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Abstract: We prove existence of small amplitude periodic solutions of completely resonant wave
equations with frequencies in a Cantor set of asymptotically full measure, for new generic sets of nonlin-
earities, via a variational principle. A Lyapunov-Schmidt decomposition reduces the problem to a finite
dimensional bifurcation equation -variational in nature- defined just on a Cantor like set because of the
presence of “small divisors”. We develop suitable variational tools to deal with this situation and, in
particular, we don’t require the existence of any non-degenerate solution for the “Oth order bifurcation
equation” as in previous works.
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1 Introduction

1.1 Presentation of the problem and of the result

In this paper we consider completely resonant nonlinear wave equations like

utt—uwz"‘f(A,Jf,u) =0
{u(t, 0) =u(t,m) =0 (1.1)

where the nonlinearity
FOz,u) = ap(z)uf + O(uPthy, p>2, (1.2)

vanishes at least quadratically at u = 0 and possibly depends on finitely many parameters .

Equation (1.1) is an infinite dimensional Hamiltonian system possessing an elliptic equilibrium at

u = 0. Any solution v = >, a; cos(jt + 6;) sin(jz) of the linearized equation
Ugp — Ugg = 0

{ u(t,0) = u(t, ™) = 0 (13)

is 2m-periodic in time (has frequency w = 1). For this reason, equation (1.1)-(1.2) is called a completely
resonant PDE.

e Question: Do there exist small amplitude periodic solutions of the nonlinear equation (1.1)-(1.2)
with frequencies w in a set of asymptotically full measure at w =17

For finite dimensional Hamiltonian systems, existence of periodic solutions close to a completely
resonant elliptic equilibrium has been proved by Weinstein [28], Moser [22] and Fadell-Rabinowitz [17].
The proofs are based on the Lyapunov-Schmidt decomposition which splits the problem into () the range
equation, solved through the standard Implicit Function Theorem, and (ii) the bifurcation equation, solved
via variational arguments.

To extend these results for completely resonant PDEs the main difficulties to be overcome are (i)
a “small divisors problem” which prevents, in general, to use the standard implicit function theorem to
solve the range equation; (i¢) the presence of an infinite dimensional bifurcation equation: which solutions
v of the linearized equation (1.3) are continued to solutions of the nonlinear equation (1.1)?

The small divisors problem (4) is a common feature of Hamiltonian PDEs, see e.g. [12]. This difficulty
was first solved by Kuksin [19] and Wayne [27] using KAM theory (other existence results of quasi-periodic
solutions with KAM theory were obtained e.g. in [21], [23], [24], [11] see also [20] and references therein).

In [13] Craig and Wayne introduced the Lyapunov-Schmidt reduction method for periodic solutions
of “non-resonant” or “partially resonant” wave equations like uy — gz, + a1(x)u = f(x,u) where the
bifurcation equation is finite dimensional, see also Bourgain [7]-[8] for quasi-periodic solutions. Because
of the small divisors problem (7), the range equation is solved via a Nash-Moser Implicit function technique
only for a Cantor like set of parameters. The presence of these “Cantor gaps” constitutes the main issue
to solve the bifucation equation by variational methods in the case of PDEs, the difficulty being to ensure
an “intersection property” between the solution sets of the bifurcation and the range equations.

In [13]-[14] the finite dimensional bifurcation equation (called the (Q)-equation) is solved assuming
the existence of a non-degenerate solution of the “Oth-order bifurcation equation” (it is the so called
“twist” or “genuine nonlinearity” condition). In this case, by the Implicit function theorem, there exists
a smooth path of solutions of the bifurcation equation intersecting “transversally” -and therefore for a
positive measure set of frequencies- the Cantor set where also the range equation had been solved. We



underline that the non-degeneracy condition is generically satisfied in [13] when the bifurcation equation
is 2 dimensional, but it is a difficult task yet in the 2m-dimensional case considered in [14] where it is
verified just on examples.

For completely resonant PDEs like (1.1)-(1.2) where as(z) = 0, both small divisor difficulties and
infinite dimensional bifurcation phenomena occur.

The first existence results of small amplitude periodic solutions of (1.1)-(1.2) have been obtained in [3]
for f = u3 + O(u®), imposing on the frequency w a “strongly non-resonance” condition which is satisfied
in a zero measure set accumulating at w = 1 . For such w the small divisor problem (¢) does not appear.
Next, the bifurcation equation (problem (i7)) is solved proving that the Oth-order bifurcation equation
(which reduces to an ordinary differential equation) possesses non-degenerate periodic solutions.

In [4]-[5], for the same zero measure set of frequencies, existence and multiplicity of periodic solutions
have been proved for any nonlinearity f(u) = ayu? + O(uP*1), p > 2. The novelty of [4]-[5] was to solve
the infinite dimensional bifurcation equation via a variational principle at fixed frequency (in the spirit
of Fadell-Rabinowitz [17]) which, jointly with min-max arguments, enables to find periodic solutions of
(1.1)-(1.2) as critical points of the Lagrangian action functional, more precisely “mountain pass” critical
points [1] of a “reduced” action functional. This approach enables to remove the non-degeneracy condition
on the bifurcation equation for a zero measure set of frequencies.

Existence of periodic solutions for positive measure sets of frequencies has been proved in [9] (for
periodic spatial boundary conditions) and in [18] with the Lindsted series method for f = u® + O(u®).
Again the dominant term u® garantees a non-degeneracy property.

In [6] a general approach to solve the difficulty posed by the presence of an infinite dimensional
bifurcation equation has been proposed, performing a finite dimensional reduction on a subspace of large,
but finite, dimension depending only on the nonlinear term a,(x)u?, see sections 3-4. The range equation
is solved with a simple Nash-Moser implicit function theorem on a Cantor like set B, of parameters, see
section 5. Next, to find solutions of the bifurcation equation in this Cantor set for asymptotically full
measure sets of frequencies, the Oth order bifurcation equation was assumed to possess non-degenerate
periodic solutions, property verified in [6]-[2] for nonlinearities like e.g. asu?, az(z)u®, aqu* + h.o.t.

In the present paper we solve the bifurcation equation via a variational principle for asymptotically full
measure sets of frequencies, dealing with more general nonlinearities (section 6). In particular we don’t
require any non-degeneracy condition for the “Oth order bifurcation equation”. This is a conceptually
important problem, being a necessary step to apply variational methods in a problem with small divisors.

As already said, the main problem to overcome is to prove the intersection between the solution sets
of the bifurcation and the range equations. For this, the main task is to control how the solution of the
bifurcation equation varies with the frequency. Since it is possible to show that the complementary of the
Cantor set By is arcwise connected, it would not be sufficient to find just a continuous path of solutions.
In the non-degenerate case there is a C''-path of solutions. To relax the non-degeneracy condition we first
prove that, if there is a path of solutions which depends (in some sense) just in a BV way on the frequency
(see the BV-property (5.21)), then it intersects the Cantor set B, where also the range equation is solved
for an asymptotically full measure set of frequencies, see Corollary 5.1.

We are not able to ensure this BV-property for any nonlinearity f(z,u) = a,(z)u? + O(uPT), but for
generic (in the sense of Lebesgue measure) families of nonlinearities

M
f()\,.’l?/u/) = ap(a:)up + Z )\lb’b(x)uql + T(CC,’U/) ) qi > q >p (14)
i=1

where g > p > 2 can be arbitrarily large, A; € R are real parameters and r(z,u) = > ;. ri(z)uf =
O(uP*1), proving the following result (see Theorem 1.2 for a more precise statement):

Theorem 1.1 Assume a,(m — ) # (—1)Pa,(x). For any § > p there exist integer exponents § < g1 <
... < qu and coefficients by, ..., byy € HY(0,7) such that, for any r(xz,u) = O(uPtl), for almost every
parameter X = (A1,..., ), |A| < 1, equation (1.1) with nonlinearity f(\, x,u) like in (1.4) possesses
small amplitude periodic solutions for an asymptotically full measure Cantor set of frequencies w close to
1.



We remark that, since ¢; > p, the nonlinearities \;b; (z)u% (and also r(x,u) = O(uP*!)) do not change
the Oth-order bifurcation equation (see equation (1.20)), which in particular might have only degenerate
solutions. Actually, since we can choose the exponents ¢; > q arbitrarily large, we are adding arbitrarily
small corrections b;(z)u? = o(uP) for u — 0. Moreover we underline that, given a,(z)u?, b;(z)u?,
Theorem 1.1 is valid for any nonlinear term r(z,u) = >, ax (z)u*, r having an influence only on the
full measure set of parameters A for which the existence result holds; in this sense Theorem 1.1 is a
genericity result.

Remark 1.1 In Theorem 1.1 the technical condition a,(m — x) #Z (—1)Pay(x) is just assumed for sim-
plicity so that the “Oth order bifurcation equation” reduces simply to (1.20). A similar result holds also
when this condition is not satisfied, the correct bifurcation equation involving higher order terms of the
nonlinearity like in [4]-[5]-[6]-[2].

The main idea for proving the BV-property (5.21) for nonlinearities like in (1.4) —and therefore for
proving Theorem 1.1- is somehow related to the Struwe “monotonicity method” [26] for families of
parameters dependent functionals. The information of how the critical points of a family of functionals
vary with the parameters is in general very hard to obtain. On the contrary, the critical values behave
rather smoothly w.r.t. the parameters. We shall infer the BV-property for the solutions of the bifurcation
equation (Proposition 6.1) by a BV-information on the derivatives (w.r.t A) of the critical levels (section
2), choosing properly the exponents ¢; and the coefficients b;, see Proposition 7.1. We postpone a detailed
description of our ideas in the next subsection.

At last we would like to mention that global variational methods for nonlinear wave equations were
applied in the pioneering papers of Rabinowitz [25] and Brezis-Coron-Nirenberg [10], giving rise (in a
different setting) to existence results for periodic weak solutions with rational frequency. See [15] for
some other variational result in the case of irrational frequencies.

1.2 Functional setting and variational Lyapunov-Schmidt reduction

Normalizing the period to 27, we look for solutions of

{w2utt — Uz + (N, 2,u) =0

u(t,0) = u(t,m) =0 (1.5)

in the real Hilbert space
Xos = {u(t,x) = Zcos(lt) w(z) ‘ u, € Hy((0,7),R), VI €N, and
1>0

||u||(27S = ﬂZeXp (201)(125 + 1)||ul||§lé < —l—oo} (1.6)
1>0

where Hul||§{é = [y (Opw)*(x) da.
Tt is natural to look for even in time solutions because equation (1.5) is reversible.

For ¢ > 0,s > 0, the space X, is the space of all 2m-periodic, even, functions with values in
HE((0,7), R), namely

T:=(R/27Z) >t — u(t)(x):= Zcos(lt)ul(x) € H((0,7),R),
1>0

which have a bounded analytic extension in the complex strip |Im ¢| < o with trace function on |Im ¢| = o
belonging to H*(T, Hi((0,7),C)). For 2s > 1, X, is a Banach algebra, namely

Hu1u2”a,s é ’{”ul”a,s”uQ”a,sa vulauZ S ch,s . (17)



The space of the (even in time) solutions of the linear equation (1.3) that belong to Hg(T x (0,m)) is

Vo= {utte) = ;ul cos(it) sin(lz) ] w €R, ;l2|ul\2 < +o0} (1.8)
= {ot.2) = nlt + )~ n(t - ) ] ne H'(T,R) with 5(-)odd }

On the nonlinearity we assume that r(z,u) = 37, re(x)uf with ri(z) € H(0,7) satisfies the
analyticity assumption

Solrkllme® =" ﬂ(ﬁxrk)z(as) + 72 () dx
0

k>p k>p

1/2
p" < +o0 (1.9)

for some p > 0.

Instead of looking for solutions of (1.5) in a shrinking neighborhood of zero it is convenient to perform
the rescaling

u — ou, 6>0,
obtaining
Wl ugy — Uge + P Lg(0, N, 2, u) =0
{ u(t,0) = u(t, ®) = 0 (1.10)
where
(0, A\, z,u) = 7]"(/\,3:,511) =a (x)u”—i—Zr (z)0%Puk —I—i)\»é%_pb»(ac)uqi
g\o, A, T, = 5P — Up k 7 i
k>p i=1
= ap(x)uf + Z ar(\, )6 Puk (1.11)
k>p

where we have set

ar(\ ) = ri(z) + Y Aibi().
qi=k

By the analyticity assumption (1.9), the Nemistky operator induced by g(d, A, z, -) is C* on the ball {u €
Xo,s | 6k||ulls,s < p}. Indeed, by the algebra property (1.7) of X, s, the power series 3, - ax(A, x)6k—PyF
is convergent on this ball, and -

lsGaaw|| < Claglha lull, + Cllully,y 3 lax(h @)l (3rlullo.)*
i k>p
< 2C|aplla [[ullf s (1.12)
for § > 0 small enough.
Critical points of the Lagrangian action functional ¥(d, \,-) : X, s — R
w? u?
(5, A\ u) = / 7uf - 71 —eG(0, A\, z,u) dtdx (1.13)
Q
where
Q:=T x (0,7), g:= 061
and
u uPt1 5 ) uPt2
= 0, A dz = —_—
G, A\, x,u) /0 g0, N\, x,2)dz ap(x)p+1 + dapy1( ,x)p+2 +

are weak solutions of (1.10). Note that ¥ is C'™ on the set {(J, A\, u) | [N <1, dk|lullos < p}-
Actually any critical point u € X, , of ¥(4, A,-) is a classical solution of (1.10) because the map
T Uy (t, ) = Wuy(t,z) — eg(8, N\, z,u(t,z)) belongs to H}(0,7) for all t € T and, hence, u(t,-) €



H3(0,7) C C?%(0, 7).
To find critical points of ¥(J, A,:) we implement a Lyapunov-Schmidt reduction according to the

orthogonal decomposition
Xos=VNXss)®(WnNXys)

where

W= {w = Zexp(ilt) wy(z) € Xo,s | w_; =w; and /0 wy(x)sin(lz)de =0, YVl € Z } .
l€eZ

Looking for solutions u = v + w with v € V, w € W, we are led to solve the bifurcation equation (called
the (@)-equation) and the range equation (called the (P)-equation)

