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ABSTRACT. For a large class of multi-dimensional Schrödinger oper-
ators it is shown that the absolutely continuous spectrum is essentially
supported by [0,∞). We require slow decay and mildly oscillatory be-
havior of the potential in a cone and can allow for arbitrary non-negative
bounded potential outside the cone. In particular, we do not require the
existence of wave operators. The result and method of proof extends
previous work by Laptev, Naboko and Safronov.

1. INTRODUCTION

In this paper we consider Schrödinger operators

−∆ + V (x), V ∈ L∞(Rd)

acting in the space L2(Rd). If V = 0 then the operator has purely abso-
lutely continuous spectrum on [0,+∞). We find conditions on V which
guarantee that the absolutely continuous spectrum of the operator −∆ + V
is essentially supported by [0,∞). This means that the spectral projection
associated to any subset of positive Lebesgue measure is not zero.

Traditionally, investigations of the positive spectrum of Schrödinger op-
erators −∆ + V (x) in L2(Rd) with decaying potential V have mostly been
done through methods of scattering theory, i.e. by studying existence and
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completeness properties of wave operators. In particular, as long as no ad-
ditional smoothness assumptions on V are made, proving existence of the
wave operators W± = s− limt→∓∞ e

it(−∆+V )e−it(−∆) by some version of
Cook’s method is the standard way of showing that the spectrum of−∆+V
has an absolutely continuous component covering [0,∞). In fact, existence
of the wave operators yields the stronger result that the absolutely contin-
uous part Eac

−∆+V of the spectral resolution for −∆ + V is ”equivalent” to
Lebesgue measure on [0,∞) in the sense that for Borel sets ω ⊂ [0,∞),

(1.1) E
(ac)
−∆+V (ω) > 0, if and only if |ω| > 0.

We will refer to this also by saying that the absolutely continuous spec-
trum of −∆ + V is essentially supported by [0,∞). A natural question to
ask is whether the latter spectral theoretic fact can be proven without re-
quiring the seemingly stronger scattering theoretic input. In other words,
one would like to have methods which allow to show the existence of ab-
solutely continuous spectrum in situations where wave operators are not
known or not even likely to exist. A breakthrough in this direction was
achieved by P. Deift and R. Killip in [12]. They showed that (1.1) holds
for one-dimensional Schrödinger operators −d2/dx2 + V with V ∈ L2(R).
They did not use results on wave operators nor — at least in d = 1 related
— results on asymptotics of solutions of the time-independent Schrödinger
equation (which are still unknown for this class). Instead, their approach
is based on a bound for the entropy of the spectral measure in terms of the
L2-norm of the potential, which was known from inverse spectral theory.
Subsequently, the idea of using entropy bounds for the spectral measure
to study the a.c. spectrum has been used in a number of other works on
one-dimensional Schrödinger operators and Jacobi matrices, for example
[16, 15, 23]. The extension of these ideas to d ≥ 2 was not straightforward,
but recently A. Laptev, S. Naboko and O. Safronov [19, 28] have found a
method which allows to estimate suitable spectral measures of −∆ + V
in terms of (negative) eigenvalue sums of −∆ + V and −∆ − V . “Suit-
able” means to work with spectral measures d(E−∆+V (λ)f, f) for radially
symmetric functions f .

One writes the Schrödinger operator as a 2 × 2-block-matrix operator
with respect to the radially symmetric functions in L2(Rd) and their com-
plement and uses a Feshbach-type argument to essentially reduce the prob-
lem to studying a Schrödinger operator on a half line. The main techni-
cal difficulties arise from the fact that the “potential” of the 1-d operator is
operator-valued, non-selfadjoint, as well as energy-dependent, requiring the
extension of various 1-d concepts (e.g. Jost functions, m-functions, scatter-
ing coefficients) to this new setting. Based on the method from [19] it was
proven in [28] that (1.1) holds in d ≥ 3 if V ∈ Ld+1(Rd) and its Fourier
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transform V̂ (defined as a distribution) is locally square-integrable near the
origin, i.e.

∫
|ξ|<δ |V̂ (ξ)|2 dξ < ∞ for some δ > 0. We refer to [28] for

results in d = 2 and also for a discussion of the meaning of the condition
on V̂ (requiring oscillatory behavior of V ). Our main goal here is to ex-
tend the results of [19, 28] by observing that the methods used only require
decay of the potential in a cone Ω ⊂ Rd. More specifically, we consider a
Schrödinger operator −∆ + V in L2(Rd), d ≥ 3, where

(1.2) V ∈ L∞(Rd), V real valued.

For any measurable set Ω let χΩ be the characteristic function of this set.
Suppose now, that Ω is a cone in Rd and

(1.3) V = V1 + V2, χΩV2 = 0,

Finally, let V̂1 be the Fourier transform of V1

(1.4) V̂1(ξ) =

∫
Rd

e−iξxV1(x) dx,

which can be understood in the sense of distributions.

Theorem 1.1. Let d ≥ 3 and let V be a real valued function on Rd obeying
(1.2), (1.3) for some cone Ω in Rd with V2 ≥ 0 . Suppose that for some
δ > 0 ∫

|ξ|<δ
|V̂1(ξ)|2 dξ <∞, and

∫
Rd

|V1(x)|d+1 dx <∞.

Then the absolutely continuous spectrum of the operator −∆ + V is essen-
tially supported by [0,∞).

