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Abstract

We defineC
∗-algebras on a Fock space such that the Hamiltonians of quantum field models with

positive mass are affiliated to them. We describe the quotient of such algebras with respect to the
ideal of compact operators and deduce consequences in the spectral theory of these Hamiltonians: we
compute their essential spectrum and give a systematic procedure for proving the Mourre estimate.
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1 Introduction

This paper is motivated and related to the work on the spectral and scattering theory of quantum field
models initiated in [HS, Ge1] and further developed in [DeG1, DeG2, DJ]. Our purpose is to show that
abstractC∗-algebra techniques allow one to obtain in this context quite general results in a rather simple
and systematic way which avoids ad-hoc and intricate constructions. We use ideas introduced in [BG1,
BG3] in the context of theN -body problem and in a more general setting in [GI1]. The mainpoint of this
approach is that understanding the quotient of aC∗-algebra with respect to the ideal of compact operators†

gives a lot of information relevant to the spectral analysisof the operators affiliated to the algebra. In
[GI1, GI2] the relevantC∗-algebras are generated by a set of “elementary” Hamiltonians specific to a
certain physical situation. The “real” Hamiltonians are then the self-adjoint operators affiliated to the
algebra. We adopt here the same strategy.

In order to avoid any misunderstanding we emphasize that thetopics considered in this paper are quite
far from the theory of relativistic quantum fields. As in the references quoted above (and in the Reference
section) our results are relevant only for quantum field models with a spatial cutoff and living in a Fock
space (hopefully this last restriction will be removed in the near future). On the other hand, our approach
clearly covers many physically interesting models of the many-body theory, our focus being on the study
of systems with an infinite number of degrees of freedom and without particle number conservation.

Our results on the spectral analysis of quantum field Hamiltonians (QFH) are consequences of the theorem
stated below‡. Let H be a complex Hilbert space and letΓ(H) be the symmetric or antisymmetric
Fock space overH. The field operatorsφ(u) and the Segal operatorsΓ(A) are defined as usual. If
U = (u1, . . . , un) belongs to the Cartesian powerHn we setφ(U) = φ(u1) . . . φ(un); in the casen = 0
this is interpreted asφ(∅) = 1Γ(H). If ‖A‖ < 1 thenφ(U)Γ(A) is a well defined bounded operator. Let
K (H) be the space of all compact operators onΓ(H).

Theorem 1.1 LetO be an abelianC∗-algebra onH such that its strong closure does not contain finite
rank projections. LetF (O) ⊂ B(Γ(H)) be theC∗-algebra generated by the operatorsφ(U)Γ(A) with
U as above andA ∈ O with ‖A‖ < 1. Then there is a unique morphismP : F (O) → O ⊗F (O) such
thatP [φ(U)Γ(A)] = A⊗ [φ(U)Γ(A)] for all U, A. We havekerP = K (H), which defines a canonical
embedding

F (O)/K (H) →֒ O ⊗F (O). (1.1)

This statement has the advantage that it is simple and coversboth the bosonic and fermionic cases. Al-
ternative, technically more convenient, versions of Theorem 1.1 are Theorem 5.4 (see also Lemma 5.11)
and Theorem 6.2. Instead of working separately with the Boseand Fermi case one may consider a su-
persymmetric (orZ2-graded) Hilbert spaceH as in [De] which gives a unified approach to the subject.
Since this requires more preliminary developments, and since one gets the same result by taking a tensor
product of the bosonic and fermionic Fock space, we did not present this version.

In spite of the simplicity of its statement, Theorem 1.1 has important consequence in the spectral theory
of QFH: it immediately gives a description of the essential spectrum of these Hamiltonians and also gives
a systematic and simple way of proving the Mourre estimate for them with conjugate operators of the
form A = dΓ(a). Such an estimate allows one to prove absence of singular continuous spectrum and is
an important step in the proof of asymptotic completeness, cf. [DeG1, DeG2, Am1, Am2].

† More general ideals also play a rôle, cf. [BG1, BG3, ABG].
‡ In this introduction we shall freely use notions, notationsand terminology which are defined in precise terms in the bodyof

the paper, see especially Sections 2, 6 and 7.
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The first difficulty one meets in the algebraic approach we useis the isolation of the correct “algebra of
energy observables”, in the terminology of [GI1, GI2]. In fact, if the algebra we start with is too large,
then its quotient with respect to the compacts will probablybe too complicated to be useful. On the other
hand, we cannot choose it too small because then physically relevant Hamiltonians will not be affiliated
to it. Since we have chosen the algebrasF (O) in such a way that general classes of QFH are self-adjoint
operators affiliated to them, it seems to as quite remarkablethat the description of the quotient given in
(1.1) is so simple.

One can also give a priori justifications of the choice ofF (O), we describe two of them below. First, the
algebraF (O) can be obtained by a procedure completely analogous to that used in [GI1] in the setting of
quantum systems with a finite number of degrees of freedom. WeinterpretH as the one particle Hilbert
space andO as theC∗-algebra generated by the one particle kinetic energy Hamiltonians†. We take as
algebra of kinetic energy observables of the fieldΓ(O) = C∗(Γ(A) | A ∈ O, ‖A‖ < 1), because this
is theC∗-algebra generated by the operators of the form dΓ(h) with h a self-adjoint operator operator
affiliated toO with inf h = m > 0 (in this paper we restrict ourselves to the case of particleswith strictly
positive mass). Now we have to decide what kind of interactions we take into account. It is characteristic
to quantum fields that the interaction term is some kind of generalized polynomial in the field operators. In
the fermionic case we define the “algebra of elementary interactions”F (H) as theC∗-algebra generated
by polynomials in the field operators. Since in the bosonic case the field operators are not bounded, we
defineF (H) in this case as theC∗-algebra generated by operators of the form

∫
E

eiφ(u)f(u)dEu, where
E is a finite dimensional vector subspace ofH, dEu is the measure associated to the Euclidean structure
we have onE, andf is an integrable function onE. Finally, the algebra of energy observables of the
field should be the norm closed linear space of operators onΓ(H) generated by the productsFS with
F ∈ F (H) andS ∈ Γ(O). It is easy to see that this is exactlyF (O).

A second characterization of the algebraF (O) is physically more satisfactory. Let us callelementary
quantum field Hamiltonian of typeO a self-adjoint operator of the formH = dΓ(h) + V , whereh is a
self-adjoint operator onH affiliated toO such thath ≥ m for some realm > 0 andV ∈ F (H) is a
symmetric operator. This seems to be the smallest class of self-adjoint operators which may naturally be
thought as QFH. ButF (O) is just theC∗-algebra generated by these QFH (Proposition 3.10).

On the other hand, the condition which characterizesP in Theorem 1.1 can be stated in the following
equivalent form:P(H) = h⊗ 1Γ(H) + 1H⊗H for each elementary QFH (Proposition 5.10 and Lemma
5.11). But this relation has a simple physical interpretation: it says that by taking the quotient with respect
to the compacts one gets the Hamiltonian of the system consisting of a free particle with kinetic energy
h and of the initial field (the interaction between them being cutoff). So one particle has been pull out
from the field without modifying the Hamiltonian of the field,which is possible because it consists of a
(potentially) infinite number of particles.

As we said above, the embedding (1.1) has interesting consequences in the spectral analysis of the self-
adjoint operators affiliated toF (O). Thus it is important to show that physically realistic QFH belong to
this class and this is not at all obvious because the elementary QFH which generate the algebra are just
toy models, they only look like real QFH. In Section 7 we give several general criteria for an operator to
be affiliated toF (O) which show that the class of affiliated Hamiltonians is large. As an application, we
point out in Section 9 an abstract class of operators affiliated toF (O) which covers the Hamiltonian of
theP (ϕ)2 model with a spatial cutoff. In Section 10, where we show how to treat coupled systems in our
framework, we prove that massive Pauli-Fierz Hamiltoniansare affiliated toF (O) ⊗K(L ) (L is the
Hilbert space of the confined system) and deduce the locationof their essential spectrum and the Mourre

† We assume here thatO acts non-degenerately onH, the only situation of physical interest. The model one should always have
in mind isH = L2(X) with X a locally compact abelian group, the configuration space of the particle, andO = C0(X∗), the
algebra of continuous, convergent to zero at infinity, functions of the momentum operator.
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estimate under conditions on the form factor weaker than usual (see assumption (PF) 40).

We shall describe now in colloquial terms the kind of resultswe get concerning the spectral properties
of the operators affiliated toF (O) (precise statements and details are in Sections 7, 8 and 10).In what
concerns the essential spectrum, the following is an immediate consequence of (1.1): ifH is a self-adjoint
operator affiliated toF (O) then

σess(H) = σ(P(H)). (1.2)

HereH̃ ≡ P(H) is a self-adjoint operator† onH⊗ Γ(H) affiliated toO ⊗F (O). If X is the spectrum
of the abelian algebraO thenO⊗F (O) ∼= C0(X ; F (O)) andH̃ is identified with a continuous family
{H̃(x)}x∈X of self-adjoint operators onΓ(H) affiliated toF (O). Then (1.2) can be written as:

σess(H) =
⋃

x∈X
σ(H̃(x)). (1.3)

The Hamiltonians of the quantum field models usually considered in the literature are, however, much
more specific than just affiliated toF (O): they are bounded from below and have the property that there
is a self-adjoint operatorh affiliated toO with h ≥ m > 0 such thatP(H) = h ⊗ 1Γ(H) + 1H ⊗ H .
We call such QFHstandard(Definition 7.7). The simplest standard QFH are the elementary ones, but
the class is much larger, for example theP (ϕ)2 and Pauli-Fierz models as well as the fermionic models
considered in [Am1, Am2] belong to this class. Now for a standardH we clearly have:

σess(H) = σ(h) + σ(H). (1.4)

This formula covers the models treated in [DeG1, DeG2, DJ, Am1, Am2] (in historical order). The
version (11.9) for systems with a particle number cutoff covers the spin-boson model [HS, Ge1].

We then study the Mourre estimate forstandardQFH (in this case the result is quite explicit, but more
general situations may be treated, see Remark 8.10). As in [BFS, BFSS, DeG1, DeG2, Sk] we consider
only conjugate operators of the formA = dΓ(a) wherea is a self-adjoint operator onH. We assume
e−itaOeita = O for all realt and thatt 7→ e−itaSeita is norm continuous ifS ∈ O (these conditions are
easy to check in applications). Moreover,H andh must satisfy usual regularity conditions with respect
to A anda respectively (see Theorem 8.6). Finally, the commutator[h, ia] must satisfy a weak local
positivity condition (this is assumptionρa

h ≥ 0 in Theorem 8.6), namely:

for each realλ andδ > 0 there isε > 0 such thatEh(λ, ε)[h, ia]Eh(λ, ε) ≥ −δEh(λ, ε) (1.5)

whereEh(λ, ε) is the spectral projection ofh associated to the interval[λ−ε, λ+ε]. In fact, in applications
one choosesa such that[h, ia] ≥ 0, so this condition is trivial to check.

Let us define thethreshold setτa(h) of h with respect toa as the complement inR of the set ofλ where
the Mourre estimate holds, i.e.λ is such that:

there areε, δ > 0 and a compact operatorK such thatEh(λ, ε)[h, ia]Eh(λ, ε) ≥ δEh(λ, ε) + K. (1.6)

Denoteτn
a (h) = τa(h) + · · ·+ τa(h) (n terms) and let

τA(H) =
[⋃∞

n=1 τn
a (h)

]
+ σp(H), (1.7)

Then Theorem 8.6 says thatτA(H) is the threshold set ofH with respect toA. So at each point outside
τA(H) the operatorA is conjugate toH in the sense of Mourre (i.e. an estimate similar to (1.6) holds).

The relation (1.7) is quite intuitive physically speaking.It says that an energyλ is anA-threshold forH
if and only if one can write it as a sumλ = λ1 + · · ·+ λn + µ where theλk area-threshold energies of

† Or, in very singular situations that do not concern us here, aslightly more general object, since its domain could be not dense.
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the free particle of kinetic energyh andµ is the energy of a bound state of the field. So at energyλ one
can extractn free particles from the field such that each one has ana-threshold energy and such that the
field remains in a bound state.

We wish to make some historical comments concerning the methods we use. First, the fact that quotients
of C∗-algebras with respect to the ideal of compact operators play an important rôle is an old and quite
natural idea in the context of the theory of pseudo-differential operators; the references [Co, Ty] seem
particularly relevant for us. Second, the first use ofC∗-algebra methods in the spectral analysis of phys-
ically interesting models appears, as far as we know, in the work of J. Bellissard [Be1, Be2] on solid
state physics (see [Be3] for more recent results and references). But theC∗-algebras and theC∗-algebra
techniques used by Bellissard and his collaborators are very different from ours, e.g.K-theory plays an
important rôle in their works but are probably irrelevant here (it would be nice if somebody would show
the contrary). The usefulness of techniques like computation of quotients ofC∗-algebras in the spectral
theory of many body systems and quantum field models seems to have been first noticed in [BG1, BG3].
Note that some of the results described here were announced in [Geo, GI1, GI2].

The paper is organized as follows. In Section 2 we summarize the most important notations and results
from the theory of symmetric Fock spaces following [BR, BSZ,Gu] and also the more recent [DeG1,
DeG2]. We prefer to define the scalar product (2.13) on a Fock space as in [Ni] and the definition (2.6) of
the annihilation and creation operators in terms of the fieldoperators is slightly unusual, which explains
some differences in the numerical factors. Similar conventions are adopted in the antisymmetric case
presented in Section 6 where we use [PR] as main reference.

In Section 3 we define the algebrasF (O) and present some of their properties and alternative charac-
terizations. In Section 4 we prove the main theorem for the algebraA (H) ≡ F (C1H), which is an
important technical step but also has an intrinsic mathematical interest because we show that the quotient
A (H)/K (H) is canonically isomorphic toA (H). We also give there some consequences of this fact
in the spectral analysis of the elements ofA (H). In Section 5 we prove our main technical result, Theo-
rem 5.4. We consider only the bosonic case until Section 6 where we describe briefly the corresponding
results in the fermionic case (which is nicer but easier).

Sections 7-11 are devoted to applications in the spectral analysis of quantum field models of Theorem
1.1. In Section 7 we give criteria for affiliation toF (O) and a general formula for the essential spectrum
of the operators affiliated to this algebra (Theorem 7.6 and relation (7.6)). We also introduce there the
important class of standard QFH and describe their essential spectrum. The main result of Section 8 is
Theorem 8.6 which gives the Mourre estimate for such Hamiltonians. In Section 9 we show that a general
class of QFH, including theP (ϕ)2 model, are standard in the sense defined before, hence all these results
apply to them. In Section 10 we sketch a method of analyzing several fields with couplings between
them and external systems and consider in detail the massivePauli-Fierz model. Note that the Pauli-Fierz
Hamiltonian is also standard. In the last section we treat models with a particle number cutoff, which
have some interesting features. We do not treat explicitly the fermionic case because it is easy to see
that models like those considered in [Am1, Am2] are standardin our sense so their spectral properties
(essential spectrum and Mourre estimate) follow from the general theorems of Sections 7 and 8.

Acknowledgments:I am grateful to Christian Gérard and George Scandals for very helpful discussions,
cf. the Remarks 4.5 and 4.8 and the comment after Theorem 9.5.
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2 Bosonic Fock space

1. Our notations are rather standard but we recall here some of them to avoid any ambiguity. IfE ,F are
vector spaces thenL(E ,F) is the space of linear mapsE → F and we abbreviateL(E) = L(E , E). If E ,F
are Banach spaces thenB(E ,F) andK(E ,F) are the subspaces ofL(E ,F) consisting of continuous or
compact maps respectively and we setB(E) = B(E , E), K(E) = K(E , E). When needed for the clarity
of the argument we denote by1E the identity operator on a Banach spaceE or the identity element of an
algebraE . The domain of an operatorT is denotedD(T ). The Hilbert spaces are complex Hilbert spaces
unless the contrary is explicitly mentioned and the scalar product is linear in the second variable. If a
symbol likeT (∗) appears in a relation, this means that the relation holds both for T andT ∗. We denote
by C∗(T | T ∈ T , P1, P2, . . . ) theC∗-algebra generated by a familyT of operatorsT which have the
propertiesP1, P2, etc. TheC∗-algebra generated by a self-adjoint operatorH is C0(H) = {f(H) | f ∈
C0(R)}. More generally, theC∗-algebra generated by a family of self-adjoint operators isthe smallest
C∗-algebra which contains the re solvents of these operators.A morphismbetween twoC∗-algebras is a
∗-morphism.C0(X) is the space of continuous complex valued functions on the locally compact space
X that converge to zero at infinity andCc(X) that of continuous functions with compact support.

We need a version of the polarization formula. LetX, Y be vector spaces,Q : X × · · · × X → Y an
n-linear symmetric map, and let us setq(x) = Q(x, . . . , x). Denote|a| the cardinal of a seta. Then:

(−1)nn!Q(x1, . . . , xn) =
∑

a⊂{1,...,n}(−1)|a|q
(∑

i∈a xi

)
. (2.1)

2. Let H be a complex Hilbert space with scalar product〈·|·〉 and letU(H) be the group of unitary
operators onH. A (regular) representation of the CCR overH, or a Weyl system overH, is a couple
(H , W ) consisting of a Hilbert spaceH and a mapW : H → U(H ) which satisfies

W (u + v) = eiℑ〈u|v〉W (u)W (v) for all u, v ∈ H (2.2)

and such that the restriction ofW to each finite dimensional subspace is strongly continuous.Then

W (0) = 1, W (u)∗ = W (−u), W (u)W (v) = e−2iℑ〈u|v〉W (v)W (u). (2.3)

We denoteW (H) theC∗-algebra generated by the operatorsW (u) and we call itWeyl algebra overH:

W (H) = C∗(W (u) | u ∈ H). (2.4)

TheC∗-algebrasW (H) associated to two Weyl systems are canonically isomorphic,see [BR] for a proof.
This also gives canonical embeddingsW (K) ⊂ W (H) for closed subspaceK ofH.

Thefield operatorassociated to the one particle stateu ∈ H is defined as the unique self-adjoint operator
φ(u) onH such thatW (tu) = eitφ(u) for all realt. We have for allu, v ∈ H:

W (u)φ(v)W (u)∗ = φ(v) − 2ℑ〈u|v〉 and [φ(u), φ(v)] = 2iℑ〈u|v〉. (2.5)

The spaceH ∞ of vectorsf ∈ H such thatu 7→ W (u)f is a C∞ map on each finite dimensional
subspace ofH is a dense subspace ofH stable under all the operatorsW (u) andφ(u). Moreover,H ∞

is a core for eachφ(u) (by Nelson Lemma) and the second relation in (2.5) holds in operator sense on
H ∞. The mapu 7→ φ(u) ∈ L(H ∞) is clearlynot linear but onlyR−linear, as it follows from (2.2)
after replacingu, v by tu, tv with t real and then taking derivatives att = 0.