—MA’U = 0P My g(6, A\, z,v + w) (@)
5 AT (1.14)
wa = 6p71HW9(6, )\7 z,v+ w) (P)
where
AV i= Vg + Vg, L, = _Wzatt + Ore

and Iy : X, o — V, Iy : X5 s — W denote the projectors respectively on V' and W.
In order to find non-trivial solutions of (1.14) we impose a suitable relation between the frequency w
and the amplitude § (w must tend to 1 as § — 0). The simplest situation occurs when

Iy (ap(x)v?) £ 0. (1.15)

Assumption (1.15) amounts to require that
Jv €V such that / ap(z)vPtt £ 0, (1.16)
Q

which is verified iff
ap(m —z) # (—1)Pap(z) (1.17)

by Lemma 7.1 in [6]. For the sake of simplicity we shall restrict to this case.
When condition (1.15) (equivalently (1.16) or (1.17)) holds, we set the “frequency-amplitude” relation

w?—1

5 =s*6P71, s e {-1,+1} (1.18)

and, recalling € := 6?~1, system (1.14) becomes

—Av = s* Ly g(8, \, z,v + w) (@) (1.19)
Low = Ty g(6, A, 2, 0 + w) (P). '

When 6 = 0, the (P)-equation is equivalent to w = 0, and hence the (Q)-equation in (1.19) reduces to
the “Oth-order bifurcation equation”

—Av = s" Iy (ap(x)vP) (1.20)

which is the Euler-Lagrange equation of the functional ¥, : V — R

HU||2 1 * Up+1
Uo(v) = TH —s A ap(x)p 1 (1.21)
where
ol = /Q 2 = ol (1.22)



Choosing

. 1 if 3v € V such that [, ap(z)vP™ >0 (1.23)
71 =1 if 3v eV such that Jo ap(z)oPTt <0 ‘
there exists vy, € V such that U, (vs) < 0. The mountain pass value
Coo = inf { e Voo (1(1)) | 7 € C(10,1],V),7(0) = 0,7(1) = voo} >0 (1.24)
€lo,

is a critical level? of W, (see remark 3.1) with a critical set
Koo 1= {0 € VA{0} | Wao(v) = e, AW (v) = 0}

which is compact for the H'-topology, see Lemma 3.2.
For 6 > 0 small we expect solutions of the (Q)-equation in (1.19) close to K. However, we don’t
know in general if the critical points v € K, are non-degenerate, i.e. if KerD?W¥ (v) = {0}.

To deal with the presence of an infinite dimensional bifurcation equation, we introduce as in [6] the
finite dimensional decomposition

V=Vviel
where
V1= {v = 2511 uy cos(lt) sin(lx) € V} “low Fourier modes”
Vo = {1} = >N weos(lt) sin(lz) € V} “high Fourier modes”.

Setting v := v1 + ve, with v1 € V1, vy € Vo, system (1.19) becomes

—Avy = s Iy, (8, A\, z,v1 + v2 + w) (Q1)
—Avg = Iy, (5, \, x,v1 + vo + w) (Q2) (1.25)
wa = EHWg((;; A,$,’U1 + v2 +w) (P)

where Ily, : X, s — V; (i = 1,2) denote the projectors on V;.
Our strategy to find solutions of system (1.25) is the following.

Step 1: Solution of the (Q2)-equation. The solution vy (4, A, v1,w) of the (Q2)-equation is found as
a fixed point of vy — s*(—A) "y, g(d, A, z,v1 + v2 + w) by the Contraction mapping theorem, provided
N > N with N depending only on a,(z)u?. Heuristically (see subsection 3.2) to find solutions of the
complete bifurcation equation close to the solutions K, of the Oth order bifurcation equation (1.20), N
must be taken large enough so that the majority of the H'-norm of the solutions of K, is “concentrated”
on the first N Fourier modes.

Step 2: Solution of the (P)-equation. We solve next the range equation
L,w = elly (8, v1,w) where T(6, A, v1,w) := g(0, A\, x,v1 + v2(, A\, v1, w) + w)

by means of a Nash-Moser type Implicit Function Theorem [6] for (4, A\, v1) belonging to some Cantor-like
set B, of parameters, see Proposition 5.1, an advantage being the explicit definition of B,. This will
be exploited for the measure estimate of Proposition 5.2.

To understand why such Cantor set B, arises, we recall that the core of any Nash-Moser convergence
method is the proof of the invertibility of the linearized operators

L5, A\, v1,w)[h] := Lyh — ellyy Dy, T'(6, A, v1, w)[h]

where w is the approximate solution obtained at a given stage of the Nash-Moser iteration. The eigenval-
ues {A; (9, A\, v1), 1 >0,5 > 1} of L(d, A, v1,w) accumulate, in general, to zero. This is the small divisors
problem (7). The Cantor set By, arises imposing conditions like |\;; (8, X, v1)| > [[|~"~1, 7 > 1, to obtain

2Actually ¥ has a sequence of critical levels tending to +oo, see [1].



the invertibility of £(, A\, v1,w) with a controlled estimate of its inverse.

Step 3: Solution of the (Q1)-equation. Finally there remains the finite dimensional (Q1)-equation
(6.1), which is variational in nature: critical points of the “reduced Lagrangian action functional”
®(6, A, v1) defined in (6.2) with (5, X, v1(8,\)) € Boo are solutions of the (Q1)-equation (6.1), see Lemma
6.1. Morevoer it is easy to prove the existence, for any § small enough, of a mountain pass critical set
K(0, A) of ®(0, A, -) which is O(d)-close to Iy, Koo, Lemma 6.4.

But the issue is that -unless K, contains a non-degenerate critical point of W.- the critical points
v1(d,\) € K(d, A) of (6, A, -) could vary in a highly irregular way as § — 0 belonging to the complementary
of the Cantor set Bs,. This is the typical big difficulty for applying variational methods in a problem
with small divisors. Indeed, although B, is -in a measure theoretic sense- a “large” set, this “intersection
property” is not obvious because there are “gaps” in By.

First we prove that, if there is a path of solutions of the (Q1)-equation § — v1(d, \) which satisfies
the BV-property (5.21), then it intersects the Cantor set B, for an asymptotically full measure set of
frequencies, see Proposition 5.2. Here we use the explicit definition of B.

We are able to ensure this BV-property for generic families of nonlinearities like in (1.4). The main
point is to choose the higher order nonlinearities b;(z)u? in such a way that the functionals ®; defined
in (6.14) form locally a set of coordinates in a neighborhood of Iy, Ko, (see Proposition 6.1).

In conclusion we prove:

Theorem 1.2 Let f(\, x,u) be like in (1.4) with a, € H*(0,7) satisfying (1.17). For any @ > p > 2
there exist M € N integer exponents § < q1 < ... < qu and coefficients by, ..., by € HY(0,7) depending
only on ay(x), such that, for any r(x,u) satisfying (1.9), for almost every parameter A = (A1,...,Am),
[A| < 1, equation (1.1) possesses small amplitude periodic solutions for an asymptotically full measure
Cantor set of frequencies w close to 1.

More precisely, for s € (1/2,2), there ezist T > 0, a set Cx C RT satisfying

lim meas(Cy N (0,7))
n—0 ’]7

=1

3

and s* € {—1,1}, such that, for all § € Cy, equation (1.5) possesses a 2m-periodic classical solution
u(0) € Xz/,s with w(d) = V1+2s*6P=1. It holds ||u(0)]lo,0 = 6Rx + O(6%) where Ry > 0 is the
constant defined in (3.1).

As a consequence, ¥ 6 € Cy, u(t,x) = u(d)(w(d)t,z) is a 2w/w(d)-periodic classical solution of
equation (1.1).

Notations: B(R; X) denotes the closed ball of radius R, centered at 0, in the space X. For brevity
B(R) := B(R;RM) is the closed ball in RM of radius 1, centered at 0; int B(R) is the open ball.

We shall say that a function ¢ : A C M +— R defined on a set A is in C*(A4, R) if it has an extension
¢ € C*(U,R) defined in an open subset U of M, which contains A.

2 Abstract Theorems on critical levels

In this section we prove some abstract results in critical point theory concerning parameter depending
functionals.

Let us first introduce some terminology. If U is an open subset of R" we shall say that f € L}, .(U)
has locally bounded (resp. bounded) variations in U if the partial derivatives of f are (resp. bounded)
real Radon measures on U. This property will be denoted by f € BV,.(U) (resp. f € BV (U)).

Given a non empty subset E of R and a function g : E — R we define

k
Vargg = sup { S 196 — 9(Gim)| k€ NV[O}, 6, € E, 61 <dp<... < 5k} € [0, +o0] .

=2

It is well known that if I is an open interval of R then f has bounded variations in [ iff there is a map g
defined on I such that f = g a.e. and Varyg < 4o0.



Theorem 2.1 Let M be a compact metric space, U be some open neighborhood of [0, 6p] x B(1) in RxRM
and I : U x M — R be a continuous map whose partial derivatives of order one and two w.r.t. (§, \) € U
exist and are continuous on U x M. Define the minimal value map m : [0,80] X B(1) — R by

m(d, A) := wlél]{;[ I1(6,\, ), (2.1)
the infimum m(d,\) being attained on the minimizing set
M(3,\) = {x e M| I(3,\z) =m(s, A)} £0.

Then:

(i) m is pseudo-concave, more precisely there exists K > 0 such that
K
(6, 0) = m(8, ) = (6 + [A]")

is a concave function on [0,d¢] x B(1).
(i1) m is differentiable almost everywhere and (Dym) € L*((0,0d0) x intB(1)).
(i13) (Dam) € BV((0,00) x intB(1)) and (Daxm) coincides a.e. with a function (Dam) satisfying

()\ > Var(g s (Dam) (-, )\)) e L'(intB(1)).

(v) For (8,X) € (0,00) x intB(1),
Dym(5,\) exists <= D(4,)) = {D,\I(é,)\,x) ;€ M(0, /\)}

is a singleton; in this case D I(3, \,x) = Dym(0,\), Vo € M(6,\), i.e. D(0,A) = {Dyxm(d,\)}.

PROOF. First note that M(d, ) # 0 by the continuity of I and the compactness of M.
Let m be the extension of m to U defined as in (2.1).

(¢) Fix n > 0 such that [-n,d9 +n] x B(1+n) C U. Let K > 0 be such that
Dis (6,2 2) < K1d, V(5 A\, x) € [-n,00 + 1] x B(1+n) x M (2.2)

EK exists by the compactness of [0,d0 + 7] x B(1 + n) x M and the continuity of D(257 N ). Define
h:Ux M~ R as %
(8, N\, x) == —I(5,\, x) + 5(52 + AP (2.3)

By (2.2), V& € M, D2h(-,-,z) > 0 in [-7, 8 + 1] x B(1+n) and therefore the function h(-,,z) is convex
on [—n, 00 + 1] x B(1 +n). The supremum of convex functions being convex,

G(8,\) := sup h(8,\,z) = — inf I(5,\,z)+ 5(52 + A% = —m(5,\) + E(52 + %)
zeM zeM 2 2

is convex on [—n,d0 + 1] X B(1 + n) as well. We thus obtain (i), since m is the restriction of m to
[0, 60] x B(1).

Since the function (5, \) — (K/2)(62 + |\|?) is C®°, it is enough to prove that the function g =
91(0,50) xint B(1) Satisfies properties (44)-(i77).

(i1) By convexity, g is locally Lipschitz-continuous in (=, dy + 1) x int B(1 + 7) and so

9 € Wh((0,80) x B(1))



see Thm.5 in sec. 4.2.3 of [16]. Hence by Rademacher’s Theorem g is differentiable a.e. and
v; := Dy, g € L*((0,d0) x B(1))

(defined a.e.) is also the partial derivative w.r.t. A; of g in the sense of the distributions, see Thm.1 in
sec. 6.2 of [16].

(447) Still by the convexity of g, all the second order partial derivatives of g are bounded Radon measures
on (0,0p) x B(1) (Theorems 2 and 3 in sec. 6.3 of [16]). In particular, for all 4, (Dy,g) has bounded
variations in (0, dp) X intB(1). Hence, by Theorem 2 in sec. 5.10.2 of [16] there is a measurable function
Dy, g :(0,90) x B(1) — R, equal a.e. to Dy,g such that

Var (g,5)(Px,9) (-, A) dX < +oo.
B(1)

(iv) We first claim that that any I € D(d, \) is a super-differential of m(4,-) at A, more precisely
K
vie D(5,N), m(d,A+h)<m(d, /\)+l-h+5|h|2, (2.4)

for A+ h € intB(1). Indeed, pick up = € M(, A) such that I = DyI(0, A\, x). Let h = E‘(Ovéo)xintB(l)Xl\/[.
Since h(d, -, ) is convex,

h(6, A+ h,z) > h(5,\, ) + Dyh(8,\, ) - h

and so, recalling (2.3),
K
I(5,\,x) + DrI(6,\,z) - h + 5|h|2 > I(0, A+ h,z) >m(5,\+h). (2.5)

Since € M(J, \) we have I(d, A\, x) = m(d, A), and inequality (2.5) yields (2.4).
PRrROOF OF =) If m is differentiable w.r.t. A at (§, \) and I € D(5, A) then Dym(d, \) = I. Indeed, by
(2.4), V|jv| = 1 and for |t| small,

m(d, A + tv) —m(d, \)

K .
Zl-v—l—;t if t<0

m(6,\ + mt) —m(3,\) (2.6)

t

K
Sl-v—k;t if ¢t>0.