Remark. Since (1.2) and V2 ≥ 0 are the only condition on V2, the potential
V in Theorem 1.1 does not have to decay outside of the cone Ω.

We prove this with a modification of the method of Laptev-Naboko-
Safronov. One introduces an additional conical cut-off in the radially sym-
metric test function f , whose spectral measure is considered. In doing so
we encounter a number of new technical difficulties and therefore provide
full details of the proof. In both methods, the ones of Deift-Killip and of
Laptev-Naboko-Safronov, bounds on spectral measures are first proven for
compactly supported approximations of the potentials. As these bounds
hold uniformly for all approximations, they carry over to the limit. Then
we prove and use an approximation result where convergence is only re-
quired in L2

loc-sense (as this implies strong resolvent convergence). This
allows for applications like ours, i.e. to consider V which do not decay in
all directions.
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We would like to mention that further applications of the techniques em-
ployed in [19] and here are given in the recent paper [29]. A similar tech-
nique can also be applied to study the Dirac operator. Here one can prove a
certain trace formula which implies the existence of the a.c. spectrum on the
whole real line (see [13]). Additional results for Schrödinger operators with
slowly decaying potentials can be found in [14], where also applications to
random Schrödinger operators are given.

This article is a continuation and extension of the work presented in [19]
and uses many of the same techniques. For the sake of completeness we
will recall the corresponding arguments in the proofs.

In Section 2 below we will reduce Theorem 1.1 to our main technical
result, Theorem 2.1. This result states a quantitative property of suitable
spectral measures of an operator closely related to −∆ + V (via trace class
perturbation theory). This property provides an analog of the Szegő con-
dition which has been studied for spectral measures associated with Jacobi
matrices. The remaining Sections 3 to 7 are devoted to the proof of Theo-
rem 2.1. The Feshbach-type argument to reduce the problem to studying a
generalized half line Schrödinger operator is provided in Section 3, where
we also introduce a number of regularizations of the underlying operator,
which are used in Sections 4, 5 and 6. In particular, we work with smooth
compactly supported potentials and also assume that the potential has only
finitely many spherical modes. In Sections 4 and 5 we introduce Jost so-
lutions, Green functions, Wronskians and M -functions for the regularized
operator. Section 6 provides bounds of spectral measures in terms of traces
of the negative eigenvalues of operators related to −∆ + V . At the end
of Section 6 and throughout Section 7 we carry our the necessary limiting
arguments to remove the regularizations and complete the proof of Theo-
rem 2.1.
Acknowledgements. This work was partially supported through NSF-grant
DMS-0245210. O.S. is also grateful to S. Denissov for sharing the results
of his work [14] at an early stage. The authors would like to thank R.
Shterenberg for reading a preliminary version of this manuscript. We also
express our gratitude to the referee of this paper for valuable suggestions
which helped to substantially improve the presentation of our work.

2. REDUCTION OF THEOREM 1.1 TO THE MAIN TECHNICAL
THEOREM 2.1

We will not directly study the operator −∆ + V from Theorem 1.1, but
instead a related operator H which arises from −∆ + V through trace class
perturbations and a change to spherical coordinates. Thus −∆ + V and H
will have unitarily equivalent absolutely continuous parts and Theorem 1.1
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will follow from our main technical Theorem 2.1, which gives certain quan-
titative characteristics of the spectral measures of H and, in particular, the
required absolute continuity properties.

First, we observe that we may work with a Dirichlet operator on the ex-
terior of the unit ball B1 in Rd. More precisely, let

(2.1) H1 = −∆ + V in L2(Rd \B1)

with Dirichlet boundary conditions on Sd−1 = ∂B1. Here the potential V
is given as in Theorem 1.1, but as will be convenient for our later switch to
spherical coordinates, we also assume that for some c1 > 1 it holds that

(2.2) V (x) = − αd
|x|2

for 1 < |x| < c1,

where αd = (d−1)2

4
− d−1

2
. By general facts from trace class perturbation the-

ory, e.g. [2] and [5], the absolutely continuous parts of the original operator
−∆ + V and H1 are unitarily equivalent.

We now switch to spherical coordinates x = rθ, r ∈ (1,∞), θ ∈ Sd−1,
i.e. consider the unitarily equivalent operator to H1 given by

(2.3) H2 = − d2

dr2
− d− 1

r

d

dr
− 1

r2
∆θ + V (r, θ)

with Dirichlet boundary condition at r = 1 in L2((1,∞)×Sd−1, rd−1drdθ).
Here ∆θ is the Laplace-Beltrami operator on L2(Sd−1) and, slightly abusing
notation, V (r, θ) = V (rθ).

One further unitary transformation H3 = U∗H2U , where U from
L2((1,∞), dr) to L2((1,∞), rd−1dr) is given by (Uf)(r) = r−(d−1)/2f(r),
leads to

(2.4) H3 = − d2

dr2
+

1

r2
(−∆ + αd) + V (r, θ),

again with Dirichlet boundary condition at r = 1, in L2((1,∞) ×
Sd−1, drdθ) = L2((1,∞), L2(Sd−1)).

In order to be able to exploit the decay of V inside the cone Ω, we intro-
duce a fixed real-valued smooth function φ on the sphere such that

(2.5) φ(x/|x|) = 0 for all x 6∈ Ω,

supposing that
∫

Sd−1 |φ|2 dθ = 1. Also, let P0 denote the orthogonal projec-
tion onto φ in L2(Sd−1), i.e.

