.2, we see that the points where oy VAB\S; is discontinuous are contained in
k

(O(yNint B)NIdB) U (yNOIB),
where 00B is the union of the vertexes of B. Thus it is not difficult to see that
S C (81‘ ﬁ5$+k+1> U (US; mR;) U (U 8%) :
i>1 i=1

where 71, ..., v, are the smooth components of S; . The first set from the right in the previous
expression contains the branching points of &, and therefore those of Ry . The regularity

of f, S;{Hrkﬂ and Lemma B.3 imply that S N SYTnJrkH and U ,0v; are finite. We have
S; NR; =0 for any ¢ sufficiently large (see Case (IV) in Appendix A2 of [Do]). Using this fact

and Lemma B.2, we obtain that the set U;»1S; N'R; is finite. This concludes the proof. [

E3. (Proper Alignment)
Proposition 8.5. (Q, v, ®) verifies Condition E3.

Proof. That (2, v, ®) verifies E3 is a byproduct of the proof of Lemma B.3. O

E4. (Sinai-Chernov Ansatz) Let z € intQ and u € 7,Q. If X;(z) and X3(z) are non-zero
vectors belonging to the edges of C'(z), then we can write u = w3 X1(z) + usXo(2) for proper
ur,uz € R. We denote by |Xi(z), X2(2)| the Euclidean area of the parallelogram with sides
X1(2), Xa2(z). We associate to C(z) the quadratic form

Q- (u) =sin 0| X1 (z), Xa(2)|uug, u e T
See Section 3, for the definition of S¥ and NZ.

Lemma 8.6. limy_ o ox(2) = 400, VzeintQ\ (SLUNT).
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Proof. 1t is enough to prove the following property: there exists a positive number & such
that for any z € intQ \ (SL U NJ), one can find an increasing sequence {m;};cn for which
Omiy1—m;(®™2) > & for every ¢ > 1. In fact, let us assume that this property is verified, and
let z € int Q\ (SEL UNL) and {m;}en be the sequence associated to z. If i(n) := max{i > 0 :
m; < n}, then, for large n, we would obtain (using the supermultiplicativity property of o)

i(n)—1

on(z) > H O'mi+1—mi(q)miz) >0
=1

which implies lim;,_, 1 oo 05, (2) = +00 because lim,, .y i(n) = +00 as a consequence of the fact
that {m;} is increasing.

We explain now how to construct the sequence {m;} for a given z € int Q\ (SLUNL). We
claim that the positive semi-trajectory of z hits non-flat components of I" infinitely many times,
and its w-limit set cannot be equal to a corner of I'. Suppose, in fact, that z does not have this
property. Since z ¢ NI, the positive semi-trajectory of z hits non-flat components of I infinitely
many times, and so, in order to violate the property we want to prove, the w-limit set of z must
be a corner of I'. This corner cannot belong to a focusing component of I' for two reasons:
the first is that focusing components of I' are absolutely focusing, and so every trajectory can
only have a finite number of consecutive collisions with a focusing component of I'; the second
reason is that to satisfy B2, the internal angle of the corner must be greater than either 7 or
/2 according to the fact that the other component of I' forming the corner is either a non-flat
component or a flat component. It is easy to see that these two facts make it impossible for the
positive semi-trajectory of z to accumulate at a corner contained in a focusing component of I'.
Thus the corner must be formed by two dispersing components or by a dispersing component
and a straight line. In both cases, however, any trajectory entering such a corner leaves it after a
finite number of reflections (for example, see Appendix A1.3 of [BSC]). But then the w-limit set
of z cannot be a single corner which contradicts the assumption made on z. Let Upysp, be a small
neighborhood of the corners of I' formed by adjacent dispersing components. For the chosen z,
the sequence {m;} is defined recursively as follows: we set m; = 1, and given m; for i > 1, we
choose m; 41 > m; in such a way that ®™it1z € M_ U RE and 7(®™it12) ¢ Ueysp. This can be
done because of the property verified by points in Q\ (SE U NJ) proved before. Next we show
that there exists a positive & independent of z € @\ (S UNZ) such that oy, —m, (P™iz) > &
for every ¢ > 1. It is easy to show that for any ¢ > 1, we can find an integer k; > 0 such that
T F@miz € £ and T7®™iz € My for 1 < j < k;. Using the supermultiplicativity property
of o, then it is enough to show that there is & > 0 independent of z € Q\ (S% U NI) such
that oy, (T~%®™iz) > & for any i > 1. This can be proved as follows. For any i > 1, let
z; = T7kidMiz and w; = ®™iz. Of course oy, (T~ *id™i2) = 0,,,(2;). we denote by I; be the
length of the trajectory connecting z;, w;. To compute oy, (2;), we use the Cross Ratio Formula
(see Section 1 of [W2]). This is justified by the fact that although our definition of oy (z) differs
from that one of o(D,T*) in [W2], it turns out that o4 (2) coincides with a certain object 512] ) (2)
(see (8) in the proof of Lemma 7.2) for which the Cross Ratio Formula is valid. Hence this
formula is also valid for oy (z), and the cones at the points z and Tz that we have to consider

for its computation are those corresponding to a,(cj )(z). A simple computation gives

o, (zi) = V14w + Vwi
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where
Li(li—7 (2z5) =7~ (wy))
T (2i) 7™ (wi)

if z;, w; € M+

Li(lit|d(zi)|+|d(wi)])
|d(zi)[+|d(w:)])

if 2z, w; € M_

(L= (2:)) (I+|d(wi)])
T (zi)|d(wi)]

if z; € My w; € M_

(it |d(w)) (li—7~ (wi))
ld(zs) [T~ (ws)
7%(2) are the forward and backward focusing times of C' at z (see Section 5), and d(z) is the
(Euclidean) length of the segment of the trajectory of z contained in the disk tangent to I" at ¢
and having radius which is half of the radius of curvature of I" at ¢ (see Section 2). By B2 and

the definition of z;, w;, we have

if 2z € M_,w; € M+,

i >0 — T+(Zi),li — T_(’wi),li — T+(Zi) — T_(wi) >7, Vi>1.

If we set 7 := maxser_ |r(s)|, @ := 7/(max7,7)? and & := v/1+ @ + /1 + @, then we obtain
the wanted conclusion

Proposition 8.7. (2, ®,v) verifies Condition Ej.

Proof. Tt follows from Lemma 8.6 that it is enough to show that ¢(S; N (SL UNL)) = 0. Since
S; C S5, (see Proposition 8.2) and S;_NQ = 8L, we obtain S N(SLUNL) C (§; NSL)U
(S3,_1 N NL). The set S NSTE is countable by Proposition 8.2, and 4(S;, ; N Nf) = 0 by
B3. Hence ((S; N(SLUNYE)) < (S NSL) + (S5, NNL) =0. O

E5. (Noncontraction) We recall ||-||" denotes the norm generated by the semimetric ¢’ (see

Section 2).

Definition 8.8. Let k > 0, and z € intQ \ S,j. We say that the orbit o := {z,Tz,...,T*z}
verifies the noncontraction property if there is a constant a > 0 such that |D,®*u|’ > al|ul|’

for any u € C(z).

The following families of orbits called blocks play an important role in the proof of E5. We
assume that 2 € int Q\ S;.

1. Fi consists of orbits {z, ®z} such that z € M; C M, and ®z € M; N for some i # j,
2. F consists of orbits {z, ®z,...,®*2} ¢ AU M_ for some k > 0,

3. F3 consists of orbits {z, z} such that z € AUM_ and &z € My,

4. Fy consists of orbits {z, ®z,...,®¥2} ¢ M; C M, for some k > 0 and 1,

5. Fs consists of orbits {z, ®z,...,®*z} such that {z, ¥z} € RE for some k > 0.
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Remark 8.9. We observe that for the billiards considered in this paper, the noncontraction is
not always verified along every block of type 1-5 if we replace the semimetric g' by the more
natural metric g. This is the reason why we considered g’ instead of g. It follows from the
results of this subsection and Remark 8.21 that the noncontraction is always (for any billiard
considered here) satisfied with respect to g along blocks of type 1,4,5. It is not satisfied, instead,
along all blocks of type 2 and 3. In fact, it is not difficult to construct billiard tables satisfying
B1-B3 such that there is a one-parameter family of vectors {z(c)} contained in Fa(F3) for
c € (0,€),e > 0 such that
lim(z(e)) =0 and 1lim O(Pz(e)) =0

e—0 e—0

where 0 < 0 < m. It is now easy to see that if u = (1,0) € C(z(¢)), then

D,inPu
I 1Dz Pull
=0  ull

Clearly this implies that the noncontraction property is not verified with respect to g along
{z,®z}.