Theannihilationandcreationoperators associated to the one particle stateu are defined by

a(u) = (φ(u) + iφ(iu))/2, a∗(u) = (φ(u)− iφ(iu))/2 (2.6)
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on H ∞ and then extended by taking closures. OnH ∞ we haveφ(u) = a(u) + a∗(u). The map
u 7→ a∗(u) ∈ L(H ∞) is linear,u 7→ a(u) ∈ L(H ∞) is antilinear, and:

[a(u), a∗(v)] = 〈u|v〉, [a(u), a(v)] = 0, [a∗(u), a∗(v)] = 0 onH ∞. (2.7)

On the other hand, from (2.5) we also get:

W (u)a(∗)(v)W (u)∗ = a(∗)(v)− 〈v|iu〉(∗), [a(∗)(v), W (u)] = 〈v|iu〉(∗)W (u). (2.8)

Some of our later constructions will depend only on the existence of aparticle number operator for the
Weyl systemW , which is a self-adjoint operatorN onH such that

eitNW (u)e−itN = W (eitu) for all t ∈ R andu ∈ H. (2.9)

Such an operator is clearly not uniquely defined and it is easyto prove that if it exists thenN can be
chosen such that its spectrum be eitherN = {0, 1, 2, . . .} or Z, see [Ch1]. In [Ch2] it is shown that we
are in the first situation if and only ifW is a direct sum of Fock representations (cf. below). Since

W (eitu) = W (u cos t + i sin t) = e
i
2
‖u‖2 sin 2tW (u cos t)W (iu sin t)

by taking derivatives in (2.9) att = 0 we get (this is easy to justify in the Fock representation):

W (u)NW (u)∗ = N − φ(iu) + ‖u‖2, [N, W (u)] = W (u)(φ(iu) + ‖u‖2). (2.10)

Replacingu by tu in the last equation and then taking the derivatives att = 0 we get

[N, iφ(u)] = φ(iu), (N + 1)a(u) = a(u)N, (N − 1)a∗(u) = a∗(u)N. (2.11)

A vacuum statefor the Weyl systemW is a vectorΩ ∈ H with ‖Ω‖ = 1, Ω ∈ D(φ(u)) for all u ∈ H,
and such that the mapu 7→ φ(u)Ω is linear. It is easy to prove that a vacuum state belongs toH ∞ and
that a vectorΩ of norm one is a vacuum state if and only ifΩ ∈ ∩uD(a(u)) anda(u)Ω = 0 for all u, see
for example [DeG2, Proposition 4.1].

A Fock representationof the CCR overH is a triple(H , W, Ω) consisting of a Weyl system(H , W )
overH and a vacuum stateΩ which is cyclic forW . It is easy to show that two Fock representations are
canonically isomorphic, more precisely if(H ′, W ′, Ω′) is a second Fock representation then there is a
unique bijective isometryJ : H → H ′ such thatJΩ = Ω′ andJW (u) = W ′(u)J for all u ∈ H. For
this reason one may saytheFock representation and speak about “realizations” of thisrepresentation. The
realizations are constructed such as to diagonalize various sets of operators. IfH is infinite dimensional
then there are irreducible representations of the CCR whichare not Fock.

The Fock space realization that we describe below is motivated by the following observations. LetH 0 =
CΩ and for each integern ≥ 1 let H n be the closed linear subspace ofH generated by the vectors of the
form a∗(u1) . . . a∗(un)Ω with uk ∈ H. From (2.7) and sinceΩ is cyclic we getH = ⊕∞

n=0H
n (Hilbert

direct sum) and‖a∗(u)nΩ‖ =
√

n!‖u‖n. Let us denoteS(n) the set of permutations of{1, . . . , n}.
Then, since the operatorsa∗(u) are pairwise commuting, we have:

〈a∗(u1) . . . a∗(un)Ω|a∗(v1) . . . a∗(vn)Ω〉 = ∑
σ∈S(n)〈u1|vσ(1)〉 . . . 〈un|vσ(n)〉 (2.12)

3. Let H∨
alg be the symmetric algebra† over the vector spaceH. We denote byuv the product of two

elementsu, v of H∨
alg and byun then-th power of an elementu ∈ H∨

alg. The unit element is denoted

† This is a complex abelian unital algebra in whichH is linearly embedded and which is uniquely determined (modulo canonical
isomorphisms) by the following universal property: ifξ : H → A is a linear map with values in a unital algebraA such that
ξ(u)ξ(v) = ξ(v)ξ(u) for all u, v then there is a unique extension ofξ to a morphism of unital algebrasH∨

alg → A (see [Bo] for
example). Concerning the notationuv we use for the product we note that in concrete situations, when some other productuv is
already defined, this notation could be ambiguous. Then we replace it byu ∨ v and denote byu∨n the powers ofu.
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either 1 or Ω. Let H∨n
alg be the linear subspace spanned by the powersun with u ∈ H. Note that

H∨0
alg = CΩ. ThenH∨

alg =
∑

n∈N
H∨n

alg (direct sum of linear spaces) and forf ∈ H∨n
alg andg ∈ H∨m

alg we

havefg ∈ H∨(n+m)
alg . We setH∨n

alg = {0} for n < 0, soH∨
alg becomes aZ-graded algebra.

We shall equipH∨
alg with the unique scalar product such thatH∨n

alg ⊥ H∨m
alg if n 6= m and

〈u1 . . . un|v1 . . . vn〉 =
∑

σ∈S(n)〈u1|vσ(1)〉 . . . 〈un|vσ(n)〉 (2.13)

From the polarization formula (2.1) we see that this scalar product is uniquely determined by the condition
〈un|vm〉 = n!〈u|v〉nδnm for all u, v ∈ H andn, m ≥ 0 (see also the characterization given on page 9).
Then it is easy to prove that:

‖uv‖ ≤
(

n + m

n

)1/2

‖u‖ ‖v‖ if u ∈ H∨n
alg andv ∈ H∨m

alg . (2.14)

We define theFock spaceΓ(H) ≡ H∨ overH as the completion ofH∨
alg for the scalar product defined by

(2.13). LetH∨n be the closure ofH∨n
alg in Γ(H). Then we can writeΓ(H) =

⊕
nH∨n, a Hilbert space

direct sum. We shall also use the notationsΓn(H) =
∑n

k=0H∨n andΓfin(H) =
⋃

n Γn(H). Note that
H∨0 ≡ CΩ. The vectorΩ is thevacuum stateand the orthogonal projection on it isω = |Ω〉〈Ω|.
Using (2.14) we can extend by continuity the multiplicationand get a structure of unital abelian algebra
onΓfin(H) such thatH∨nH∨m ⊂ H∨(n+m). Then (2.14) remains valid for allu ∈ H∨n andv ∈ H∨m.
We keep the notationuv for the product of two elementsu andv of Γfin(H).

We denote by1n and1n the orthogonal projections ofΓ(H) onto the subspacesH∨n andΓn(H) respec-
tively. Thus1n = 10 + · · ·+ 1n and10 = ω. Thenumber operatoris defined byN =

∑
n n1n.

For eachu ∈ H the creation operatora∗(u) is the closure of the operator of multiplication byu on
Γ(H) and theannihilation operatora(u) is its the adjoint of. ThenΓfin(H) is included in the domains
of a∗(u) anda(u), is left invariant by both operators, and the operatora(u) is a derivation of the algebra
Γfin(H). Thefield operatorφ(u) = a(u) + a∗(u) is essentially self-adjoint onΓfin(H) and the following
elementary estimate

‖φ(u)pv‖ ≤ ‖2u‖p‖
√

(N + 1) . . . (N + p)v‖ (2.15)

valid for all u ∈ H, v ∈ Γ(H), andp ≥ 1 integer. ThenW (u) = eiφ(u) defines a Weyl system overH.

4. If Ai ∈ B(H) for i = 1, . . . , n are given then there is a unique operatorA1 ∨ · · · ∨ An ∈ B(H∨n)
such that(A1 ∨ · · · ∨ An)un = (A1u) . . . (Anu) for all u ∈ H. We extend it toΓ(H) by identifying
A1 ∨ · · · ∨An ≡ A1 ∨ · · · ∨An1n. By conventionA∨0 = ω.

If A ∈ B(H) then there is a unique unital endomorphismΓ(A) of the algebraΓfin(H) such thatΓ(A)u =
Au for all u ∈ H and such that the restriction ofΓ(A) to eachΓn(H) be continuous. One hasΓ(A)un =
(Au)n if u ∈ H andΓ(A) = ⊕n≥0A

∨n in an obvious sense. The operatorΓ(A) is bounded onΓ(H)
if and only if ‖A‖ ≤ 1 (we keep the notationΓ(A) for its closure). Then‖Γ(A)‖ = 1, Γ(AB) =
Γ(A)Γ(B), Γ(1) = 1 andΓ(0) = ω. Note thatzN = Γ(z) for z ∈ C.

Moreover, there is a unique derivation dΓ(A) of the algebraΓfin(H) such that dΓ(A)u = Au for all
u ∈ H. Thus we have dΓ(A)un = n(Au)un−1 if n ≥ 1 and dΓ(A)Ω = 0. This operator is closable and
we denote its closure by the same symbol. IfA is self-adjoint thenΓ(eiA) = eidΓ(A).

The definition of dΓ(A) is extended as usual to operatorsA which are infinitesimal generators of con-
tractiveC0-semigroups{etA} onH: the operator dΓ(A) is defined by the ruleΓ(etA) = etdΓ(A).
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The following identities hold onΓfin(H) for all A ∈ B(H) andu ∈ H:

Γ(A)a∗(u) = a∗(Au)Γ(A), Γ(A)a(A∗u) = a(u)Γ(A). (2.16)

If A∗A = 1 we also getΓ(A)a(u) = a(Au)Γ(A) by replacingu by Au in the second identity, hence

Γ(A)φ(u) = φ(Au)Γ(A) andΓ(A)W (u) = W (Au)Γ(A) if A∗A = 1. (2.17)

More generally, ifA∗ : H → H is a surjective map then there is an operatorA† ∈ B(H) such that
A∗A† = 1 and then, if we denoteφA(u) = a(A†) + a∗(Au) we get:

Γ(A)a(u) = a(A†u)Γ(A) and Γ(A)φ(u) = φA(u)Γ(A). (2.18)

Observe that ifA ∈ B(H) is invertible thenA† = (A∗)−1.

5. Let K ⊂ H be a linear subspace. Then we have a canonical embeddingK∨
alg ⊂ H∨

alg obtained by
identifyingK∨

alg with the unital subalgebra ofH∨
alg generated byK. If L ⊂ H is another linear subspace

thenK∨
alg andL∨alg are subalgebras of the abelian algebraH∨

alg so we have a natural unital morphism
K∨

alg⊗ L∨alg→ H∨
alg (algebraic tensor product) which is injective if and only ifK ∩ L = 0 and surjective

if and only ifK + L = H. Thus(K ⊕ L)∨alg = K∨
alg⊗ L∨alg.

Let K ⊂ H be a closed subspace. Then the embeddingK∨
alg ⊂ H∨

alg obviously extends to an isometric
embeddingΓ(K) ⊂ Γ(H). Moreover, the canonical algebraic identificationH∨

alg = K∨
alg⊗K⊥∨

alg extends
to a Hilbert space identificationΓ(H) = Γ(K) ⊗ Γ(K⊥). Indeed, the scalar product (2.13) has been
chosen such that the identification map be isometric (the norm of a tensor product of Hilbert spaces being
defined in the standard way). In fact (2.13) is the unique scalar product onH∨

alg such that‖Ω‖ = 1, a
vectoru ∈ H has the same norm inH and inH∨

alg, and for each closed subspaceK ⊂ H:

〈uv | u′v′〉 = 〈u | u′〉〈v | v′〉 = 〈u⊗ v | u′ ⊗ v′〉 for all u ∈ K∨
alg, v ∈ (K⊥)∨alg.

In order to avoid ambiguities we indicate, when necessary, by a subindex the Hilbert space on which
the various objects depend, for exampleWH, NH and so on. We also use abbreviations likeN ′

K =
NK⊥ , Ω′

K = ΩK⊥ , etc. Then, relatively to the factorizationΓ(H) = Γ(K)⊗ Γ(K⊥), we have foru ∈ K:

WH(u) = WK(u)⊗ 1, φH(u) = φK(u)⊗ 1, a
(∗)
H (u) = a

(∗)
K (u)⊗ 1. (2.19)

Note also the relationsΩH = ΩK ⊗ Ω′
K andωH = ωK ⊗ ω′

K. If A = B ⊕ C inH = K ⊕K⊥ then:

Γ(A) = Γ(B)⊗ Γ(C), dΓ(A) = dΓ(B)⊗ 1 + 1⊗ dΓ(C). (2.20)

In particularzNH = zNK ⊗ zN ′

K for |z| ≤ 1 andNH = NK ⊗ 1 + 1⊗N ′
K.

After the identificationΓ(H) = Γ(K)⊗Γ(K⊥) the embeddingΓ(K) ⊂ Γ(H) is nothing else butΓ(K) ≡
Γ(H) ⊗ Ω′

K. Then extending an operatorT defined on the subspaceΓ(K) by zero on the orthogonal
subspace ofΓ(H) amounts to identifyingT ≡ T ⊗ ω′

K. This is coherent with the first relation in (2.20):
Γ(B ⊕ 0) = Γ(B)⊗ Γ(0) = Γ(B)⊗ ω′

K.

Let K (H) = K(Γ(H)) be theC∗-algebra of compact operators onΓ(H). Clearly:

K (H) = K (K)⊗K (K⊥) (2.21)

As explained above, we have a natural identification ofK (K) with aC∗-subalgebraKK(H) of K (H),
a compact operator onΓ(H) being identified with its extension by zero onΓ(K)⊥:

KK(H) ≡ K (K)⊗ ω′
K ⊂K (H). (2.22)
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Lemma 2.1 {KE(H)}, whereE runs over the set of finite dimensional subspaces ofH, is an increasing
family ofC∗-algebras and the closure of its union isK (H).

Proof: It suffices to note that the spacesΓ(E), with E ⊂ H finite dimensional, form an increasing family
of closed subspaces ofΓ(H) whose union is dense inΓ(H).

3 The algebrasF (O)

We fix a complex Hilbert spaceH and to eachC∗-algebraO of operators on it we associate aC∗-algebra
of operators on the bosonic Fock spaceΓ(H) according to the following rule:

Γ(O) = C∗(Γ(A) | A ∈ O, ‖A‖ < 1). (3.1)

SinceΓ(A)Γ(B) = Γ(AB) andΓ(A)∗ = Γ(A∗) this is in fact the norm closed linear space generated by
the operatorsΓ(A) with A ∈ O and‖A‖ < 1. We shall prove in a moment that

Γ(O) = closure of the linear space generated by theΓ(A) with A ∈ O and0 ≤ A ≤ ‖A‖ < 1. (3.2)

Proposition 3.1 The mapO 7→ Γ(O) is increasing and we have:

Γ({0}) = Cω, Γ(C1H) = C0(N) = {θ(N) | θ ∈ C0(N)}. (3.3)

If H = H1 ⊕H2 andO = O1 ⊕O2 for someC∗-subalgebrasOi ⊂ B(Hi), then

Γ(O) = Γ(O1)⊗ Γ(O2) (3.4)

where the tensor product is defined by the identificationΓ(H) = Γ(H1)⊗ Γ(H2).

Proof: The first assertion is obvious and the first relation in (3.3) follows from Γ(0) = ω. Since the
closed subspace generated by the functionsλ 7→ λn with 0 < λ < 1 is dense inC0(N) we see that the
second relation in (3.3) is true. To prove (3.4) we use (2.20)and the fact that forA = A1 ⊕ A2 we have
‖A‖ = sup(‖A1‖, ‖A2‖) so that‖A‖ < 1 if and only if ‖A1‖ < 1 and‖A2‖ < 1.

We shall give a more explicit description ofΓ(O) for an arbitraryO below. Observe first that the linear
subspace ofB(H∨n) generated by the operators of the formA1 ∨ · · · ∨ An with Ai ∈ O is a∗-algebra.
Indeed, this follows from(A1 ∨ · · · ∨An)∗ = A∗

1 ∨ · · · ∨A∗
n and

n!(A1 ∨ · · · ∨An)(B1 ∨ · · · ∨Bn) =
∑

σ∈S(n)(A1Bσ(1)) ∨ · · · ∨ (AnBσ(n)). (3.5)

which is obvious ifA1 = · · · = An andB1 = · · · = Bn and the general case follows by applying twice
the polarization formula (2.1). Thus the norm closed linearspace generated by the operatorsA1∨· · ·∨An

with Ai ∈ O is aC∗-algebra that we shall denoteO∨n. We make the conventionO∨0 = C10 = Cω.

Proposition 3.2 O∨n is the norm closed linear space of operators onH∨n generated by the operators
A∨n with A ∈ O andA ≥ 0. Moreover, we have(3.2)and:

Γ(O) =
⊕

nO∨n ≡ {∑n An1n | An ∈ O∨n, ‖An‖ → 0}. (3.6)
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Proof: Let L be the linear space of operators onH∨n generated by the operatorsA∨n with A ∈ O and
A ≥ 0. From the polarization formula (2.1) we first deduce that theoperatorsA1 ∨· · ·∨An with Ai ∈ O
andAi ≥ 0 belong toL and then, byn-linearity, that the same assertion holds without the condition
Ai ≥ 0. This proves the first assertion of the proposition.

Let L be the norm closed linear space generated by the operatorsΓ(A) such thatA ∈ O and0 ≤ A ≤ a
for somea < 1. Let A ≥ 0 with ‖A‖ < 1. For 0 ≤ t ≤ 1 we then haveΓ(tA) =

∑
tnA∨n, so the

mapt 7→ Γ(tA) ∈ L is of classC∞ and its derivative of ordern at t = 0 is equal ton!A∨n. Clearly
then we getA∨n ∈ L for all A ∈ O, A ≥ 0. From what we proved before we getO∨n ⊂ L . Then
if A ∈ O, ‖A‖ < 1 we haveΓ(A)1n ∈ L and‖Γ(A) − Γ(A)1n‖ ≤ ‖A‖n+1 → 0, soΓ(A) ∈ L .
This clearly provesL = Γ(O), i.e. (3.2). The inclusion⊂ in (3.6) is obvious and the inverse inclusion
follows from the preceding arguments.

We are mainly interested inC∗-algebras of operators onΓ(H) of the following form:

F (O) = C∗(W (u)Γ(A) | u ∈ H, A ∈ O, ‖A‖ < 1). (3.7)

Observe thatΓ(O) ⊂ F (O).

Proposition 3.3 (1) If O1 ⊂ O2 areC∗-subalgebras ofB(H) thenF (O1) ⊂ F (O2).
(2) We haveF ({0}) = K (H), in particularK (H) ⊂ F (O) for all O.
(3) If H = H1 ⊕H2 andO = O1 ⊕O2 for someC∗-subalgebrasOi ⊂ B(Hi), then

F (O) = F (O1)⊗F (O2) (3.8)

where the tensor product is defined by the identificationΓ(H) = Γ(H1)⊗ Γ(H2).