By (2.6), if Dym(d, A) exists then

m(0, A + tv) — m(5, \) <

oo < tim POAER) ZmON 63y e = lim

t—0- t t—0+ t

l-v

and so Dym(\,d) = L.
PROOF OF <) Now assume that D(d, \) = {l} is a singleton. By (2.4), we already know that

lim sup m(§,\+h) —m(5,\) —1-h <

0.
h—0 ‘h|

In order to prove that Dym(d, A) = [, it is enough to prove that

it m(5, A+ h) |hm(6, N-lho o 27

Let us prove (2.7) by contradiction. If (2.7) is false then 3 > 0 and a sequence (h,) — 0 such that

M\ + hn) < m(8, ) + 1+ hn — plhn]. (2.8)
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Let z, € M(0, A + hy) and I, := DyI(6, A + hp,xn) € D(0, A + hy). By (2.4), written this time at
(6, ') = (6, + hy,) and with b/ = —h,,,

K
m(d, ) <m(d, A+ hy,) —ln-hn+5\hn\2. (2.9)
(2.8) and (2.9) imply that h,, - I, — K|h,|?/2 < - h,, — plhy| and so
K
(zn - z)i — Sl < = (2.10)

Up to a subsequence (z,) — & € M and by the continuity of DyI, (I,) — DxI(,\,x). Since z, €
M8, A+ hy), we have Vo' € M, I(8, \+ hy,xy,) < I(6, A+ hy,x'). Passing to the limits, we obtain that
x € M(9, ). Therefore DyI(0, A, x) belongs to D(d, A). Hence (I,,) converges to [, the unique element of
D(6,A). Then, passing to the limit in (2.10), we obtain 0 < —pu, a contradiction. m

In the following theorem, V; denotes some finite dimensional euclidean vector space.

Theorem 2.2 Let @ : [0,50] x B(1) x B(R; Vi) — R be a C? map. Let S denote the unit sphere in V;.
Define I :[0,60] x B(1) x S+— R by

I(6,\,v) := sup D(4, A\, tv),
te[0,R]

the minimal value
m(d, A) := ;Ielg I1(6,\v)
and the minimizing set
M8, = {11 €S | I(6,\v) = m(s, )\)} £0.
We assume that:

Assumption (MP) Yo € M(d, ), the map t — P(6, A\, tv) defined on [0, R] has a unique and non
degenerate mazimum point t(§, \,v) € (0, R).

Then:

(i) The “Mountain pass” set

K(5,\) = {p(é,)\,v) =16, \,v)v ; v E M(S, A)} C B(R; V1)

is critical for ®(5,\,-) : B(R; V1) — R and ¥V p € K(0,\), D(0, A, p) = m(J, \).
(i1) m is continuous and differentiable almost everywhere with Dym € L>((0,dg) x intB(1)).

(ii1) We have (Dym)(§,\) € BV((0,d9) x intB(1)) and (Dyxm)(5,A) coincides a.e. with a function
(Dam) (8, ) satisfying

(A — Var( s, (Dam) (-, )\)) e L'(intB(1)).
(iv) For (6,\) € (0,5) x intB(1),
Dym(8,)\) exists <= D(5,\) = {DA<I>(5,>\,p) pe K, )\)}
is a singleton; in this case D\®(0, A\,p) = Dym(d,A), Vp € K(§, ), i.e. D(5,\) = {Dm(d,\)}.

Before proving Theorem 2.2, we notice that there are 7 > 0 and a C? extension of ® to the set
[—n, 00+ 1] x B(1+n) x B(R; V1), which we shall still denote by ®. The maps I and m are thus extended
respectively on [—n,dp + 1] x B(1 +n) x S and on [—n,dy + 7] x B(1 + n).

We introduce the following notations:

Y, = [-n,00 +n] x B(1+n) x S;
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for y := (6,\,v) € Yy, fy = fsaw : [0, R] — R is defined by
Fiaw(t) == ®(8, A, tv);
at last
M= {(5,)\,1)) €[0,80] x B(1)x S | v € M(J,A)} - {(5, A v) € [0,00] x B(1) x S | I(3,\,v) = m(9, )\)}.
We shall use the following lemmae where |[h]|cz (o, 7)) = Sup,cio.s [R(E)] + [B' ()] + B (£)].

Lemma 2.1 Suppose [ : [0, R] — R has a unique mazimum point, which is in (0, R) and is nondegen-
erate. Then 3u > 0 such that any function g : [0, R] — R such that ||g — f|lc2p0,r) < 1 has a unique
mazimum point, which is in (0, R) and is nondegenerate.

. C?[0,R] .
ProOOF. We have to prove that, if g, —  f, then, for n large, g,, has a unique and non degenerate
maximum point, in (0, R). Let us call t; € (0, R) the unique maximum point of f. Select for each n a
maximum point s, € [0, R] of g,,.

Let s € [0, R] be some accumulation point of (s,). We have Vt € [0,R], gn(sn) > gn(t) and,
taking limits as n — +o00, we obtain that § is a maximum point of f. Hence the only accumulation
point of (s,) is ty, which implies that (s,) converges to ¢t;. Hence, for n large, s, € (0, R) and, since
lim,, 400 g1 (sn) = f"(tf) # 0, sp, is a non degenerate maximum point of gy,.

There remains to prove that s, is the unique maximum point of g, for n large. Arguing by contra-
diction, we assume (after extraction of a subsequence) that for all n, g, has a second maximum point t,,.
We have lim¢,, = lims,, = ¢; and since g, (t,) = ¢,,(sn) = 0, there is &, € (s, t,) (or (¢, s,)) such that
gn(€,) = 0. Since &, — ty, we obtain f”(t;) = 0, a contradiction. H

Lemma 2.2 Assume that ® : [-n,5 +n] x B(1+n) x B(R,V1) — R is C? and let A be a compact subset
of Yy,. For u >0 define

A, = {y €Y, | dist(y,A4) < u} .

Assume that Vy = (6,\,v) € A the map fy,(t) = ®(0, A\, tv) has a unique and non degenerate mazimum
point t(y) € (0,R). Then 3u > 0 such that Vy € A, the same property holds.
. . C?[0,R]
PRrooF. Let us first prove that if y,, — y in Y}, then f,, —" f,.
Define the C? function e : [0, R] x Y, — R by

e(t,y) == D(5, A\, tv) =: f(t).

The functions (t,y) — OFe(t,y) = ?Sk)(t), k = 0,1,2, are uniformly continuous on the compact set

2
[0, R] xY, and therefore f(f) (k =0, 1,2) converge uniformly on [0, R] to f7§’“) asn — 00, i.e. fy, coFl fy-

Now, arguing by contradiction, we assume that the statement of Lemma 2.2 does not hold. Then
there is a sequence (y,) in Y}, such that dist(y,, A) — 0 and Vn, f,, has not the desired property. Since
C?[0,R
A is compact, after extraction of a subsequence, we may assume that y, — y € A. Then f,, oA Ty
and this is in contradiction with Lemma 2.1. &

PROOF OF THEOREM 2.2. Let us first check that the functions I and m are continuous. We have

1)~ 1) = | sup f,(6) = sup fyy(®)| < sup [£,(6) = fyr(0)]
te[0,R] te[0,R] te[0,R]

Since e(t,y) := fy,(t) is uniformly continuous on the compact set [0, R] x Y;, the function I is uniformly
continuous on Y;,. Similarly, since

‘m(&, A) —m(8', )

< sup |I(5,\,v) — 1(6',)\’,@)‘,
veES
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m is uniformly continuous on [—7, dy + 1] x B(1 +n).

Since I is continuous and S is compact, I(J, A, -) attains its infimum on S and hence M (4, \) # 0.
Since I and m are continuous M := {(, \,v) € [0,d¢] x B(1) x S | I(8, \,v) = m(d, \)} is a closed subset
of [0,d0] x B(1) x S. This latter set being compact, M too is compact.

By Assumption (MP), for any y = (4, A\,v) € M, the function f,(-) has a unique maximum point,
which is in (0, R) and it is nondegenerate. Hence, by Lemma 2.2, there is g > 0 such that the same
property holds for any y € M,, and, for (§,\,v) € M, \M, we still call t(§,\,v) € (0, R) the unique
(and nondegenerate) maximum point of the function f5 . : ¢ — ®(d, A, tv). We have

V(0,\,v) € M, I1(6, N, v) = ®(4, A\, (5, A\, v)v). (2.11)

(i) We first claim that the map ¢t : M, — (0,R) is C'. Indeed, for all (§,\,v) € M,, t(5,\,v) is a
solution of the equation in ¢
lei,)\,v(t) = (DU(I))((()‘,)\JU)[U} =0 (2‘12)
and f5, , is C'. By non-degeneracy f5'x.0(t(0,A,v)) # 0 and hence, by the Implicit function theorem,
the map (4, A\, v) — t(, \,v) is C*.
As a consequence, by (2.11), I}y, is C'. But

%(5,)\,11) = 86—((1;(6,/\,t(5, A, 0)v) + %(6,)\,v)(Dv@)(é,)\,t(é,)\,v)v)[v] = g—?(é,/\,t(é,/\,v)v)
because t = t(, A, v) satisfies (2.12). Similarly,
DyI(5,\,v) = Dx®(0, A, t(0, A, v)v) (2.13)
and, for h € T,,9,
D, I(8, A\, v)[h] = t(8, A, v) Dy ® (8, A, (8, A, v)v)[h]. (2.14)
Hence, the first order partial derivatives of I are in fact C' on M,,. Therefore
Iz, is of class c?. (2.15)

If v € M(6,A) then, Yh € T,,S, (D,I)(8, A, v)[h] = 0. Therefore, by (2.12)-(2.14), if v € M(§, ) then

(Dy®)(5, A\, t(6, \,v)v)[h] =0  VheT,S
{(DU<I>)((5,)\,t((5,)\ v)v)[v] =0

and, since V = T,S @ (v), the point p(, A\, v) := t(d, A, v)v € int B(R) is critical for ®(§, \,-). At last, if
p € K(6,A) then there is v € M(, A) such that p = t(d, A\, v)v and ®(J, A, p) = I(3, A\,v) = m(J, A).

For (i7)-(iii)-(iv), we shall prove that there exists a C? function Z : (—=n,dp +n)x B(1+n) x S — R such
that

(a) Z(5,\,v) =I(d,\,v) in a neighborhood of the compact set M.
(b) For all (4, ) € [0,d0] x B(1), Z(4, A, -) : S — R has the same minimal value as I(J,A,-) : S — R,
;Ielgl(é,k,v) = 51612 I1(6,\,v) = m(5,\)
which is attained on the same minimizing set

{v €S| Z(5,\v) = m(5,)\)} - {v €S| I(5,\v) = m(é,)\)} = M(3,)).

Assume for the time being that such a function Z does exist. Then we may apply Theorem 2.1 to Z (with
M = S), proving that the function m(d, \) satisfies properties (ii)-(iii). Moreover for (J, A, v) near M,
Z(6,\,v) =1(6,\,v), hence by (2.13),

V(5,\v) € M, DyI(8,\ v) = DyI(6,\,v) = Dy®(3, \, (8, \, v)v). (2.16)
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By (2.16) and Theorem 2.1, Dym(d, ) exists iff the set
{DAZOA0) s v e MEN] = {Da0(E A p) 5 p e K5 }

has a unique element {, and then Dym(d, A\) = [. This concludes the proof of (iv).

There remains to prove the existence of a function Z which satisfies (a) and (b).
M, /s and M, /5 are two open subsets of R x RM x S such that M, 4 T M, 2. Hence there is a
C® function ¢ : R x RM x S+ [0,1] such that

1 V((S, )\7’1)) eM /4
@(57 A, U) = { g
0 V((S,A,U)EMM/T
Let T € R be such that
sup m(6,A) <T
(8,A\)€1[0,00]x B(1)

and define the function Z : (—n,d00 + 1) X B(1+7n) x S +— R by
T(6,7,0) = 96, A, 0)1(5, A, v) + (1 — (6, X, 0)) T (2.17)

To complete the proof, let us check that Z : (=1, 8o + 1) x B(1+n) x S +— R is of class C? and satisfies
(a) and (b).

Since Z(0,\,v) =T in U := (—n,00 + 1) x B(1 +n) x SN Mu/207 Ziy is C?. Furthermore 7|y, is
C? as well, by the definition (2.17) and (2.15). Hence, {U, M,,} being an open covering of (—n, d +n) X
B(1+n) xS, Tis C? Since Z(6,A,v) = I(8, A, v) in the open neighborhood M,, /4 of M, (a) is satisfied.

Let (0, A) € [0,00] x B(1). We have Yv € S, I(§, A\,v) > m(6,\), T > m(5,A) and ¢(d,\,v) € [0,1].
Hence, by (2.17),

Yv €S, Z(0,A,v) > m(d,A)
and
I(6, A\, v) = m(d, \)

Z(6, A, v) =m(5,A) < {90(6,)\,@):1

= veM(@,N).

Hence 7 satisfies (b). m

We shall also need the following Lemma which states that, if Assumption (M P) is satisfied at § = 0,
then it is satisfied for § small, and which localizes the “mountain-pass” critical sets for ¢ small.

Lemma 2.3 Assume that ® : [0,00] x B(1) x B(R; V1) — R is C?, ®(0,\,v) = ®g(v) is independent of
A and that Yv € M(0,0) (= M(0,N)), the map foo : [0, R] — R (defined by fo0.(t) := @o(tv)) has a
unique and nondegenerate mazimum point t(0,0,v) € (0, R). Then, Yv > 0 there is 6y € (0, o] such that
D|j0,55)x B(1)x B(R;V1) Satisfies Assumption (MP) and

V(8,\) € [0,85] x B(1),¥p € K(6,)), dist(p, K(0,0)) < .

PROOF. As previously, we shall still denote by ® a C? extension to [—n, 0 + 1] x B(1 +n) x B(R; Vi)
for some 1 > 0. Define, for §; € [0, dg], the compact set

MO = M ([o, 81] x B(1) x s).

Since M? is a compact subset of Y,, by Lemma 2.2, there exists 7 > 0 such that f, has a unique
non degenerate maximum point in (0, R) for every y € (M%)z. Now, M being compact, any sequence
Yn = (6n, An,vn) in M such that §, — 0 has an accumulation point in M. Hence there is §; > 0 such
that M C (M), and ®|(0,5,]x B(1)x B(R;V;) satisfies Assumption (MP).

As justified in the proof of Theorem 2.2, the map y — t(y) (the unique maximum point of f,) is C*! on
(M), hence uniformly continuous on the compact set M?1. Note that I(0, A, v), m(0, \) are independent
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of \. Hence M® = {0} x B(1) x M where M = {v € S | I(0,0,v) = m(0,0)}, £(0,\,v) = £(0,0,v)
VA, v € ./,\/lv7 and K(0,0) = {¢(0,0,v)v ; v € /\7} = K(0,\). By the uniform continuity of (y — t(y)),
Vv > 0 there is u € (0,77) such that if y = (6, \,v) € M% N (MP),,, then dist(¢(5, A, v)v,K(0,0)) < v.
Now if & € [0,0;) is small enough then M% C M N (MP), and hence, for (6,)) € [0,85] x B(1) and
p € K(8, ), dist(p, £(0,0)) <v. m

3 The finite dimensional reduction

3.1 Variational properties of ¥,

Let G : V — R be the homogeneous functional
G(v) := / ap(x)oP T YoeV.
Q
For definiteness we shall assume that

Jv €V such that G(v) >0

and so we choose s* =1 (recall (1.23)).
Set S:={veV ||v|g: =1} and S, :={v e V | ||v|]|gr =7} for every r > 0.