Given a block «, we say that a is of type i(a) if @ € Fjq). Every finite orbit can be

represented as a finite sequence of blocks asq, ..., a, of type 1-4 satisfying the following rule
, i(ag)+1 mod4 ifi(ay) €{2,3,4},
i(o41) = o
2,4 if i) = 1,
for every k = 1,...,n — 1. In other words, given any block representation of an orbit, we can

always reduce it to a block representation described above by grouping together adjacent blocks
of the same type. We when talk about the block representation of an orbit, we will always have
in mind this representation. Note that by definition a block of type 4 is allowed to contain just
one element (this is important to derive the representation above), and that for an orbit of type
5, its block representation ay, ...,y has the property that i(a;) = 1 and i(ay) = 4.

We prove now that any finite orbit can be decomposed in at most eight blocks.

Lemma 8.10. Let k > 0, and z € intQ \ S;". There exist an integer 1 < m < 8 and
a finite sequence of integers 0 = ko < k1 < --- < ky, = k such that {z,@z,...,@kz} =
UL {®Fi-12,..., ®Fiz} where {®Fi-12,... ®kiz} € F; for some 1< j <5.

Proof. Consider a finite orbit a with block representation aq,...,a,. After having removed
the largest block & of type 5 from «, we are left with at most two orbits, one coming before and
another coming after &. It is immediate to see that if the first of these orbits exist, then it can
contain at most three blocks; when it contains exactly three blocks, these must be a block of
type 2, one of type 3 and one of type 4. Similarly if the second orbit exists, then it can contain
at most four blocks; when it contains exactly four blocks, these must be a block of type 1, one
of type 2, one of type 3 and one of type 4. The orbit o admits therefore a decomposition with
a maximum of 8 blocks. 0

To prove that (€2, v, ®) has Property E5, we show, in the following series of lemmas, that

every block of type 1-5 verifies the noncontraction property. We recall that the values 7,7 are
defined in Section 6.
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Lemma 8.11. If z € My \ S, then ||u]|//V1+ 72 < |J'| <||ul|" for any u= (J,J') € C(z).

Proof. The lemma follows trivially from the fact that |J/J'| < 77(2) < 7 for any u = (J,J') €

C(z) and z € M4\ Sy . O

Lemma 8.12. Any block of type 1 verifies the noncontraction with constant a; = min{1/(1 +
2\1/2 =

) VE T T

Proof. Let u = (Jy, Jj) € C(z), and D,®u = (J1,J7). We assume first that &z € M_ UA. By

(2), we have
() = (e )6 ) ()

where [(z) is the length of the trajectory connecting z and ®z, and the factor |d(®z)| has to be
replaced by oo if ®z € A. It follows from the construction of C on M that 7(z,u)Jo+ J) = 0.
A straightforward computation then gives

() =~ (a=is ) 4
3 B 2)—717(z,u 0-
/1 2@ 1l

Condition B2 implies that {(z) — 77 (z,u) > 7 > 0 so that |J]| > |J}|. Finally

ol

D, ou| > |Ji| > |J| > ——
ID:ul 2 || 2 15| 2 ==

where the last inequality follows from Lemma 8.11.
We assume now that &z € M. In this case, we have

Ji Ji| || 7 (P2, D, Pu) -
Jb B

,7_-
Ji| |y T (@2, D, ®u) T 7
because 77 (®z, D, Pu) = I(z) — 77 (2,u) > I(z) — 77(2) > 7 by B2, and 7" (®z, D,®u) < 7 by

construction of C on M. Using Lemma 8.11 like before, we conclude that

,7__
1D @ul" = —ful"

Lemma 8.13. Any block of type 2 verifies the noncontraction with constant as = 1.

Proof. Let u = (Jo, J}) € C(z), and D,®u = (Jy, J;). We prove the case when k = 1, and then

explain why it implies the general case. By (2), we have

<J1> ( 1 l(l()z) ) <Jo)
| = — 2 2l(z K
1 @] Ta@a L) \Jo

where [(2) is the length of the trajectory connecting z and ®z, and the factor |d(®z)| has to be
replaced by oo if @z € A. Since JypJ) > 0 and I(z) > 0, it follows that |Jp| < |J1] and |J| < |J7],
and therefore || D,®ul||" > |lul|. The invariance of C' implies J;J/ > 0 for any 0 < i < k. Hence
the result obtained for k = 1 is valid for every segment of orbit {®'z, ®*+12}. This proves the
lemma in the general case. O
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Lemma 8.14. Any block of type 3 verifies the noncontraction with constant az = min{1,7/7}.

Proof. Arguing exactly like in the second part of the proof of Lemma 8.12, we obtain |J] /Jj| >
7/7. Since JoJj > 0, it follows that |J;| > |Jo|. Hence ||D,®u|’ > |Jul|'7/7T. O

Lemma 8.15. Any block of type 4 verifies the noncontraction with a certain constant aq > 0.

Proof. To prove the lemma, it is enough to verify the noncontraction property with respect to
the seminorm |.J’|. This is justified by Lemma 8.11, and by the fact that blocks of type 4 are
contained in M.

Let a := {z,®z,...,®*2} be a block of type 4. We assume that k > 0, otherwise there
is nothing to prove. Note that ®'z = Tz for i = 1,...,k, and so, through this proof, we are
allowed to use T instead of ®. Let 0 # u = (Jo, Jj) € C(2), and denote (J;, J!) = D,T*u for
0 <1 <k. We have

k

/ / . k — % i k — (7T
AR R | B R | e
Jol o SV T (D, T, Tz) T (Tz)
Let us define .
- 77 (T'2)
=) =11y
i=1

The lemma is proved if we show that Z(«) is uniformly bounded away from zero over all blocks of
type 4. We will do this in two steps: first for blocks of type 4 contained in A := Ufg:o Uty T,
and then for blocks of type 4 contained in B := Uy’_- | U, TE,,. Note that these sets are
invariant and disjoint.

Let a be a block of type 4 contained in .A. We recall that 0 < 7%(2) < 7 for any z € My \ S
by construction of C. Since A is bounded away from Ss, there exists a constant C' = C'(m) > 0
such that d(z) > C for any z € A. Using (5), we obtain 0 < 1/7%(2) + 1/77(2) < 2/C which
implies 75(2) > C/2 for any z € A. In conclusion, we have

E(a) = <;>m

for every block « of type 4 contained in A.

Consider now a block « of type 4 contained in B. Let (z,y) be the Lazutkin’s coordinates
of z. Fori = 1,...,k, denote by X; be the lower edge of C(T"z) which, by construction, is
equal to 0;1"0/0x(Z) for some zZ € £ and m > 0. We have

sin@(Tz)

TH(T'2) = k(T'z) £ m(X;)

where m(X;) is the slope of X; in coordinates (s',6’) (see Section 5.3). It follows from the
results of Section 5 of [Do] that there are constants by, b, b3 depending only on I'y such that

|m(X7f)’ §b1y+b2y35 izlv"')kv

and
k<

by
2

35



Hence

S

3

1—-0by—bhy3\ v
> (g 72J 10
(@) = <1+b’1’y+b’2’y3> (10)

(1]

where if Kypax = maxr, £ and Kmin = minp, K, then b, = b;/kmax and b} = b;j/kmin for i = 1,2.
The choice of m in Section 5.3 was made to conclude that the right hand-side of this inequality
is greater than e~ 20y +07)bs /2 which is a constant depending only on I';. Thus
20, b )b
Ela) > —r
(0) 2 T
for any block « of type 4 contained in B. O

Definition 8.16. A block o of type 5 is called minimal if it does not contain any smaller block
of type 5. The block representation of a minimal block of type 5 is given by a1, a9, a3,y or
a1, ay where, in both case, it must be i(ax) = k.

It is clear that every block of type 5 decomposes into finitely many minimal blocks of type
5.