P0ψ = φ ·
∫

Sd−1

φψ dθ.
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The operator Kθ = 2Re (I − P0)∆θP0 + P0∆θP0 = [(I − P0)∆θP0]
∗ +

∆θP0 is self-adjoint and finite rank in L2(Sd−1). Consider the bounded self-
adjoint operator

K =
ξ(r)

r2
⊗Kθ

in L2((1,∞)×Sd−1), where ξ(r) is a smooth compactly supported function
which is equal to 1 on (1, c1). For later use, note that there is a constant
C1 > 0 such that, in form sense,

(2.6) −C1
ξ(r)

r2
≤ K ≤ C1

ξ(r)

r2

For technical reasons, which have the same origin as (2.2) and will become
clear at the end of the next section, we will not consider H3 but instead

(2.7) H = H3 +K

in our proof of absolute continuity. They have unitarily equivalent abso-
lutely continuous parts, which is seen as follows:

Denote by Iθ the identity operator in L2(Sd−1) and observe that(
− d2

dr2
⊗ Iθ − z

)−1

K

(
− d2

dr2
⊗ Iθ − z

)−1

is trace class, being the tensor product of the trace class operator
(−d2/dr2− z)−1 ξ(r)

r2
(−d2/dr2− z)−1 in L2(1,∞) and the finite rank oper-

ator Kθ in L2(Sd−1).
Furthermore,(

− d2

dr2
⊗ Iθ − z

) (
− d2

dr2
− 1

r2
∆θ − z

)−1

is bounded, implying that (−d2/dr2 ⊗ Iθ − z)(H − z)−1 and (−d2/dr2 ⊗
Iθ − z)(H3 − z)−1 are bounded.

This combines to yield that (H− z)−1− (H3− z)−1 is trace class, giving
the equivalence of a.c. parts.

We are now ready to state our main technical result for the operator H .
It provides quantitative characteristics of spectral measures of H , which are
a multi-dimensional continuous analog of the well-known Szegő condition
for orthogonal polynomials and Jacobi matrices (compare with [19]).

Theorem 2.1. Let the operatorH in L2((1,∞)×Sd−1) be defined as above,
EH(·) its spectral resolution and let f0 be any bounded non-zero function
with supp f0 ⊂ {r : 1 < r < c1}. Then

(2.8)
∫ ∞

0

log
[
d
dλ

(EH(λ)f, f)
]
dλ

(1 + λ3/2)
√
λ

> −∞,
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where f(r, θ) = f0(r)φ(θ).

The inequality (2.8) guarantees that the a.c. spectrum of H is essentially
supported by [0,∞), since d(EH(λ)f, f)/dλ > 0 almost everywhere and
gives quantitative information about the measure (EH(λ)f, f). Through the
series of unitary equivalences and trace class perturbations discussed above
this immediately yields Theorem 1.1. Thus it remains to prove Theorem 2.1,
which is the content of the rest of this paper.

3. REDUCTION TO A ONE-DIMENSIONAL PROBLEM WITH
OPERATOR-VALUED POTENTIAL

The main technical tool in the approach of [19] is to use a Feshbach-
type reduction of the multi-dimensional Schrödinger-type operatorH to the
subspace generated by the radially symmetric functions and to find bounds
for suitable spectral measures of H by studying the reduced, essentially
one-dimensional, problem. In this section we will adapt this method to our
situation.

At this point we will take advantage of being able to use a strongly regu-
larized version of H , to be describe below. The entropy bounds of spectral
measures for the regularized operator, found in Section 6, are sufficiently
uniform to allow for the necessary limiting arguments to eventually prove
Theorem 2.1 for the general case (Section 7).

Let {Yj}∞j=0 be the orthonormal basis inL2(Sd−1) of (real) spherical func-
tions, i.e. eigenfunctions of the Laplace-Beltrami operator −∆θ. Let Sj be
the orthogonal projection onto Yj in L2(Sd−1) given by

Sjψ = Yj

∫
Sd−1

Yjψ dθ.

We will also frequently use Sj to denote the corresponding projection I⊗Sj
in L2((1,∞)× Sd−1), and do the same with P0 introduced in Section 2.

The regularized operator for which we will do the Feshbach reduction is
given by

(3.1) Hε = − d2

dr2
+
ζε(r)

r2

(
−∆θ + αd

)
+ K̃ + V∗

Here we assume

(i) V ∈ C∞0 (Rd), satisfying (2.2).
(ii) V∗ = SV S, where for some fixed n ∈ N, S =

∑n
j=0 Sj .

(iii) For fixed i ∈ N, i ≤ n, let φ̃ be a real linear combination of the first
i+ 1 spherical harmonics, i.e. φ̃ =

∑i
j=0 Sjφ̃. Suppose that

∫
Sd−1 |φ̃|2 dθ =
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1. Let P̃0 and K̃ be defined as P and K in Section 2, but with φ replaced
by φ̃.

(iv) ζε(r) = ζ(r − ε−1), where ζ is a smooth function in R such that

ζ(r) =


1, if r < 0;

0, if r > 1;

∈ [0, 1] otherwise.

Thus ζε → 1 as ε→ 0.