Lemma 3.1 The supremum meo, := sup,cg G(v) > 0 is finite and the minimizing set Mo = {v €
S | G(v) = muo} is not empty and compact for the H'-topology.

PROOF. The proof is as in Lemma 2.4 of [5]. For completeness we report it in the Appendix. m
Lemma 3.2 The C®-functional oo : V — R defined in (1.21) (with s* = 1)

vl|%1 G(v
oy Wl _ 600

satisfies the following properties:
(1) Yo € Mo, the function t — W (tv) possesses a nondegenerate maximum at

o 1 1
Ry = (—) ! with maximal value cq := (* - 7)}3?@ (3.1)
Meo 2 p+1

Moreover Roo is the unique critical point of (t — U (tv)) in (0,00).
(i) minyes, Voo(v) = coo and the corresponding minimizing set is Koo := {Roov ; v € Moo} C Sgr,, -
(791) Moreover Koo ={v €V | dUs(v) =0, ¥ oo (v) = Coo}-
2 1

PRrROOF. (i) For v € M, we have ¥, (tv) = 5~ mmm and an elementary calculus yields (3.1).
p

(it) By the homogeneity of G and the definition of m

YoeSp,  WUa(v) = @fR&flG(”)

2 p+1 \Ry
2 p+1

> o K moe = (5= g Fe =t e
2 p+1 2 p+1

and we have

v v
Uoo (V) = Coo = G(a):mOO = %GMOO — vEKy-
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Therefore the minimizing set of Vs, 18 Keo-

(797) We now prove that K is a critical set for ¥o,. Let T € K. By (i¢), ¥ is a minimum point of
U, restricted to Sr_ and therefore
Vh eV, (U,hygr =0 = d¥(7)[h] =0. (3.2)
Moreover, by (i), the function (t — VU (tU/R)) attains a maximum at ¢t = R, and therefore
d¥ (V)] = 0. (3.3)

By (3.2) and (3.3), U is a critical point of ¥, : V — R.
Reciprocally, assume that T is a critical point of ¥, with U (U) = ¢x. Then

YheV, (@R — / a,(z)7Ph = 0. (3.4)
Q

1 1

Taking h = ¥ in (3.4), we get ||7]|3,, —G(v) = 0 and so ¥ (V) = (5 - ?) |5|%. Since, by hypothesis,
p

Voo (0) = coo = (% - 1%)320

we deduce ||T]| g1 = Reo- By (i) we conclude 7 € K. B

Remark 3.1 Let vy, € V be such that ¥ (ve) < 0. By the previous Lemma, coo can be characterized
as in (1.24), i.e. ¢ is a “Mountain-pass” critical level of Vo, see [1].

Lemma 3.3 Let T(v) denote the minimal period in time of v € V. There exists ng € N such that

2

min T'(v) = T>o.

vEK o no
PROOF. For any v € V, there is a unique n € H*(T;R), n odd, such that v(t,z) = n(t +x) — n(t — z)
and it is obvious that the minimal period in time of v is the minimal period of 7. If the Lemma is
not true, there is a sequence v; € Ko with v; of minimal period 27/n;, n; € N, n; — 4+00. We have
vj = nj(n;(t + x)) — n;(n;(t — z)) with n; € H(T;R), n; odd. As in the proof of Lemma 3.2-(iii),
0512 = Gloy) and

1 1 1 1
(5= o) Isllin = e = (5 o7 0. (3.5)
Since [jv;|%: = 47Tn§||17j||§{1(T) we deduce by the first equality that |7,z < Clnjllg1T) — 0 as

j — +oo. Hence G(v;) = [, ay(z)vh*

%" — 0as j — +oo contradicting the second equality in (3.5). B

We shall look for periodic solutions of (1.5) in the subspace X, 5, C Xo s of functions which are
27 /ng periodic in time.

To avoid cumbersome notations we shall suppose that ng = 1 (with no genuine loss of generality),
namely that 27 is the minimal period of each element v of K.

3.2 Choice of N in the decomposition V =V, @&V,

For the sequel of the paper we fix the constant

1< <2
- <s .
2

To estimate g(J, A\, z,u) we need the following Lemma.

Lemma 3.4 There is a constant k£ > 0 such that Vo > 0
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a) Va(z) € H'(0,7), Vu € Xo0, [laullo.o < kllalm[ullo.o

)V
b) Vui,us € Xo s, |[uruzllo0 < [urtuzllo,s < Klluillo,s||uzllo,s
c) Vo e VN Xs0,Vu € Xoo, [[vullo0 < E|V]|e0lle]e0

d)Vu=v+w withve VNXyp, we WNX,,,
k k—1 k
410 < # (Jollog + o) (35

PROOF. a) is a direct consequence of the definition of the norm || ||,0 and the fact that H'(0,7) is
an algebra. b) comes from the algebra property (1.7) of the spaces X, s for s > 1/2. ¢) requires some
explanations. First define the complexified space

={@ =" | @ e HY(0,m); C), llull g i= 2l |3y +4m > 2 all3, < +oo
leZ 1£0

of the real space X, o defined in (1.6), and

V.= {1} = Zeiltm sin(lz) | |[v]lo,0 < +OO} 5
I€Z

the complexified space of V' defined in (1.8). Note that X, o C )?070 and that on X, o, the two definitions
of the norm || ||5,0 coincide.

Let us call @ the unique continuous extension of u € X, ¢ to Sy := {t € C | Imt| < o} that is analytic
w.r.t. tin intS,. We define

Lisu(t,x) :=u(t +io,z) Z MEN T () = Z eeFoluy(z), teR
ez l€Z

(the traces of @ at the boundary of S,). We have Ly u € 5(070 and the norm ||ul|,,0 s equivalent to the
norm || Lyul|o,0 + || L—sull0,0 because

lulloo < [[Zou| -+ ]|2-ou] and | Laoul| < fulloo. (3.7)
0,0 0,0 0,0
We claim that c) is a consequence of the inequality
Yo eV, Yue Xoo, |vuloo<7|v (3.8)

for some £ > 0. Indeed, if v € X, 9NV, then Li,v € )?0’0 and so Li,v € V. By (3.7) and (3.8)

[ Lo (vu)llo,0 + [[L—o(vu) 0,0 = | Lov Lotllo,0 + [[L—ov L—cullo0

—UUHO,OHL—

lvulloo <
<

with k = 2K, using again (3.7).
To prove (3.8) note first that by the Parseval formula, X o is isomorphic to the space of 2m-periodic
in time functions valued in H}((0,7); C) which are L2-square summable:

Xo,0 = LZ(Ta H&((Oa 7); C)), ||U||(2J,0 = ||“H2L2(T,Hé((o,7r);0)) :

The key point is now the following: for v = >, 5 €'ty sin(lz) € V, the map (t — wv(t,-)) is in
L>°(T, H}((0,7); C)) (and not only in L*(T, H}((0,7); C)), with

1
[Vl oo (2,12 ((0,7):0)) < \/TTTHUHO’O (3.9)
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because, for any t,

. T - - 1
lv(t, )7 = le\e”tv e Moy ? < 5 D 2 ([uf? + [5of?) = %”U”(QJ,O < 400

l>0 >0

Therefore, if u € )?0,0 and v € 17, then by the algebra property of H}(0, ),

[vullo,o =~ ||W||L2(T,H5((o,w);0)SC||U||Loo(T,H5((o,w);c)||U||L2(T,H5((o,7r);0)
<

by (3.9). This proves (3.8).
For d) we first notice that, by a simple iteration on j, property c) entails

[v7ullo0 < K 0)IL ollulloo, Vi€N, Yue Xoo, YweV.

(3.10)

Using the binomial development formula, (3.10) and b), we obtain, for u =v+w, v € VN X, 0,

k k
= H(v—i—w)k Z‘IZCivjwk_JH Z w3 w950
0 j=0 j=0
< SRl ollw oo < > CLRT 0l oflwk
j=0 j=0
k . k
< YRl ok T s = R (oo + lwlos)

proving (3.6). ®

As a consequence we get the following estimate for Nemistky operator g(d, A, z, -).

Lemma 3.5 Foru=v+w withv € VNXyo, weWNXs,

lg6. 2 zw)|| < w(lo
a,0
k>p

PROOF. Using (1.11) and Lemma 3.4

Hg(é,)\,x,v—kw) = ’ ap(x)(v+w)p+Zak()\,x)5k_p(v+w)k
a,0 kop a,0
< Rllaplmll @+ wPlloo+ Y Kllar(h2)llm "7 | 0 +w)|
k>p 7
< W llaplla (0lloo + l[wllos)? + ||ak(>\7$)||H15k_pﬁk(||U

k>p

= W ([ollno + lwlle)? [lapla + D llaxh) s (O

k>p

O [lapls + 3 lar @)l (3x(lollro + ello)) |-

B

)]

The infinite sums above are convergent for ¢ small enough by the analyticity assumption (1.9). B

Set
G(0, N\, v1, w,v3) := (=A) Iy, g(5,\, , v1 + vy + w).

For u =35, cos(lt)w(x) = 35 cos(it) ( D j>1 Uy sin(jx)) € Xo,0, we have

() yu = (-A)"1 Y cos(ityuy sin(iz) = > ﬁcos(lt)sm(lm)

I>N+1 I>N+1

18
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Hence if u € X, then (—A)"'ly,u € X, s NV and

2 125 +1 2
<m oy g < lulloo (3.12)

H(_A)ilnvzu 474 = N4-2s
I>N+1

Lemma 3.6 There exist Cy > 0, C1 > 0, depending only on a,, and dy, depending only on f, such that:
VU Z 0; V|)\| S 1a V6 S [0760] ) VHU].HO',O S 4Roo ) v”w”ff,s S Roo 5 VH’UQHO',O S R<x>7

Co

p
< s (ol + el ) (3.13)

Hg((;a Aavlaw70) = N2-s

< Ch
- N2-s
PROOF. By Lemma 3.5, for lvillo.0 + lwllo,s < 5Roo,

p .
w2 (oallo.o + lwlos ) [Hapllars + D law(h @) (55 R )
k>p

p—1
|DeG 6.2 1w, ) in| (Io1llno + ezlloo + lwllos)” hllao, VA € V2 Xoo.  (3.14)

IN

Hg<67 )\,I,’U] + U})

a,0

IN

p
w2 (Ilorlo.0 + 0llos ) 2laplla (3.15)

choosing 0 < 0 < §p := do(f, Ro) small enough such that

k—p
> larOs o)l (00k5Rs) < llapll s VA <1

k>p

(such a dy exists by assumption (1.9)). Since R is defined from a,,, dg depends only on f. By (3.12),(3.15)

Hg(a, A, o110, 0)

— H ) Iy, g(0, A, 2, v1 + w)

1
S NQ,S Hg(57 )\71‘,1]1 + U})
0,8

g,s a,0

2KP||ap]| g1 P
< T (Ialloo + Il )

proving (3.13) with Cy := 2kP||ap||g1. We can obtain (3.14) in a similar way. =
Lemma 3.7 There exists Ny := Noo(Koo) € NT, depending only on Keo, such that YN > Ny

HHVl’U

‘ . WoeKu. (3.16)
0,0

)

2 e
0,0
PRrROOF. K being compact, we have

lim  sup HHV NUH =0
Nt per 12 oo

Choose N, such that
R

YN > Noo, Vo € Koo, ’HVQU ’ <= (3.17)
0,0
By Lemma 3.2, we have ||v]jg,0 = R if v € K. Hence
2R
YN > N, Vo € Koo, anlv ‘ > anzv ‘ > Sl 5 2HHV21; ‘
0,0 0,0 3 0,0

using (3.17). m

Now we fiz for the sequel of the paper the dimension N € N of the finite dimensional subspace V;

such that
C(0 Roo Ch

(5R ) T ’ N2_s

(6R)P™! < (3.18)

=

and N > N, given by Lemma 3.7 so that (3.16) holds.
We underline that since Cp, C1, R and the set Ko, depend only on a,, N too depends only on ap.
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4 Solution of the (Q2)-equation

Let 12
n

7= (4.1

We shall use the notation B(R;V;) := {vi e Vil llvillo,o < R}.

Proposition 4.1 (Solution of the (Q2)-equation)
Vo € [0,7], V6 € [0,d0], Y|A| <1, Yu; € B(2Roo; V1), Yw € WN X, s with ||w||e,s < Roo

with &y defined by Lemma 3.6.

a) there exists a unique solution ve(d, \,v1,w) of the (Q2)-equation in {va € Vo | ||[v2]ls0 < Roo}- It
satisfies ||v2(0, A, v1,W)|lo,s < Roo/2.

b) Vv e K, VA € B(1), we have Ily,v = v2(0, A, Iy, v, 0).
c) Uy (vl + 1)2(0,0,1)1,0)) = MiNy,ep(rovs) Yoo (V1 +v2).
d) va(d, A\, v1,w) € Xg 512 and
'02('7 ERP) ) S Coo([oado] X B(l) X B(QROOa ‘/1) X B(Rtxv w mXa,s)a Vv2 N Xo’,s-‘rZ) .

Moreover all the derivatives of ve are bounded on [0, dy] X B(1) X B(2Roo; V1) X B(Roo; W N X5 5).

e) Ifin addition |w||,,s < +00 for some s’ > s, then (provided &y is small enough) ||v2(0, A, v1, W) ||o,s+2 <
K(s' [[wllo,s)-

ProoOF. We shall use the notation Y, := [0,d¢] x B(1) X B(2Rx; V1) X B(Roo; W N X, ) and y =
(6, A, v1,w) will denote an element of Y.