Lemma 8.17. For any block {z,...,®%2} of type 5 containing m > 0 minimal blocks, the
operator D,®* can be decomposed as follows

DZ<I>k:FEIOLQmoLQm,lo...oLloFl.

In coordinates (J,J'), the operators Fy(Fy), Lai—1, Lo; have, respectively, the matriz form

<1 ﬁ) (1460 744y 6%’1 0
0o 1)’ 557') 1 _’_54(11) ’ 621 (12-)

where 8,61 > 0 and ", & > 0.

Proof. Tt is enough to prove the lemma for a minimal block a = {z,...,®¥z} of type 5. Let
0 < k < k be the integer such that ®*z € « which is the first element in the sequence of
collisions with the second focusing component of T visited by z. Set zg = 2,21 = ®¥z, 20 = ®*2.
Using coordinates (q,v), we write z; = (g;, v;), and define p; = ¢; + 77 (2;)v; for i = 0,1,2. Next
set Zo = (po,vp) and Z; = (p1,w1) where wy is obtained by reflecting v; about I'. Finally let
to, t3 be the length of the pieces of orbit « joining qg, po and gs, p2, respectively, and t; be the
length of the piece joining p;—1,p; for i = 1,2. If {¢;}ter denotes the billiard flow in @, then
we can write D,®" as follows

qu)k = (Dzquts)_l 0 Dz ¢ty 0 D2y ¢ty © Dzt

Let F1 = Dy ¢y, Fo = Doy Pry, L1 = Dzt , I = D3, ¢y, It is easy to check that, in coordinates

(J,J"), we have
(1 1t (1 t3
F1_<0 1>’ FQ_(O 1)‘
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To compute the matrix form of Ly, Ly, we argue as follows. In coordinates (J,J'), the vector
(1,0) represents a parallel variation, whereas (0, 1) represents a variation of lines emerging from
the same point. Since along the orbit between pg, p1, there are only reflections at I'_ U Ty, it is

not difficult to see
1 _ 1+ 67 0 o t1 + 03
uo)=-("5") w()--(1i)

where d1,...,04 > 0, and the sign of the two vectors coincides. Condition B2 implies that
t1 > 7 so that
I <1+61 %+63>
! Sy 1+4464)

Note that every variation focusing at p; must also focus at py. So it is easy to see that

o) =) =0) =)

where €1, €2, €3 > 0, and the sign of the two vectors coincides. The billiard flow in coordinates
(J,J') preserves the standard area form. Hence det Ly = +1, and so

Ly = (61 91) .

Lemma 8.18. Any block of type 5 verifies the noncontraction with constant as = , /ﬁ.

O]

Proof. Consider a block of type 5 {z,®z,...,®"2} containing m > 0 minimal blocks of type
5. Let F1,F5, Lo;, Lo;_1 for ¢ = 1,...,m be the matrices associated this block as in Lemma
8.17. Given u = (Jo, J§) € C(2), let (Jo, Jy) = D, ®Fu. Also define (Jo, J§) = Fiu, (J1,J]) =
Ly(Jo, J}) and (Ja, J5) = Fy(Ja, J3). We will use the symbol |u|; to denote the absolute value
of the jth component of w.

By Lemma 8.11, it is enough to prove that there is a positive constant as such that |J5| >
as|Jg| for any (Jo, Jj) € C(z). It follows from Lemma 8.17 that there exist two 2 x 2 matrices
R, R with non-negative entries such that

Loy, 0Loym 10...0L30Ly = i(LQmOLQm,QO...LLLOLQJrR), (11)

and
Loy o Lop—_90...Lg0 Lo :Egmoigm_zo...fqofzg—{—é, (12)

- e 0
L%:<01 1). (13)
=

If L =LoynoLom90...Ls0Lyand e = | €i, then

where



Let (Jo, J}) € C(z), and v = (J1,J7). Condition B2 implies that .J;/J; > 7 so that, by using
(12) and (13), we obtain

|L2m o Lgmfl c...0 L3 o) L2U|j > |f/U|j.

This gives .
| Jo| > €| 1| = e7| 1], (15)

and 3
| J5| > €M7 (16)

Another consequence of B2 is that Jo/J) < 7. Using (15), we obtain
5l = 1. (17)
T
The average of (16) and (17) gives

- 1 =
5l = 5 (e + ) il

.
A simple computation shows that e =1 4 e7/7 > 2(7/7)1/? for € > 0, and so
~ 7 1/2
Bl = (2) 1l
= (0"
To conclude the proof, we only need to observe that |Ji| > |J}| = |J§| and |J3| = |J3]. O

Proposition 8.19. (Q,v, ®) verifies Condition E5.

Proof. In Lemmas 8.14-8.15, it is proved that the noncontraction is verified by any block of
type @ with constant a; > 0 for any 1 < i < 5. Then (2,v, ®) satisfies the noncontraction,
because if a = (minj<;<5 a;)®, then for every finite orbit {z, ®z,..., ®*2}, we have

ID.®*u|" > allul’,  Vu € C(2).
O
E6. (Volume estimates) We now prove that (2, ®, u) has Property E6. The key points is

an inequality for the semi-norms || - || and || - ||" valid in a neighborhood of S&; which is proved
in Lemma 8.20. The notation here is as in the statement of Property EG.

Lemma 8.20. There exists a o > 0 such that for every Y C S;, we have YY) C Y for
sufficiently small 6 > 0.

Proof. 1t is enough to prove that there exists a positive number a > 0 such that

Jul®
sup 2 —
0£uelC(z) Hu”

a, 2€VUM_U(M,\Ss), (18)

where V' is a proper neighborhood of §§ N A in A. We will prove (18) separately for points of
V,M_, M, \ Se with proper constants ag, _, a.
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Note that if z = (s,0) and u = (ds,df) € T.M, then it follows from (1) that the ratio
l|lu)|?/||u||"? has the following expression
lull® 1+m(u)®
[ull® sin® 0 + (k(s) + m(u))?’

where m(u) = df/ds.
We explain now how to find the set V', and then show that (18) is verified on V. We claim
that d(S; N'A,S2) > 0. Suppose that this is not true, then we have d(S; N A, Sz) =0, and so

there is a smooth component y of S NA such that yNSy # (). This implies that the continuation
of the segment I'; D 7 () either contains the corner of I' generating ~ (if 7 is generated by a
corner), or is tangent to the dispersing component of I' generating ~ (if v is generated by a
dispersing curve). But then we must have v C Ss, contradicting () # inty C int €, which follows
from the definition of smooth component (see Definition B.1). Since d(S; N A,S2) > 0, we
can find a neighborhood V of S N A in A such that d(V,S2) > 0. On such a V, the function
sin @ is uniformly bounded away from zero. Since k = 0 on V, we see that || - || and || - ||’ are
equivalent on V. This proves (18) for z € V.

By the general assumption on the dispersing components of I', there exists a negative
number x_ such that k(s) < k_ < 0 for every s € I'_. Also, by construction of C, we have
—o00 < m(u) <0 for every u € C(2) and z € M_. Thus

2
< sup AT g
0£ueC(z) (K(s) +m(u))? K

ul®
sup 7
0#ueC(z) HUH

which proves (18) for z € M_.

By the general assumption on the focusing curves of I', there are two positive constants
Kmin < Kmax such that 0 < kmin < K(s) < Kmax < +00 for every s € I'y. By construction of C,
we can find a small a > 0 such that —kpin/2 < m(u) < 400 for every u € C(z) and z € M\ S,
provided that 0 < sinf < a. For such v and z, we then have

ol _ 1tm@? 4
Jll® = Gsts) +m)? = W2,

Let now u € C(z) and z € M4 such that sinf > a. In this case,

1+ m(u)? < 1 n m(u)?
a?+ (k(s) + m(u))?2 = a? + (k(s) + m(u))?  a®+ (k(s) + m(u))?

i

and we obtain

wl 1, 4
lul? =" e KR,
Hence 2 . A
<l+—S+——=tay, z€M;\S5.
0£ueC(z) HUH/Z a? K‘r2nin
This finishes the proof. O
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Remark 8.21. The previous proof can be strengthen, and it can be proved that || - ||, || - || are,
in fact, equivalent on VU M_ U M. This stronger result is, however, more than we need to
use Theorem 7.5. We also stress that || - |, || - || are not equivalent on A.