We introduce the following operators

V (`) = P̃0

(
V∗ + K̃ +

ζε(r)

r2
(−∆θ + αd)

)
P̃0, H(0,`) = − d2

dr2
P̃0,

V (`,h) = P̃0

(
V∗ + K̃ +

ζε(r)

r2
(−∆θ)

)
(I − P̃0), V (h,`) = (V (`,h))∗,

V (h) = (I−P̃0)
(
V∗+

ζε(r)

r2
(−∆θ+αd)

)
(I−P̃0), H(0,h) = − d2

dr2
(I−P̃0).

We use the superscripts ` and h here to distinguish between lower and
higher spherical harmonics. It is important to note that V (h,`) vanishes on
the orthogonal complement to the first n + 1 spherical functions, which in
turn is an invariant subspace for V (h). Formally, the operator Hε− z can be
represented as a matrix:

Hε − z =

(
H(0,`) + V (`) − z V (`,h)

V (h,`) H(0,h) + V (h) − z

)
,

and the equation

(3.2) (Hε − z)u = P̃0f, Im z 6= 0,

is equivalent to
(3.3)

(H(0,`) +Qz−z)P̃0u = P̃0f,
(
H(0,h) +V (h)−z

)−1

V (h,`)u = (P̃0− I)u,

where the operator Qz in the space L2((1,∞)) is given by

(3.4) Qz = V (`) − V (`,h)(H(0,h) + V (h) − z)−1V (h,`).

Therefore the problem is reduced to the study of the properties of the one-
dimensional operator

(3.5) Lzu(r) = −d
2u

dr2
+Qzu, u ∈ L2(1,∞), u(1) = 0,

In (3.4) and (3.5) we identify Qz acting on multiples of φ̃ with the unitary
equivalent operator φ̃−1Qzφ̃ in L2(1,∞).
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From (3.2), (3.3) we obtain

(3.6) P̃0(Hε − z)−1P̃0 = (Lz − z)−1.

Let suppV ∪ supp ζε(| · |) ⊂ {x ∈ Rd : |x| < c2}, c2 > c1 and let χ be
the operator of multiplication by the characteristic function of the interval
(c1, c2). Then for the operator (3.4) we have

Qz = Qzχ = χQz.

Note that one has to include (2.2) and (2.7) to have this and other con-
venient properties of the considered operators. In particular we will have a
simple representation for the spectral measure of H .

We observe that the imaginary part of the analytic operator valued func-
tion Qz (as a function of z) is negative in the upper half plane and positive
in the lower half plane.

4. JOST SOLUTIONS AND THE GREEN FUNCTION

Note that this section is rather similar to the corresponding section in
[19]. We repeat it mostly in order to introduce the reader to the main ideas.

In Sections 4 to 6 instead of the potential V we deal with V∗ = SV S,
S =

∑n
j=0 Sj , which approximates V for large n. It can be interpreted as

an operator of multiplication by a matrix valued function of r. Since Sj are
projections on real spherical functions, this matrix is real. Recall also that
the factor 1/r2 in front of−∆θ and αd is substituted by a smooth compactly
supported function ζε(r)/r2.

Recall that our problem has been reduced to the study of the equation

(4.1) − d2

dr2
ψ(r) + (Qzψ)(r) = zψ(r), r ≥ 1, z ∈ C,

with the operator Qz given by (3.4). Let ψk(r) be the solution of the equa-
tion (4.1) satisfying

ψk(r) = exp (ikr), k2 = z, Im k > 0, ∀r > c2.

We will shortly discuss the question of existence and uniqueness of this
solution, but first note that this solution also satisfies the “integral” equation

(4.2) ψk(r) = eikr − k−1

∫ ∞

r

sin k(r − s)(Qzψk)(s) ds.

In order to establish existence of ψk(r) and study its properties we use
the following analytic Fredholm theorem (see, for example, [25], Theorem
VI.14 or [36], Ch.I, Section 8):
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Theorem 4.1. Let D ⊂ C be an open connected set and let T(k) be an an-
alytic operator valued function on D such that T(k) is a compact operator
in a Hilbert space for each k ∈ D. Then

(1) either (I − T(k))−1 exists for no k ∈ D,
(2) or (I − T(k))−1 exists for all k ∈ D \D0, where D0 is a discrete subset
of D. In this case (I − T(k))−1 is meromorphic in D with possible poles
belonging to D0.

The first application of this theorem is in the following statement about
Qz. Note that the proof given here is a little bit longer compared to the proof
in [19], since we establish invertibility of a certain operator for large real k.

Lemma 4.1. The operator Qz has a meromorphic continuation into the
second sheet of the complex plane. Moreover Qz → V (`) in the operator
norm as z = λ+ i0, λ→ +∞.

Proof. Consider an operator −d2/dr2 + q(r) in L2((1,∞),Cn) with
Dirichlet boundary condition at 1. Here q is a matrix valued function, com-
pactly supported on some [c1, c2] ⊂ (0,+∞). Let f ∈ C∞0 (R+) be a func-
tion which is identically equal to one on the support of the matrix-function
q and let F be the multiplication by f . Then

F (−d2/dr2 + q(r)− z)−1F

=
(
I + F (−d2/dr2 − z)−1q

)−1

F (−d2/dr2 − z)−1F.