We look for fixed points vy € Bg » := {v2 € Va | ||v2]l6,0 < Roo} of the nonlinear operator
g(y7 ) = g(67 >‘a U1, W, ) : ‘/2 N XU,O = ‘/2 N XG,O

defined in (3.11).

a) We now prove that Vo € [0,7], Yy € Y, the operator G(y, -) sends Bs , into Bs , and is a contraction.
Vu1 € B(2Roo; V1), Vo € [0,7] we have

Hvlnmo < eUNHUlHO,O < eEN2Roo = 4R (4.2)

by the definition of 7 in (4.1). Hence by (3.13) and the choice of N in (3.18), we get Vo € [0,7], Vy € Y,

C p C R
16,0 < =5 (Iotllow + wllos)” < =55 (4Roo + Roc)” < =22 (4.3)
os " N N
and Yvg € Ba », Yh € VaN X, 5, by (3.14) and (3.18),
Cl p—1
|Pest o[ < 5 (lenlloo + eallo + llos) Ilog
e . [
S = (6Roc)” HlAflo0 < 7= (4.4)
By (4.4) and the mean value theorem V vy, v4 € By
1
|9 v2) = 6w )| < 9w v2) = G| < Flv2 = vl (45)
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By (4.3) and (4.5), Vv, € B o

IN

||g(y70)”07s + Hg(ya’U?) - g(yvo)”mS

Roo ||v2HO‘O Roo
—reo y MPelNgY 270
- 4 + 4 - 2

|5, v2)

.0 = Hg(y,vg)

0,8

(4.6)

By (4.6) and (4.5) the operator G(y,-) : Ba» — Bs, is a contraction and therefore it has a unique fixed
point vs(y) € Ba,. Actually we have proved in (4.6) that G(y,-) : Ba s — {|lv2]lo,s < Ro/2} and so
[v2(W)llos = [1G(y: v2(¥))llos < Roo/2-

b) If v € K& then |[v|loo = ||[v]|lgr = R and so |IIy,v
(Q2)-equation with § = 0, w = 0, namely

0,0 < Reo, @ = 1,2. Since IIy,v solves the

My, = (—A) "'y, (ap(a:)(l_[vlv + HVZU)I’),

by the uniqueness property in a) (for o = 0) Iy, v = v2(0, A, Iy, v, 0).

c¢) Let us define the functional
Spy : B(Roo; Va2) —m R by Sy, (v2) := ¥oo(vg + v2).

Its differential is

dSuy, (v2)[h] = Vo (v1 +v2)[h] = (v2,h)p — /Q Iy, (%(@(Ul + U2)p>h
= (v, h) — <(—A)_1HV2 (ap(x)(vl + Ug)p),h>Hl
= (v2—G(0,0,v1,0,v2), h) 1, Yh € Vy

where we recall that (v, h)g1 = fQ vihy + Vghay.
By the point a) for o = 0, Yv1 € B(2Rwo; V1), v2(0,0,v1,0) is a solution of v3 = G(0,0,v1,0,v2) and
satisfies ||v2(0,0,v1,0)[/0,0 < Rso. Therefore v2(0,0,v1,0) is a critical point of S, in B(Reo; Va).
Furthermore, Yv; € B(2Roo; V1), V2 € B(Roo; Va), by (4.4) (with 0 =0, w = 0)

D28y, (va)[h,h] = |kl = (D, G(0,0,v1,0,02)h, ) s
3
> [[hl50 = 1Pe,G(0,0,v1,0,va) k0.0l llo0 > 7 17IIG,0
(recall that ||h|| g2 = ||h]lo,0). Hence the functional S,, is strictly convex on B(R; V2). As a consequence

v2(0,0,v71,0)) is the unique minimum point of S,, on B(R; Va).

The proof of d) is in the Appendix. The proof of e) is exactly as in Lemma 2.1-d) of [6]. B

Remark 4.1 We need to solve the (Q2)-equation Vv € B(2Rwo; V1) because the solutions of the (Q1)-
equation that we shall obtain in section 6 will be close to Ko = Iy, Koo which is contained in B(2Rxo; V1).

5 Solution of the (P)-equation
We are now reduced to solve the (P)-equation with ve = v3(6, A, v1,w), namely
Low = ellyT'(6, A, v1,w) (5.1)

where
(3, A\, v1,w) := g(é,/\,x,vl + v2(8, A\, v1, w) + w) )
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5.1 The Nash-Moser type Theorem
By the Nash-Moser type Implicit Function Theorem of [6] we have

Proposition 5.1 (Solution of the (P)-equation) Fiz v € (0,1), 7 € (1,2). For §o > 0 small enough
there exists
@e COO([O,&O} x B(1) x B(2Roo; V1), W N mes)

satisfying, Vk € N,

DX 0, (5, A, v1)

< eCO(k), HD%(@, A 01)

/2 < C(k) (5.2)

o /2,s
and a Cantor set Bo, C [0,00] X B(1) x B(2Rs; V1), Boo # 0, such that
V(9,\,v1) € Boo, W(d, A, v1) solves the (P)—equation (5.1).

The Cantor set By, is explicitely

. M (5, X\, v1,w(d, A, v1)) 27
= 00} : —Jj— - > ~—,
Ba {(6:0,01) €10,60) x BO) x BRRo; V1) = |wl —j — 3 ’ T
wi—j|> =2 YijeEN, 1> 145, (1 45)l<'<(1+4a)l} (5.3)
wl — — — .
j — (l+j)T7 7.7 ) P 357 ]7 —] f—

where w = /1 + 2s*6P~1, ¢ = 6?7 and
1
M(6>>\avlvw) = 7/(81‘9) (65 )\,J],’Ul +w—|—v2((5, )‘7U17w)) .
12 Jo

Moreover, if (8, A\,v1) ¢ Boo, then w(d, \,v1) solves the (P)-equation up to exponentially small remainders:
there exist a > 0, such that, V 0 < d < g,

er(, A\, v1) := L,ow(0, A, v1) — ellw (0, A, v1, wW(d, A, v1))

satisfies V(5, A, v1) € [0,d0] x B(1) x B(2Rw0; V1),

Hr(é, A, v1)

< C'exp ( - —) . (5.4)

o/4,s

PROOF. The proof is as in [6], the only difference being the dependence on the parameters A\. The
estimate on the derivatives w.r.t. (A, v1) in the left hand side of (5.2) comes out from (51)-(52) of Lemma
3.2 in [6]. Only the derivatives w.r.t. ¢ might not be O(g).

In the Appendix we give the proof of property (5.4) which was just stated in remark 3.4 of [6]. B

5.2 Measure estimate
Proposition 5.2 Let V; : (0,dp] — B(2R; V1) be a function satisfying:

C
Vo € (0,00], VarsesneVr < 572 (5.5)
for some measurable set E C (0,d0], ¢ € N and Cy > 0. Then, given A € B(1), the complementary of the
Cantor set

Cy = {5 €10,00] | (6\V1(8)) € Boo} (5.6)
satisfies
;ig(g meas(C§ 06[0, SNE) _o. (5.7)
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PRrOOF. By the explicit expression of By, in Proposition 5.1

. - o M(©®) v
& = (el [l =il 2 g ol =i =5 2
1
> ; — <7<
ViZ o, A, (1-4e)l <5< (1+40)0 )

where M (8) := M (5, A\, V1(9),w(0, A, V1(9))).
Step 1: bound on the variations of M (0)
The function M (6, \,vq) := M (6, \,v1,w(J, X\, v1)) verifies the Lipschitz condition

‘M(dﬂ A7'01) - M((S/?)\,’Ug)

SACEREAIE)
because the gradients of M and @ are bounded on bounded sets. Hence M (8§) = M(J, A, V1(4)) satisfies

v6,8' € [0, ) , ‘M(é) — M)

< L (15— + V() - (@)1

implying, by (5.5), Vé € (0, do],

5 5
VargsaaneM < L5+ Varp/zansi) < L5+ Cad ™) < Cpo7 (5.8)

where C) := L1 (6071 /2 4+ C5). m
Now, for §; € (0,d¢], define

&= {12 s << (1 + 40771},

L
01 . . Y
= = 3 4wl — —
Rs, {56[2,61] | 3(1,5) € &, st |wl j\<(l j)T}

and
eM (9)

2j ‘< (l—:j)f}'

1)
S5, = {5e [51,51} | 3(1,5) € &, st ‘wl—jf
The complementary set of C) satisfies

01

s n [5,51} C Ry, USs, .

We shall prove that

C . meas(Ss, N E)
(VJ € (0,00], VarsjsineM < 67> = 5111210 —

=0. (5.9)
As a particular case, we obtain also lims, o meas(Rs, N E)/d; = 0, implying that

meas(C§ N [01/2,61] N E)
o1

Now, defining fi(d1) := meas(C§ N [0,01] N E)/d1, we have

(o) = nioy) + 02,

=:u(01) -0 as d&; — 0.

from which we deduce

~ p(61/2 l
[ :=limsup z1(d1) < limsup p(d1) 4 lim sup 11(61/2) _ ¢
51 —0 51—0 51 —0 2 2
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because limg, o 4(61) = 0. Hence 0 <1 <[/2 and so [ = 0, implying (5.7).
The remaining part of the proof is devoted to (5.9). Write

€M(5)’ ¥ }

Ssy= | Ssuy where Sy = {56[61/2761}|\wl—i— 35 | S Ut

(L,7)EEs,
Step 2: bound on the diameter of Ss, ; ;
Assume a,b € S;, ;; with (I, 5) € E,. Then

5”‘1M(5)‘ L
27 (I+g)"

‘l 142001 j—

both for § = a and § = b. Hence

p_lM p—lM 2
2wt - M@ e MO
2 2j (+4)"

and

2y _y|M(a) — M(b)] _ _q[|M(a)
1+ 2071 - /1 2p—1‘ 1 ‘pl—Pli. 1
VT+ 20T = /152 <Lt o S e (5.10)

Since a, b € [§1/2,01], for 61 small enough,

’\/1+2a1’*1 - \/1+2bP*1‘ > C(p)o?2[b — al. (5.11)
Still for §; small enough,

supyo,s,) | M| )
4l - 2

la — b|6P2, (5.12)

M) B
ol aP 1’W§(Jaf 2 — b

because [ > 1/36°"!. By (5.10), (5.11) and (5.12) we get

v | M(a) — M(b)|
[T+1gP 2 +a 251 )

Y(a,b) € S50, la—b| < C( (5.13)

and therefore

c /vy &
meas(Ss, 1,5) < 5f_2(l7+1 + ;’l >, (5.14)

since M is bounded. .

Define ) . )
W ._ [ L @ ._ [ 1
861 . {(la.j)egfﬁ ‘ 351571 7l7 65}7 651 . {(la])eg& | 65 <l}7

1 1
where §:=p—1+ 2 and

S = U Snar S= U Sass

(t.g)eed (Liees?

so that S5, = S(gll) U Séf).

Step 3 : Measure estimate of S(gll)
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y (5.14), for [ given,

4 C /o ot voosPt
) < p—1 1 <’ s 1 ]
meas » U » Sivts) < 818 5f—2(zr+1 * (1-45{"1)z2> —Cél[zf M }
(1-4677 1)< < (144627 1)1
Hence
[1/6{}] 'Y 617—1
meas(§5)) < C' Y. [+ ] <90V 4 0(0) In))] (5.15)
1=[1/367""]

Step 4 : Measure estimate of 8(2)

We shall prove
meas(S NE)<C Z
«, 3)65(2)

le+1 + 61 2 Vargs, y2.5,0E M (5.16)

For F C €§12) we shall use the notation Ws, r := U j)erSs,,1,5. It is enough to prove that, for any

finite subset F' of 5;2), for any closed interval I C [61/2,01],

meas(Ws, pNINE)<C Z
(L,j)eF

W 5i+25Var[mEM. (517)

We shall prove (5.17) by induction on the cardinality [F]. First assume that [F] = 1. Let (lo, jo) be the
unique element of F' and let I be some closed interval of [51 /2,01]. We have to prove that

meas(Ss, 1,50 NI NE) < C— + C5 P Varnp M . (5.18)

Let a := inf Ss, 1,50 NI N E, b :=supS;s, 15,50 NI NE (if S61.00,jo NI N E is empty the inequality (5.18)
is trivial). There are sequences (a,) and (by) in Ss, 1,5, N I N E converging respectively to a and b. By
(5.13)

Cy |M (an) — M(bn)| Cy Varyng M Cy
n < 1) < 1)
in S Gpggr T 2jolo S T g, S

bn, +C(5%+2’6VarmEM,

since I > 1/267, jo > (1 — 46"~ )ly. Taking limits, we get

C
b—a S ﬁ + 06%+25Var]mEM.
1 0

Since S, 15,5, VI N E C [a,b], (5.18) holds.

We now assume that (5.17) holds for any F' C 8(%12) such that [F] < k and for any closed interval I.
Let [F] = k+1 and let I = [¢,d] be some closed subinterval of [§1/2, d1]. Note that if there exist (I,5) € F
such that S, ;; NI N E = (), then (5.17) is a consequence of the induction hypothesis. If not, define as
above for (I,7) € F,

a;:=infSs 1, NINE bij:=supSs, 1 ; NINE.