Proposition 8.22. (Q,v, ®) verifies Condition E6.

Proof. By Lemmas 8.20 and C.1, we have

v(Y2) < u(Y) < aCl(Y)s.

8.2 Bernoulli Property

In this subsection, we prove that all billiards satisfying B1-B3 are locally ergodic, and are also
Bernoulli provided that they satisfy the additional Condition B4. The notation here is as in
Sections 2 and 3.

We recall that H = {z € intQ: 3k > 0s.t. 2 ¢ S;” and o4(z) >3 or 2 ¢ S, and o_y(2) >
3} and H = int M \ (Sooc U NS U Ny ). In the previous section, we have proved that Theorem
7.5 applies to the induced system (2,v, ®) of a billiard satisfying B1-B3. In the first result
contained in this section, we show that the conclusion of Theorem 7.5 is also valid for the
billiard system (M, u,T') at every point of H.

Theorem 8.23. Consider a billiard satisfying B1-B3. Then for every z € H there is a neigh-
borhood of z contained (mod 0) in one Bernoulli component of T

Proof. Let z € H, and assume without of loss of generality that z ¢ ST U NJf. In this case,
there is an integer m > 0 for which 7™z € int Q \ (SE U N1). Using Lemma 8.6, we can then
find an integer j > 0 such that o;(7"™z2) > 3. Hence 7"z € 'H, and so Theorem 7.5 tells us that
there exists a neighborhood U be of Tz contained (mod 0) in a Bernoulli component of ®.

The key point in the proof of Theorem 7.5 is to show that the neighborhood U contains a
full m-measure set of points such that any pair of them is connected by a Hopf’s chain of stable
and unstable manifolds of ®. The Hopf’s argument then implies that I/ is contained (mod 0) in
one Bernoulli component of ®. Since local stable and unstable manifolds of ® and 7' coincide,
it follows that U is also contained (mod 0) in one Bernoulli component of T

To conclude, we observe that T™ is continuous at z, and that the image under an arbitrarily
power of T of a Bernoulli component of 1" is also a Bernoulli component of 7.

O

Theorem 8.24. For billiards satisfying B1-B4, the map T is Bernoulli.

Proof. We recall that by assumption I' is an union of m > 0 disjoint Jordan curves I'y, ..., T,
each of them being a finite union of components of I'. The geometry of @ allows us to order
fl, .. ,fm so that there is a finite sequence 1 = i; < iy < --- < 4 = m for some [ > 1 for which
['; contains in its interior all the other curves, and each curve fiﬁl, e ,f‘ij 41 is connected
by a segment contained in the interior of @ to at least one of the curves I';,_,41,..., f‘ij for
2 < j <1 —1. Denote by M; the set 7—1(I;). It follows immediately from Theorem 8.23 and
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Figure 2: If U is a neighborhood of z, then p(TU N M;) and u(TU N M;) are positive in both
cases

Condition B4 that the each My, ..., M, (recall that M; = 7~1(T;)) is contained (mod 0) in one
Bernoulli component of T'. To prove the theorem, we have to show that all these components
coincide. Consider two boundary components I';,I'; as in Fig. 2: they are adjacent in the first
case, and non-adjacent in the second case. The f-measure of S;" NS and S;" N N are zero,
because Sy, is countable (Lemma 8.3), and £(S;” U Ng) = 0 by B3. Hence S; N H is dense
in S;". We can then find a point z € S; N H not in M; U M; such that ¢;(z) € T;, and the
continuation of the segment [7(2), ¢1(z)] intersects the interior of I';. Furthermore, since z € H,
there exists a neighborhood U C int M of z contained (mod 0) in one Bernoulli component of
T. The same is true for TU. Note that T'U contains two open sets: one contained in M;, and
the other contained in M; (see Fig. 2). Thus M;, M; belong (mod 0) to the same Bernoulli
component of T. Using thls argument, we can 1mmed1ately prove that each set M, ..., My,
is contained (mod 0) in one Bernoulli component of 7. Moreover using the same argument
over and over, we obtain first that all the sets M, Mo, ..., M;, are contained (mod 0) in the
same Bernoulli component of T' containing Ml, then that all the sets Ml, .. M23 are contains
(mod 0) in the same Bernoulli component of 7', and so on, until we obtain that all the sets
M, ..., M, are contained (mod 0) in the same Bernoulli component of 7. O

As a consequence of the previous theorem, also the billiard flow (of billiards satisfying B1-B4)
is ergodic. This is a simple fact which we do not prove. By general results [CH, OW], it follows
then that the billiard flow is either Bernoulli or Bernoulli times a rotation. In the second case,
the flow would have a rotation as a factor, and therefore, a non-constant eigenfunction. But
this is impossible, because a billiard flow is a contact flow, and as such, it has only constant
eigenfunctions (Theorem 3.6 of [KB]). Hence, for billiards satisfying B1-B4, only the first
possibility occurs. Note that although Theorem 3.6 of [KB] is formulated for C**¢ flows, its
proof is also valid for billiard flows which are not smooth. This proves the following theorem.

Theorem 8.25. For billiards satisfying B1-B4, the billiard flow is Bernoulli.
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Figure 3: Dispersing and focusing billiards

9 Examples

In this section, we use Theorems 8.23 and 8.24 to reprove and generalize several results on the
ergodicity of hyperbolic planar billiards previously obtained. We will implicitly assume that all
billiards considered in this section satisfy Conditions B1 and B2. Also note that, by Theorem
8.25, if a certain billiard map is Bernoulli, then the corresponding billiard flow is also Bernoulli.
We mentioned this fact once and for all, thus avoiding to repeat it every time in this section,
we prove that a billiard map is Bernoulli.

9.1 Dispersing and focusing billiards

A billiard is called dispersing (focusing) if I' = I'_ (I' = T'y). See Fig. 3. Dispersing billiards
were introduced by Sinai [S]. In his seminal paper, he proved that dispersing billiards without
cusps are hyperbolic, and have the K-property. Later Gallavotti and Ornstein proved that these
billiards are also Bernoulli [GO]. Focusing billiards were introduced by Bunimovich. Following
Sinai’s approach, Bunimovich showed that billiards bounded by arcs of circles are Bernoulli
[Bu2]. Several authors [Bu3, M3, LW, Sz| extended this result by replacing the arcs of circles
by a variety of curves forming certain classes (including arcs of circles). However the union of
these classes does not contain the whole family of absolutely focusing curves. We prove now
that focusing billiards bounded by general absolute focusing curves are Bernoulli. At the same
time, we reprove that dispersing billiards are Bernoulli.

For dispersing billiards and focusing billiards, Condition B3 is trivially satisfied, because
N = NI = (. Thus the set of non-sufficient points is contained in S, which is at most
countable by Lemma 8.3. It follows immediately that Condition B4 is satisfied. Using Theorem
8.24, we can then conclude that dispersing and focusing billiards (the last satisfying the condi-
tion on the distance and position of the focusing components prescribed by B2) with absolutely
focusing curves are Bernoulli.

The same argument proves the Bernoulli property for other two classes of billiards: billiards
with boundary containing both dispersing curves and absolutely focusing curves, and billiards in
tables obtained by removing a finite number of strictly convex obstacles (the curvature of their

42



Figure 4: Stadium

boundaries is strictly negative) from a flat two-torus. While our argument applies directly to
the first class, its application to the second class requires few observations. First, we stress that
the boundary of each obstacles has to be formed by a finite number of strictly convex inward
curves. Next by adding a “transparent” boundary to the “border” of the torus, we obtain a
semi-dispersing billiard. Although the set N, N may be not empty for these billiards, it is
easy to show that Conditions B1-B3 are satisfied and N, N, C My. The proof of Theorem
8.24 shows then that every obstacle belongs (mod 0) to one Bernoulli component of T'. This,
of course, implies the Bernoulli property of the billiard in the torus.

9.2 Stadia and some semidispersing billiards

A billiard table is called a stadium if its boundary consists of two absolutely focusing curves
joined together by two straight segments not necessarily parallel. See Fig. 4. In the famous
Bunimovich’s stadium, the focusing curves are semicircles, and the segments are parallel. The
Bernoulli property of Bunimovich’s stadium was showed in [Bu2, Bu3|.