Proof: The first assertion is obvious and an easy proof of (2) involves coherent vectors [Gu]. Indeed:

W (u)Ω = e−‖u‖2/2eiu ≡ e−‖u‖2/2 ∑
n

in

n!u
n

and the linear span of these vectors is dense inΓ(H). Thus the norm closed linear subspace ofB(Γ(H))
generated by the operatorsW (u)ω = |W (u)Ω〉〈Ω| is equal to the space of rank one operators of the
form |u〉〈Ω| with u ∈ Γ(H). But theC∗-algebra generated by these operators is exactlyK (H). Fi-
nally, to prove (3) we argue as in the proof of Proposition 3.1by using (2.19) and (2.20) in order to get
W (u)Γ(A) = [W (u1)Γ(A1)]⊗ [W (u2)Γ(A2)] if u = u1 ⊕ u2 andA = A1 ⊕A2.

If O ⊂ B(H) is aC∗-subalgebra then letHO be the closed linear space generated by the vectorsAu with
A ∈ O, u ∈ H. One says thatO is non-degenerate(or acts non-degenerately onH) if HO = H. Denote
O0 the algebraO when viewed as aC∗-algebra of operators onHO. ThusO0 acts non-degenerately on
HO and we haveO|H⊥

O = {0}, hence by (2) and (3) of Proposition 3.3:

F (O) = F (O0)⊗K (H⊥
O) relatively toΓ(H) = Γ(HO)⊗ Γ(H⊥

O). (3.9)

In some of our results we shall assume thatO is non-degenerate but one may use (3.9) to extend them
to possibly degenerate algebras. We shall not do it explicitly in order to simplify the arguments and also
because this is of no interest in the applications we have in mind. In fact, we interpretO as theC∗-algebra
generated by the allowed one particle Hamiltonians of the field, in particular there should be self-adjoint
operatorsh onH affiliated toO. But this implies thatO is non-degenerate (see Section 7).

Proposition 3.4 If O is non-degenerate thenF (O) is the norm closed linear subspace generated by the
operators of the formW (u)Γ(A) with u ∈ H andA ∈ O such thatA ≥ 0 and‖A‖ < 1.
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Proof: Let M be the norm closed linear subspace generated by the operators of the formW (u)Γ(A)
with A as in the statement of the lemma. ClearlyM ⊂ F (O) and (3.2) implies thatM contains a set
which generatesF (O) as aC∗-algebra, so it suffices to show thatM is a ∗-algebra. Proposition 3.2
shows thatW (u)Γ(A)1n ≡ W (u)A∨n ∈ M if u ∈ H andA ∈ O. By computing derivatives with
respect tot1, . . . , tp of W (t1u1 + · · ·+ tpup) and by using the estimate

‖φ(u)p1n‖ ≤
√

p!‖2
√

n + 1u‖p (3.10)

which is a consequence of (2.15) we getφ(u1) . . . φ(up)Γ(A)1n ∈M for all u1, . . . , up ∈ H. And this
is equivalent toa∗(u)pa(v)q1nΓ(A) ∈M for all u, v, p, q, n.

Now let A, B ∈ O be positive andε > 0 real. Then (2.16) and1na∗(u)pa(v)q = a∗(u)pa(v)q1n−p+q

imply:

1nΓ(A + εB)a∗(u)pa((A + εB)v)q = a∗((A + εB)u)pa(v)q1n−p+qΓ(A) ∈M .

Thus1nΓ(A + εB)a∗(u)pa(w)q ∈M for eachw in the closure of the range of an operator of the form
A + εB (because the preceding expression is norm continuous as function of w). Now let Jν be an
approximate unit forO [Mu, pages 77-78], letRν be the closure of the range ofA + εJν , andNν =
ker(A+εJν), so thatR = N⊥

ν . We havev ∈ Nν if and only if 〈v|Av〉 = 〈v|Jνv〉 = 0 henceNµ ⊂ Nν if
µ ≥ ν. Moreover,Nν , and henceRν , is independent ofε. And we have1nΓ(A+εJν)a∗(u)pa(w)q ∈M
for eachw ∈ Rν by what we proved before. If we make hereε → 0 then we get norm convergence and
so1nΓ(A)a∗(u)pa(w)q ∈M for w ∈ Rν . On the other hand∩νNν = {0} becauseO is non-degenerate
and solimν Jνv = v for all v ∈ H. It follows that{Rν} is an increasing family of closed subspaces
of H whose union is dense inH. Thus we have1nΓ(A)a∗(u)pa(w)q ∈M for w in the union and then
by norm continuity for allw ∈ H. Clearly then we get1nΓ(A)φ(u)p ∈ M for all A ∈ O with A ≥ 0
andu ∈ H. From (3.10) we see that1nW (u) =

∑
p 1n(iφ(u))p/p! the series being convergent in norm.

Hence1nΓ(A)W (u) ∈M for all u ∈ H and positiveA ∈ O. By arguments already used in the proof of
Proposition 3.2 we obtain1nA∨nW (u) ∈M for arbitraryA ∈ O. This clearly impliesΓ(A)W (u) ∈M
if A ∈ O and‖A‖ < 1.

To summarize,M is equal to the norm closed linear subspace generated by the operatorsW (u)Γ(A)
with A ∈ O, ‖A‖ < 1, and we have proved thatΓ(A)W (u) ∈M under the same conditions. ThusM is
stable under taking adjoints. For a productW (u)Γ(A)W (v)Γ(B) we writeΓ(A)W (v) as limit of linear
combinations of operatorsW (w)Γ(C) with C ∈ O, ‖C‖ < 1, and use (2.2) andΓ(C)Γ(B) = Γ(CB).
This givesW (u)Γ(A)W (v)Γ(B) ∈M , henceM is aC∗-algebra.

Remark 3.5 The arguments of the preceding proof show that ifO is non-degenerate thenF (O) is the
norm closed linear span of the operatorsφ(u)nΓ(A) with u ∈ H, n ∈ N andA ∈ O with ‖A‖ < 1.

Remark 3.6 Proposition 3.4 is not valid ifO is degenerate. Indeed, with the notations of (3.9) and if
u = u0 + u1 with u0 ∈ HO, u1 ∈ H⊥

O, then forA ∈ O with ‖A‖ < 1 we have

W (u)Γ(A) = [W (u0)Γ(A0)]⊗ [W (u1)Γ(0)] = [W (u0)Γ(A0)]⊗ |W (u1)Ω〉〈Ω|

and the operators|W (u1)Ω〉〈Ω| do not generate linearlyK (H⊥
O).

Lemma 3.7 AssumeA, B ∈ B(H) and‖A‖ ≤ c, ‖B‖ ≤ c with c < 1. If we set̃c = supk≥1 kck−1 then

‖Γ(A)− Γ(B)‖ ≤ c̃‖A−B‖.
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For u, v ∈ H andn ∈ N we have:

‖(W (u)−W (v))1n‖ ≤ |ℑ〈u|v〉|+ 2
√

n + 1‖u− v‖.

If ‖A‖ < 1 the mapu 7→W (u)Γ(A) is norm continuous onH and‖φ(u)pΓ(A)‖ <∞ for all p.

Proof: To prove the first part it suffices to show that‖A∨k −B∨k‖ ≤ kck−1‖A− B‖ if k ≥ 1. But this
follows from A∨k − B∨k =

∑k−1
j=0 B∨j ∨ (A − B) ∨ A∨(k−1−j). For the proof of the second estimate

we note that (2.2) implies‖(W (u)−W (v))1n‖ ≤ |eiℑ〈v|u〉−1|+‖(W (u− v)1n−1n‖ and then we use

‖(W (u)1n − 1n‖ = ‖
∫ 1

0

W (tu)iφ(u)1ndt‖ ≤ ‖φ(u)1n‖ ≤ 2
√

n + 1‖u‖.

Next observe thatW (u)Γ(A) = W (u)1nΓ(A) + W (u)Γ(A)1⊥n and‖W (u)Γ(A)1⊥n ‖ ≤ ‖A‖n+1. Fi-
nally, the estimate

‖φ(u)pλN‖ ≤ ‖2u‖p‖
√

(N + 1) . . . (N + p)λN‖ ≤
√

p!‖2u‖p‖(N + 1)
p

2 λN‖ (3.11)

is a straightforward consequence of (2.15), and this provesthe last assertion of the lemma.

We define now an analog in the present setting of the graded Weyl algebra which has been introduced
and studied for finite dimensional symplectic spacesH in [BG3, GI3]. The following construction makes
sense for an arbitrary Weyl system(H , W ). A finite dimensional real vector subspaceE of H inherits
an Euclidean structure so it is equipped with a canonical translation invariant measuredEu and the cor-
respondingL1(E) space is well defined. Since the mapu 7→ W (u) is strongly continuous onE, we can
defineW (f) =

∫
E W (u)f(u)dEu ∈ B(H ) if f ∈ L1(E). Let:

F (E,H) = norm closure of{W (f) | f ∈ L1(E)}. (3.12)

From (2.2) one may deduce thatFE(H) is aC∗-algebra and that we have (the proof given in [BG3] for
finite dimensionalH extends without any modification to our context):

(i) F (E,H) ·F (F,H) ⊂ F (E + F,H),

(ii) if L is a finite family of finite dimensional real subspaces ofH then
∑

E∈L F (E,H)

is a norm closed subspace and the sum is a direct of linear spaces.

We define thegraded Weyl algebraF (H) ≡ Wgr(H) as the norm closure of
∑

E F (E,H), whereE
runs over the set of all finite dimensionalcomplexsubspaces ofH. ThenF (H) is equipped with a graded
C∗-algebra structure in the sense of [DaG2, Definition 3.1].F (H) is unital becauseF ({0},H) = C.

In the Fock representation we have a quite explicit description of the algebrasF (E,H). This follows, as
explained in [BG3], from the fact that a complex finite dimensional subspace ofH is symplectic:

F (E,H) = K (E) ⊗ 1 relatively to the tensor factorizationΓ(H) = Γ(E)⊗ Γ(E⊥). (3.13)

Finally, we defineWmax(H), the largestC∗-algebra of operators which can be naturally associated to
the Weyl system in the Fock representation. In particular,Wmax(H) containsW (H) andF (H). If f
is a bounded Borel regular measure onH (for the norm topology) andv ∈ Γfin(H) then the integral
W (f)v =

∫
H

W (u)vdf(u) is well defined because, by Lemma 3.7, the mapu 7→W (u)v is bounded and
continuous onH. Clearly‖W (f)v‖ ≤ ‖v‖‖f‖ where‖f‖ is the variation off , sov 7→ W (f)v extends
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to a bounded operatorW (f) on Γ(H). It is easy to show that the set of operatorsW (f) is a∗-algebra
and we defineWmax(H) as its norm closure. Clearly

If M , N areC∗-subalgebras of a givenC∗-algebra we denote byM ·N the linear subspace consisting
of the operators of the formS1T1 + · · ·+ SnTn with Si ∈M , Ti ∈ N andn ≥ 1, and byJM ·N K the
norm closure of this linear subspace.

Proposition 3.8 If O is non-degenerate then

F (O) = JF (H) · Γ(O)K = JW (H) · Γ(O)K = JWmax(H) · Γ(O)K. (3.14)

Proof: We first observe thatW (u)Γ(A) ∈ JF (H) · Γ(O)K if u ∈ H and‖A‖ < 1. Indeed, since
W (tu)Γ(A) is a norm continuous function oft (see Lemma 3.7), the sequence

∫
R

W (tu)fk(t)dtΓ(A)
converges in norm toW (u)Γ(A) if fk is a sequence inL1(R) which converges to the Dirac measure
at t = 1. ThusF (O) ⊂ JF (H) · Γ(O)K by Proposition 3.4. The converse inclusion follows from
the norm continuity of the mapu 7→ W (u)Γ(A) (use again Lemma 3.7). For the same reason we have
W (f)Γ(A) ∈ JW (H) · Γ(O)K for an arbitrary bounded Borel regular measure onH.

Proposition 3.10 will justify the physical interpretationof the algebraF (O) asC∗-algebra of energy
observables of the field with one particle kinetic energy affiliated toO. Recall that QFH is an abbreviation
for “quantum field Hamiltonian”.

Definition 3.9 We shall callelementary quantum field Hamiltonian of typeO a self-adjoint operator
of the formH = dΓ(h) + V where: (i) h is a self-adjoint operator onH with h ≥ m for some real
m > 0 andh−1 ∈ O; (ii) V a symmetric operator such thatV = W (f) with f ∈ L1(E) for some finite
dimensional linear spaceE ⊂ H.

For a self-adjoint operatorh such thath ≥ m > 0 the relationsh−1 ∈ O and e−h ∈ O are equivalent
and implyθ(h) ∈ O for all θ ∈ C0(R). If an elementary QFH of typeO exists thenO contains a positive
injective operator, e.g.A = h−1, and this clearly implies thatO is non-degenerate. Reciprocally:

Proposition 3.10 If O contains a positive injective operator thenF (O) is theC∗-algebra generated by
the elementary QFH of typeO. In particular: F (O) = C∗(e−H | H is an elementary QFH).

Proof: Let Hs = dΓ(h)+ sV ≡ H0 + sV whereh, V are as in Definition 3.9 ands is a real number. Ifz
is far enough from the spectrum ofH0 then we have a norm convergent expansion forRs = (z −H)−1:

Rs = R0 (1− V R0)
−1

=
∑

n≥0 snR0 (V R0)
n

. (3.15)

We have e−tH0 = Γ(e−th) ∈ Γ(O) if t > 0 because e−th ∈ O and has norm< 1, soR0 ∈ Γ(O). From
Proposition 3.8 we then getRs ∈ F (O), hence theC∗-algebraC generated by the elementary QFH is
contained inF (O).

We now prove the converse inclusion. Leth andHs be as above, so thatRs ∈ C for all s. By taking the
first order derivative ats = 0 in (3.15) we getR0V R0 ∈ C . By definition we haveθ(H0) ∈ C for any
θ ∈ C0(R), hence we also haveθ(H0)R0V R0 ∈ C . By choosingθ conveniently inCc(R) and then by
an approximation argument we getη(H0)V R0 ∈ C for all η ∈ C0(R).

Let ηn be a sequence of continuous functions with0 ≤ ηn ≤ 1, ηn(x) = 1 if |x| ≤ n, andηn(x) = 0 if
|x| ≥ n + 1. Our next purpose is to prove thatηn(H0)V R0 → V R0 in norm. The operator(N + 1)R0 is
bounded, hence it is easy to see that it suffices to show that‖1⊥n V (N + 1)−1‖ → 0 asn→∞. We have
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V = W (f) =
∫

E W (u)f(u)dλE(u) for some subspaceE of finite dimension andf ∈ L1(E) and it is
clear that for the proof of this assertion it suffices to assume thatf has compact support. We have

‖1⊥n W (u)(N + 1)−1‖ ≤ (n + 1)−1 + ‖1⊥n [W (u), (N + 1)−1]‖.

On the other hand[N, W (u)] = W (u)(φ(iu) + ‖u‖2) hence by using (3.10) we get:

‖1⊥n [W (u), (N + 1)−1]‖ = ‖1⊥n (N + 1)−1W (u)(φ(iu) + ‖u‖2)(N + 1)−1‖
≤ (n + 1)−1‖(φ(iu) + ‖u‖2)(N + 1)−1‖ ≤ (n + 1)−1(2‖u‖+ ‖u‖2).

Thus we have
‖1⊥n W (u)(N + 1)−1‖ ≤ (1 + ‖u‖)2(n + 1)−1

from which we get‖1⊥n V (N + 1)−1‖ → 0. This finishes the proof oflim ηn(H0)V R0 → V R0 in norm
which in turn impliesV R0 ∈ C .

Thus we haveV R0 ∈ C and thenV e−H0 = V R0 · (z − H0)e−H0 ∈ C . Since e−H0 = Γ(e−h) we
obtainV Γ(A) ∈ C for any operatorA of the formA = e−h with h a self-adjoint operator onH such
thath ≥ m > 0 and e−h ∈ O. In other terms, we haveV Γ(A) ∈ C for any operatorA ∈ O such thatA
is positive and injective and such that‖A‖ < 1. Indeed, it suffices then to chooseh = − logA. Now let
A ∈ O be positive and‖A‖ < 1. By assumption,O contains a positive injective operatorS. If ε > 0 is
small enough thenAε = A + εS belongs toO, is positive and injective, and‖Aε‖ ≤ c < 1 uniformly in
ε. ThenV Γ(Aε) ∈ C and from Lemma 3.7 we getV Γ(A) ∈ C . Finally, (3.2) shows thatV T ∈ C for
all T ∈ Γ(O). From Proposition 3.8 we obtainF (O) ⊂ C .

4 A (H) and its canonical endomorphism

We setA (H) = F (C1H). From Proposition 3.8 we get:

A (H) = JF (H) · C0(N)K = JW (H) · C0(N)K = JWmax(H) · C0(N)K. (4.1)

Alternative descriptions ofA (H) are consequences of the results form Section 3. For example,A (H)
is the norm closed subspace generated by each of the following classes of operators: (i)φ(u)nθ(N) with
u ∈ H, n ∈ N andθ ∈ Cc(R); (ii) a∗(u)pa(v)q1n with u, v ∈ H andp, q, n ≥ 0.

Proposition 4.1 K (H) ⊂ A (H) andK (H) = A (H) if and only ifH is finite dimensional.

Proof: The first assertion is clear by Proposition 3.3.H is finite dimensional if and only if11 ∈ K (H)
and thenC0(N) ⊂ K (H). Since11 ∈ F , the second assertion of the proposition follows.

If E is a finite dimensional (complex) subspace ofH let us define

AE(H) = JW (E) · C0(N)K = JF (E,H) · C0(N)K. (4.2)

The equality follows from the arguments of the proof of Proposition 3.8. Note thatA{0}(H) = C0(N).
With the notationN ′

E = NE⊥ introduced in Section 2, we have:
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Proposition 4.2 AE(H) = K (E)⊗ C0(N
′
E) relatively toΓ(H) = Γ(E)⊗ Γ(E⊥). In other terms:

AE(H) =
⊕

n K (E)⊗ 1n
E⊥ = {∑n Kn ⊗ 1n

E⊥ | Kn ∈K (E), ‖Kn‖ → 0} (4.3)

where1n
E⊥ is the projection onto then particle subspace ofΓ(E⊥), in particular 10

E⊥ = ω′
E . If H is

infinite dimensional:
AE(H) ∩K (H) = K (E)⊗ ω′

E ≡KE(H). (4.4)

Proof: By an argument used beforeAE is the closed linear space generated by the operatorsTλN with
T ∈ W (E|H) and0 < λ < 1. By (3.13) this is the same as the closed linear space generated by
(KλNE )⊗λN ′

E with K compact onΓ(E). ReplacingK by Kθ(NE)λ−NE with θ with compact support
and then makingθ → 1 we see thatAE is generated by the operatorsK⊗λN ′

E , which proves the assertion
of the proposition.

We now prove thatA (H) is the inductive limit of the family ofC∗-algebras{AE(H)}.