Select (lo, jo) € F' such that by, j, —ai,,j, = max jyer b j —ar,;. To simplify notations, we set a := ay, j,,
b := by, ;,.- Note that, by the same arguments as above, a and b satisfy

b—a< Cy

= o + 8P Vary, e M . (5.19)

By the choice of (lg, jo), for any (I, j) € F it results by ; < by, j, OF Gi,; > Qi jo-
Hence we can define Fy, Fy C F such that Fy U Fy = F\{(lo, jo)}, F1 N F> = 0 and
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o if ({,j) € Fy then S5, N[c,d|NE C [c,b];
o if (I,j) € Fy then S5, ;N [c,d NE C [a,d].
Hence
Ws, pN[edNE C (W51,F1 Nle,b] N E) U[a,b] U (ngﬂ N [a,d] N E)
= (Woom Nle.d] N E) Ula,t] U (W, i, 0 [b,d] N E)

and, using (5.19) and the induction hypothesis with the sets F;, F5 and the closed intervals I1 = [c, a],
I, = [b,d], we obtain

meas(ng,F NnInN E) < Ineas(W(gl,F1 N[c,al N E) +b—a)+ meas(VV(;hF2 N[b,dl N E)

C C

< (X p oL+ Vi, s M ) + (ﬁ + OO Narl, g M )

(ls.j)EFl 1 1 0

Cy 1428

+ ( . %G:F 5f_2l7+71 + 061 Var[b’d]mEM)

2] 2
Cvy 1428
S Z m + C(Sl Var[c’d]mEM
wper 01 !

because Var(. qnp M+ Vary yjneM+ Varp gngM < Varg gngM. This completes the proof of (5.17).
Step 5 : Proof of (5.9).
By (5.15), (5.16) and (5.8)

(p—1)(r—1)+1 o7
meas(Ss;, NE) < 0[751 + 67 In(d1)] + Z P24l
1>[1/8% 1

ou [5£P*1)(T*1)+1 + 6{)| ln(51)| + 5i+(7*1)[(P*1)+Q/2] + 5%P—1:|

+ 5i+2ﬁVar[5l/275l]mEM}

IN

since 8 :=p — 1+ ¢/2. Hence lims, o meas(Ss, N E)/d; = 0 (recall that p > 2). ®
Proposition 5.2 has the following straightforward consequence

Corollary 5.1 Given A € B(1), assume that there are Co > 0 and measurable sets Ey, ..., E, C (0,d]
such that
meas([0,0p]\ U E;) =0 (5.20)

and

. C
Vi, V&€ (0,80], Vargsssnm Vi < 572 (5.21)

Then the Cantor set Cy defined in (5.6) has asymptotically full measure at § = 0, i.e. satisfies

lim meas(Cy N [0,4])

=1.
6—0 )

6 Variational solution of the (Q1)-equation
We have now to solve the finite dimensional (Q1)-equation
—AUl = Hvlg(d,)\,l)l) (61)

where
g(67 )\7 Ul) = 9(57 >\7 z,v1 + U2(5a )\7 U1, {E(éa )\7 Ul)) + {5(67 Aa Ul)) .

We need solutions v (9, A) of (6.1) such that (0, A, v1(d, X)) belong to the Cantor set B.
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6.1 The reduced action functional

By Propositions 4.1 and 5.1 we can define, for § small enough, the “reduced Lagrangian action functional”
®:[0,d0] X B(1) X B(2Roo; V1) — R by

(3, A, v1) i= W (6,2, 01 + v2(6, A, T, A\, 1)) + @6, A, vn) ) (6.2)

where U is the C°° Lagrangian action functional defined in (1.13). Since vy and w are C* functions,
& € ([0, 00] x B(1) x B(2Ro; Vi), R).

Lemma 6.1 If vy is a critical point of ®(6, ), -) : B(2Rso; V1) — R. and (8,\,v1) € Bo then
u=1v + 1}2((5, /\, V1, 17)((5, /\, ’Ul)) + 7:[7(5, A, Ul) € XE/Q,S
is a solution of (1.10).

PROOF.  Set for brevity va(vi) := va(d, A, v1,w(d, N\, v1)) € Vo N Xz, and w(vy) = w(d,\,v1) €
W N X595 Since vz(v1) is a solution of the (Q2)-equation, we have

(DY) (0, A, v1 + v2(v1) + W(v1))[he] =0, Vhe € Va.
Moreover, since (9, \,v1) € B, by Proposition 5.1, w(v;) solves the (P)-equation, so that
(D, P)(8, \,v1 + va(v1) + w(v1))[h] =0, Vh € W.
Now, Vhy € Vi,
Dy (X o)) = (Da®)(6, A vr +va(vr) + @(vn)) [a + Doy va(v1)[Pa] + Doy (01) ]
= (Du%) (8, A, v1 + v2(v1) + w(v1))[ha]

because D,,v2(v1)[h1] € Va, D, @w(v1)[h1] € W. Therefore for u = vy 4+ va(v1) + W(v1)

Dm(f)(é, Aop)h] = / ( — WUy + Uge — £9(6, )\,x,u))hl
Q

/ ( — w? (V1) + (V1) gz — €14 9(3, A, x,U)>h1
Q
= 0, Yhy € Vh

and so vy solves also the (Q1)-equation (6.1) (recall (1.18)). m

Lemma 6.2 The reduced action functional ® can be written
B(5,\,v1) = e®(6, A, v1)
where ® € C*([0,d0] x B(1) x B(2R;V1); R) satisfies
D0, N, v1) = Dp(v1) := VYoo (v1 + v2(0,0,v1,0)). (6.3)
PROOF. Recall that e = §P~1. It is enough to prove that V(A ,v;) € B(1) x B(2Rw; V1),

hm <I>(5, )\, Ul)

lim —= 3 = ®p(v1) . (6.4)

Indeed (6.4) implies that (D(’;“CT))(O, Av1) =0forany k=0,...,p—2, and, using Taylor integral formula,
we can write

~ L1 —t)p2 1~
d=0""10®  with  ®(5,\v1) ;:/ (DR @) (6, A\, v1) dt.
0

-
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Since @ is C*°, so is ®. Moreover

(I)(O, /\, 1)1) =

(p—1 1)! (D5 @)(0, A, v1) = @o(v1)

still by (6.4).
Now we prove (6.4). Let us fix vy, A and set for brevity w(9) := w(d, A, v1), v2(d) := v2(0, A, v1, wW()),
v(d) = v1 + v2(d). Note that w(0) =0, v2(0) = v2(0, A, v1,0) = v2(0,0,v1,0). We have, for § € (0, dp),

EIv)(67)\7v1) 1 / w2v(6)? U<6)2 2’&7(6)5 _ @(6)2 _ EG((S,)\,’U((S) —l—ﬁ(é))
Q

€ 2 2 2 2

€ €

where
1

70) = [ 5@} +0(02) — GEN ) + T(6).

Note that J is smooth. Hence, since ||@(0)||g: = O(e) by Proposition 5.1, lims_o ®(8, A, v1)/e = J(0),

with
70) = [ (0% + 0(02) = GO0, 0(0)) = e (0(0)) = Po(vr).

This completes the proof of (6.4). B

6.2 The functional @,
Let Sy :={v1 € Vi | ||v1|lzr = 1}. Define Iy : S; — R by

Iy(vy) = te[%?gﬁoc] D (tvr) and c:= iglf I

which is attained on the minimizing set Mg := {vl € S| Ip(nn) = c} # (. My is not empty, by the
compactness of S; and the continuity of I (like in Theorem 2.2).
Lemma 6.3 (P, satisfies the assumption (MP) of Theorem 2.2)

o (i) c = cy is the “Mountain pass” critical level of U, see Lemma 3.2;

o (ii) Yv1 € My the function (t — Dg(tvy)) restricted to [0,2R] has a unique mazimum point, which
is in (0,2R~) and it is nondegenerate.

ProOOF. We first claim that
¢ < Coo - (6.5)

In fact, let 7 € Ko and vy := Iy, T, Ty := Iy, 0. For any 0 < s < (2R /|[71]l0,0) we have

Is71l0,0 < 2Roo H@zH < 2R
0,0 |71

because 2|[Uall0,0 < ||T1]lo,0 by the choice of N in (3.16). Therefore sv1 € B(2Roo; V1), sU2 € B(Roo; V2)
and, by the minimization property of Proposition 4.1-¢),

2R }’

Vs € [0, 2
710,0

Dy(s71) = Uy (sﬁl + v2(0, 0, 5771, O))
< Uoo(sU1 + sT2) = U (s7) < oo (6.6)
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because Vo (s7) < €0, Vs € R4, by Lemma 3.2-(¢). (6.6) proves that

v t
IO(fjil) ‘= Inax ‘1’0(7751) <o
1711l0,0 t€[0,2R ] [71l0.,0
and hence ¢ < co.
Now assume that v; € Mg (i.e. v; € Sy and Ip(v1) = ¢) and let

v(t) := tvy +v2(0,0,tv1,0) € V, vt € [0,2R) - (6.7)

Recall that ||[v|o0 = ||v||g:. Since |[v(0)|gr = 0, |[v(2Ro0)||gt > |I2Rov1||lnt = 2R and the map
(t — wv(t)) is continuous, there exists t* € (0,2R«) such that ||v(t*)|| g1 = Reo- But

Voo (0(t*)) =: Pp(t*v1) < [Orggx]q)o(tvl) = Ip(v1) =c< oo (6.8)

by (6.5). By Lemma 3.2-(i¢) since v(t*) € Sg__, Uoo (v(t*)) > ¢oo and (6.8) yields

Coo S oo (v(t")) = Pp(t*v1) < ¢ < o
namely

Coo = Voo (0(t%)) = Pp(t™v1) = ¢ = co (6.9)
proving (¢). Furthermore, by Lemma 3.2-(ii), v(t*) € Ko. Let T := v(¢*). By (6.7), v1 := Iy, T = t*vy,
H@lHHl = t*, and, by (66),

t t
= — < —7) < .
Vte[0,2R],  Pol(tvr) <1>0(t*v1) < xpoo(t* v) < oo (6.10)
with equality for ¢ = t* by (6.9). Hence t* € (0,2R) is a maximum point of (¢ — ®¢(tv1)) in [0,2Re].
Now, by Lemma 3.2-(4), since T € K, the function

[0,2Ro0] ¢ \Ifoo(ti*ﬁ)

attains a unique non-degenerate maximum at t* € (0,2R.,) with maximal value c. Hence, by (6.10),
t* is also the unique maximum point of (¢t — ®g(tv1)) in [0,2R.] and it is nondegenerate. W

6.3 Solution of the (Q1)-equation
By Lemma 6.1 and Lemma 6.2 we are interested in critical points of ®.

Lemma 6.4 Let 69 > 0 be small enough.
(i) V0 < § < g, VA € B(1), (5, \,-) has a not empty Mountain-Pass critical set

K(8,\) C B(2R; V1) \ {0}

which satisfies

sup dist(z,lC()) —0 as 6 —0, (6.11)
2€K(5,))

uniformly for A € B(1), where
Ko C B(2Roo; V1)

denotes the Mountain-Pass critical set of ®g.
(i1) Select, ¥(0,\) € [0,00] x B(1), a critical point V1(0,X) € K(5,A) of ®(J,A,-) in such a way that
the map V1 (-,-) is measurable. There are functions

Bi(0,A) = (05, ®)(5, A V1(6,0),  1<i<M

which satisfy

/ Var[oj(;o}ﬂi(', )\) d\ < +00. (612)
B(1)
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PrOOF. By lemmas 6.2, 6.3 and 2.3, provided that dg is small enough, the functional ® satisfies the
assumption (MP) of Theorem 2.2. Applying this theorem we derive the existence of mountain-pass critical
points of ®(d, A, -) for all (5, A) € [0,d0] x B(1). Moreover the mountain pass critical value map m(d, A)
is differentiable almost everywhere and by (iv) of Theorem 2.2, 9y, m(d, \) = (9x,P) (4, A\, V1(4, X)) at the
points where m is differentiable. Hence, by (¢ii) of Theorem 2.2, (i7) holds. At last (6.11) is a consequence
of Lemma 2.3. B

The map V; defined in Lemma 6.4-(i4) provides, for A € B(1), a (not necessarily continuous) path
Vi(+,A) [0, d0] — K (3, )
of critical points of ®(4, A, -). We shall prove that for almost all A € B(1),
Cy = {5 € 10,80 | (6, \V1(8,)) € BOO} (6.13)

has asymptotically full density at § = 0. This will be a consequence of Corollary 5.1 once we prove that
the BV-property (5.21) holds for almost any A € B(1). Here the choice of the nonlinearities b;(x)u% in
(1.4) enters into play.

Proposition 6.1 Suppose

D, (vy) := m i 1 /Qbi(x)(vl + 1}2(1}1))(;{14rl (6.14)

with ve(v1) := v2(0,0,v1,0), satisfy the following property:
e (P) (V®;(v1) generate V1) Yy € Ky, span{V@i(vl) Ji=1,... ,M} = V1.

Then, for a.e. A € B(1), there exist a finite collection (E; ) of measurable subsets of (0,d¢] satisfying
(5.20) and property (5.21) holds.

PrROOF. We shall need the following lemmas.
Lemma 6.5 Vi=1,...,M, ¥(§,\,v1) € (0,60] X B(1) x B(2Ro0; V1),
(D0, (6, A, v1) = 6% 3 (01) + Ry (5, 01) (6.15)

with
|RZ(67 >\7U1)| = 0(5) ) |vU1Ri(67 >\7U1)| = 0(6) . (616)

PROOF. Setting vg := v2(0, A\, v1,w) and w := w(J, A, v1)

1 1 - R
@0 2)0, A v1) = (O W)(6, A v1 + vz + W) + —(Du¥) (0, 01 + vz + w)[Ox,v2 + O, )
9P N\ ¢+l 1 N
= il bi(x) (m + vg + w) + Z /Q [vaz —elly,g(d, \,v1 + v2 + w)}a/\iw
1 ”~ ~ ~
+ 2 / [wa —ellwg(d, A, v1 +v2 + w)} O\, W
€ Ja
ou—P b N+l TR
= qi"—l»/ﬂ i(x)<v1+vz+w) +/Q7"(, ;v1)0x, W

since vy solves the (Q2)-equation. By (5.4), [|7|lz/4,s = O(exp(—=Cd~?)), hence

lim (O, D) (0, A\, v1) = /le(x) (111 + 02(U1)>‘“+1 =: ®;(vy).