We stress that the stadia considered here are bounded by general absolutely focusing curve
and not only by semicircles. This generality however comes with a price: the distance between
the focusing curves cannot be arbitrary (as required by B2) as in the case of Bunimovich’s
stadium, and in general, it will be bounded from below. This is the case, for instance, for stadia
bounded by semiellipses with small eccentricity [CMOP, MOP]. Accordingly, we assume that
the focusing curves in the stadia considered are sufficiently far apart (so that B2 is satisfied).

If the segments of the stadium are not parallel, then it easy to check that Ny = NI = 0.
In this case, Conditions B3 and B4 are satisfied and the stadium has the Bernoulli property
by Theorem 8.24. When the segments of the stadium are parallel, N, N, Ny coincide and
consist of two horizontal segments in M corresponding to vectors of M attached to the segments
and perpendicular to them (i.e., two curves § = {7/2} in My). It is not difficult to see that
B3 is verified in this case. However Condition B4 is not, because N, disconnects M. Hence
Theorem 8.24 cannot be used now. Nevertheless, in the next section, we will prove that stadia
with parallel segments, as part of a large class of hyperbolic billiards, are Bernoulli. This will
be done by improving a little the proof of Theorem 8.24.

We mention that the Bernoulli property of stadia with semiellipses was first proved in [DM],
and that the ergodicity of some truncated elliptical billiards was proved in [De].
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Figure 5: A Polygon with pockets and bumps

9.3 Polygons with pockets and bumps

A polygon with pockets and bumps is a simply connected domain @ of R? obtained from a
polygon P by “replacing” a neighborhood of the vertices of P by absolutely focusing curves
(pockets) and dispersing curve (bumps). In Fig. 5, P is a convex polygon bounded by dashed
lines, and @ is bounded by solid curves. Note that the pockets and straight lines in 9Q can
join to form C! curves but not C2. We assume that the polygon P, and the curves are chosen
so that the billiard in @ satisfies Condition B2. This can achieved, for example, by using
sufficiently short focusing curves as pockets. Stadia (with parallel and non parallel segments)
can be thought of as degenerate convex polygons with pockets. So we include them in the
family of polygons with pockets and bumps. Accordingly, the theorem proved below applies
also to stadia.

In [CT], it was proved that convex polygons with pockets have the Bernoulli property when
the pockets are arcs of circles contained in ). We consider here the more general when the
pockets are absolutely focusing curves. As in the mentioned papers, we also allow I' to have
bumps. The hyperbolicity of convex polygons with absolutely focusing pockets was first proved
[Do].

Theorem 9.1. Convez polygons with bumps and absolutely focusing pockets are Bernoulli.

Proof. A general result for polygonal billiards states that every semiorbit of a polygon billiard
is either periodic or accumulates at least at one vertex of the polygon [GKT]. This fact and
the convexity of P imply that, for billiards with pockets and bumps, the sets N, Nt, N
coincide and consist of periodic orbits bouncing off straight lines (as we have seen earlier, the
same phenomenon occurs in stadia with parallel segments). In a polygon, every periodic orbit
is contained in a family of “parallel” orbits having the same period. This family is called strip.
Thus a strip is a finite union of horizontal segments (f=const) contained in My with endpoints
either belonging to M or S, U SL. The number of distinct strips in a polygonal billiard is
finite [CT]. Hence, for the billiards studied here, we have Noo C My and p(N) = 0. Consider
now the set S;; N NE. Since any element of this set is contained in a strip, and has a singular
orbit, it is easy to see that S;; N NI must be the set of the endpoints of all the horizontal
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Figure 6: A non-convex polygon with pockets and bumps

segments forming all the strips. This set is finite, and so Condition B3 is satisfied. We do not
know, however, whether B4 is satisfied, because N, might disconnect sets M; contained in My
(this is indeed the case for the stadium with parallel segments).

Thus we cannot use Theorem 8.24. We argue, instead, as follows. Since No, C My, every set
M; N H is connected provided that M; € M’ := M_U M, . Using Theorem 8.23 and a standard
argument involving the connectedness of M; N H, we can show that every M; C M’ belongs
(mod 0) to one Bernoulli component of T'. Consider now three distinct sets M;, M;, M; C M.
It is trivial to check, using the convexity of P, that p(TM; N M;), u(T'M; N M;) > 0 so that
Mj, M; are contained (mod 0) in the same Bernoulli component of T'. Thus the whole set M’ is
contained (mod 0) in one Bernoulli component of T'. Note that this argument does not work for
stadia, because, in this case, I' has only two focusing components. To prove that same result
for stadia, we have to use instead the fact that there are orbits connecting the two focusing
components consisting of an arbitrarily number of collisions.

Let N > 0 be the number of Bernoulli components of T'. If N > 1, then we have u(T*M’ N
M') =0 for any 1 < k < N — 1. However the geometry of @ is such that u(TM' N M') > 0.
Hence N =1, i.e., T is Bernoulli. O

It is clear from this proof, that Theorem 9.1 is still valid if the condition on the convexity
of the polygon P is replaced by the the following condition:

(A): vertices of P with an internal angle greater than 7 are replaced by bumps in such a way
that these vertices lie outside the table Q). See Fig. 6.

Theorem 9.2. Polygons with bumps and absolutely focusing pockets satisfying Condition (A)
are Bernoulli.
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Appendices

A Singular sets: S;" and V-

In this appendix, we will not use the fact that focusing boundary components are absolutely
focusing. This means that the billiard table considered here satisfy only the conditions described
in Section 2. For such billiards, it follows from Theorem 6.1 of [KS, Part V] that Sy, 5] are
unions of finitely many points and finitely many smooth curves of finite length. In the next
theorem, we study the closure of Sli, and prove that Sf[ are neat. Note that, whereas the
mentioned results of [KS] are valid for billiard table with boundary C? piecewise, we assume
that such a boundary is C* piecewise.

Theorem A.l. For a billiard with boundary formed by straight lines and C* focusing and
dispersing curves, the sets Sf’, S| are neat.

Proof. The billiards considered in this theorem satisfy the hypotheses of Theorem 6.1 of [KS,
Part V] (we warn the reader that the notation for singular sets used in that paper differs from
ours). A byproduct of the proof of this theorem is that the closure of the sets S3 and Sy are
regular, where Sy is the union of curves 5 such that the trajectories emerging from ~y are tangent
to dispersing components of I" that do not intersect (7).

In this proof, we will show that also the closure of Sy \ Sy is regular. Since any two smooth
curves contained in the closure of Sf can only intersect at the endpoint of at least one of them,
we then obtain that the closure of S; is regular. It follows immediately that S| is regular as
well, because S| = RST.

To show that the closure of Sy \ Sy is regular, we have only to consider the case of two
boundary components I';,I'; having a common endpoint g. One of these components, let us
say I'j, has to be dispersing, whereas the other can be dispersing or focusing or a segment.
Let v C (S4\ S4) be a curve consisting of vectors (g,v) such that ¢ € T; and the ray L(q,v)
is tangent I';. We consider an orthogonal system of coordinates (x,y) such that the point ¢
coincides with the origin (0,0). Then the curve I'; is the graph of a C* function g : [0,a) — R
for some a > 0 such that g(0) = ¢’(0) = 0 and ¢”(0) < 0. The curve I; is the graph of a C*
function f : (b,¢) — R with b or ¢ equal to 0. Moreover f is such that either f(0) = f/(0) =0
and f”(0) > 0 or f = 0. The former case corresponds to a I'; dispersing or focusing, whereas
the last to a I'; flat. We will discuss here only the case when ¢ = 0 and f”(0) > 0, which is the
case of a focusing I'; (see Fig. 7). Our argument however covers also all the other cases.

Let I = (b,0] x [0,a). We start by noting that there exists a small neighborhood (in M;) of
~ admitting the following C' parameterization

I's (t,u) = (q= (& f(t),v = —(cos B(u),sin f(u))),
where 3(u) = tan~! ¢(u) is a C* function as ¢”(u) < 0 for v € [0,a). Now, let

F(t,u) = £(t) — g(u) — g (w)(t =), (t,u) € 1.