Proposition 4.3 If E ⊂ F are finite dimensional subspaces ofH thenAE(H) ⊂ AF (H). And we have

A (H) =
⋃

E AE(H). (4.5)

Proof: We begin with a general remark. LetK be a closed subspace ofH. If z is a complex number such
that|z| < 1 thenzN = zNK ⊗ zN ′

K ∈ C0(NK)⊗ C0(N
′
K). This clearly implies:

C0(N) ⊂ C0(NK)⊗ C0(N
′
K) (4.6)

Now let us setG = F ⊖ E. FromH = E ⊕G⊕ F⊥ we getΓ(H) = Γ(E)⊗ Γ(G)⊗ Γ(F⊥), hence:

AE(H) = K (E)⊗ C0(N
′
E) ⊂K (E)⊗ C0(NG)⊗ C0(N

′
F )

⊂ K (E)⊗K (G)⊗ C0(N
′
F ) = K (F )⊗ C0(N

′
F ) = AF (H).

We have used (4.6), the fact thatC0(NG) ⊂ K (G) sinceG is finite dimensional, and (2.21).

If P is an endomorphism ofA (H), then the following conditions are equivalent:

(i) P
(
W (u)λN

)
= λW (u)λN for eachu ∈ H and0 < λ < 1;

(ii) P (W (u)θ(N)) = W (u)θ(N + 1) for eachu ∈ H andθ ∈ C0(N).

Indeed, sinceθλ(n) = λn defines a function inC0(N), we see that (ii)⇒ (i). To prove the converse, it
suffices to note that the closed subspace generated by the functionsθλ, 0 < λ < 1 is dense inC0(N).

If a morphismP : A (H)→ A (H) satisfying the conditions (i) or (ii) above exists thenit is unique and
surjectiveby (4.1). We shall call itthe canonical endomorphism ofF . If H is finite dimensional then
A (H) = K (H) has no nontrivial ideals, so the canonical endomorphism cannot exist.

Theorem 4.4 IfH is infinite dimensional then the canonical endomorphism ofA (H) exists and its kernel
is K (H). Hence we have a canonical identification

A (H)/K (H) ∼= A (H). (4.7)
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Proof: Let τ be the endomorphism ofC0(N) defined by(τθ)(m) = θ(m+1). If K 6= {0} thenC0(NK)
is isomorphic withC0(N) hence we get a realization ofτ as endomorphism ofC0(NK). For each finite
dimensional subspaceE letPE = 1⊗τ , which is an endomorphism ofAE = K (E)⊗C0(N

′
E). We have

kerPE = K (E) ⊗ ker τ because tensor product withK (E) preserves exact sequences [Mu, Theorem
6.5.2]. Sinceτθ(N ′

E) = θ(N ′
E + 1) we haveker τ = Cω′

E, sokerPE = K (E) ⊗ ω′
E = AE ∩K (H)

because of (4.4).

Let F be a second finite dimensional subspace such thatE ⊂ F . Then we haveAE ⊂ AF and we shall
prove thatPE is the restriction ofPF to AE . From (4.2) and arguments used before we see thatAE is
the norm closed linear space generated by the operatorsT = W (u)λN with u ∈ E and0 < λ < 1,
hence it suffices to show thatPE andPF are equal on such elements. We haveT =

(
W (u)λNE

)
⊗ λN ′

E

relatively to the tensor factorizationΓ(H) = Γ(E)⊗ Γ(E⊥) hence

PE(T ) =
(
W (u)λNE

)
⊗ λN ′

E+1 = W (u)λN+1.

An identical computation givesPF (T ) = W (u)λN+1, which proves our assertion.

Now from Proposition 4.3 it follows that there is a unique endomorphismP of A such thatP|AE = PE .
It is clear thatP is the canonical endomorphism ofF . From Lemma 2.1 it follows thatP(K) = 0 if
K is a compact operator. Reciprocally, assume thatP(K) = 0 and letε > 0. From (4.5) it follows
that there isE andKE ∈ AE such that‖K − KE‖ < ε. Thus‖PE(KE)‖ < ε. The kernel ofPE is
KE = AE ∩K (H) andPE induces an isometric map from the quotientAE/KE ontoAE. From the
definition of the quotient norm it follows that there isL ∈ KE such that‖KE − L‖ < 2ε. This implies
‖K − L‖ < 3ε and sinceL is a compact operator andε is arbitrary, we see thatK is compact.

Remark 4.5 The following explicit expression ofP has been noticed by George Skandalis:

P(T )u = s-lim
e⇀0

a(e)Ta∗(e)u for all T ∈ A (H) andu ∈ Γfin(H). (4.8)

This is similar to relation (2.2) in [BG3]. The notatione ⇀ 0 means that‖e‖ = 1 and thate converges to
zero in the weak† topology. (4.8) follows easily from (2.8), (2.11) and s-lime⇀0 a(e)a∗(e)1n = 1n.

We give an application of Theorem 4.4 in spectral theory. LetH be infinite dimensional.

Lemma 4.6 If T ∈ A (H) thenlimk→∞ ‖Pk(T )‖ = 0. Moreover:1n ∈ A (H) andPk(1n) = 1n−k.

Proof: From the characterizations ofA (H) given in (4.1) we see that it suffices to considerT of the
form T = W (u)θ(N) with θ ∈ Cc(N). ThenPk(T ) = W (u)θ(N + k) = 0 for k large.

Proposition 4.7 The spectrum of an elementA (H) is countable. IfT ∈ A (H) then its essential spec-
trum is equal to the spectrum ofP(T ).

Proof: Let σess(T ) be the essential spectrum of an operatorT andσd(T ) its discrete spectrum, so that
σ(T ) is equal to thedisjointunionσd(T )⊔ σess(T ) andσd(T ) does not have accumulation points outside
σess(T ). If T ∈ A (H) thenσess(T ) = σ(P(T )) hence we get by induction:

σ(T ) = σd(T ) ⊔ σ(P(T )) =
[
⊔n

k=0σd(Pk(T ))
]
⊔ σ(Pn+1(T ))

which proves the assertion of the proposition.

† More precisely, the limit is taken along the filter consisting of the intersections of the neighborhoods of zero in the weak
topology with the unit sphere ofH. One may also replace it by the finer filter consisting of the subsets of the unit sphere which are
orthogonal to finite dimensional subspaces ofH, the proof is then simpler.
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Remark 4.8 The following comments on the algebraA (H) play no role in this paper but are of some
intrinsic interest. The advantage in using the graded Weyl algebraF (H) instead of other Weyl algebras
which can be found in the literature is thatN implements a norm continuous action of the unit circle on
it. Indeed, (2.9) gives forz ∈ Σ = {z ∈ C| |z| = 1} andu ∈ H:

zNW (u)z̄N = W (zu) (4.9)

If E is a (complex) finite dimensional subspace ofH thenE is stable under multiplication byz and for
f ∈ L1(E) we have

zNW (f)z̄N =

∫

E

W (zu)f(u)dEu =

∫

E

W (u)f(z̄u)dEu ≡W (fz).

Since‖W (fz)−W (f)‖ ≤ ‖fz − f‖L1 → 0 asz → 1 we see thatz 7→ zNW (f)z̄N is norm continuous.

Thusαz(T ) = zNT z̄N induces a norm continuous action ofΣ on F (H) which is compatible with the
grading (i.e. eachF (E,H) is stable under the action). In particular, the crossed product C∗-algebra
F (H) ⋊ Σ is well defined. The algebraA (H) is a quotient of this crossed product: there is a unique
morphismF (H) ⋊ Σ → A (H) such that the image ofT ⊗ η be T η̃(N) ≡ T

∫
Σ zNη(z)dz for all

T ∈ F (H), η ∈ L1(Σ), see [GI2, Theorem 2.9]. This morphism is surjective but notinjective.

The similarly defined morphismF (E,H)⋊Σ→ AE(H) can be used in order to give a more conceptual
proof of the existence of the morphismPE constructed at the beginning of the proof of Theorem 4.4. I
am indebted to G. Skandalis for a comment which clarified thispoint to me.

5 Canonical morphism ofF (O)

We now extend the results of Section 4 to a larger class ofC∗-algebrasO of operators onH.

Definition 5.1 If a morphismP : F (O)→ O ⊗F (O) with the property

P(W (u)Γ(A)) = A⊗ [W (u)Γ(A)] if u ∈ H andA ∈ O with ‖A‖ < 1 (5.1)

exists, then it is uniquely determined and we call it thecanonical morphismof F (O).

Example 5.2 Assume thatP exists and recall thatΓ(O) ⊂ F (O). ThenP(Γ(A)) = A⊗Γ(A) if A ∈ O
and‖A‖ < 1. ReplacingA by tA and taking derivatives att = 0 we obtainP(A∨0) ≡ P(ω) = 0 and
P(A∨n) = A⊗A∨(n−1) if n ≥ 1 (recall thatA∨0 = ω). From the polarization formula we then get

nP(A1 ∨ · · · ∨An) =
∑

k Ak ⊗ [A1 ∨ · · · ∨Ak−1 ∨Ak+1 ∨ . . . An]. (5.2)

for all A1, . . . , An ∈ O.

Remark 5.3 If needed we denotePO the morphism from Definition 5.1. Observe that ifO1 ⊂ O2 and
if the canonical morphismPO2

exists, thenPO1
exists too and we havePO1

= PO2
|F (O1).

Theorem 5.4 If O is an abelianC∗-algebra onH and its strong closure does not contain finite rank
operators then the canonical morphismP exists andkerP = K (H). This gives a canonical embedding

F (O)/K (H) →֒ O ⊗F (O). (5.3)
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Remark 5.5 Observe thatH cannot be finite dimensional. In the rest of this remark we assumeO non-
degenerate and denoteO′ andO′′ its commutant and bicommutant. Note that

K (H) ⊂ F (O) ⊂ F (O′′). (5.4)

The strong closure ofO is O′′, thus in Theorem 5.4 we have to assume thatO′′ does not contain finite
rank operators. Clearly this is equivalent toO′′ ∩ K(H) = {0}. Observe that if there is a sequence of
unitary operatorsUn ∈ O′ such that w-limn→∞ Un = 0 then this assumption is satisfied. On the other
hand, ifH is separable thenO′′ ∩K(H) = {0} if and only if there is a self-adjoint operatorS ∈ O′ with
purely absolutely continuous spectrum; and if this is the case then eitS ∈ O′ and w-lim|t|→∞ eitS = 0.

Lemma 5.6 LetO be an abelian finite dimensionalC∗-algebra onH with 1H ∈ O. LetP1, . . . , Pn be
the minimal projections ofO andHk = PkH. ThenH = ⊕kHk and we have

F (O) = ⊗kA (Hk) relatively toΓ(H) = ⊗kΓ(Hk). (5.5)

Proof: Recall that we havePk 6= 0, PiPj = 0 if i 6= j andP1 + · · ·+Pn = 1H. Moreover, each element
of O is a linear combination of these projections. Thus we can writeO as a direct sum ofC∗-algebras
O ≡ ⊕kCPk and then we may use (2) of Proposition 3.3. More explicitly, if A ∈ O thenA =

∑
k zkPk

and we have‖A‖ = supk |zk|. Assume‖A‖ < 1 and letu ≡∑
k uk, then we get from (2.19) and (2.20)

W (u)Γ(A) = ⊗k[W (uk)Γ(zkPk)] ≡ ⊗k[W (uk)Γ(zk)]

where we have identifiedPk = 1Hk
. Then (5.5) follows easily from this relation.

Lemma 5.7 Theorem 5.4 is true ifO is finite dimensional and1H ∈ O.

Proof: We keep the notations of Lemma 5.6 and observe that eachHk is infinite dimensional because
O does not contain finite dimensional projections. By Theorem4.4 the canonical endomorphismPk of
A (Hk) exists. We shall now use Proposition 10.1: defineP ′

k as in that theorem and note thatJk =

K (Hk) and Ã (Hk) = A (Hk). Proposition 4.2 implies that eachA (Hk) is nuclear. Taking into
account Lemma 5.6 and Proposition 10.1 we get a morphism

P ≡⊕n
k=1 P ′

k : F (O)→⊕n
k=1 A (H1)⊗· · ·⊗A (Hk)⊗· · ·⊗A (Hn) ≡ Cn⊗F (O) ∼= O⊗F (O)

whose kernel isK (H1)⊗· · ·⊗K (Hn) = K (H). Then, with the notations of the proof of Lemma 5.6:

P(W (u)Γ(A)) =
⊕n

k=1 P ′
k [⊗k[W (ui)Γ(zi)]]

=
⊕n

k=1[W (u1)Γ(z1)]⊗ · · · ⊗ [zkW (uk)Γ(zk)]⊗ · · · ⊗ [W (un)Γ(zn)]

= (z1P1 + · · ·+ znPn)⊗ (W (u)Γ(A)) = A⊗ (W (u)Γ(A)).

ThusP is the canonical morphism ofF (O).

Prof of Theorem 5.4: If the theorem has been proved for non-degenerateO then the general case is a
consequence of the factorization (3.9) and of Proposition 10.1 withn = 2, C1 = F (O0), C2 = J2 =
K (H⊥

O). Thus we may assume thatO is non-degenerate. Then, due to Remark 5.3, it suffices to assume
thatO is a Von Neumann algebra, i.e.O = O′′. Let L be the set of all finite dimensional∗-subalgebras
ofO which contain1H. ThenL is a lattice for the order relation given by inclusion. Indeed,L is stable
under (arbitrary) intersections and ifM,N ∈ L then their upper boundR is constructed as follows: if
P(M), P(N ) are the sets of minimal projections ofM,N then we defineP(R) as the set consisting
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of the non-zero projections of the formPQ with P ∈P(M), Q ∈P(N ) and takeR equal to the linear
span ofP(R). The total algebraO is the norm closure of the union of the algebras inL , because each
A ∈ O is normal, its spectral measureEA has values inO, and so is a norm limit of finite sums of the
form B =

∑
k zkEA(∆k) with zk ∈ C and∆k ⊂ C Borel sets. Note also that the standard construction

of such sums will produce operators with‖B‖ ≤ ‖A‖.
From Proposition 3.3 we see that{F (M) | M ∈ L } is a filtered increasing family ofC∗-subalgebras
of F (O). The definition (3.7), Lemma 3.7, and the remark made above concerning the norm ofB imply
thatF (O) is the norm closure of the union of these subalgebras. In other terms,F (O) is the inductive
limit of the net{F (M)}M∈L . Lemma 5.7 gives us for eachM ∈ L a canonical morphismPM and
from the Remark 5.3 it follows thatPO(T ) ≡ PM(T ) is independent ofM if T ∈ ∪MF (M). It
remains to extendPO to all F (O) by continuity and to check condition (i) of Proposition 5.10by an
obvious density and continuity argument.

Remark 5.8 This is a natural extension of Remark 4.5. Letχ be a state on aC∗-algebraO ⊂ B(H) and
let {e} be a net of unit vectors inH such thate ⇀ 0 and such that the state associated toe onO converges
weakly toχ (G. Skandalis has shown me that each stateχ on aC∗-algebraO withO∩K(H) = {0} can
be expressed in this way). Then

s-lim
e⇀0

a(e) [W (u)Γ(T )1n]a∗(e) = χ(T )W (u)Γ(T )1n−1 for all u ∈ H andT ∈ O.

Denote IO the identity morphism onO and for each integerk ≥ 1 let us define

Pk = I⊗(k−1)
O ⊗ P : O⊗(k−1) ⊗F (O)→ O⊗k ⊗F (O). (5.6)

This is a morphism withO⊗(k−1) ⊗K (H) as kernel (tensor product with an abelian algebra preserves
exact sequences). Note thatO⊗(k−1) ⊗ K (H) ⊂ B(H⊗(k−1) ⊗ Γ(H)) does not contain compact
operators ifk ≥ 1 and if we are in the conditions of Theorem 5.4. The following extends Lemma 4.6.

Proposition 5.9 Under the conditions of Theorem 5.4 the map

Pk = Pk ◦ · · · ◦ P1 : F (O)→ O⊗k ⊗F (O) (5.7)

is a morphism uniquely determined by the property:Pk(W (u)Γ(A)) = A⊗k ⊗ [W (u)Γ(A)] if u ∈ H
andA ∈ O, ‖A‖ < 1. We havelimk→∞ ‖Pk(T )‖ = 0 for all T ∈ F (O).

Proof: It remains only to prove the last relation. Clearly it suffices to consider only operators of the form
T = W (u)Γ(A). But then we have‖Pk(W (u)Γ(A))‖ ≤ ‖A‖k‖Γ(A)‖.

We mention a description of the canonical morphismP in the spirit of Proposition 3.10. BelowO is any
C∗-algebra onH. At point (ii) we use the extension of the action ofP to unbounded operators affiliated
to F (O) (see section 7): so (ii) is just (i) written at generator level (see the proof of Proposition 7.10).

Proposition 5.10 Assume thatO contains a positive injective operator. IfP : F (O)→ O⊗F (O) is a
morphism thenP is the canonical morphism if and only if it satisfies the following equivalent conditions:

(i) P
(
e−H

)
= e−h ⊗ e−H if H = dΓ(h) + V is an elementary QFH;

(ii) P(H) = h⊗ 1Γ(H) + 1H ⊗H if H = dΓ(h) + V is an elementary QFH.
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Proof: Note thatP is uniquely determined by the condition (i) because of Proposition 3.10. IfH =
dΓ(h) + V ≡ H0 + V then (7.3) holds in norm becauseH0 is bounded from below andV is bounded. If
P is the canonical morphism, and since e−tH0 = Γ(e−th), we obtain (i) from:

P
[(

e−V/ne−H0/n
)n]

=
[
P

(
e−V/ne−H0/n

)]n

=
[
e−h/n ⊗

(
e−V/ne−H0/n

)]n

. (5.8)

Reciprocally, assume thatP is a morphism and (i) holds. LetH be as in (i) and set̃H = h ⊗ 1Γ(H) +

1H ⊗ H . The operatorsH, H̃ are bounded from below andP(e−H) = e− eH . SinceP is a morphism
and the functionx 7→ e−x algebraically generatesC0([a,∞[) if a ∈ R, we getP(θ(H) = θ(H̃) for all
θ ∈ C0(R). In particular, ifz is a complex number with sufficiently large negative real part we can take
θ(x) = (z−x)−1 and getP [(z−H)−1] = (z−H̃)−1. DenoteRz = (z−H0)

−1 andR̃z = (z−H̃0)
−1,

whereH̃0 = h⊗ 1Γ(H) + 1H ⊗H0. Then we make a norm convergent series expansion to get:

P∑
k Rz[V Rz]

k =
∑

k R̃z [(1H ⊗ V )R̃z]
k.

We replaceV by sV and take derivatives ats = 0 to obtainP [RzV Rz] = R̃z(1H ⊗ V )R̃z . On the other
hand, by takingV = 0 in this argument we getP(θ(H0)) = θ(H̃0) for all θ ∈ C0(R). Thus

P [θ(H0)RzV Rz)] = θ(H̃0)R̃z(1H ⊗ V )R̃z.

By arguments already used in the proof of Proposition 3.10 weget first

P [η(H0)V Rz] = η(H̃0)(1H ⊗ V )R̃z

for η ∈ C0(R) and then we see that this relation remains true forη = 1. Thus we haveP [V Rz] =

(1H ⊗ V )R̃z for all complex numbersz with sufficiently large negative real part. By standard arguments

we then getP [V θ(H0)] = (1H⊗V )θ(H̃0) for all θ ∈ C0(R), in particularP
[
V e−H0

]
= (1H⊗V )e− eH0 .