Clearly both operators F (−d2/dr2 − z)−1q and F (−d2/dr2 − z)−1F have
analytic continuations into the second sheet of the complex plane through
the positive semi-axis and they tend to zero when z = λ + i0, λ → +∞.
By using Theorem 4.1 we obtain that the operator(

I + F (−d2/dr2 − z)−1q
)−1

tends to I when z = λ + i0, λ → +∞. Thus the operator Qz defined in
(3.4) has a meromorphic continuation into the second sheet of the complex
plane and tends to V (`). �

Our second application of Theorem 4.1 is devoted to the study of the
operator

T(k)ψ(r) = −k−1

∫ ∞

r

sin k(r − s)(Qzψ)(s) ds

in L2(1, c2). Observe that T(k) is small in norm and therefore I − T(k) is
invertible for large real k. We conclude that the equation (4.2) is uniquely
solvable for all k except perhaps a discrete sequence of points and that its
solution ψk is a meromorphic function with respect to k, with values in
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L2(1, c2), in a neighborhood of every Im k ≥ 0, k 6= 0. For 1 < x < c1 the
solution is a linear combination of two exponential functions

(4.3) ψk(x) = a(k)eikx + b(k)e−ikx, 1 < x < c1,

where both a(k) and b(k) are meromorphic functions (even in some neigh-
borhoods of points k 6= 0 of the real axis).

The operator R(z) = (Lz − z)−1, where Lz is defined in (3.5), plays a
very important role in our arguments. Let χc1 be the operator of multipli-
cation by the characteristic function of (1, c1). Then R(z)χc1 is an integral
operator whose kernel is given by

(4.4) Gz(r, s) =

{
ψk(s)
ψk(1)

sin(k(r−1))
k

, for r < s < c1,
ψk(r)
ψk(1)

sin(k(s−1))
k

, for s < min{c1, r}.

The proof of this assertion can be found in [19].
We should also mention that since ψk(1) is meromorphic in k in a neigh-

borhood of any k 6= 0, we conclude that ψk(1) = 0 only on a discrete
subset of the closed upper half plane, having no accumulation points except
perhaps zero.

5. WRONSKIAN AND PROPERTIES OF THE M -FUNCTION

The material of this section is of common knowledge in the theory of
one dimensional operators. For an extension to a situation like the one
considered here, see [19].

Let Qz be defined as in (3.4). For all k, except perhaps a discrete se-
quence, the function

(5.1) M(k) =
ψ′k(1)

ψk(1)
, Im k ≥ 0,

is well defined and called the Weyl M -function of the operator (4.1). It is
proven in [19] that for all real k one has the following inequality

k

Im M(k)
≤ |ψk(1)|2.

Moreover, if we represent the solution ψk for real k in the form

ψk(x) = a(k)eikx + b(k)e−ikx, x < c1,

then (see [19])
|a|2 − |b|2 ≥ 1, k = k.

On the other hand it is obvious that
k

Im M(k)
≤ 2|a|2 + 2|b|2.
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and therefore

(5.2) |a(k)|−2 ≤ 4k−1
(
Im M

)
, k > 0.

One can also show that

(5.3) Im M(k) > 0 if Im k2 > 0.

However, it is not clear why M is an analytic function of z = k2 in the
upper half plane. The reason for this property is that due to (4.4) and (5.1)
the function M can also be defined as M(k) = ∂2

∂r∂s
Gz(r, s)|(1,1), where Gz

is the integral kernel of the operator P̃0(Hε − z)−1P̃0 (Recall that Hε is a
one dimensional Schrödinger operator with a smooth compactly supported
matrix potential).

Thus, there are constants C0 ∈ R and C1 ≥ 0 and a positive measure µ,
such that ∫ ∞

−∞

dµ(t)

1 + t2
<∞,

where

(5.4) M(k) = C0 + C1z +

∫
R

( 1

t− z
− t

1 + t2

)
dµ(t), k2 = z.

6. TRACE INEQUALITIES

In this section we continue to modify the method of [19]. The coefficient
a(k) introduced in (4.3) depends on ε and here we shall write aε(k) instead
of a(k). In the same way as in [19] one can obtain from (4.2) and (3.4)

(6.1) aε(k) = lim
r→−∞

exp(−ikr)ψk(r) = 1− 1

2ik

∫
V (`) dr + o(1/k),

as k → ∞. Now let iβm and γj be zeros and poles of aε(k) in the open
upper half plane. Note that−γj are also poles of aε(k) (this will follow from
(6.7)). We shall show in Proposition 6.1 that {−β2

m} are the eigenvalues of
a certain self-adjoint operator of Schrödinger type. Therefore we choose
βm > 0. Thus, for the corresponding Blaschke product

B(k) =
∏
m

(k − iβm)

(k + iβm)

∏
j

(k − γj)

(k − γj)

we have |B(k)| = 1, B(k) = B(−k), k ∈ R. Hence, we obtain

(6.2)
∫ +∞

−∞
log(aε(k)/B(k)) dk

=
π

2

∫
V (`)(r) dr + 2π

(∑
βm −

∑
Im γj

)
,
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provided that for some integer l ≥ 0 the coefficient aε(k) has an expansion
aε(k) =

∑
j≥−l cjk

j at zero. The existence of such an expansion as well
as the condition |aε(k)| − 1 = O(1/|k|2) as k → ±∞ is proven as in the
Appendix of [19]. For this, let us only note that the matricesA(k) andB(k)
in SL2(Sd−1) now take the role of scattering coefficients for the equation

(6.3) −d
2Φ

dr2
+ K̃Φ +

ζε
r2

(−∆θΦ + αdΦ) + V∗Φ = k2Φ,

i.e. are defined through the requirement that a (matrix-valued) solution Φ
satisfies

Φ =

{
exp(ikr)S for r > c2,
exp(ikr)A(k) + exp(−ikr)B(k) for r < c1.