The function F is C® because f,g are C* functions. The lemma is proved if we prove that
F~1(0) is a C! curve (see Fig. 7). Since

Dy F = (f'(t) = g'(u), —g" (w)(t — w)),
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Figure 7: A billiard orbit between the curves I'; and I'; generating a component of S

and ¢"(u) < 0 for u € [0,a), it follows that F is a submersion on int I, and so F~1(0) Nint [ is
a C! curve. Note that F(0,0) = 0, but F is not a submersion on the entire domain I, because
(0,0) is a critical point of F. To conclude that F~1(0) is a C! curve on I, we have to analyze
the behavior of F~1(0) in a neighborhood of (0,0). To do this, we observe that F has a smooth
extension up to a neighborhood of (0,0) (as f, g extend smoothly up to a neighborhood of 0).

Next, since
) —g"(u)
Hess(g,u b = (—g' () ¢"(u) - g"(w)(t —u))

we have Det Hessg o) = f(0)g”(0) — ¢”(0)* < 0 as f”(0) > 0 and ¢”(0) < 0. Hence (0,0)
is a non-degenerate critical point of F, and, by Morse Lemma [Hi], there is a C' change of
coordinates («, 3) — (t,u) around (0,0) such that F' takes the form

F(a7ﬁ) :a2_ﬁ2

in the new coordinates. Thus, in a small neighborhood U of (0,0), the level set F~1(0) consists
of four smooth curves intersecting at (0,0), one of them being the continuation of F~!(0)Nint 1.
This finishes the proof. O

Let n > 0 be the number of components of I', and K > 0 be the sum of the numbers
of all corners of I' and all dispersing components of I'. Define I; = {1,..., K}, and I; =
{1,...,n}7t x {1,...,K} for any j > 2. The set {P,..., Px} denotes the collection of all
corners of I' and dispersing components of I'. For two points ¢, g2 € R?, let [q1, o] denote the
segment joining ¢i,q2. Given an integer 1 < k < K, we say that the vector z € int M has a
k-singular collision if

q1(z) = Py if Py is corner,
[7(2),q1(z)] is tangent to Py  if Py is a dispersing component.
Definition A.2. For any j > 0 and i@ = (io,...,%;) € I;, define Cg to be the set of all

z € T_j+15f' such that T*z € int M;, fork=0,...,7—1 and Ti=1% has a ij-singular collision.
For j <0, the set Clj- 1s defined similarly, but S’fr,Tfl have to be replaced by S, ,T.

Lemma A.3. Assume that j >0, and i € I;. When j > 1, we further assume that M; C My

forany1 <k <j—1. Then C’g has finitely many connected components, each being a smooth
curve. In particular, Cg s regular.
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Proof. By the hypotheses of the lemma, the set C’g coincides with the set Cz.l, with a proper 4’,
associated to the billiard obtained by unfolding the original billiard table along the trajectories
of C’f.. The set Cz.l, is not connected when there is an “obstacle” which splits the orbits of
elements of C’z.l,. Since there might be only finitely many such obstacles (I" has finitely many
components), Cil, must have finitely many connected components. By Theorem 6.1 of [KS,
Part V], these components are smooth, and Theorem A.1 tells us that their closure is smooth
as well. This finishes the proof, we observe, as it is easy to check, that the closures of any two
connected components of C’il, do not intersect. O

Lemma A.4. All the indexes j,j' and 1,7 involved in the following propositions are assumed
to satisfy the hypothesis of Lemma A.3. We have

1. for any j,j' > 0,4 € I;,i € Ij; such that (j,3) # (j', %), we have C?ﬂ Cf.;, - 805 U 805,/,

2. for any j > 0,1 € I, and any connected component & of Cg, there exist 0 < j' < j, 7 € I
with iy, = ig such that 0§ C Cg,/ UoM,

3. for any j > 0, the set (Ui<k<j User, ﬁ) U OM is connected.

(3

Proof. The proof of the first statement is an easy consequence of the definition of C’g . The proof
of the second and third propositions are essentially the same: it is enough to note that if the
closure of a connected component of C’ZJ- does not intersect any connected component (distinct

than itself) of C’g,l with 0 < j’ < j, then it reaches OM. O

We recall the definitions of several sets given in Section 4. Let V;© = S]" N My, and define
inductively V,:r = (T_IVI:F_1 NMo)UV;" for k > 1. We similarly define V,,~ by replacing S;, 7!
by Sy ,T. The sets Vki consist of elements of My having at most & — 1 consecutive collisions

with I'g before hitting a corner of I' or having a tangential collision at I'_. Let V} = V,~ U V,:,
and My = OM N My.

Corollary A.5. In the following propositions, the unions are restricted to i’s satisfying the
hypothesis of Lemma A.3. We have
1. Sfr = User, C}, and Sf s neat,

1’

2. V,:r = Ui<m<k Yicr,, CI" (where the union has to be further restricted to i’s satisfying
M;, C My), and Vk+ is neat,

8. TYW,F = Uscmek Uicer,, C"

o, and TfleJr s neat.
Similar propositions are valid for the sets S, V,”, TV, .

Proof. Tt follows immediately from the definition of the sets involved and Lemmas A.3 and

AA4. O
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B Singular sets: S,;t

This appendix contains a result (Theorem B.4) which is crucial to prove the regularity of ngt
for any k > 0. Surprisingly we do not know whether the same result is valid for S,;t for any
k > 0 (Theorem A.1 tells us that this is the case for £ = 1). This is one of the reasons for
introducing the induced system (€, v, ®).

Definition B.1. Let N > 0. A smooth component ofg if v is a smooth compact curve ~y
which is the closure of a connected component of Cg ﬂS]T, £ () for some 1 < j < N(2n—1) and
1€ Ij.

Lemma B.2. Consider a billiard satisfying B1. Let N be a non-negative integers, and 1,2
be smooth components of S]t. Then either vy1 = v or y1 N2 C Ov1 U 0ya. A similar result is

valid for smooth components of %

Proof. By the time-reversing symmetry of billiard systems, it is enough to prove the lemma
for smooth components of S]J\r,. Let ji1,j2 be the integers as in the Definition B.1 referring to
1,72, respectively. Suppose that v1 Ny # (. Let z € 71 N2, and assume without loss of
generality that z € inty;. In this case, we have j; < js. It is easy to see that if j; = jo and
1,2 are generated by the same corner or dispersing component of I', then v; = 9, otherwise
RS 3’}/2. OJ

Lemma B.3. Consider a billiard satisfying B1 and B2. Let N1, Ny be two non-negative inte-
gers, and y1,7v2 be smooth components of ij,l and Sy, , respectively. Then 1 N2 is finite.

Proof. For i = 1,2, let T'; be the component of T" for which 7(y;) C T';. If T'y # T'y, then we
obtain trivially that v N ye C 0y1 N 079, and so 1 N ~ys is finite. In the rest of this proof, we
therefore consider the case I'y = I'9, and study separately the two possibilities: 1,79 € M4
and 1,72 € M_ UA.

So suppose now that I'; is a focusing component of I'. The corresponding phase space is M.
We will show, in this case, that 7,7y, C int C'(z) and T.v2 C int C(z) for any z € 3 N 72. This
fact will implies that 7q,79 are transversal, and therefore finite because smooth components
are by definition compact. To carried out our plan, we further split this part of the proof

in the study of several cases, i.e, when v; C Rﬁl (72 € Ry,), and when v C S]J\;1 \REI
(72 C SN, \R]_VQ) Before starting analyzing these cases, we observe that if z € 43 N v, then

z & Sy. Solet v C RE{ By the definition of a smooth component, and that the restriction of
T to My N T~'M; is a diffeomorphism (see Section 5.3), we can find an integer 0 < n; < N;
such that T™~; is a smooth compact curve of S; N M; (the “vertical” boundary of Mj).
It follows that if 0 # u € 7.y, then D,7™u = ad/00(T™ z) for some a # 0. We recall
that, in the construction of C' in Section 5.3, the vector 0/00(y) generates the edge of C(y)
which gets mapped strictly inside the next cone. Thus by the invariance of C'; we obtain that
u € int C'(2), i.e, 7,71 C int C'(2). Similarly one can show that 7,72 C int C(2) when 72 C Ry,