But this is the same as

P
[
V Γ(e−h)

]
= (1H ⊗ V )(e−h ⊗ Γ(e−h) = e−h ⊗

[
V Γ(e−h)

]
.

ThusP [V Γ(A)] = A ⊗ [V Γ(A)] if A = e−h. By first choosingh conveniently and then by using the
same argument as in the last part of the proof of Proposition 3.10 we see that the preceding relation holds
for all A ∈ O with ‖A‖ < 1 andA ≥ 0. As in Example 5.2 this implies

nP [V (A1 ∨ · · · ∨An)] =
∑

k Ak ⊗ [V (A1 ∨ · · · ∨Ak−1 ∨Ak+1 ∨ . . . An)]

first for Ak ≥ 0 and then for allAk ∈ O. ThusP [V A∨n] = A⊗ [V A∨(n−1)] for all A ∈ O from which
we clearly getP [V Γ(A)] = A ⊗ [V Γ(A)] if A ∈ O and‖A‖ < 1. That this holds also forV = W (u)
follows easily as in the proof of Proposition 3.8. SoP is the canonical morphism.

We give one more characterization ofP which is sometimes useful (e.g. it implies Theorem 1.1). The
proof involves the same ideas as that of Proposition 3.4 so wedo not give details.

Lemma 5.11 F (O) coincides with theC∗-algebra generated by the operators of the formφ(u)nΓ(A)
with u ∈ H, n ∈ N andA ∈ O with ‖A‖ < 1. A morphismP : O → O ⊗ F (O) is the canonical
morphism if and only if it satisfiesP (φ(u)nΓ(A)) = A⊗ [φ(u)nΓ(A)] for all suchu, n, A.
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6 The fermionic case

1. The fermionic version of the theory seems to me most pleasantesthetically speaking and certainly
much easier. As beforeH is a complex Hilbert space with scalar product〈·|·〉. A representation of the
CAR overH, or aClifford system overH, is a couple(H , φ) consisting of a Hilbert spaceH and an
R-linear mapφ : H → B(H ) which satisfies

φ(u)∗ = φ(u) andφ(u)2 = ‖u‖2 for all u ∈ H. (6.1)

We set[A, B]+ = AB + BA. Then the second condition above is equivalent to:

[φ(u), φ(v)]+ = 2ℜ〈u|v〉 for all u, v ∈ H. (6.2)

Note that the mapφ : H → B(H ) is an isometry, which makes the theory much simpler. We define
theannihilationandcreationoperators associated to the one particle stateu by the relations (2.6), so that
φ(u) = a(u) + a∗(u). Thena∗ : H → B(H ) is a linear continuous map,a : H → B(H ) is antilinear
and continuous, anda∗(u) is just the adjoint of the operatora(u). We have

[a(u), a∗(v)]+ = 〈u|v〉, [a(u), a(v)]+ = 0, [a∗(u), a∗(v)]+ = 0. (6.3)

A number operator for the Clifford system(H , φ) is a self-adjoint operatorN onH satisfying

eitNφ(u)e−itN = φ(eitu) for all t ∈ R andu ∈ H. (6.4)

As in the bosonic case we have:

[N, iφ(u)] = φ(iu), (N + 1)a(u) = a(u)N, (N − 1)a∗(u) = a∗(u)N. (6.5)

A vacuum statefor the Clifford system(H , φ) is a vectorΩ ∈ H with ‖Ω‖ = 1 such that the map
u 7→ φ(u)Ω is linear and this condition is equivalent toa(u)Ω = 0 for all u.

2. We define theClifford algebra overH by

F (H) = C∗(φ(u) | u ∈ H). (6.6)

We refer to [PR] for a presentation of the theory of Clifford algebras suited to our context. In their
terminology,F (H) is the Clifford algebra generated by thereal vector spaceH equipped with the scalar
productℜ〈u|v〉. In particular, if the (complex) dimension ofH is n thenF (H) is of dimension22n. The
C∗-algebrasF (H) associated to two Clifford systems overH are canonically isomorphic in a natural
sense, which explains why(H , φ) is not included in the notation. The algebraF (H) has a rich and
interesting structure: it is central and simple, it has a unique tracial state, and it isZ2-graded (Z2 = Z/2Z),
i.e. there is a unique automorphismγ of F (H) such thatγ(φ(u)) = −φ(u) for all u ∈ H. Clearlyγ2 = 1
and if we setF±(H) = {T ∈ F (H) | γ(T ) = ±T } then we get a linear direct sum decomposition
F (H) = F+(H) + F−(H).

If K is a closed vector subspace ofH we identifyF (K) with theC∗-subalgebra ofF (H) generated by
the operatorsφ(u) with u ∈ K. If E ⊂ F are finite dimensional subspaces ofH thenF (E) ⊂ F (F )
are finite dimensional∗-subalgebras ofF (H) and

F (H) = ∪EF (E) (6.7)

whereE runs over the set of finite dimensional subspaces ofH. In particular,F (H) is nuclear.
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3. One defines the Fock representation exactly as in the bosoniccase; the uniqueness modulo canonical
isomorphisms is obvious. The construction of the “particleFock realization” is parallel to that in the Bose
case, one just has to replace “symmetric” and the symbol∨ by “antisymmetric” and∧ (the details can
be found in [PR]). SoH∧

alg is the antisymmetric (or exterior) algebra† over the vector spaceH, we use
the notationuv for the product of two elementsu, v of H∧

alg (or u ∧ v if ambiguities occur in concrete
situations), and the unit element is denoted either1 or Ω. ThenH∧n

alg is the linear subspace spanned by
the productsu1 . . . un with ui ∈ H andH∧

alg is equal to the linear direct sum
∑

n∈N
H∧n

alg . We shall equip
H∧

alg with the unique scalar product such thatH∧n
alg ⊥ H∧m

alg for n 6= m and:

〈u1 . . . un|v1 . . . vn〉 =
∑

σ∈S(n) εσ〈u1|vσ(1)〉 . . . 〈un|vσ(n)〉 (6.8)

whereεσ is the signature of the permutationσ. The estimate (2.14) remains valid in the present situation.

We define theFock spaceΓ(H) ≡ H∧ overH as the completion ofH∧
alg for the scalar product defined

by (6.8). ThenH∧n is the closure ofH∧n
alg in Γ(H), we haveΓ(H) =

⊕
nH∧n (Hilbert space direct

sum), and the spacesΓn(H) andΓfin(H) are defined as in the symmetric case. Similarly for the number
operatorN and the projections1n, 1n, ω. Note thatΓfin(H) is a unital algebra but not abelian: it is a
Z-gradedanticommutativealgebra, i.e. we haveuv = (−1)nmvu if u ∈ H∧n andv ∈ H∧m.

The creation-annihilation operatorsa(∗)(u) and the field operatorφ(u) are defined exactly as in the
bosonic case. Important differences are the boundedness ofthese operators:‖a(∗)(u)‖ = ‖u‖, and
the fact thata(u) is anantiderivation:

a(u)(vw) = (a(u)v)w + (−1)nv(a(u)w) if v ∈ H∧n, w ∈ Γfin(H). (6.9)

If A1, . . . , An ∈ B(H) then there is a unique operatorA1 ∧ · · · ∧An ∈ B(H∧n) such that

(A1 ∧ · · · ∧An)(u1 . . . un) = (n!)−1 ∑
σ∈S(n) εσ(A1uσ(1)) . . . (Anuσ(n)) (6.10)

for all u1, . . . , un ∈ H. We extend it toΓ(H) by identifyingA1 ∧ · · · ∧ An ≡ A1 ∧ · · · ∧ An1n. If
A1 = · · · = An ≡ A we denoteA∧n this operator. Note thatA∧n is uniquely defined by the relation
A∧n(u1 . . . un) = (Au1) . . . (Aun) for all u1, . . . , un ∈ H. Observe thatA1 ∧ · · · ∧ An is a symmetric
function ofA1, . . . , An hence one may use the polarization formula in this case too.

As in the bosonic case, for eachA ∈ B(H) there is a unique unital endomorphismΓ(A) of the algebra
Γfin(H) such thatΓ(A)u = Au for all u ∈ H and such that the restriction ofΓ(A) to eachΓn(H)
be continuous. In factΓ(A) = ⊕n≥0A

∧n. ClearlyΓ(AB) = Γ(A)Γ(B), Γ(1) = 1, Γ(0) = ω, and
zN = Γ(z) for z ∈ C. The relations (2.16)-(2.18) remain valid. The operatorΓ(A) is bounded onΓ(H)
if ‖A‖ ≤ 1. Finally, there is a unique derivation dΓ(A) of the algebraΓfin(H) such that dΓ(A)u = Au if
u ∈ H. Hence dΓ(A)(u1 . . . un) =

∑
k u1 . . . (Auk) . . . un if n ≥ 1 and dΓ(A)Ω = 0. We denote also

by dΓ(A) the closure of this operator. IfA is not bounded but generates a contractiveC0-semigroup on
H then dΓ(A) is defined byΓ(etA) = etdΓ(A).

If K ⊂ H is a closed subspace we identifyK∧
alg with the subalgebra ofH∧

alg generated byK and then by
taking the closure inΓ(H) we get an isometric embeddingΓ(K) ⊂ Γ(H). The scalar product (6.8) has
been chosen such that

〈uv | u′v′〉 = 〈u | u′〉〈v | v′〉 = 〈u⊗ v | u′ ⊗ v′〉 for all u ∈ Γfin(K), v ∈ Γfin(K⊥)

hence the linear mapΓfin(K) ⊗alg Γfin(K⊥) → Γfin(H) associated to the bilinear map(u, v) 7→ uv
extends to a linear bijective isometryΓ(K) ⊗ Γ(K⊥) → Γ(H). This gives us a canonical Hilbert space

† The definition is similar to that in the symmetric case, cf. the footnote on page 7, just replace the commutativity condition
ξ(u)ξ(v) = ξ(v)ξ(u) by ξ(u)ξ(v) = −ξ(v)ξ(u).
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identificationΓ(H) = Γ(K) ⊗ Γ(K⊥). Note that the product onΓfin(K) ⊗alg Γfin(K⊥) induced by the
embedding inΓfin(H) is the anticommutative tensor algebra product, see [Bo]. Note thatΩH = ΩK⊗Ω′

K

and everything we said starting with (2.20) until the end of Section 2 remains valid.

It is also trivial to check that, as in bosonic case, for eachu ∈ K we havea(∗)
H (u) = a

(∗)
K (u) ⊗ 1 and

φH(u) = φK(u)⊗1 relatively to the factorizationΓ(H) = Γ(K)⊗Γ(K⊥). On the other hand, ifu ∈ K⊥

it is easy to check thata(∗)
H (u) = (−1)NK ⊗ a

(∗)

K⊥(u). Thus foru ∈ K andv ∈ K⊥ we have:

φH(u + v) = φK(u)⊗ 1 + (−1)NK ⊗ φK⊥(u) (6.11)

4. The theory developed in Sections 3-5 has a complete analog inthe present setting. Many things become
in fact simpler and look more natural due to the boundedness of the field operators. So in what follows
we state the results and make some comments concerning the proofs.

If O is aC∗-algebra onH thenΓ(O) is defined as in (3.1) and Proposition 3.2 (with∨ replaced by∧)
remains true becauseA1 ∧ · · · ∧An is a symmetric function ofA1, . . . , An. Then we define:

F (O) = C∗(SΓ(A) | S ∈ F (H), A ∈ O, ‖A‖ < 1) (6.12)

and we setA (H) = F (C1H). If O is non-degenerate then we have

F (O) = JF (H) · Γ(O)K (6.13)

The proof is a much simplified version of that of Proposition 3.4. We now consider Proposition 3.3.

Proof of the fermionic version of Proposition 3.3:F ({0}) is theC∗-algebra generated by the operators
φ(u1) . . . φ(un)ω (where the product may be empty) and the linear span of these operators coincides with
the linear span ofa∗(u1) . . . a∗(un)ω = |u1 . . . un〉〈Ω|, from which (2) of Proposition 3.3 in the Fermi
case follows easily. Now we prove (3) of Proposition 3.3. Basically this follows from

φ(u)Γ(A) =
(
φ(u1)⊗ 1 + (−1)N1 ⊗ φ(u2)

)
Γ(A1)⊗ Γ(A2)

= [φ(u1)Γ(A1)]⊗ Γ(A2) + Γ(−A1)⊗ [φ(u2)Γ(A2)].

but the complete argument is complicated by the fact that we have to consider arbitrary polynomials
in the fields. Consider a productφ(w1) . . . φ(wn)Γ(A) and decomposewk = uk + vk, A = B ⊕ C
with u1, . . . , un ∈ H1, v1, . . . , vn ∈ H2, andB ∈ O1, C ∈ O2 with norms< 1. Due to (6.11) and
since(−1)NH1 = Γ(−1H1

) we haveφ(wk) = φ(uk) ⊗ 1 + Γ(−1) ⊗ φ(vk) with some simplifications
in the notations. If we develop the productφ(w1) . . . φ(wn) and if we take into account the relation
Γ(−1)φ(uk) = φ(−uk)Γ(−1) we clearly get a sum of terms of the form (ordered products)

[∏
j∈α φ(ũj)

]
⊗

[∏
k∈β φ(vk)

]
· Γ(±1)⊗ 1

whereα is a subset of{1, . . . , n}, β is the complementary subset, andũj is eitheruj or −uj. Since
Γ(±1) ⊗ 1 · Γ(A) = Γ(±B) ⊗ Γ(C) we see thatφ(w1) . . . φ(wn)Γ(A) ∈ F (O1) ⊗ F (O2) and the
proof is finished by an obvious argument.

We mention one more fact, which is also true in the bosonic case but with a more complicated proof.

Proposition 6.1 If O is non-degenerate thenF (O) is theC∗-algebra generated by the operators of the
formΓ(A) or φ(u)Γ(A) with u ∈ H andA ∈ O, A ≥ 0, ‖A‖ < 1.
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Proof: We give the proof under the supplementary assumption thatO contains a positive injective ope-
rator (this is the only situation relevant in field theory; ingeneral one has to use an approximate unit as
in the proof of Proposition 3.4). LetC be theC∗-algebra generated by the operators of the formΓ(A)
or φ(u)Γ(A) with u ∈ H andA ∈ O, A ≥ 0, ‖A‖ < 1. Due to (3.2) it is sufficient to show that any
productφ(u1) . . . φ(un)Γ(A) with A as above belongs toC . We show this in the case of two field factors
φ(u)φ(v)Γ(A), the general case is similar. We haveA = (

√
A)2 and

√
A ∈ O, is positive, and has norm

strictly less than1. By writing φ(u)φ(v)Γ(A) = φ(u)[φ(v)Γ(
√

A)]Γ(
√

A) we see that it suffices to show
the following: for eachv ∈ H andB ∈ O with B ≥ 0, ‖B‖ < 1, the operatorφ(v)Γ(B) belongs to
the norm closureL of the linear span of the operators of the formΓ(A)φ(u) with u, A as before. We
haveφ(v)Γ(B) = a(v)Γ(B) + a∗(v)Γ(B) and so it suffices to havea(∗)(v)Γ(B) ∈ L . In the case of
a(u)Γ(B) this is obvious by (2.16). Now letS ∈ O be positive and injective and letε > 0 real. Then
(2.16) impliesa∗((B + εS)w)Γ(B + εS) = Γ(B + εS)a∗(w) ∈ L for all w ∈ H. The operatorB + εS
is positive and injective hence it has dense range. The mapu 7→ a∗(u) ∈ B(Γ(H)) is norm continuous,
hence we geta∗(v)Γ(B + εS) ∈ L for all v ∈ H. From Lemma 3.7 we easily getΓ(B + εS)→ Γ(B)
in norm asε→ 0, hencea∗(v)Γ(B) ∈ L .

One may define elementary QFH as in Definition 3.9 by askingV ∈ F (H) or V ∈ F (E) for some finite
dimensional subspaceE ofH. And then Proposition 3.10 remains true (only a minor modification of the
end of the proof is required). We may now state the fermionic version of our main result.

Theorem 6.2 If O is an abelianC∗-algebra onH and its strong closure does not contain finite rank
operators, then there is a unique morphismP : F (O)→ O ⊗F (O) such that

P [SΓ(A)] = A⊗ [SΓ(A)] if S ∈ F (H) andA ∈ O, ‖A‖ < 1. (6.14)

We havekerP = K (H), which gives us a canonical embedding

F (O)/K (H) →֒ O ⊗F (O). (6.15)

If O is non-degenerate then one may require(6.14)to hold only forS = φ(u)k (the powersφ(u)k with
k ∈ N are multiples ofφ(u) or of the identity). The second characterization ofP presented in Proposition
5.10 remains valid. The canonical endomorphismP of A (H) satisfiesP(Sθ(N)) = Sθ(N + 1) for all
S ∈ F (H) andθ ∈ C0(N).

The strategy of the proof of Theorem 6.2 is identical to that from the symmetric case. We first treat the
case ofA (H) as in Section 4 with the help of the algebras

AE(H) = JF (E) · C0(N)K = K (E)⊗ C0(N
′
E) relatively toΓ(H) = Γ(E)⊗ Γ(E⊥).

HereE is finite dimensional andF (E) ≡ F (E) ⊗ 1E⊥ theF (E) from the right hand side being the
algebra of all operators on the finite dimensional spaceΓ(E). In particular we now haveNE ∈ F (E),
in factNE =

∑n
k=0 a∗(ek)a(ek) if e1, . . . , en is an orthonormal basis ofE. For a general algebraO we

proceed as in Section 5.

We now prove thatA (H) has a naturalZ2-grading and we state the fermionic version of Remark 4.5.

Proposition 6.3 There is a unique automorphismγ of A (H) such thatγ(Sθ(N)) = γ(S)θ(N) for all
S ∈ F (H) andθ ∈ C0(N). We haveγ2 = 1 and for eachT ∈ A (H):

P(T ) = s-lim
e⇀0

a(e)γ(T )a∗(e) (6.16)
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Proof: From the fermionic version of (4.5) it follows that it suffices to defineγ onAE(H) for each finite
dimensionalE. Since, as explained above, we then haveAE(H) = K (E) ⊗ C0(N

′
E), the existence

is rather obvious. However, the following explicit construction, cf. [PR, Theorem 1.1.10], gives more
information. Observe first that ife ∈ H and‖e‖ = 1 thenφ(e)φ(ie) = i[a(e), a∗(e)], henceφ(e)φ(ie) =
φ(ze)φ(ize) for all complexz with |z| = 1. Let e1, . . . , en be an orthonormal basis ofE andw =
φ(e1)φ(ie1) . . . φ(en)φ(ien). It is clear thatw is a unitary element ofF (E) with w∗ = w if n is even
andw∗ = −w if n is odd. The relationwSw∗ = γ(S) for S ∈ F (E) is easy to check (or see Theorem
1.1.10 in [PR]). By using the expression given above forNE we getwNEw∗ = NE and it is clear that
wN ′

Ew∗ = N ′
E . ThuswNw∗ = N and we may defineγ(T ) = wTw∗ for all T ∈ F (E).