With theseA(k), B(k) and P̃0 the projection onto a finite linear combination
φ̃ of spherical harmonics as above (rather than the projection onto the first,
constant, spherical harmonic as in [19]) we get the identity (10.2) from [19],
i.e.

1

aε(k)
P̃0 = P̃0

(
A(k) + (I − P̃0)e

−2ikB(k)
)
P̃0

with virtually the same proof. The above claimed properties of aε(k) are
now proven as in the second subsection of the Appendix of [19].

Now for any pair of finite numbers r2 > r1 ≥ 0 we have

(6.4)
1

2

∫ r2

r1

log
k

4Im M(k)
dk ≤

∫ +∞

−∞
log |aε(k)| dk.

Hence,

(6.5)
1

2

∫ r2

r1

log
k

4Im M(k)
dk ≤ π

2

∫
V (`)(r) dr + 2π

∑
βm

With S as before and χ∗ the characteristic function of [1,∞), let Ĥε be
the operator in L2(R, SL2(Sd−1)) such that

Ĥεu = −d
2u

dr2
+ χ∗

(
K̃u+ ζε[

(−∆θ + αd)u

r2
]
)
,

(I − P̃0)u(1, ·) = 0, u(r, ·) ∈ SL2(Sd−1), ∀r,
(6.6)

where ζε is the same as above and the function (I − P̃0)u
′(r, ·) is allowed

to have a jump at 1.

Proposition 6.1. Each −β2
m is one of the eigenvalues −β2

m(V∗) of the op-
erator Ĥε + V∗. Multiplicities of zeros of the function aε(k) are equal to
one.
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Proof. Suppose s < c1 < c2 < r. Then the kernel of the operator
P̃0(Ĥε + V∗ − z)−1P̃0 for such s, r equals

(6.7) g(r, s, k) = −exp ik(r − s)

2ikaε(k)
.

The proof of the latter relation is a counterpart of the proof of (4.4). This
means that if χc1 and χc2 are the characteristic functions of (1, c1) and
(c2,∞) then χc1P̃0(Ĥε+V∗−z)−1P̃0χc2 has poles only at zeros of aε(k) and
each zero of aε(k) is a pole of the resolvent χc1P̃0(Ĥε+V∗−z)−1P̃0χc2 . But
the poles of the latter operator are eigenvalues of Ĥε +V∗. Moreover due to
the spectral theorem, we can consider the expansion of P̃0(Ĥε+V∗−z)−1P̃0

near the eigenvalue −β2
m

(6.8)

χc1P̃0(Ĥε + V∗ − z)−1P̃0χc2 = −χc1
P̃0EĤε+V∗

({−β2
m})P̃0

k2 + β2
m

χc2 + Z(k),

where ||Z(k)|| = O(1), as k → iβm. Comparing (6.7) and (6.8) we find
that the multiplicities of these zeros are equal to one. �

Let EHε(ω), ω ⊂ R, be the spectral projection of the operator Hε. Then
for bounded spherically symmetric functions f0 supported inside (1, c1) and
f(x) = φ̃(x/|x|)f0(|x|) we have

(6.9) (EHε(ω)f, f) =

∫
ω

|F (λ)|2dµ(λ), ω ⊂ R+ = (0,∞),

where

(6.10) F (λ) =
1

k

∫ c1

0

sin(k(r − 1))f0(r) r
(d−1)/2dr,

suppf0 ⊂ {x : 1 < |x| < c1} and k2 = λ > 0. These relations can be
obtained from the formula for the kernel of P̃0(Hε − z)−1P̃0 and the fact
that the spectral measure is related to boundary value of the imaginary part
of P̃0(Hε − z)−1P̃0 when z approaches the real line. If F is defined as in
(6.10), then the function log(|F (λ)|) is in L1

loc(0,+∞) and therefore the
integral of the function

log
[ d
dλ

(EHε(λ)f, f)
]

= 2 log(|F (λ)|) + log(µ′(λ))

can be estimated as follows:

∫ r2

r1

log
[ d
dλ

(EHε(λ)f, f)
]
dλ ≥

∫ r2

r1

log
[
µ′(λ)

]
dλ− C(f0, r1, r2)

(6.11)
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for all r2 > r1 > 0. The integral in the left hand side of (6.11) can diverge
only to −∞ due to the Jenssen inequality:∫ r2

0

log
[ d
dλ

(EHε(λ)f, f)
]
dλ ≤ r2 log

[∫ r2

0

r−1
2

d

dλ
(EHε(λ)f, f) dλ

]
.

So, our problem is to estimate it from below.
The passage from the Weyl function M to the spectral measure E allows

us to pass to the case when ζε is substituted by 1. In this case the estimate
(6.4) should be replaced by a relation which follows from Corollary 5.3 [15]

−
∫ r2

r1

log(d(ESHS(λ)f, f)/dλ)
dλ

4
√
λ

(6.12)

≤ lim sup
ε→0

∫ +∞

−∞
log |aε(k)| dk + C(r2, r1, f0).

Observe that when ε → 0 the eigenvalues of Ĥε + V∗ converge to the
eigenvalues of the operator Ĥ + V∗, where Ĥ is the following operator in
L2(R, L2(Sd−1))

Ĥ = −d
2u

dr2
+ K̃u+

χ∗
r2

(−∆θu+ αdu), (I − P̃0)u(1, ·) = 0.