We consider now the case 1 C SZ'\F,1 \Rj(,l Let I1 5t — 71(t) be a regular parameterization
of v1 where I is a closed interval. As before, there exists an integer 0 < ny < Nj such that
& :=T™ int~v; is a smooth open curve contained in Sf’ with a regular parameterization given
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by intI; > t — & (t) := T™~(t). Note that this time, we can only claim that 7™ is a
diffeomorphism on inty;. Hence 71 (&1, &](t)) is equal to the length of the segment connecting
m(&1) and the corner or dispersing component of I' generating 7;. Let 41 be the curve on M;
which is the last iterate of v before this leaves M;. This curve is smooth and compact because T’
is a diffeomorphism on My NT~'M;. Let t — 71 (t) denote the obvious regular parametrization
of 41. It is not difficult to see that Condition B2 and the invariance of C' imply

), (@) > 1+ 7, te€intl. (19)

Suppose now that z = v1(¢1) for some t; € I;. Since z ¢ Sy, passing to the limit as t — ¢; in
(19) , we obtain
(A1), () > 7+ T

This implies that 41(¢t1) € int C'(31(t1)), and, using the invariance of C, we obtain | (t1) €
int C'(2), ie., T,y1 C intC’(z). Similarly one can prove that 7.7 C int C(z) when v C
Sy, \ R,

To finish the proof, we have to analyze the case vy1,7 € M_UA. For ¢ = 1,2, let I; >
t — 7;(t) be a parameterization of 7; as described above. A similar argument to the one above
shows that v} (¢) € int C'(71(t)) for every t € int I1, and ~4(¢) € int C(v2(t)) for every ¢ € int Io.
In coordinates (s,6), we have int C(z) = {(¢/,0') : 0 < 0} for z € M_ U A, and so 1,72
are, respectively, strictly increasing and decreasing. It follows that 71 N2 can contain at most
one element. We note that, as an bonus, we obtain that }(¢t) € C'(y(t)) for t € 011 and
Y4(t) € C(y2(t)) for t € OIs. O

Theorem B.4. Consider a billiard satisfying Bl and B2. Let j > 0, and v be a smooth
component of Sj_ such that inty NS;" = 0. Then ®int~y is smooth. A similar conclusion is
valid if we replace Sj_,Sf,CI) by S;,Sl_, oL

Proof. 1t is enough to prove the theorem only for images of ®; by the time-symmetry of the
billiard dynamics, the theorem extends automatically to images of &~ 1.

To prove the theorem, we argue as follows. First of all, note that thereisa 0 < k <2n —1
such that ®inty = T%~. Let T, I'; be the boundary components of I', not necessarily distinct,
such that v € M; and T*inty € M;. Our goal is to show that T*int~ is smooth.

If we consider an orthogonal system of coordinates (z,y), then the curve I'; is the graph of
a C3 function f : [0,a] — R for some a > 0 such that f(0) = 0. Note that the conditions that
we have imposed on the components of T' (see Section 2) imply that if f” is zero at some point,
then f is linear, i.e., I'; is a straight line. For any ¢ € [0, a], the value «(t) denotes the angle
that the z-axis forms with the tangent of the graph of f at (¢, f(¢t)), i.e., f'(t) = tana(t). We
consider the following C' parameterization of ~y

Es(t) = (8 F(£),6(1) € My, te [0,d]

where 0(t) is the angle formed by the vector ~(¢) with the oriented tangent of I'; at (¢, f(t)),
and 0 < a’ < a. See Fig. 8.

For any ¢ € [0,4/], let L(t) be the ray which is the continuation of the vector v(¢). Denote
by [(t) the angle that z-axis forms with L(¢), and let b(t) = tan 8(¢). The functions # and b
are C! on [0,a’]. We may assume without loss of generality that b(0) = 0.
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Figure 8: A billiard orbit between curves I'; and I';

The curve I'; is the graph of a C® function g : [—c¢,c] — R for some ¢ > 0 and such that
g(up) = 0 for some —c < up < 0. When uy < 0, we rescale the billiard table @ so that uy = —1.
For any u € [—c,¢|, denote by ¢(u) the angle that the z-axis forms with the tangent of the
graph of g at (u, g(u)). There are two smooth functions u,v : (0,a’) — R such that 7" int v
has the following parameterization

t = ((t) = ((u(t), g(u(t)),(t)) € M;, te(0,d).

The value (t) gives the angle formed by the oriented tangent of g at the point (u(t), g(u(t)))
with L(t). See Fig. 8.

To prove the theorem, we need to show that either i) the parameterization ¢ — ((t) is
C*([0,a’]) or ii) t — wu(t),t € [0,a’] is a homeomorphism and there exists an interval I given
by I = [u(a’),u(0)] or I = [u(0),u(a’)] such that the parameterization u — ((t(u)) is C*(I).
Note that in order to prove (i), it is enough to show that u € C'([0,a’]) since 3 is C! and
is an affine function of 3 and tan~'(¢’ o u). Similarly to prove (ii), it is enough to show that
t € C'(I). In fact, we will only prove that either u or ¢ have a C' extension up to one of the
endpoints of their intervals of definition, since the extension up to the other endpoint can be
proved in the same way. Accordingly, from now on the curve v does not contain the endpoint
v(a’), i.e., v is parameterized by t — ~(¢),t € [0,a’).

We have consider several cases depending on whether v(0) € T-5+1S]" and whether I';,T;

are dispersing, focusing or flat. If v(0) ¢ T—*+1S; then one can show that T* has a smooth
extension up to (0) which, in this case, implies the theorem. Thus we assume now and for the

rest of this proof that v(0) € T"““SiF . This means that the proper extension of the positive
semi-trajectory of v(0) hits a corner of I" or has a tangential reflection at a dispersing component
of I at the kth collision, i.e., when (0) lands on €. If, in the former case, the semi-trajectory
does not hit I' tangentially, then, as before, one can show that 7% has a smooth extension up
to (0) which proves the theorem. Therefore we further assume that the proper extension of
the collision of the trajectory of «(0) always hits tangentially the component I'j. We will refer
to this assumption by (*). This is the interesting case to study, because only in this case, the
derivative of ® blows up at v(0).

As we have already mentioned, there are several cases to consider depending on I';,T’;
are dispersing, focusing or flat. Furthermore these components may or not intersect. Note,
however, that we do not have to consider all these configurations, because some of them are not
compatible with Conditions B1 and B2, the definition A and Condition (*). Furthermore we
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will give a detailed proof of the theorem only for some of the allowed configurations; the proof
for the remaining configurations follows the same lines.

Note that if k¥ > 0, then 7% int vy C My for any 0 < i < k as a consequence of the definition
of (2, v, ®). These collisions with straight lines of I' do not have any effect on the smoothness

of T*int v, and so we can neglect their presence in this proof. In fact, by properly unfolding
the table @, we obtain a new billiard table Q with a billiard map T such that 7% int v = T int Y
and I';,I'; C dQ. In the rest of this proof, we will have in mind the table Q with the map 7'
rather than @ and T* (and even in the Figures 9-12.

We will analyze the following configurations:

(a) T;,T; non-intersecting and both dispersing, i.e., f”(0) > 0,¢"”(—1) < 0. Condition (*)
implies that f/(0) = ¢'(—1) = 0. See Fig 9,

(b) T, T; intersecting and both dispersing 3, i.e., f”(0) < 0,¢”(0) > 0. Condition (*) implies
that f/(0) = ¢’(0) = 0. See Fig 10,

(c) I';,T'; non-intersecting and both focusing, i.e., f/(0) > 0,¢"(—1) < 0. Condition (*)
implies that ¢'(—1) =0, and inty C S, implies that f’(0) > 0. See Fig 11,

(d) T; is a straight line and I'; is focusing, i.e., ¢”(—1) # 0. Condition (*) implies that
¢'(0) = 0, and v C A implies that f" = const > 0, and that I';,I'; are non-intersecting.
Without loss of generality, we choose ¢g”(—1) > 0. See Fig 12.

Configuration (a). We have ((t) = 27 + a(t) — 6(¢) for t € [0,a). By hypothesis, v is a
smooth curve such that its interior is contained in Sj_ . It is not difficult to see that the tangent
vector of inty at any point z € 7 is contained in C(z) (see the proof of Lemma 8.2). A simple
computation then shows that ¢’(t) < 0 for [0,a). Since o/(t) = cos? a(t) f”(t) > 0 for [0,a), we
have 3'(t) > 0 and V' (t) = B'(t)/ cos? B(t) > 0 for [0,a). For (t,u) € A :=[0,a) x (—1,00), let
F(t,u) = f(t) — g(u) — b(t)(t — u). We have F(t,u(t)) = 0 for every t € (0,a). Let

Filtu) o= 20 = 11(0) — ble) ~ ¥ (1)t ),
Fy(t,u) := ZZ = —¢'(u) + b(t).