We havea(e)u0 . . . un =
∑

k(−1)ku0 . . . 〈e|uk〉 . . . un hence s-lime⇀0 a(e) = 0. From the anticommu-
tation relationa(e)a∗(e) + a∗(e)a(e) = 1 we get s-lime⇀0 a(e)a∗(e) = 1. ThusP definedby (6.16) is
an endomorphism ofA (H). Note that

‖a(e)φ(u) + φ(u)a(e)‖ = |〈e|u〉| → 0 if e ⇀ 0.

Finally, by using (6.5) it follows easily thatP is the canonical endomorphism ofA (H).

It is clear that everything we said in Section 5 starting withProposition 5.9 remains true or has an analog
in the fermionic case.

7 Self-adjoint operators affiliated toF (O)

1. It will be convenient to use the notion of observable affiliated to aC∗-algebra as introduced in [BG3]
and further studied in [ABG, DaG2]. In this paper a self-adjoint operator is supposed to be densely
defined but not densely defined operators appear by taking (norm) resolvent limits or images through
C∗-algebra morphisms. An observable is a Hilbert space independent formulation of the notion of “not
necessarily densely defined self-adjoint operator”.

An observable affiliated to aC∗-algebraC is a morphismH : C0(R) → C . We setH(θ) = θ(H)
althoughH cannot be realized as a self-adjoint operator in general. Observables have the advantage that
one can consider their images through morphisms: ifP : C → D is a morphism, thenP(H) is the
observable affiliated toD defined byθ(P(H)) = P(θ(H)) (this operation makes no sense at the Hilbert
space level). Thespectrumof H is the setσ(H) of real pointsλ such thatθ(H) 6= 0 if θ(λ) 6= 0.
A sequence{Hn} of observables affiliated toC is convergentif limn θ(Hn) exists (in norm) for each
θ ∈ C0(R). Thenθ(H) = limn θ(Hn) is an observable affiliated toC and we writeH = limn Hn.

Let C be aC∗-algebra of operators on a Hilbert spaceH . We say that a self-adjoint operatorH onH
is affiliated† to C if (H − z)−1 ∈ C for somez ∈ C \ σ(H). This is equivalent toθ(H) ∈ C for
all θ ∈ C0(R) and this gives us a morphismθ 7→ θ(H), henceH defines an observable affiliated toC
and this observable determines the self-adjoint operatorH uniquely. So the set of self-adjoint operators
affiliated toC is a subset of the set of observables affiliated toC . But there are observables affiliated to
C which do not correspond to self-adjoint operators onH (and these could be physically interesting).
See [ABG, page 364] and [BGS] for details on this question.

It is clear that the spectrum ofH as self-adjoint operator onH and as observable affiliated toC are
identical. If{Hn} is a sequence of self-adjoint operators affiliated toC then the sequence of observables
Hn converges if and only if the sequence of operatorsHn converges in norm resolvent sense.

† This should not be confused with the terminology of Woronowicz, see [DaG2].
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If one insists in working with self-adjoint operators the following notion is useful. We say that an observ-
able or a self-adjoint operatorH is strictly affiliated toC if the linear space generated by the products
θ(H)T with θ ∈ C0(R) andT ∈ C is dense inC . If there is a self-adjoint operator onH affiliated toC
thenC is non-degenerate onH .

We refer to [DaG2, Appendix] for a proof of the following fact: if H is a self-adjoint operator strictly
affiliated toC and ifP is a non-degenerate representation ofC on a Hilbert spaceK , then there is a
unique self-adjoint operatorP(H) onK such thatP(φ(H)) = φ(P(H)) for all φ ∈ C0(R). Moreover,
P(H) is strictly affiliated to theC∗-algebraP(C ).

From now on we assume thatC ⊂ B(H ) is non-degenerate onH . Then themultiplier algebra† of C
is defined by:

M = {B ∈ B(H ) | BC ∈ C andCB ∈ C if C ∈ C }. (7.1)

Each non-degenerate representationP of C on a Hilbert spaceK extends in a unique way to a represen-
tation (also denotedP) of M onK such thatP(B)P(C) = P(BC) for all B ∈M andC ∈ C .

Lemma 7.1 Assume thatH0 is a self-adjoint operator (strictly) affiliated toC and thatV = V ∗ belongs
to the multiplier algebra ofC . ThenH = H0 + V is (strictly) affiliated toC . If P is a non-degenerate
representation ofC thenP(H) = P(H0) + P(V ).

This is an easy consequence ofR(z) =
∑

R0(z) (V R0(z))
k for largez, whereR(z) = (z −H)−1 and

R0(z) = (z −H0)
−1. See [DaG2] for the proof of the strict affiliation.

We quote below several affiliation criteria which are convenient for quantum field models.

Theorem 7.2 LetH0 andV be bounded from below self-adjoint operators onH such that the operator
H = H0 + V with domainD(H0) ∩D(V ) is self-adjoint (in particular, the intersection has to be dense
in H ). If e−tH0e−2tV e−tH0 ∈ C for all t > 0 thenH is affiliated toC .

This follows from a result of Rogava [Ro] (see [IT] for more recent results) which says that

e−2tH = lim
n→∞

[
e−tH0/ne−2tV/ne−tH0/n

]n

= lim
n→∞

[(
e−tV/ne−tH0/n

)∗ (
e−tV/ne−tH0/n

)]n

(7.2)

holds in norm for allt > 0. Under the same conditions we also have norm convergence in:

e−tH = lim
n→∞

[
e−tV/ne−tH0/n

]n

. (7.3)

Other affiliation criteria can be found in [DaG2], for example:

Theorem 7.3 Let H0 ≥ 0 be a self-adjoint operator affiliated toC and let V be a symmetric form
such that−aH0 − b ≤ V ≤ bH0 + b for some real numbers0 < a < 1 and b > 0. Assume that
U ≡ (H0 + 1)−1/2V (H0 + 1)−1/2 belongs to the multiplier algebraM . ThenH = H0 + V defined in
form sense is a self-adjoint operator affiliated toC . If H0 is strictly affiliated toC thenU ∈ M if and
onlyθ(H0)V (H0 + 1)−1/2 ∈ C for all θ ∈ Cc(R) and thenH is strictly affiliated toC .

Now let us fix a probability measure spaceQ and consider the associated scale ofLp spaces. LetH0 be a
positive self-adjoint operator onL2 which generates ahypercontractivesemigroup in the following sense:
for eacht > 0 the operator e−tH0 is a contraction in eachLp and there arep > 2 andt > 0 such that

† This is isomorphic with the abstractly defined multiplier algebra, cf. [La], but we shall not use this fact.
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e−tH0L2 ⊂ Lp. We shall say that a real functionV onQ is admissibleif V and e−V belong toLp for all
p <∞ (observe that ifV is bounded from below the second condition is automaticallysatisfied). Under
these conditions onH0 andV it can be shown thatH0 + V is essentially self-adjoint onD(H0) ∩D(V )
and its closureH is bounded from below, see [RS, Theorem X.58]. Then [RS, Theorem X.60]:

Theorem 7.4 Assume thatH is as above, let{Vn} be a sequence of admissible functions, and letHn

be the closure of the operatorH0 + Vn. Assume that there isp > 2 such that‖Vn − V ‖Lp → 0 and
supn ‖e−Vn‖Lp <∞. ThenlimHn = H in norm resolvent sense.

2. We consider now the case of interest in this paper. LetH be a complex Hilbert space andO an abelian
non-degenerateC∗-algebra onH such thatO′′ ∩ K(H) = {0}. We takeH = Γ(H), which is either
the bosonic or the fermionic Fock space, andC = F (O). Then according to Theorems 5.4 and 6.2 we
have a canonical morphismP : F (O)→ O⊗F (O) whose kernel isK (H) ≡ K(Γ(H)). The algebra
O ⊗F (O) is naturally realized on the Hilbert spaceH⊗ Γ(H) and thus we get an embedding

F (O)/K (H) →֒ O ⊗F (O) ⊂ B(H⊗ Γ(H)). (7.4)

Thus we may think ofP as a representation ofF (O) onH⊗ Γ(H) with rangeF (O)/K (H) included
(strictly in general) inO ⊗F (O).

Lemma 7.5 F (O) is non-degenerate onΓ(H) and the representationP of F (O) onO⊗ Γ(H) is non-
degenerate. Ifh ≥ m > 0 is a self-adjoint operator onH strictly affiliated toO thenH0 = dΓ(h) is
strictly affiliated toΓ(O) and toF (O).

Proof: The action of the algebraF (O) onΓ(H) is non-degenerate becauseK (H) ⊂ F (O). The action
of P(F (O)) onH⊗Γ(H) is also non-degenerate because this algebra contains the operators of the form
S ⊗ Γ(S) with S ∈ O and‖S‖ < 1 and if we take a sequence{Sn} of such operators withSn → 1H
strongly thenSn ⊗ Γ(Sn) converges strongly to the identity operator onH⊗H .

If h is strictly affiliated toO then the linear span of the operatorsθ(h)T with θ ∈ C0(R) andT ∈ O
is dense inO. If h is also bounded from below this clearly implies‖e−εhT − T ‖ → 0 asε → 0 (and
reciprocally). Ifh ≥ m > 0 then from Lemma 3.7 we clearly get‖e−εH0Γ(A) − Γ(A)‖ → 0 asε → 0
if A ∈ O, ‖A‖ < 1, and from this we deduce thatH0 is strictly affiliated toΓ(O). Finally, we make
a general remark:if H is an observable strictly affiliated toΓ(O) then it is strictly affiliated toF (O).
Indeed, we haveΓ(O) ⊂ F (O) and the natural (left or right) action ofΓ(O) onF (O) is non-degenerate,
cf. Proposition 3.8.

Thus, if H is a self-adjoint operator onΓ(H) strictly affiliated toF (O) thenP(H) is a self-adjoint
operator onH ⊗ Γ(H) strictly affiliated to the quotient algebraF (O)/K (H). If H is only affiliated to
F (O) thenP(H) is only an observable affiliated toF (O)/K (H) and in general can not be realized
as a self-adjoint operator onH ⊗ Γ(H). In any case, as the simplest application in spectral theoryof
Theorems 5.4 and 6.2, we have the following description of the essential spectrum ofH .

Theorem 7.6 We haveσess(H) = σ(P(H)) if H ∈ F (O) or H is affiliated toF (O).

This result can be made more explicit in the following terms.SinceO is an abelianC∗-algebra its
spectrumX is a locally compact topological space and we have a canonical identification

O ⊗F (O) ∼= C0(X ; F (O)), (7.5)
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whereC0(X ; F (O)) is theC∗-algebra of norm continuous functionsF : X → F (O) which tend to
zero at infinity. Assume for simplicity that̃H ≡ P(H) is a self-adjoint operator onH ⊗ Γ(H) (which
holds if H is strictly affiliated toF (O)), thenH̃ is identified with a continuous family{H̃(x)}x∈X of
self-adjoint operators affiliated toF (O) and we have

σess(H) =
⋃

x∈X
σ(H̃(x)). (7.6)

See [ABG, 8.2.4] for details and for the proof that the union is closed (̃H could be only an observable).

3. The simplest operators affiliated toF (O) are the elementary QFH, and their images throughP are
described in Proposition 5.10. We give other examples belowand in later sections. Since we think
of F (O) as theC∗-algebra of energy observables of a quantum field, any observable affiliated to it
should be interpreted as the Hamiltonian of some quantum field model with one particle kinetic energy
affiliated toO. Thus Theorem 7.6 and the formula (7.6) should cover a large class of models. However,
the Hamiltonians of the usual models are of the same nature asthe elementary QFH (only much more
singular). We isolate this class of operators in the next definition.

Definition 7.7 A self-adjoint operatorH onΓ(H) is astandard quantum field Hamiltonian (SQFH)if H
is bounded from below and affiliated toF (O) and if there is a self-adjoint operatorh ≥ 0 onH affiliated
toO such thatP(H) = h⊗ 1Γ(H) +1H⊗H . Under these conditions we shall also say thatH is of type
O and thath is theone particle kinetic energyandm = inf h theone particle massassociated toH .

If we apply Theorem 7.6 to SQFH Hamiltonians we get:

Theorem 7.8 If H is a SQFH with one particle kinetic energyh and one particle massm then:

σess(H) = σ(h) + σ(H) = {λ + µ | λ ∈ σ(h), µ ∈ σ(H)}. (7.7)

In particular, if m > 0 theninf H is an eigenvalue of finite multiplicity ofH isolated from the rest of the
spectrum. Ifσ(h) = [m,∞[ thenσess(H) = [m + inf H,∞[.

The class of SQFH is quite large and many singular physicallyinteresting Hamiltonians are affiliated
to it. We shall give such examples in the next sections and we devote the rest of this section to some
preliminary results in this direction.

Lemma 7.9 The multiplier algebra ofF (O) containsWmax(H) in the bosonic case andF (H) in the
fermionic case. IfV belongs to one of these classes we haveP(V ) = 1H ⊗ V .

Proof: In the bosonic case it suffices to considerV = W (f) with f a bounded Borel regular measure on
H and to show that forT = Γ(A)S with S ∈ W (H) andA ∈ O, ‖A‖ < 1 we haveV T ∈ F (O) and
P(V T ) = (1H ⊗ V )P(T ). We haveV T =

∫
W (u)Γ(A)Sdf(u) the integral being convergent in norm

by Lemma 3.7, andW (u)Γ(A)S ∈ F (O), henceV T ∈ F (O) and

P(V T ) =

∫
P(W (u)Γ(A)S)df(u) =

∫
A⊗ (W (u)Γ(A)S)df(u)

= A⊗ (V Γ(A)S) = (1H ⊗ V )(A⊗ (Γ(A)S) = (1H ⊗ V )P(T ).

The proof in the fermionic case is similar and easier.
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Proposition 7.10 Let h be a self-adjoint operator onH affiliated toO and such thatinf h > 0. Let
V = V ∗ be an element of the multiplier algebra ofF (O). ThenH = dΓ(h) + V is affiliated toF (O)
and we haveP(H) = h⊗ 1Γ(H) + 1H ⊗ dΓ(h) + P(V ). In particular, if V ∈ Wmax(H) in the bosonic
case andV ∈ F (H) in the fermionic case, then we haveP(H) = h⊗1Γ(H)+1H⊗H , soH is a SQFH.

Proof: The operatorH0 = dΓ(h) has the property e−tH0 = Γ(e−th) for t > 0 and e−th ∈ O and has
norm< 1, so that

P
(
e−tH0

)
= e−th ⊗ Γ(e−th) = e−th ⊗ e−tH0 .

ThusP(H0) = h⊗ 1Γ(H) + 1H ⊗H0 and then we use Lemmas 7.1 and 7.9.

Proposition 7.11 Let V be a bounded from below self-adjoint operator onΓ(H) affiliated toWmax(H)
in the Bose case and toF (H) in the Fermi case. Leth be a self-adjoint operator onH affiliated toO
with h ≥ m > 0 and let us setH0 = dΓ(h). If H = H0 + V is self-adjoint onD(H0) ∩D(V ) thenH
is a SQFH of typeO with h as one particle kinetic energy.

Proof: ThatH is affiliated toF (O) is a consequence of Theorem 7.2. ThenH̃ = P(H) is an observable
affiliated toF (O) but we do not yet know if it can be realized as a self-adjoint operator onH⊗Γ(H). In

any case, the semigroup{e−t eH}t>0 is well defined (it could be zero on a nontrivial subspace) and(7.3)
implies:

e−t eH = P
(
e−tH

)
= lim

n→∞

[
P

(
e−tV/ne−tH0/n

)]n

= lim
n→∞

[
P

(
e−tV/nΓ

(
e−th/n

))]n

= lim
n

[
e−th/n ⊗

(
e−tV/nΓ

(
e−th/n

))]n

= lim
n

e−th ⊗
[
e−tV/ne−tH0/n

]n

= e−th ⊗ e−tH .

Since this holds for allt > 0 we getH̃ = h⊗ 1Γ(H) + 1H ⊗H .

The fact that the class of SQFH contains singular physicallyinteresting Hamiltonians is mainly due to its
stability under norm resolvent convergence.

Proposition 7.12 Assume that{Hn} is a sequence of SQFH of typeO with the same one particle kinetic
energyh and such thatHn → H in norm resolvent sense, whereH is a self-adjoint operator onΓ(H).
ThenH is SQFH of typeO with one particle kinetic energyh.

Proof: Due to norm resolvent convergence the operatorsHn are uniformly bounded from below and
e−tHn → e−tH in norm for eacht > 0. Thus e−tH ∈ F (O) henceH is affiliated toF (O) and we have

P
(
e−tH

)
= lim

n
P

(
e−tHn

)
= e−th ⊗ e−tHn = e−th ⊗ e−tH

for all t > 0. This is equivalent toP(H) = h⊗ 1Γ(H) + 1H ⊗H .
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8 Mourre estimate for operators affiliated to F (O)

1. We begin with some basic facts concerning the Mourre estimate as presented in [ABG, Ch. 7]. Im-
provements of the theory including an extension to conjugate operatorsA which are only maximal sym-
metric can be found in [GGM1] (this is especially useful for the treatment of zero mass fields).

Fix a self-adjoint operatorA (the conjugate operator) on a Hilbert spaceH . An operatorS ∈ B(H ) is
of classC1(A) if the mapt 7→ e−itASeitA is stronglyC1. If this map is of classC1 in norm, we say that
S is of classC1

u(A). It is easy to see thatS is of classC1(A) if and only if the commutator[A, S], which
is well defined as sesquilinear form onD(A), extends to a bounded operator[A, S]◦ onH .

Now letH be a second self-adjoint operator onH (the Hamiltonian). We say thatH is of classC1(A) or
C1

u(A) if (H−z)−1 has the corresponding property (herez is any number not in the spectrum ofH). It is
possible to characterize theC1(A) property in terms of the commutator[A, H ], we recall here only what
is strictly necessary (see [GGM1]). IfH is of classC1(A) thenD(H) ∩D(A) is a core forH and the
commutator[A, H ], defined as sesquilinear form onD(H) ∩D(A), extends to a continuous sesquilinear
form [A, H ]◦ on D(H) equipped with the graph topology [GGM1, Proposition 2.19].Moreover, we
have:

[A, (H − z)−1]◦ = −(H − z)−1[A, H ]◦(H − z)−1. (8.1)

From now on we keep the notation[A, H ] for the extension[A, H ]◦.

We defineρ̃A
H : R → (−∞,∞] as follows: ρ̃A

H(λ) is the upper bound of the numbersa for which there
are a real functionθ ∈ Cc(R) with θ(λ) 6= 0 and a compact operatorK such that

θ(H)[H, iA]θ(H) ≥ aθ(H)2 + K

In other terms,̃ρA
H(λ) is the best constant in the Mourre estimate. Then letρA

H(λ) be the upper bound
of the numbersa such that the preceding inequality holds for someθ andK = 0. So we get a second
functionρA

H : R → (−∞,∞] such thatρA
H ≤ ρ̃A

H . We haveρA
H(λ) < ∞ if and only if λ ∈ σ(H) and

ρ̃A
H(λ) <∞ if and only if λ ∈ σess(H), see Lemma 7.2.1 and Proposition 7.2.6 in [ABG]. Ifλ /∈ τA(H)

we say thatA is conjugate toH at λ.