Denote the eigenvalues of Ĥ + V∗ by −
(
β

(0)
m

)2, where β(0)
m > 0. Then

(6.2) and (6.12) imply

Proposition 6.2. For any pair of finite numbers r2 > r1 ≥ 0

−
∫ r2

r1

log
d(ESHS(λ)f, f)

dλ

dλ

2
√
λ
≤ π

(∫ ∞

1

∫
Sd−1

V (r, θ)|φ̃(θ)|2 dθ dr

+2
∑

β(0)
m +

∫
Sd−1

|∇θφ̃(θ)|2 dθ + C(d, r1, r2, f0)
)
.

(6.13)

In order to control the contribution of roots β(0)
m of eigenvalues into the

right hand side of (6.13) we need

Proposition 6.3. Let C1 be the constant from (2.6). Let Λj(V ) be negative
eigenvalues of−∆+V −C1

ξ(r)
r2

on the whole space. Then there is a constant
Cd > 0 such that∑

β(0)
m ≤

∑
|Λj(V )|1/2 + ‖V ‖1/2

∞ + Cd.(6.14)

Proof. Recall that H0 is unitary equivalent to the operator

−d
2u

dr2
− ∆θu

r2
+
αd
r2
u, u(1, ·) = 0,



16 O. SAFRONOV, G. STOLZ

whose resolvent differs from the resolvent of Ĥ − K̃ by an operator of
rank 1. For any self-adjoint operator T and t > 0 denote N(t, T ) =
rankET (−∞,−t). Then∑

β(0)
m =

∫ ||K̃||+||V ||∞

0

N(t, Ĥ + V∗)
dt

2
√
t

≤
∫ ||K̃||+||V ||∞

0

(1 +N(t,H0 + K̃ + V ))
dt

2
√
t

≤ tr (H0 + K̃ + V )
1/2
− + 2||V ||1/2∞ + 2||K̃||1/2.

Now the assertion follows from the variational principle since

H0 ≥ −∆− C1
ξ(r)

r2
. �

By multiplying the potential with a constant ε0 > 1, we can absorb the
term −C1ξ(r)/r

2 and arrive at a trace bound is terms of the negative eigen-
values of −∆ + ε0V :

Corollary 6.1. Let ε0 > 1 and let λj(ε0V ) be the negative eigenvalues of
−∆ + ε0V on the whole space. Then for any ε0 > 1 there is a constant
C(d, ε0) > 0 such that∑

β(0)
m ≤

∑
|λj(ε0V )|1/2 + ‖V ‖1/2

∞ + C(d, ε0).(6.15)

7. SPECTRAL MEASURES CONVERGE WEAKLY

Much of the work which remains to complete the proof of Theorem 2.1
is to remove the remaining three restrictive assumptions (i), (ii) and (iii)
which were made in Section 3, which will all be done through arguments
involving weak convergence of spectral measures. Note that the limiting
argument to remove (iv) was already incorporated in Section 6.

First we prove the following result which allows us to pass from V∗ =∑l
j=0 SjV

∑l
j=0 Sj to V .

Proposition 7.1. Let V be a compactly supported smooth function and
f ∈ L2(Rd \ B1). Then the quadratic forms of resolvents ((Hl − z)−1f, f)

corresponding to the ”potential”
∑l

j=0 SjV
∑l

j=0 Sj converge uniformly
in z to ((H − z)−1f, f) when z belongs to any compact subset of the up-
per half plane. Therefore the sequence of measures (EHl

(·)f, f) converges
weakly to the spectral measure (EH(·)f, f).
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Proof. Fix f ∈ L2 and let ε > 0 be given. Assume that K is a compact
subset in the upper half plane. Then for any self-adjoint operator T = T ∗

||(T − z)−1|| ≤ C, ∀z ∈ K,

with a constant C independent of T and z. One can also choose a finite
number of points zj ∈ K so that any z ∈ K satisfies

(7.1) ||(T − z)−1 − (T − zj)
−1|| ≤ ε, ∀T = T ∗,

for some zj . Now suppose z is near zj and (7.1) is fulfilled. Choose u0 ∈
C∞0 (Rd \B1) so that the function u = (H − zj)u0 is a good approximation
of f :

||u− f || ≤ ε.

Then
||
[
(Hl − zj)

−1 − (H − zj)
−1

]
(f − u)|| ≤ 2Cε.

On the other hand,[
(Hl − zj)

−1 − (H − zj)
−1

]
u = (Hl − zj)

−1(V − V∗)u0,

and

(V − V∗)u0 = (I −
l∑

j=0

Si)V u0 +
l∑

i=0

SiV (I −
l∑

m=0

Sm)u0

converges to zero in L2 as l tends to ∞. That proves that for each j we can
find l so that

||
[
(Hl − zj)

−1 − (H − zj)
−1

]
f || ≤ (2C + 1)ε.