5—0 0% —P q; + 1

As in the proof of Lemma 6.2 we can write
(Ox,@)(6, A, v1) = 0% Pp(6, A, v1) with ¢; € C™, ¢;(0, A, v1) = ®i(v1).
Setting R;(d, A\, v1) := i(d, A\, v1) — ©;(0, A, v1) this yields (6.15) and (6.16). ®
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Lemma 6.6 There exist L > 0 and a finite open covering (U;)1<j<n in Vi of Ko such that, if d¢ is small
enough, then Yo € (0, o], Yvi,v] € U;

oy — o] < sz’ )8, A, 01) — (9, @) (8, A\, 0})] -

PROOF. Letv € Ky. By Property (P), thereare 1 < iy < ... < iy < M such that {V®;, (v),..., VP, (v)}
form a basis of V;. Hence, by the implicit function theorem, there are an open neighborhood U (v) of v
in V4 and a constant L, > 0 such that ®;,,...,®;, are coordinates in U(v), and

N M
Vo, vf €U, or —vi| < Ly Y [y, (1) = B, (v])] < Ly Y [®s(v1) — Di(v1)].
=1 =1

By Lemma 6.5, for 6 € (0, do],

’ 1 ’
‘(Pi(vl) - (bi(vlﬂ < m‘(&\i@)(é, )‘7U1) - (aAi(I))(&)VUl)

1
049 —P

+[Ri(8 A, 01) = Ri(3, )

< (00, ®)(6, X, 01) = (D2, @)(5, A, v1)

+ C6|vy — v

for some constant C'. Hence, for §; small enough, we have
Mo
Yo, v] e U(w), |vg —vi| < 2L, Z m‘(@,\ifb)(é,/\,vl) — (O, @) (0, \, v))| -
i=1

Ko being compact, there is a finite subset G of Ky such that Ky C Uyeglf(v). This yields the statement
with L := max,cg 2L,. &

Now let us consider the map V; defined in Lemma 6.4-(ii). By definition, V6 € [0,dp), VA €
B(1), Vi(6,A) € K(9,A). Since U?_,U; is an open neighborhood of the compact set Ko, by (6.11),
for 6o small enough, K(d, ) C U7, 1U Let

Ay = {5e [0,00] | Bi(8,\) # (95, @)(8, \, V1 (6, \)) for some z}
the maps (; being defined in Lemma 6.4. We know that meas(Ay) = 0. Define

By = {5 €[0,80] | Vi(5,\) € Uj}\A)\.

It is clear that the collection (E; »)1<j<n satisfies (5.20).
By Lemma 6.6, V1 < j <n, Vj € (0,50], Yo1,d0 € Ej)\ with 5/2 <6y <6y <9,

[Vi(d2, A) = V1 (01, )]

IN

Lzéql 5| (03,2)(682, A, V1 (82, 0)) = (93, @)(02, A, V1 (61, 1))

IN

LZ s 5 (18:062,%) — 6,651, )

+ \(a&@(ém,vl(al,xn — (00, ®)(32, A Va(31, )] ).
Using that 9s5(9x,®)(d, A\, v1) is bounded, that d2 > §/2 and gpr — p > ¢; — p, we derive

d

(a20—p) XL
) TS (181062, 3) — 85 W)+ O — )]

i=1

V1(02,A) = V1 (01, )|<L(
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and therefore, for a.e. |A\| <1,V1 < j <mn, Vs e (0,d],

Var[5/2’5]ﬂEjJV1( ) <C6 (g —p) Z( ar(s /o, 6]51( A) + 05()) _ 5O—(QM—P)V()\)

where V(-) € L(B(1)) by (6.12). In particular |V ()\)| < +oo for almost all |A| < 1 and (5.21) is verified.
|

7 Proof of Theorem 1.2

Proposition 7.1 Letq > p be an integer. There exist b;(z) € H'(0,7), ¢; €N, ¢; >q,i=1,...,M for
which ®©; defined in (6.14), satisfy property (P) of Proposition 6.1.

Proposition 7.1 is a consequence of Lemma 7.1 below, which is proved in the next subsection.

Lemma 7.1 Letq > p. Let v, H € V be analytic and v have minimal period 2mw. Then
/ b(x)v!H =0, VYq>q, ¢geN, Vb(z) e H'(0,71) = H=0. (7.1)
Q

PROOF OF PROPOSITION 7.1. Vo1 € Ky there exists a finite set of nonlinearities {b;(z)u® ,i=1,...,N}
with ¢; > @ > p, ¢; € N, such that {V®;(v1),i = 1,..., N} span the whole V;. If not there exists
hi € Vi \ {0} such that

q
(D®)(v1)[hy] = / b(z) (v1 + v2(v1)) (h1 + 8v1v2[h1]) =0, VY¢>q>p,Vb(z)e HY(0,),
Q
contradicting (7.1) of Lemma 7.1 with v = vy + va(v1), H = hy + 0y, v2[h1] # 0.
The same finite set of V®;(v]), i = 1,..., N, still generates V; for v} in a neighborhood U (v;) of v;.

By compactness, we can cover Ky with a finite collection of U(v1). We have therefore extracted a
finite set of nonlinearities for which property (P) holds. B

7.1 Proof of Lemma 7.1
By assumption
/ 2 H = / / (t, ) H(t, z) dt) dr =0,  Vb(z)e H(0,n)

and therefore, setting H(t,x) := h(t +x) — h(t — z),

/rv(t,x)qH(t,x) it = /T (ntt+2) =it = )" (ht +2) — it —2))dt =0, Veeloa]. (72)

Changing variables, we get

[ (ate+a) =t =) "t =yt = [ (n(s+20) = ) "his) s

T

and

[ (att+0) = nte =) nie+ )t = [ n05) = s = 20))hs) ds = = [ (n(s+ 20) = n(s))h(s) ds.

T

In the last equality we make the change of variable s — —s and use that n and h are odd and 27-periodic.
Hence (7.2) is equivalent to

[r (77(3 +2z) — n(s))qh(s) ds=0, va € [0,7].

The conclusion of Lemma 7.1 will follow by the next Lemma.
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Lemma 7.2 Letn,h: T — R be analytic and odd. Let n have minimal period 2. If

q
/(n(y—l—s)—n(s)) h(s) ds =10, Yg>q,qeN, VyeT,
T
then h = 0.

ProOOF. Step 1: Foranyy €T and a <

/ h(s) ds=0.
{a<n(y+s)—n(s)<pB}

By the assumption (7.3), for any real polynomial P(X) := ZkZE ap X" divisible by X7,
/ P(nly +5) —n(s) ) h(s) ds = 0.
T
We have [ h(s)ds = 0 since h is odd, and so (7.5) holds for any real polynomial

P:a0+Zaka.

k>q

(7.3)

(7.4)

(7.6)

Set M := 2||n||ec and let A C C([-M, M],R) be the set of the functions on [—M, M] defined by a

polynomial of the form (7.6).

By the Stone-Weierstrass theorem, the set A is dense in C([—M, M],R) because it is a subalgebra
with unity and A separates the points of [—M, M] (take any X7 with ¢ odd). As a consequence for any

continuous function g € C(R)
[ o(nty+5) = nts))nts) ds =o.
T
Let a < 8. Ve > 0 let g. € C(R,[0,1]) be a continuous function such that

[0t s¢la—cfte
9(s) = { 1 for se [a7ﬁ]€. :

By (7.7) and the Lebesgue dominated convergence theorem

0= lim /r g: (nls +9) = n(s))hs) ds = /T a1 (105 +9) = n(s) ) ()
/ h(s) ds,

{a<n(s+y)—n(s)<B}
proving (7.4).

Step 2: If sg is a critical point of
ay(s) =mn(s +y) —n(s)

and a,(s) has no other critical point with the same critical value a,(so), then h(sg) = 0.

(7.7)

We can assume that y # 0[27]. The function a, does not vanish everywhere because n has minimal
period 27 and therefore y is not a period of 7. Moreover the function a, is neither constant because its

mean value is 0.

Let o := ay(so). By the analyticity of 7, the set a; ' (a) is finite. Let us call so, s1,..., s its elements.

By the assumption, s1, ..., s are not critical points of a,(s). For g > 0 small enough, the set

a;l([a—u,a—i-/d):{56T|a—u§ay(s)§a+u}
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is the disjoint union of closed intervals Iy,..., Iy, I; containing s;. Moreover, since s;, ¢ > 1, are not
critical points of a,(s), the Lebesgue measure of I; satisfies meas(l;) = O(u). Hence

k
/aqua_u,aw) h(s) ds = /I h(s) ds + ; / h(s) ds = /I h(s) ds + O(p). (7.8)

By the first step (7.4), the left hand side of (7.8) vanishes Vi > 0. As a consequence ro h(s) ds = O(p)
and

J1, 1s) ds — O($) (7.9)

meas(lp) meas(1p)

Now, since sq is a critical point of a,(s), meas(ly) > c,/p for some ¢ > 0. So p/meas(Iy) tends to 0 as
u — 0, while the first term in (7.9) tends to h(sg), by the continuity of h. We conclude that h(sg) = 0.

Step 3: If zo € T is such that h(zg) # 0 and "' (z0) # 0, then
Jo e T\{0}, 7'(20 — ) =10(20) =n'(20 + 0). (7.10)

First note that, since h is 27-periodic and odd, h(0) = h(w) = 0. Hence zy ¢ {0, 7}.
For any z, —z is a critical point of the function as,(s),

ay,(=2) =1'(=2+22) =/(=2) =0,  as:(—2) = 2(2),

since 7’ is even and 7 is odd. Fix v > 0 small such that Vz € (20 — 7, 20 + ), 22 # 0 [27] and h(z) # 0.
For any z € (20 — 7,20 +7), h(—2) = —h(z) # 0 and so, by Step 2, there exists another critical point
s(z) of as, at the same critical level, i.e. the systems of equations (in s)

{ n(2z+s) —n(s) —2n(z) = 0
n2z+s)—1n'(s) = 0

has a solution s(z) # —z.
By the compactness of T, there is a sequence (z,) — 2o, with z,, # 2 such that s, := s(z,) -5 € T.
We have af, (—z0) =1"(z0) —1" (—20) = 20" (20) # 0. Hence there is a > 0 such that if |z — zp| < « then

220
ay, (t) # 0, Vt € (—zp—a, —zp+a). In particular, for |z—zg| < «, there is at most one t € (—zp—«, —zp+a)
such that af,(t) = 0, and necessarily t = —z. Hence, for n large, s(z) ¢ (—z9 — o, —2¢ + «), which
implies

34 —2. (7.11)

We have
N(2zn + sn) = 1(sn) —2n(zn) = 0 (7.12)
77/(22n + Sn) - n/(sn) =0 (713)

and passing to the limit we get

n(2z0 +35) = n(5) — 2n(z0) = 0 (7.14)
n'(2z0 +35)—7n'(s) = 0 (7.15)

Let us prove that also
' (3 +220) = 1'(20) - (7.16)

If not, by (7.14) and the implicit function theorem, there is an analytic map b(s) defined in a neighborhood
of § such that b(5) = 2z and, for (z, s) near (zo,3),

n(s+2z) —n(s) —2n(z) =0 <<= z=10(s).

In particular, by (7.12), z,, = b(sy,), and so by (7.13), (s, 42b(s,))—7'(sn) = 0 for n large. By analyticity
of the map (s +— 1'(s+2b(s)) —n'(s)), this implies that for all s near 3, (s + 2b(s)) —n'(s) = 0. Hence,
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derivating the equality n(s + 2b(s))— n(s)— 2n(b(s)) = 0, we get (1'(s + 2b(s)) — ' (b(s)))¥'(s) = 0. Now,

since z, = b(s,), b(s) is not constant. Hence, again by analyticity, we get n’(s + 2b(s)) — n/(b(s)) = 0 for

s in a neighborhood of 5. In particular 7' (3 + 22¢) — 7' (3) = 0, which contradicts our hypothesis.
Finally, by (7.15), (7.16) and since 1’ is even,

' (5+ 220) = 1'(20) = '(5) = 1'(=3).
We obtain (7.10) with o := 3+ 29, 0 # 0 by (7.11).

Step 4 : h=0.
Arguing by contradiction, assume that h # 0. Let J = [m, M] = n/(T). For A € J let

()7 = {s € T /(s) = A}

Let By C J denote the set of the critical values of 7', and B the set of A € J for which there is a zero of
hin (n")~1(\). By analyticity, the functions n” and h have a finite number of roots and, therefore, the
sets By and By are finite.

Let I = (A1, A2) be some open interval included in J\(B; U Bz). Since I does not contain any critical
value of 7/, there exist analytic maps g1,...,gs : I — T such that

el ()70 = {a ), .an}.

Since Vi=1,...,k and VA € I, h(g;(\)) # 0 and 1" (g;(\)) # 0, by Step 3, there exist o;(A\) # 0 such
that

1'(9:(A) = 0:(A)) = 7'(9:(N) = A =0(g:(A) + 03 (X)) -
Hence g;(A) — 0;(A) = g1(A), g:(A) + 0:(A) = g;(A) for some 1,5 € {1,...,k}, [, j # i (possibly depending
on A), namely 2g;(\) — g;(A) — gi(A) = 0. However, since [, j run over a finite set of indices, there exist
l, 3, 1,5 # 1, such that 2g;(\) — g;(A) — gi(A) = 0 for infinitely many different A\ and by analyticity the
equality holds for any A € I. Hence

Vi=1,....,k 3lLj#i : 20\ —g;N—aN)=0, Vrel. (7.17)
We claim that
=T : g\ =g\ viel. (7.18)

Indeed, for any A € I choose i := i(\) such that |g;(\)| = max,=1.._ |g,.(\)|. There is an index 7 such that
i:=i(A) for A € A, A being an infinite subset of /. By (7.17) there are j, I # i such 2g;(A\) —g;(A) —gj(A) =
0, VA € I. This equality, together with |g7 (), |g;(A)] < |g;(A)], imply g;(A) = g;(A) = gi(A) for A € A,
hence for A € I, still by analyticity.

By (7.18), there is 0 € T, 0 # 0, such that

g\ —g(\) =0, VeI

and therefore
ag(9i(N) =10 (g:(A) +0) —=1'(gi(N)) =A-A=0, Vrel.

gi|r is injective because, for A € I, gi(A) = 1/9"(gi(\)) # 0, and therefore the function a/, vanishes at
infinitely many points. By analyticity a/ = 0. Since a,(s) := n(s + o) — n(s) has zero mean value, we
deduce that a,(s) = 0. Hence o # 0[27] is a period of 5, a contradiction. B

7.2 Conclusion

To conclude, let us show how to put together the results of sections 3-7 to prove Theorem 1.2.
Assume that a,(x) € H*(0,) satisfies (1.17). Then G(v) := [, a,(2)vP*! does not vanish everywhere
in V, and we assume, for instance, that there is v € V such that G(v) > 0, see (1.16). Then (Lemma 3.2)
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the functional ¥, : V — R defined in (1.21) with s* = 1 possesses a nontrivial “Mountain pass” critical
set Koo € Sr., = {||vllg: = R }-

Next we fix the dimension N € N of the finite dimensional subspace V; in the orthogonal decompo-
sition V = V4 @ Va, N depending only on a,(z). N satisfies (3.18) and N > N, where Ny is defined in
Lemma 3.7.