The two functions defined above are lower semi-continuous. Thus the setτA(H) whereρ̃A
H(λ) ≤ 0 is

closed and will be called the set ofA-thresholdsof H . The closed setκA(H) of A-critical pointsof H
is given by the conditionρA

H(λ) ≤ 0.

ClearlyτA(H) ⊂ κA(H). In order to understand how much differ these sets we introduce the following
notion. Say thatλ ∈ R is anM-eigenvalueof H if it is an eigenvalue and̃ρA

H(λ) > 0. By the virial
theorem, these eigenvalues are of finite multiplicity and are not accumulation points of eigenvalues. Thus
the setµA(H) of all M-eigenvalues ofH is discrete. The next result [ABG, Theorem 7.2.13] says that
the functionsρA

H andρ̃A
H differ only on the small setµA(H). Let σp(H) be the set of eigenvalues ofH .

Proposition 8.1 We haveρA
H(λ) = 0 if λ is a M-eigenvalue ofH and otherwiseρA

H(λ) = ρ̃A
H(λ).

Moreover,ρA
H(λ) > 0 if and only if ρ̃H(λ) > 0 andλ /∈ σp(H). In particular (⊔means disjoint union):

κA(H) = τA(H) ∪ σp(H) = τA(H) ⊔ µA(H). (8.2)

We shall also need the following result, which is a particular case of [ABG, Theorem 8.3.6] (see also
[BG2, Theorem 3.4] for a simpler proof in an important particular case).
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Proposition 8.2 Let H = H1 ⊗ H2 and letHi, Ai be self-adjoint operators onHi such thatHi is
bounded from below and of classC1

u(Ai). Consider the self-adjoint operatorsH = H1 ⊗ 1 + 1 ⊗H2

andA = A1 ⊗ 1 + 1⊗A2 onH . ThenH is of classC1
u(A) and

ρA
H(λ) = inf

λ=λ1+λ2

[
ρA1

H1
(λ1) + ρA2

H2
(λ2)

]
. (8.3)

2. We shall explain now how one may compute the functionρ̃A
H usingC∗-algebra methods. This tech-

nique has been introduced in [BG3] in the context of theN -body problem and further developed in [ABG,
Ch. 8]. The main point of this approach is that it avoids the use of auxiliary objects like partitions of unity.
The presentation below is adapted to our needs, that from [BG3, ABG] is more general since it does not
require the quotient algebra to be represented on a Hilbert space.

Let C be aC∗-algebra such thatK(H ) ⊂ C ⊂ B(H ). Then the quotientC∗-algebraC̃ = C /K(H )
is well defined. IfH is a self-adjoint operator onH affiliated toC then one can consider its image
H̃ = P(H) through the canonical morphismP : C → C̃ . ThenH̃ is an observable affiliated tõC and
the essential spectrum ofH is equal to the spectrum of̃H . We shall assume that a faithful non-degenerate
realization ofC̃ on some Hilbert spacẽH is given and that the observablẽH is realized as a self-adjoint
operator (which we denote also bỹH) onH̃ .

Let A be a self-adjoint operator onH with e−itAC eitA = C for each realt and such that the map
t 7→ e−itASeitA be norm continuous for eachS ∈ C . Since e−itAK(H )eitA = K(H ), there is a norm
continuous one-parameter group of automorphismsαt of C̃ such thatP

(
e−itASeitA

)
= αt(S̃) for all t

andS ∈ C . Finally, assume that the groupαt is unitarily implemented in the representation oñH (this
is not needed in the more abstract theory presented in [BG3, ABG]). More precisely, our hypotheses are:

(CA)





A is a self-adjoint operator onH with e−itAC eitA = C for all t;

the mapt 7→ e−itASeitA is norm continuous for eachS ∈ C ;

Ã is self-adjoint onH̃ andP
(
e−itASeitA

)
= e−it eA P(S) eit eA for all t andS ∈ C .

The next proposition follows immediately from the preceding definitions and comments.

Proposition 8.3 Assume thatH is a self-adjoint operator onH affiliated toC and of classC1
u(A). If

H̃ is a self-adjoint operator onH̃ thenH̃ is of classC1
u(Ã) and ρ̃A

H = ρ
eA
eH

.

3. We shall apply the preceding general theory in the situationof interest for us in this paper. LetH
be a complex Hilbert space andO an abelian non-degenerateC∗-algebra of operators onH such that
O′′ ∩ K(H) = {0}. Let H = Γ(H) be the symmetric or antisymmetric Fock space overH and
C = F (O). We shall consider only conjugate operators of the form:

(OA)

{
A = dΓ(a) wherea is a self-adjoint operator onH such that e−itaOeita = O
and such that the mapt 7→ e−itaSeita is norm continuous for allS ∈ O.

Lemma 8.4 We have e−itAF (O)eitA = F (O) for all real t and the mapt 7→ e−itATeitA is norm
continuous for allT ∈ F (O).

Proof: Note that eitA = Γ(eita). In the bosonic case it suffices to takeT = W (u)Γ(S) with u ∈ H and
S ∈ O with ‖S‖ < 1. Then, due to (2.17), we have:

e−itATeitA = W (e−itau)Γ(e−itaSeita) (8.4)
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and we get norm continuity by Lemma 3.7. In the fermionic casewe may assumeT = φk(u)Γ(S) with
k = 0, 1 and the argument is even simpler.

Lemma 8.5 Let H be a self-adjoint operator affiliated toF (O). ThenH is of classC1
u(A) if and only

if H is of classC1(A) and the operator[A, (H − z)−1] given by(8.1)belongs toF (O).

Proof: If S = (H − z)−1 thenS(t) ≡ e−itASeitA belongs toF (O) for all real t. If H is of class
C1

u(A) then[S, iA] is the norm derivative att = 0 of the mapt 7→ S(t) hence belongs toF (O). On the
other hand, ifH is of classC1(A) then[S(t), iA] is the strong derivative of the mapt 7→ S(t) hence we
haveS(t)− S =

∫ t

0
e−iτA[S, iA]eiτA in the strong topology. If[S, iA] ∈ F (O) then by Lemma 8.4 the

integrand here is norm continuous, hence the integral exists in norm, sot 7→ S(t) is normC1.

From Theorems 5.4 and 6.2 and from relations like (8.4) (bosonic case) we get canonical identifications:

C̃ ≡ P(F (O)) ⊂ O ⊗F (O), H̃ = H⊗H ≡ H⊗ Γ(H), Ã = a⊗ 1 + 1⊗A. (8.5)

Our main result on the Mourre estimate for SQFH follows.

Theorem 8.6 Let H be a SQFH of typeO with one particle kinetic energyh and one particle mass
m = inf h > 0. Assume that condition (OA) from page 32 is fulfilled, thatH is of classC1

u(A), and that
h is of classC1

u(a) and such thatρa

h ≥ 0. Thenκa(h) = τa(h), we haveρA
H ≥ 0 and:

τA(H) =
[⋃∞

n=1 τn
a (h)

]
+ σp(H), (8.6)

whereτn
a (h) = τa(h) + · · ·+ τa(h) (n terms). Alternatively, if we setH0 = dΓ(h) then:

τA(H0) =
⋃∞

n=1 τn
a (h) and τA(H) = τA(H0) + σp(H). (8.7)

Proof: The operatorh cannot have eigenvalues of finite multiplicity because the corresponding spectral
projection would be inO′′ which does not contain finite dimensional projections. Hence from Proposition
8.1 we get̃ρa

h = ρa

h, in particularκa(h) = τa(h). SinceH is a SQFH we havẽH = h⊗1Γ(H) +1H⊗H .
By taking into account (8.5) we deduce from Propositions 8.3and 8.2 that:

ρ̃A
H(λ) = inf

λ=λ1+λ2

[
ρa

h(λ1) + ρA
H(λ2)

]
= infµ

[
ρa

h(λ− µ) + ρA
H(µ)

]
. (8.8)

In this proof we simplify notations and set̃ρ = ρ̃A
H , ρ = ρA

H , andρh = ρa

h. Also, without loss of
generality, we shall assume thatinf H = 0. Thenσess(H) ⊂ [m,∞[ due to Theorem 7.8. Thus the
functionsρ on the intervalλ < 0 andρ̃ andρh onλ < m are equal to infinity, in particular

ρ̃(λ) = inf0≤µ≤λ−m [ρh(λ− µ) + ρ(µ)] (8.9)

with the convention that the infimum over an empty set is equalto infinity. Observe that ifλ < m thenλ
is either in the resolvent set ofH , and thenρ(λ) =∞, or λ is in the discrete spectrum ofH , hence is an
M-eigenvalue ofH , soρ(λ) = 0 by Proposition 8.1. Thusρ(λ) ≥ 0 if λ < m. Assume now that we have
shown thatρ(λ) ≥ 0 if λ < km for an integerk ≥ 1. If λ < km + m then in (8.9) onlyµ < km will
appear and soρ(µ) ≥ 0. Sinceρh ≥ 0 by hypothesis, we getρ(λ) ≥ 0 if λ < (k + 1)m. By induction
we finally obtainρ(λ) ≥ 0 for all λ.

We thus have0 ≤ ρ ≤ ρ̃ andρh ≥ 0. Henceτ(H) ≡ τA(H) is the set ofλ such that̃ρ(λ) = 0 and
κ(H) ≡ κA(H) is the set ofλ such thatρ(λ) = 0. Moreover,τ(h) ≡ τa(h) = κa(h) is the set ofλ
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such thatρh(λ) = 0. Then the first equality in (8.8) clearly gives:ρ(λ) = 0 if and only if one can write
λ = λ1 + λ2 with ρh(λ1) = 0 andρ(λ2) = 0 (these functions are lower semi-continuous). Finally, from
(8.2) we obtain:

τ(H) = τ(h) + κ(H) = τ(h) + [τ(H) ∪ σp(H)] = [τ(h) + σp(H)]
⋃

[τ(h) + τ(H)] . (8.10)

This equation for the setτ(H) has as unique solution
⋃∞

n=1

[
τn
a (h)+σp(H)

]
obtained by iteration. This

gives (8.6), for (8.7) note that0 is the only eigenvalue ofH0.

Remark 8.7 The relation (8.6) describing the setτA(H) of A-thresholds ofH has a simple physical
interpretation. It says that an energyλ is anA-threshold if and only if one can write it as a sumλ =
λ1 + · · ·+λn +µ where theλk area-threshold energies of the free particle andµ is the energy of a bound
state of the field. This means that at energyλ one can pull outn free particles from the field, each one
having ana-threshold energy, such that the field remains in a bound state.

Remark 8.8 Outside the threshold setτA(H) one expectsH to have nice spectral properties. A rather
weak condition which implies the absolute continuity of thespectrum ofH outsideτA(H) (and many
other properties) is thatH be of classC1,1(A), which means that the mapt 7→ e−itA(H + i)−1eitA is of
Besov classB1,1

∞ in norm (this is slightly more restrictive than theC1
u (A) class; the boundedness of the

double commutator[A, [A, (H − z)−1]] implies it). In particular, in order to exclude the existence of the
singularly continuous spectrum, it is important to be sure thatτA(H) is a small set. Note thatτA(H) is
always closed and that it is countable ifτa(h) is countable andH separable. In fact, in the most important
physical cases we haveτa(h) = {m} and thenτA(H) = mN∗ + σp(H).

As an example, we consider the important particular case whenH is a Sobolev space over an Euclidean
spaceX = Rs, e.g.H = L2(X). TheP (ϕ)2 model as treated in [DeG2] is covered by this example.
Then we takeO = C0(X

∗) (space of continuous functions of the momentum operatorP which tend to
zero at infinity). A self-adjoint operatorh onH with inf h = m > 0 is strictly affiliated toC0(X

∗) if and
only if h = h(P ) whereh : X → R is a continuous function such that|h(p)| → ∞ when|p| → ∞.

We shall assume thath : X → R is a function of classC1 in the usual sense. Letτ(h) be the set of
critical values of the functionh in the usual sense, i.e. the numbers of the formh(p) with∇h(p) = 0. In
this context it is natural to consider one particle conjugate operators of the forma = F (P )Q + QF (P )
with F a vector field of classC∞

c (X). The corresponding operatorsA = dΓ(a) will be calledof class
VF (vector fields). The following is a consequence of Theorem 8.6.

Corollary 8.9 In the preceding framework, letH be a SQFH with one particle kinetic energyh. Then
σess(H) = [m + inf H,∞[. Assume thatH is of classC1

u (A) if A is of class VF and let

τ(H) =
[⋃∞

n=1 τn(h)
]
+ σp(H), (8.11)

whereτn(h) = τ(h) + · · · + τ(h) (n terms). ThenH admits a conjugate operator of class VF at each
point not inτ(H). If H is of classC1,1(A) (e.g. if [A, [A, (H − z)−1]] is bounded) for each operatorA
of class VF thenH has no singular continuous spectrum outsideτ(H).

Remark 8.10 It is possible to prove the Mourre estimate for more general HamiltoniansH affiliated
to F (O) if the operatorA satisfies the condition (OA). We use again Proposition 8.3 bytaking into
account the identifications made in (8.5). But now one step inthe preceding arguments is missing because
in generalH̃ is no more representable in the formh ⊗ 1Γ(H) + 1H ⊗ H ′ with operatorsh and H ′

affiliated toO andF (O) respectively, so we cannot use the Proposition 8.2. However, by using the
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techniques from [DaG1, Sections 5 and 6] one can sometimes overcome this difficulty. For example,
if H̃ = h ⊗M + 1H ⊗ H ′ with M ≥ c > 0 then one can proceed as in [DaG1, Section 6] (in fact,
the situation here is much simpler). The main point is that Proposition 8.3 shows that we only have to
estimate from below the commutator[H̃, iÃ] which has the following special structure:

[H̃, iÃ] = [H̃, ia⊗ 1Γ(H)] + [H̃, 1H ⊗ iA]. (8.12)

As already mentioned in the comments after Theorem 7.6, ifH is strictly affiliated toF (O) the quo-
tient H̃ is identified to a continuous family{H̃(x)}x∈X of self-adjoint operators̃H(x) onΓ(H) strictly
affiliated toF (O). Sincea “acts” only on the variablex (by condition (OA)) and due to Lemma 8.4,
each term on the right hand side of (8.12) formally belongs toF (O) and one may impose conditions
which ensure strict positivity of the sum. All this can be done rigorously by working with the resolvent
of H instead ofH , as in [DaG1, Section 5], and in fact the situation here is simpler than in the case of an
N -body dispersive Hamiltonian.

9 QFH associated to Lagrangian subspaces ofH

Our purpose in this section is to show that Hamiltonians likethat of theP (ϕ)2 model are covered by our
formalism. We shall consider only the bosonic situation. Wefirst recall another classical procedure for
constructing realizations of the Fock representation of the CCR, the so-calledfield realizations. The idea
is to use maximal abelian subalgebras of the Weyl algebraW (H) defined on page 6. Note thatW (H) de-
pends (modulo canonical isomorphisms) only on the symplectic structure ofH defined by the symplectic
form σ(u, v) = ℑ〈u|v〉. We recall that a real linear subspace ofH is calledisotropicif σ(u, v) = 0 for all
u, v ∈ E and that a maximal isotropic subspace is calledLagrangian. A straightforward argument gives:

Lemma 9.1 For any isotropic subspaceE we haveE ∩ iE = {0} and‖u + iv‖2 = ‖u‖2 + ‖v‖2 for all
u, v ∈ E ; and E is Lagrangian if and only ifH = E + iE and thenE is closed. Ifc is a conjugation
(antilinear isometry such thatc2 = 1) thenHc = {u ∈ H | cu = u} is a Lagrangian subspace ofH and
reciprocally, each Lagrangian subspace ofH is of this form for a uniquely determinedc.

For each real linear subspaceE ⊂ H let W (E) be the closed linear subspace ofW (H) generated by the
operatorsW (u) with u ∈ E . This is obviously aC∗-subalgebra ofW (H).

Lemma 9.2 LetE be a real linear subspace ofH. ThenW (E) is abelian if and only ifE is isotropic and
W (E) is maximal abelian inW (H) if and only ifE is Lagrangian.

Proof: Assume thatW (E) is abelian and letu, v ∈ E . From (2.2) we get eiℑ〈u|tv〉 = 1 for all t ∈ R

henceℑ〈u|v〉 = 0, soE is isotropic. IfE is Lagrangian thenW (E) is maximal abelian inW (H) because
W (E)′′ is maximal abelian on the Fock spaceΓ(H). Finally, assume thatE is not Lagrangian, so that
K = E + iE 6= H. If u ∈ H \ K then, as shown in the proof of Proposition 5.2.9 from [BR], one has
W (u) /∈ W (K) soW (u) /∈ W (E). If K is not dense inH we may chooseu ⊥ K and getW (u) in the
commutant ofW (E) but not inW (E). If K is dense inH thenE cannot be closed and we chooseu in the
closure ofE but not inE . Since the closure ofE is isotropic we see that[W (u), W (v)] = 0 for all v ∈ E .
But since the sumK = E + iE is directW (u) /∈ W (E).

In the rest of this section we fix a Lagrangian subspaceE of H. It is not difficult to show that the Von
Neumann algebraW (E)′′ generated byW (E) on Γ(H) is maximal abelian and thatΩ is a cyclic and
separating vector for it. Then〈T 〉 = 〈Ω|TΩ〉 defines a faithful state onW (E)′′ and we denoteLp(E)
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theLp spaces associated to the couple(W (E)′′, 〈·〉). These spaces are intrinsically defined by abstract
integration theory [Ne] and can be realized as usualLp spaces over a probability measure spaceQ which
we shall not specify† because this is of no interest here (we refer to [DeG2, Si] fordetails on these
questions). However, we mention that at the abstract level we have canonical identificationsL∞(E) =
W (E)′′ and if 1 ≤ p < ∞ thenLp(E) is the completion ofL∞(E) for the norm‖T ‖p = 〈|T |p〉1/p.
Moreover, from〈W (v)∗W (u)〉 = 〈W (v)Ω|W (u)Ω〉 it follows that the mapW (u) 7→ W (u)Ω extends
to a unitary mapL2(E) → Γ(H) which will be used from now on to identify these two Hilbert spaces.
Thus we have

W (E)′′ ≡ L∞(E) ⊂ Lp(E) ⊂ L2(E) ≡ Γ(H) ⊂ Lq(E) ⊂ L1(E) if 1 < q < 2 < p <∞. (9.1)

We get a realization onL2(E) of the Fock representation by transport fromΓ(H) with the help of the
identification map defined above. ThisE-realization is a “field realization” in the sense that the field
operatorsφ(u) are realized as operators of multiplication by (equivalence classes of) real measurable
functions defined on a probability spaceQ. Note that the “momentum operators” defined by

π(u) = φ(iu) = i(a∗(u)− a(u)) for u ∈ E

can be realized as differential operators for certain choices ofQ. One has the commutation relations

[φ(u), φ(v)] = [π(u), π(v)] = 0 and [φ(u), π(v)] = 2i〈u|v〉 if u, v ∈ E .