Since we deal with a finite number of indices j the uniform convergence
follows from (7.1). �

Now let φ be an arbitrary normalized smooth function on the sphere Sd−1

which satisfies (2.5). Consider the measure (EH(·)f, f) for f as in The-
orem 2.1. We can find a sequence φn of finite linear combinations of Yj
with norm 1 which converges to φ in C2(Sd−1). Note that the operator K
depends continuously on φ and therefore we can assume that the operator
H is defined with a fixed but already arbitrary φ. Obviously the sequence
of functions fn(r, θ) = φn(θ)f0(r) will converge to f in L2. Therefore the
sequence ((H − z)−1fn, fn) converges uniformly in z to ((H − z)−1f, f)
when z belongs to any compact subset of the upper half plane. Thus, using
also Proposition 7.1 and taking limits in the estimate found from combining
Proposition 6.2 and Corollary 6.1,
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Proposition 7.2. For any pair of finite numbers r2 > r1 ≥ 0 and for any
ε0 > 1

−
∫ r2

r1

log
[d(EH(λ)f, f)

dλ

] dλ√
λ

(7.2)

≤ 2π
(∫ ∞

1

∫
Sd−1

V (r, θ)|φ(θ)|2 dθ dr + 4||V ||1/2∞

+ 2
∑

|λj(ε0V )|1/2 +

∫
Sd−1

|∇θφ(θ)|2 dθ

+ C(ε0, d, f0, r1, r2)
)
,

where λj(ε0V ) are the eigenvalues of −∆ + ε0V .

Let χΩ be the characteristic function of the cone Ω. We decompose a
compactly supported potential V into a suitable sum V = V1 + V2 as in
Theorem 1.1, so that χΩV2 = 0 and V2 ≥ 0. Let us also introduce VΩ =
V2 − V1 and denote by HΩ the operator corresponding to the potential VΩ,
i.e. HΩ = H − V + VΩ.

When used for HΩ, the trace inequality (7.2) has a term depending on VΩ

which is of opposite sign compared to the corresponding term in the trace
formula forH (note that φ is supported in Ω and thus V2 does not contribute
to (7.2)). Therefore by adding the trace formula for V to the trace formula
for VΩ we obtain after cancelation

−
∫ r2

r1

log
[d(EH(λ)f, f)

dλ

] dλ√
λ
−

∫ r2

r1

log
[d(EHΩ

(λ)f, f)

dλ

] dλ√
λ

(7.3)

≤ 4π
(
4||V ||1/2∞ +

∑
|λj(ε0V )|1/2

+
∑

|λj(ε0VΩ)|1/2 +

∫
Sd−1

|∇θφ(θ)|2 dθ + C
)
,

where C = C(ε0, r1, r2, f0, d).
Note that the second term on the left hand side of (7.3) is bounded from

below due to Jenssen’s inequality by a constant C(r1, r2) depending only
on r1 and r2. The right hand side of (7.3) can be estimated by using the
technique of [28]. We can easily show that if V + VΩ is positive then∑

j

√
|λj(ε0V )|+

∑
j

√
|λj(ε0VΩ)|(7.4)

≤ C(ε0, r)
(
[

∫
Br

|V̂1(ξ)|2 dξ](d+1)/4 +

∫
Rd

|V1(x)|d+1dx
)
,

for all V ∈ C∞0 (Rd), d ≥ 3, where Br is the ball of radius r around zero. If
V = −VΩ, then this is a simple consequence of the results of [28]. For the
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general case it follows from the variational principle. Due to the (7.4) the
integrals of the function

log
[ d
dλ

(EH(λ)f, f)
]

can be estimated as follows:∫ r2

r1

log
[ d
dλ

(EH(λ)f, f)
]
≥ −C(ε0, r)

(
[

∫
Br

|V̂1(ξ)|2 dξ](d+1)/4+

+||V ||1/2∞ +

∫
Rd

|V1(x)|d+1dx
)
− C(ε0, f0, φ, r1, r2)

(7.5)

for all r > 0 and r2 > r1 > 0. In the next proposition we finally remove the
assumption of compact support and smoothness for V .

Proposition 7.3. Let V satisfy the conditions of Theorem 2.1. Then there
exists a sequence Vn of compactly supported smooth functions converging
to V locally in L2 with the properties Vn = V1,n + V2,n,

(7.6)
∫
|V1,n|d+1 dx < C(V ), ||Vn||∞ < C(V ),

(7.7) χΩV2,n = 0, V2,n ≥ 0, ∀n,
and

(7.8)
∫
|ξ|≤δ/2

|V̂1,n(ξ)|2 dξ < C(V ),

such that the quadratic forms of the resolvents ((Hn−z)−1f, f) correspond-
ing to Vn converge uniformly in z to ((H− z)−1f, f) when z belongs to any
compact subset of the upper half plane. Therefore the sequence of mea-
sures (EHn(·)f, f) converges weakly to the spectral measure (EH(·)f, f)
for a fixed function f ∈ L2(Rd \B1).

Proof. The existence of a sequence Vn satisfying (7.6), (7.7) and (7.8)
and converging locally in L2 to V follows from standard arguments. Using
this, the proof of resolvent convergence is virtually identical to the proof of
Proposition 7.1, in fact slightly simpler. So we omit it. �

Finally according to inequality (6.13) and Propositions 7.3 and 7.1 we
observe that there exists a sequence of operators Hl and a function f spec-
ified in the conditions on Theorem 2.1 such that the measures (EHl

(·)f, f)
weakly converge to (EH(·)f, f) and for any fixed c > 0∫ c

0

log(d(EHl
(λ)f, f)/dλ) dλ

(1 + λ3/2)
√
λ

> −C(V ), ∀l,
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where C(V ) is independent of c. Therefore due to the statement on the
upper semi-continuity of an entropy (see [15]) we obtain∫ c

0

log(d(EH(λ)f, f)/dλ) dλ

(1 + λ3/2)
√
λ

> −C(V ),

The proof of Theorem 2.1 is complete.
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