Thanks to Proposition 4.1, we define in (6.3) a functional ®y : B(2R; V1) — R, depending only on
ap(x), whose Mountain pass critical set Ky is the orthogonal projection of Ko onto Vi (Lemma 6.3 and
its proof).

Now, g > p being given, by Proposition 7.1, there are g < ¢; < ... < qu, ¢; € N, and b;(z) € H'(0, )
such that condition (P) of Proposition 6.1 holds. With this choice of ¢; and b;(z), we consider, for any
nonlinearity r(x,u) satisfying assumption (1.9), the A-parametrised system (1.5) with f(X, z,u) like in
(1.4).

By Propositions 4.1 and 5.1 we define, for §p > 0 small enough (depending on a,, ¢;,b;, r), the
“reduced action functional” ® : [0,8] x {A € RM | |A| < 1} x B(2Rs; Vi) — R in (6.2), which satisfies
the following property: there is a “large” Cantor set By, (defined in Proposition 5.1) such that any critical
point vy of ®(8, A, ) = e 1B(8, A, -) for which (6, X, v1) € Ba, gives rise (Lemma 6.1) to a 2r-time-periodic
solution of (1.10) with w(d) = /1 + 26P~1L.

Now, by Proposition 6.1, there is a subset A, C {|\| < 1} of full measure such that, VA € A,, there
is a path Vi(-,A) : [0,00] — B(2Rs, V1) and a finite collection of E; x C (0, do] satisfying meas((0, do] \
U;E; »)= 0 and such that

(i) for all 6 € [0, dp], V1(d,A) is a critical point of ®(d, A, -);
(ii) the bounded variation condition (5.21) holds, with ¢ = qpr — p.

Then, by Corollary 5.1, for any A € A, the Cantor-like subset Cy of [0, dy] defined in (6.13) has asymp-
totically full measure, i.e.
lim meas(Cy N [0,7)])
n—0 n
and, since V1 (4, A) is a critical point of ®(d, A, ) with (6, X\, V1(0,\)) € Buo, V8 € Cy

:]_7

u(6) =0V ((;a /\) + vz (5’ AW (5a /\)a {[)(6’ AW (5a /\))) + 7:‘7(67 A, V1(5, )‘))} € XE/2,5

is a solution of (1.5). This entails the conclusion of Theorem 1.2.

If there is v € V such that G(v) < 0, we may choose s* = —1. The same arguments apply, providing,
for almost all A, a large family of periodic solutions of (1.1) with frequencies w < 1.

8 Appendix

8.1 Proof of Lemma 3.1
Clearly my, < 400 because

G(v)] < / jap ()0 | < Ot < 'l voe V.
Q

Let v, € S be a maximizing sequence for G, namely

G(vy) — Moo - (8.1)

1
Since ||vn||gr = 1, Vn, we can assume that (up to subsequence) vy, Lvev and, by the compact

embedding H'(T) — L*(T), that v, L5 Asa consequence

G(vy) = /Qap(x)vﬁ — /Qap(m)ff)p =: G(v). (8.2)
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By (8.1) and (8.2) we get G(U) = meo. Actually the maximum point o € S. Indeed, by the lower
semicontinuity of the H'-norm for the weak topology, ||v]|z: < liminf,, ||v, ||z = 1. Moreover, using the
homogeneity of G -
v

[l a1

Mmoo = G(0) = [0l G (=—) < 8] me
whence 1 < ||5]| g and so ||7||g1 = 1.

The compactness of M, is proved with similar arguments. If (v,) is a sequence in M, then, since
1

(vy,) is bounded, up to a subsequence vy, N U, Up L v, and, as before, we conclude G(7) = my, and
O||gr =1, i.e. © € M. This implies v, — o also for the strong H'-topology because
g g

lon = 813 = loallz + 1917 — 2(vn, D) =2 = 2{vn, D) — 0

by the weak convergence of (v,,) to T.

8.2 Proof of Proposition 4.1-d)

We have Yy € Y5, ||[v2(¥)|lo,s < Roo/2 and F(y,v2(y)) = 0 where F(y,v2) := v2 — G(y,v2). Now, the
map F is in C®°(Y, X By s, VaN X, 5). Moreover Dy, F(y,v2(y)) = I — Dy, G(y,v2(y)) is invertible, since
D,,G(y,v2(y)) is a linear operator of V2 N X, s of norm < 1/4 by (4.4). Hence, by the implicit function
theorem, the map vq is in C°(Y,, Va2 N X, 5). Moreover, all the partial derivatives of F are bounded in
norm || ||o,s in the set Y, x By ,. Hence all the partial derivatives of the map vs are bounded (in norm
| llo.s) on the set Y.

We have [|v1]ls.s < N ||[v1]ls.0 < 4N° Ruo by (4.2). Hence, if 8y has been chosen small enough, g(y, v2),
and, for any k; € N, 95198205 g(y, v2) is || ||s.s-bounded on Y, x B(Rao; Va N X,.,). Hence, since

v2(y) = (—A) My, g(y, v2(y))

and [|(=A) My, ullo.s42 < |ullo.s v2(y) € Xo.s42 and the derivatives D¥vy are || ||5.512- bounded.

8.3 The Nash-Moser Theorem
We now prove (5.4) and we report some of the steps of [6] to prove the Nash-Moser theorem 5.1.

Consider the orthogonal splitting W = W) @ W)L where

wr) = {w eWw ‘ w= Z exp (ilt) wl(x)}, AREE {w eWw ‘ w= Z exp (ilt) wl(a:)}
[l <Ln [{]>Ln

with L, := Lo2" for some large integer Lo, and denote by P, : W — W and PL.W — WL the
orthogonal projectors onto W) and W (L,
The C*°-regularity of the Nemitsky operator g(d, A, z, u) on X, 5, Proposition 4.1-d) and (1.12) imply

e (P1) (Regularity) I'(-,-,-,-) € C™ ([0,50] x B(1) x B(2Rx; V1) X B(R; WﬂXU¢S)7XJ$S). More-
over DT, Vk > 0, are bounded on [0,30] X B(1) X B(2Roo; V1) X B(Roo; W N X, ).
e (P2) (Smoothing) Vw e WML N X, and V0 <o’ <o, |[w]er s < exp(—Ln(c —0))||wls,s-
The core of the Nash-Moser scheme is the invertibility of the linearized operators on W (")
L, (0, \,v1,w)[h] := Lyh — e Py Iy Dy T'(8, A, v1, w)[A] .
e (P3) (Invertibility of £,) Fix v € (0,1), 7 € (1,2). There exist u > 0, do > 0 such that, if

q q
hillo, .
o imint {3 —lee o a0 0 ew®, w=3 R} <,
i=0 (0s —0) 7 =0
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[lvillo,0 < 2Roo and ¢ belongs to

) ~ . M (6, A, v1,w) ~
Ao w) = {5el0,60] |l =l > e fwl = - 2| —
O G e [ o e TR e e
1
ZEZ7]€N+’Z#]7§<ZSLna.]San}y

then £, (9, A\, v1,w) is invertible and

cat A vl < S A, vhe W

for some C' > 0.

The proof of property (P3) is the same as in section 4 of [6]. One difference is the presence of the
paramaters A, the estimates being uniform in |[A| < 1. The other difference is that the domain of v; is
defined with norm || - ||o,0 instead of || - ||5,s. However also here the estimates remain unchanged because
the dimension N of V; is a fixed constant (see (3.18)) and we make use of Proposition 4.1-e) for the
analogue of Lemma 4.7 of [6].

Define the “loss of analyticity” -, by

0 _
'Yn::r—i—la 0p ‘=0, On+1 = 0n = Tn, Vn=0,

and choose v > 0 small such that the “total loss of analyticity” 79 3, 50(n* +1)7" <7/2.

Proposition 8.1 (Induction: Proposition 3.1 and Lemma 3.2 of [6]) Let Ay := [0,d0] x B(1) x
B(2Rso;V1). 3 Lo := Lo(v,7) > 0, €0 :=e0(7y,7) > 0, such that V 0 < ey~ < &g, V n > 0 there exists a
solution wy, == wy (6, \,v1) € W™ of

(Pn) wan - EP’IIHWF((Sa )\7 V1, wn) - 07

defined inductively for (5§, \,v1) € A, € A,—1 C ... C A; C Ap where
Ay = {(m,m) €An1|de A?L’T(A,vl,wn,l)} CAn;.

We have w,, (86, \,v1) = Y1y hi(6, N\, v1) where h;(-,-,-) € C®(4;, W) satisfy, Vk > 0,

< (KR exp(—x). [ DR8N )

DY hi(8,\v
H At ( 1) 0;,8 Yy

< (K (k)" exp(=x") (8.3)

0;,S

where x € (1,2) and Ko > 0, K(k) > 0. Hence wy(-,-,-) € C®(A,, W™) and, Vk > 0,

HD’;’vlwn(é,)\,vl)

< SKi(k), [ DFwa(s A 0)
On,S Yy

< Ki(k) (8.4)

for some K1 >0, Kq1(k) > 0.

The estimates on the derivatives w.r.t. (A,v1) in the left hand side of (8.3)-(8.4) come out from
(51)-(52) of Lemma 3.2 in [6]. Let

2v

A= {62 01) € Ay | dist((5,\,01), 04,) > i

}CA,L

where 0 < vy~ < (7, 7) is a small constant fixed in Lemma 8.2.
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Lemma 8.1 (Whitney extension, Lemma 3.3 of [6]) Vi > 0 there exist hi(-,-,-) € C°°(Ag, W®)
such that _
hz(5, )\,’Ul) = \11(5, )\,vl)hi(é, )\7’01), \I}((S, )\71)1) S [0, 1] R

with _
(5, A\ v) =1, V(§\v) € A;,

and, Yk > 0,

<

(1o NGRS =

< Ka(k)exp(=X')  (8.5)

04,8

Ko (k) exp(—X'), HD’“E(&/\,vl)

where X € (1,x) and Ka(k) > 0. Hence W, (0, X\, v1) == Y.i, hi(8,\,v1) satisfies
Wi (0, M 01) = wa (6, A, v1), V(5 \v1) € N_pA;, (8.6)

<

£
- < Kj(k
On,8 Y - 3( )

On,S

DX 0, B0 (8,0, v1)

Ks(k), HD’“@n(é,/\,vl)

for some K3(k) > 0. Therefore w(d,\,v1) := limMy 400 Wn (8, A, 01) = D> ;50hi(0, A, v1) converges uni-

formly in Ao for the norm || - ||z/2,s with all its derivatives, w(-,-,-) € C*(Ao, W N X5/2,,) and (5.2)
holds.

To arrive at the Cantor set B, of Proposition 5.1 define
By = {(6, A v1) € Ay | 5€ A2 (00, 5(5, A, 1)) }
where we have replaced  with 2 in the definition of A)"". Note that B,, depends only on w.
Lemma 8.2 (The Cantor set By,) If0 < vy~ ! <v(y,7), 0 < ey~ ! <eo(y,7) are small enough, then
B,CA,,  ¥n>0.

Hence By := Np>1B, C ﬂnzlgn C Np>14, and so, if (0,\,v1) € Boo then w(d, A\, v1) solves the
(P)-equation (5.1).

ProoF. It is Lemma 3.4 of [6]. It remains just to prove that, if j < (1 —4e)l or j > (1 + 4¢)l, then the

inequalities
M5, X\, v1,w(d, A\, v1)) 2y

2

(+5)’ 2j ()T

VIieN, j>1,1+#j, (1/3¢) <l are yet satisfied for any (6, \,v1) € Ag. For example, if 7 > (1 + 4¢)l
then, since w = /142 <1+¢,

ol — j| = wi = j — e

j—wl+5M(5’A’”l’lf}(5’A’”1)>‘ > (A4de)l—(14e)-SE
2j 2j
Ce _ 1 ¥
> - > = >
z S 22 Ty

because [ > 1/(3¢). The other cases are similar. B

Let’s now prove (5.4). Let

1
M::max{neN | Ln ::L02"<£}.
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Since in the definition of AY7 (A, v1,w), I > 1/3e¢ (we don’t have to make any “excision” in the parameters
(6,\,v1) to invert £, (6, \,v1,w) for n=1,..., M), hence wy; = war (5, A, v1) € WHM) solves exactly

(PM) waM — EPMHV[/F((S, )\,vl,wM) =0

in [0,0] x B(1) X B(2Rw0; V1), War = wps (see (8.6)) and, by (8.5),

Tu =W — wr satisfy H?M(é, A, v1) < C’% exp (—xM). (8.7)
OM,S
Using that wys solves equation (Par),
Lot = el T(, A v1,@) = Lo — ePuThy (T8 X, 01,@) = D(6, A, v, wa))

— EPﬁHWr((S, )\, V1, ’w) 5

and using properties (P1)-(P2), (8.7) and w € X725,

HLW@—EHWF((S, A, v, W) +C’aexp(—LMg)

o /4,s 4
HLUﬂmHV4 + Cleexp (—7M) (8.8)

IN

+05H?M

HLW?M

c/4,s o /4,s

IN

for € small enough because

M21n2< )—>—|—oo as ¢—0 and LM::L02M>>>?M.
6L0€
Finally
(121 I N /0 = S T
o/4,s gy’ o/4,s S o/4,s
and, since

Lohi = Py Ty (r(@ A o1, wi) — D(8,\, v, wH)) +ePL P T(6, N, v1, wi)

we get by (8.3), (P1)-(P2), as in (8.8),

HLMFM s <’ Z cexp (—X') < Keexp (—xM). (8.9)
>M
By (8.8) and (8.9)
HLM{E*F;HWF(& Aavla{[))Hf/4 < K/sexp (7%M)

and since _ _
S('M > 5(*— Inz(6Loe) _ S(f—(lng x) Ing (6Loe) _ (6L0€)_ Ing x

and, setting o := Ins ¥ € (0, 1),

< Ceexp ( - #) < CIEGXP(—Q)

HLw@—EHWFO\,(S, V1, W) (6Loe) 0«

o /4,s

for 0 < 0 < dg(7y,7) small enough.
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