Since ¢'(u) < 0 for u > —1 and b(t) > 0 for ¢t € [a,0), F,(t,u) > 0 for every (t,u) € A. By
the Implicit Function Theorem, u € C*((0,a)) and u'(t) = —Fy(t,u(t))/Fyu(t,u(t)). From Fig.
9, we see that 5(t) > «a(t) > 0 for t € [0,a). So f/(t) —b(t) < 0 for t € [0,a). From earlier
observations, V/(t)(t — u(t)) > 0 for t € [0,a). Hence F}(t,u) < 0 for t € (0,a), and so u/(t) > 0
for t € (0,a). This implies that u extends to a homeomorphism on [0,a). Clearly u(0) = —1.
If t = t(u), then ¢/ (u) = —F,(t(u),u)/F(t(u),u) and

0

i ) = g — o) =

because b'(0) — f/(0) = &'(0) = 8'(0) > 0. We conclude that t € C1(I) where I = [~1,u(a)).

3A similar configuration with I'; focusing, i.e., g”(0) > 0 and g defined for —a’ < u < 0 is not allowed by
Condition B2 (see Remark 6.3). Such a configuration is however studied in the proof of Theorem A.1.
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Figure 9: Configuration (a) (case k = 1)

Configuration (b). We have a(t) = 27 + f”(0)t + O(¢?) and 0(t) = m + 0'(0)t + o(t). As
for Configuration (a), one can show that €'(¢t) < 0 for t € [0,a) so that 6’(0) < 0. The angle
B is given by B(t) = a(t) + 0(t) — 27 for t € [0,a), and therefore 5(t) = m + nt + o(t) and
b(t) = nt + o(t) where n = f”(0) + 6'(0) < 0.

Let ga(u) = ¢"(0)u?/2 for u € R. Let (t,u(t)) € [0,a) x [0,a) be the solution of f(t)—g(u) =
b(t)(t — u), and let (t,u«(t)) € [0,a) x [0,a) be the solution of f(t) — ga(us) = b(t)(t — us). By
a straightforward computation, we obtain

/ =1 _m
510 = utt) — ) = (1= TEOV) D s (20)

where &1 () is between u(t) and . (t), whereas &;(¢) is between 0 and u.(t). Since ¢'(&1(¢))/b(t) <
0 for t € [0,a), we have

()
= M )

where M = max, ¢, q) |9"(u)| > 0. The solution u.(t) is given by (note that tb(t) — f(t) < 0)

_b(t) + VB2(t) — 29"(0)(tb(t) — f (1))
g/l(o)

(21)

ux(t)

= At +o(t),

where A = (77 + /12 —2¢"(0)n + g”(O)f”(O)) /¢"(0). Hence

t
lim U (t)
t—0+ ¢

=A,
and therefore u, € C'([0,a)). By using (21), we see that |6(¢)|/t = O(¢?). Hence u € C1([0, a)).

Configuration (c). We have §(t) = a(t) + 6(t) for ¢t € [0,a). From Fig. 11, it is clear
that ¢'(u(t)) > b(t) for t € (0,a) so that F,(t,u(t)) < 0 for t € (0,a). A simple computation
shows that the forward focusing time of v(¢) (use Formula (3) with ¢(t) = (¢, f(¢)) and v(t) =
(cos B(t),sin B(t))) is given by

P00 = gL e )
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Figure 10: Configuration (b) (case k = 1)

and that Condition B2 implies

b(t) — f'(t)
0= 5t cos B0

for small a > 0. We recall that the number 7 > 0 was introduced with Condition B2 (Section
6). From Fig. 11, we see that (b(t) — f'(¢))/ cos 8(t) > 0 for t € (0,a). Thus the first inequality
of (22) implies that b'(¢t) > 0 for ¢ € (0,a). Now the other inequality of (22) implies
F1(#) = b(t) = V' (£)(t — u(t)) < f'(t) = b(t) + V' (t) cos B(t)(t — u(?))
< %b’(t) cos B(t) <0

gt—u(t)—; t e (0,a), (22)

for t € (0,a). Hence Fy(t,u(t)) < 0 for t € (0,a). By the Implicit Function Theorem, u €
C1((a,0)), and /(t) = —Fy(t,u(t))/Fu.(t,u(t)) < 0. Thus u extends to a homeomorphism on
[0,a) and u(0) = —1. By taking the limit of (22) as t — 0", we obtain 0 < f/(0)/¥/(0) < 1. If
t = t(u), then ¢'(u) = —F,(t(u),u)/F:(t(u),u) and

A e

g(u)

Figure 11: Configuration (c) (case k = 1)
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Configuration (d). The analysis of this configuration is similar to the one of Configuration
(a), and therefore we omit it. We observe that this reduction is possible only because v C A.
This condition, in fact, implies that every vector tangent to -y is divergent, and therefore it tells
us that v essentially behaves as in Configuration (a).

Figure 12: Configuration (d) (case k = 1)

The proof of the theorem is finished. O

Remark B.5. One may wonder whether the previous theorem is valid for the singular sets of
T as well. We do not know the answer: the proof of Theorem B.4 can be repeated word by word
for the singular sets of T with the exception of the analysis of Configuration (d). The reason is
that if inty C S; is contained in My \ A, then it is not true anymore that the tangent vectors
of v are divergent, and the reduction described in the analysis of Configuration (d) cannot be
achieved.

C Volume estimate

This section contains a proof of Proposition 7.4 of [LW].

Let M be a Riemannian (non degenerate metric) two-dimensional compact manifold M with
boundary and corners. Let X be the union of finite number of smooth and compact curves in
M. Denote by p the Lebesgue measure on M, and denote by ux the measure induced on X
by the Riemmanian metric.

Lemma C.1. There exists a constant C' such that for every closed Y C X, we have

Y9
lim sup )
6—0Tt d

< Cux(Y).

Proof. 1t is enough to prove the statement when X is a smooth and compact curve. We also
assume, without loss of generality, that M is endowed with the Euclidean metric. The general
result then follows from the fact that any two Riemannian metrics on a compact manifold
generate equivalent norms and volume forms.

For any § > 0 sufficiently small, we can always find N = N(§) points z1,...,2zxy € Y ordered
according to the orientation of X such

Y c UY,B(z;,9).
Note that the finiteness of N is a consequence of the compactness of Y. It is easy to check that

Y c UN, B(z,20).
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We claim that there exists an index set J C {1,..., N} such if [,m € J and [ # m, then
B(z;,26) N B(zm, 20) = 0,

and
Ui]ilB(Zi, 20) C UjGJB(Zj, 60).

We give here a sketch of the proof of this claim, which, in fact, follows from a more general result
(see for instance Lemma 6.8 of [F]). The construction of the subcover indexed by J is done
inductively. Pick as the first element of the subcover any element of the original cover. Suppose
that we have already chosen the first £ — 1 elements. The next element is chosen among the
remaining balls of the original cover which do not intersect the k£ — 1 already chosen elements.
The process ends when no such ball remains. Now it is easy to check that the subcover just
constructed has the required properties.

For sufficiently small 7 > 0, the measure of a ball of radius r is not larger than cr? for some
constant ¢ > 0 independent on the ball. Thus

p(Y?) <) u(B(z,66)) < 9c Y diam(B(z;,20)).

= =
Since
N
> " diam(B(2,20)) < px (X N | B(z;,20)) < px (X | B(2:,20)),
jeJ jeJ i=1
and
N
Jimpe (X0 | B(2:,20)) = px(Y),
i=1
we obtain
limsup Y _ diam(B(z;, 26)) < px (Y).
6—0t
jeJ
We conclude that 5
Y
lim sup (Y7 < 9cux(Y).
d—0t+

O

Remark C.2. The previous proof works also for degenerate metrics provided that the measure
of a ball of radius r is not greater than cr® where ¢ is a constant independent of the ball
considered.
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