Example 9.3 This is the most elementary situation which is of physical interest. Leth be a self-adjoint
operator onH which leavesE invariant (i.e. is real with respect to the conjugation associated toE) and
has pure point spectrum. Then there is an orthonormal basis{ek}k∈K of the real Hilbert spaceE and
a functionh : K → R such thath =

∑
k h(k)|ek〉〈ek| as operator onH. Let us setak = a(ek),

φk = φ(ek/
√

2), andπk = π(ek/
√

2). ThenH0 = dΓ(h) has the following familiar expression:

H0 =
∑

k h(k)dΓ(|ek〉〈ek|) =
∑

k h(k)a∗
kak = 1

2

∑
k h(k)(π2

k + φ2
k − 1)

whereφk, πk are self-adjoint operators satisfying the commutation relations[φj , φk] = [πj , πk] = 0 and
[φj , πk] = iδjk. This is the kinetic energy operator of the (discretized) field and the total Hamiltonian is
obtained by adding a “generalized polynomial”V in the field operatorsφk.

We want to show that much more general Hamiltonians constructed by procedures similar to that of
Example 9.3 are SQFH in our sense. LetO be an abelian non-degenerateC∗-algebra onH such that
O′′ ∩ K(H) = {0}. In the statement of the next result we use the terminology ofabstract integration
theory; we refer to [Ne] for a short review of the main facts.

Theorem 9.4 Let H0 = dΓ(h) whereh is a self-adjoint operator onH affiliated toO and satisfying
m ≡ inf h > 0 and h−1E ⊂ E . Let V be a self-adjoint operator onΓ(H) which is bounded from
below, affiliated toW (E)′′, and has the propertyV ∈ Lp(E) for all p < ∞. ThenH0 + V is essentially
self-adjoint onD(H0)∩D(V ) and its closureH is a SQFH of typeO with one particle kinetic energyh.

Proof: We shall use Theorem 7.4 withH0 = dΓ(h). The conditions imposed onh imply that H0

generates a hypercontractive semigroup due to Nelson’s theorem [Si, Theorem 1.17]. ThenV , viewed
as function onQ, is admissible by hypothesis, soH is essentially self-adjoint onD(H0) ∩D(V ). Now

† We emphasize that ifH is infinite dimensional one can never takeQ = E in any natural sense, so the notationLp(E) could be
misleading. Of course, one may takeQ equal to the spectrum of theC∗-algebraW (E), but this is not a really convenient choice.
On the other hand, the theory of Gaussian cylindrical measures onE offers many useful realizations.
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assume thatV ∈ L∞ = W (E)′′. Kaplansky’s density theorem [Mu, Theorem 4.3.3] implies that the
closed ball of radius‖V ‖ in W (E) is strongly dense in the closed ball of radius‖V ‖ in W (E)′′. Since
the function1 ≡ Ω belongs toL2 it follows that there is asequence{Vn} of self-adjoint operatorsVn in
W (O) with ‖Vn‖ ≤ ‖V ‖ such that‖Vn − V ‖L2 → 0. But we have‖Vn − V ‖L∞ ≤ 2‖V ‖ hence we
get by interpolation‖Vn − V ‖Lp → 0 for all p < ∞. Let Hn = H0 + Vn, then Theorem 7.4 implies
thatHn → H in norm resolvent sense. From Proposition 7.10 it follows that eachHn is a SQFH hence
H is a SQFH of typeO with one particle kinetic energyh by Proposition 7.12. In the general case, we
consider the operatorsVn = inf(V, n) ∈ L∞ which obviously have the properties required in Theorem
7.4. ThusHn → H in norm resolvent sense and we use again Proposition 7.12.

The preceding theorem coversP (ϕ)2 models with a spatial and an ultraviolet cutoff in any dimension. In
space-time dimension2 it is possible to remove the ultraviolet cutoff staying in the Fock space. The fact
that the corresponding Hamiltonian is a SQFH in the sense of Definition 7.7 follows from:

Theorem 9.5 Let H0 be as in Theorem 9.4 and letV be a self-adjoint operator onΓ(H) affiliated to
W (E)′′ with the propertyV ∈ Lp(E) for all p < ∞. Assume that there is a sequence of operatorsVn

with the same properties asV and that there is someq > 2 such that: (i) eachVn is bounded from
below; (ii) supn ‖e−Vn‖Lq < ∞; (iii) ‖Vn − V ‖Lq → 0. ThenH0 + V is essentially self-adjoint on
D(H0) ∩D(V ) and its closureH is a SQFH of typeO with one particle kinetic energyh.

This follows immediately from Theorems 9.4 and 7.4 and Proposition 7.12. Christian Gérard sent me†

a short proof of the fact that the conditions of this theorem are satisfied in the two dimensionalP (ϕ)2
model with a spatial cutoff withVn defined with the help of ultraviolet cutoffs.

10 Coupling of systems and Pauli-Fierz model

1. Our treatment of the coupling between several fields and other external systems is based on the follow-
ing elementary fact (which follows by induction from [GI1, Theorem 2.3]). Byideal we mean a closed
bilateral ideal.

Proposition 10.1 Assume thatC1, . . . , Cn are nuclearC∗-algebras equipped with idealsJ1, . . . , Jn.

LetPk : Ck → C̃k ≡ Ck/Jk be the canonical surjection and letP ′
k = 1C1

⊗ · · · ⊗ Pk ⊗ · · · ⊗ 1Cn
be

the tensor product of this morphism with the identity maps, so that

P ′
k : C1 ⊗ · · · ⊗ Cn → C1 ⊗ · · · ⊗ C̃k ⊗ · · · ⊗ Cn

is a morphism. Then the kernel of the morphism

P ≡⊕n
k=1 P ′

k : C1 ⊗ · · · ⊗ Cn →
⊕n

k=1 C1 ⊗ · · · ⊗ C̃k ⊗ · · · ⊗ Cn

is equal toJ1 ⊗ · · · ⊗Jn.

Corollary 10.2 Assume that eachCk is realized on a Hilbert spaceHk andJk = K(Hk). LetH be
a self-adjoint operator onH = H1 ⊗ · · · ⊗Hn affiliated toC = C1 ⊗ · · · ⊗ Cn and let us denote
H̃k = P ′

k(H), which is an observable affiliated toC1 ⊗ · · · ⊗ C̃k ⊗ · · · ⊗ Cn. Then:

σess(H) =
⋃

k σ(H̃k). (10.1)

† By fax, on March 15, 2001 (sic).
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For this it suffices to note thatK(H ) = K(H1)⊗ · · · ⊗K(Hn).

For simplicity we taken = 2, we assume that we are in the framework of Corollary 10.2, andthat the
quotientC̃k is realized on a Hilbert spacẽHk. ThenP = P ′

1 ⊕ P ′
2 gives an embedding of the quotient

algebraC̃ = C /K(H ) as follows:

C̃ ⊂
(
C̃1 ⊗ C2

)
⊕

(
C1 ⊗ C̃2

)
. (10.2)

TheC∗-algebra from right hand side is realized on the Hilbert space

H̃ =
(
H̃1 ⊗H2

)
⊕

(
H1 ⊗ H̃2

)
. (10.3)

Thus if H is a self-adjoint operator onH affiliated toC then its imageP(H) = H̃1 ⊕ H̃2 ≡ H̃, an
observable affiliated toC̃ , is expected to be realized as a self-adjoint operator onH̃ (this is always the
case if we accept not densely defined self-adjoint operators).

We shall explain now how to prove the Mourre estimate in such situations. We assume that the data
Ck,Pk, Hk, Ak, H̃k, Ãk satisfy condition (CA) page 32. IfA = A1 ⊗ 1H2

+ 1H1
⊗ A2 on H then

eitA = eitA1 ⊗ eitA2 , hence e−itAC eitA = C and the mapt 7→ e−itATeitA = C is norm continuous for
all T ∈ C . Let us set

A◦
1 = Ã1 ⊗ 1H2

+ 1 fH1

⊗A2, A◦
2 = A1 ⊗ 1 fH2

+ 1H1
⊗ Ã2, Ã = A◦

1 ⊕A◦
2. (10.4)

ThenÃ is a self-adjoint operator oñH such thatP
(
e−itATeitA

)
= e−it eAP(T )eit eA for all T ∈ C . So if

H is of classC1
u(A) thenH̃ is of classC1

u(Ã ), eachH̃k is of classC1
u(A◦

k). Let us setρk = ρ
A◦

k

eHk

. Then,
by using Proposition 8.3 and [ABG, Proposition 8.3.5] we obtain:

ρ̃A
H = ρ

eA
eH

= min(ρ1, ρ2). (10.5)

Thus we are reduced to finding estimates from below for the functionsρk which can be done by using its
relation with the corresponding functioñρk as explained in the first part of Section 8. For this we need
to know more about the operators̃Hk and we shall consider this question below only in the much more
elementary case of the Pauli-Fierz Hamiltonians. Couplings withN -body systems as in [BFS, BFSS, Sk]
should be covered by the preceding formalism (we did not check the details).

2. An often studied situation is that of a field coupled with a small confined system. Confinement means
that the Hamiltonian of the small system has purely discretespectrum, hence we take asC∗-algebra of
energy observables of the small system the algebra of compact operators. Since taking tensor products
with a nuclear algebra preserves short exact sequences, we have slightly more than in the general case.

Proposition 10.3 Let C be aC∗-algebra of operators on a Hilbert spaceH such thatK(H ) ⊂ C

and let us denotẽC = C /K(H ). LetL be a second Hilbert space andH a self-adjoint operator on
H ⊗L affiliated toC ⊗K(L ). Let H̃ = P(H) whereP ≡ P ⊗ Id : C ⊗K(L ) → C̃ ⊗K(L ) is
the canonical morphism. Thenσess(H) = σ(H̃).

We apply this to a bosonic or fermionic field coupled with a confined system. The next result is an
immediate consequence of Theorems 5.4 and 6.2 and of the Proposition 10.3.

Theorem 10.4 LetH be a Hilbert space andO ⊂ B(H) a non-degenerate abelianC∗-algebra such that
O′′ ∩ K(H) = {0}. Let L be a second Hilbert space andH = Γ(H) ⊗L . Then there is a unique
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morphismP : F (O)⊗K(L )→ O⊗F (O)⊗K(L ) such thatP [(FΓ(A))⊗L] = A⊗ (FΓ(A))⊗L
for all F ∈ F (H), A ∈ O with ‖A‖ < 1, andL ∈ K(L ). One haskerP = K(H ). If H is a
self-adjoint operator onH affiliated toF (O) ⊗K(L ) thenσess(H) = σ(P(H)).

Remark 10.5 We shall adopt, in the framework of Theorem 10.4, exactly thesame definition ofstandard
QFH as in Definition 7.7, we just replace the algebraF (O) with F (O, L ). Then clearlyTheorem 7.8
remains true without any change. The conjugate operators which are well adapted to the present situation
are of the formA⊗ 1L whereA is as in assumption (OA) page 32. We keep the notationA for them and
note thatTheorem 8.6 and Corollary 8.9 remain valid without any change.

Our purpose now is to show that the Hamiltonians of the massive Pauli-Fierz models are covered by
Theorem 10.4. We shall consider the abstract version of thismodel introduced in [DeG1] and further
studied in [Ge2, DJ, GGM2, BD]. We treat only the case of a boson field, the fermionic case is easier
(just replace∨ by∧ and note that many assertions become obvious). The following is a standard fact.

Lemma 10.6 For eachp, q ∈ N there is a unique linear continuous mapSp,q : H∨p ⊗H∨q →H∨(p+q)

such thatSp,q(u⊗ v) = uv for all u ∈ H∨p andv ∈ H∨q. One has‖Sp,q‖ =
(
p+q

p

)1/2
.

We consider the framework of Theorem 10.4 (bosonic case) andtakeF (O, L ) = F (O) ⊗ K(L ) as
algebra of energy observable of our system. We recall [DeG1]that for each operatoru ∈ B(L ,H⊗L )
the creation operatora∗(u) acting in H is defined as the closure of the algebraic direct sum of the
operators

a∗
n(u) : H∨n ⊗L →H∨(n+1) ⊗L defined bya∗

n(u) = (Sn,1 ⊗ 1L ) ◦ (1H∨n ⊗ u). (10.6)

The difference in coefficients with respect to [GGM2, (3.1)]is due to our choice of scalar product in the
Fock space. Since no ambiguity may occur we shall identifyN = N ⊗ 1L . Then clearly we have:

‖a∗(u)(N + 1)−1/2‖ = ‖u‖B(L ,H⊗L ) (10.7)

Leta(u) be the adjoint of the operatora∗(u) and letφ(u) = a(u)+a∗(u). The domains of these operators
containHfin, the algebraic direct sum of the spacesH∨n⊗L , and it is easy to see thatφ(u) is essentially
self-adjoint on this domain; we use the same notation for itsclosure. It is clear that the commutation
relations (2.11) remain valid. Below and later on we shall identify Γ(A) = Γ(A) ⊗ 1L except in the
situations when the clarity of the text requires more precision.

Lemma 10.7 If u ∈ K(L ,H⊗L ) andA ∈ O, ‖A‖ < 1, thena(∗)(u)Γ(A) ∈ F (O, L ) and

P [a(∗)(u)Γ(A)] = A⊗ [a(∗)(u)Γ(A)] onH⊗H . (10.8)

Proof: From (10.7) we get

‖a(∗)(u)Γ(A)‖ ≤ ‖a(∗)(u)(N + 1)−1/2‖‖(N + 1)1/2Γ(A)‖ ≤ C‖u‖B(L ,H⊗L )

hence the mapu 7→ a(∗)(u)Γ(A) is norm continuous onB(L ,H ⊗ L ). Thus it suffices to prove the
assertions of the lemma foru of the formu = f ⊗ K with f ∈ H andK a compact operator onL .
More precisely,u ∈ B(L ,H ⊗L ) is the defined by:u(e) = f ⊗K(e). Then it is easy to check that
a(∗)(u) = a(∗)(f)⊗K hencea(∗)(u)Γ(A) = [a(∗)(f)Γ(A)] ⊗K ∈ F (O) ⊗K(L ).
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Lemma 10.8 For eachu ∈ B(L ,H⊗L ) the following relations are satisfied.
(i) LetS, T ∈ B(L ) andA ∈ B(H) with ‖A‖ < 1. Then

(Γ(A)⊗ S)a∗(u)(1Γ(H) ⊗ T ) = a∗((A⊗ S)uT )(Γ(A)⊗ 1L ). (10.9)

(ii) Leth, L be self-adjoint operators onH andL respectively such thath ≥ m > 0 andL ≥ 0 and let
H0 = dΓ(h)⊗ 1L + 1Γ(H) ⊗ L. Then for allf ∈Hfin and all numbersr > 0 we have:

|〈f |φ(u)f〉| ≤ C(u, r)〈f |(H0 + r)f〉 (10.10)

whereC(u, r) = ‖(h−1/2 ⊗ 1L )u(L + r)−1/2‖2 and the right hand side is allowed to be+∞.

The proof of (i) is a mechanical application of the definitions; note that both sides of (10.9) are bounded
operators. The second assertion is a particular case of [GGM2, Proposition 4.1], but see also [DJ, Propo-
sition 4.1] and [BD, Theorem 2.1].

The second part of the Lemma 10.8 allows us to defineφ(u) as a continuous sesquilinear form on

D(H
1/2
0 ) for an arbitrary continuous linear map† u : L1 → H∗

1 ⊗ L . HereL1 = D(L1/2) and
H1 = D(h1/2) are equipped with the graph topologies,H∗

1 is the space adjoint toH1, and we embed as
usualH1 ⊂ H ⊂ H∗

1. ThenB(L ,H⊗L ) ⊂ B(L1,H∗
1 ⊗L ) densely in the strong operator topology

and ifB(R) is the closed ball of radiusR in B(L1,H∗
1 ⊗L ) thenB0(R) = B(R) ∩B(L ,H⊗L ) is

strongly dense‡ in B(R).

Let, for example,D be the symmetric algebra overH1 algebraically tensorized withL1. This is a core
for H

1/2
0 consisting of linear combinations of decomposable vectors. Fix f ∈ D and consider the map

u 7→ 〈f |φ(u)f〉 defined for the moment only onB(L ,H ⊗ L ). It is clear from the definition (10.6)
that this map is continuous for the strong operator topologyinduced byB(L1,H∗

1 ⊗L ). Thus, by the
preceding considerations, (10.10) remains valid foru ∈ B(L1,H∗

1⊗L ) with the same constantC(u, r).

One can defineφ(u) in a second way (which below gives the sameH). The graph norm onH1 defined
by h1/2 is such that the embeddingH1 ⊂ H is contractive. Then we get injective contractive linear
mapsH1 →֒ H →֒ H∗

1 hence contractive dense embeddingsΓ(H1) ⊂ Γ(H) ⊂ Γ(H∗
1). On the other

hand, we have a natural identificationΓ(H1)
∗ = Γ(H∗

1). If u : L1 → H∗
1 ⊗ L then (10.6) clearly

gives a continuous mapa∗
n(u) : H∨n ⊗L1 → (H∗

1)
∨(n+1) ⊗L hence we obtain as usual a linear map

a∗(u) : Γfin(H) ⊗ L1 → Γfin(H∗
1) ⊗L . Then we defineφ(u) as a quadratic form onΓfin(H1) ⊗ L1

(which is a core forH0) by taking〈f |φ(u)f〉 = 2ℜ〈f |a∗(u)f〉.
We summarize below our assumptions concerning massive Pauli-Fierz models:

(PF)





H andL are Hilbert spaces,Γ(H) is the symmetric Fock space,H = Γ(H)⊗L ;

O ⊂ B(H) is a non-degenerate abelianC∗-algebra such thatO′′ ∩K(H) = {0};

h ≥ m > 0 is a self-adjoint operator onH strictly affiliated toO;

L ≥ 0 is a self-adjoint operator onL with purely discrete spectrum;

v ∈ B(D(L1/2), D(h1/2)∗ ⊗L ) is such thatlimr→∞ C(v, r) < 1;

(h + L)−αv(L + 1)−1/2 and (h + L)−1/2v(L + 1)−α are compact operators ifα > 1/2.

† The theory of Pauli-Fierz Hamiltonians for such “form factors” has first been developed in [BD], but we shall not follow their
method. However, the reader might prefer the direct arguments and the more detailed presentation from [BD].

‡ Indeed, it suffices to approximateT with [(1 + εh)−1 ⊗ 1L ]T (1 + εL)−1
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Here and later we use the abbreviationh + L = h⊗ 1L + 1H ⊗ L.

Theorem 10.9 Assume that conditions (PF) are fulfilled. ThenH0 = dΓ(h) ⊗ 1L + 1Γ(H) ⊗ L is
a positive self-adjoint operator onH strictly affiliated toF (O, L ) andφ(v) is a symmetric quadratic

form onD(H
1/2
0 ) such that±φ(v) ≤ aH0 +b for some0 < a < 1, b > 0. The form sumH = H0 +φ(v)

is a self-adjoint operator onH strictly affiliated toF (O, L ) andH is a standard QFH withh as one
particle kinetic energy (see Remark 10.5). In particularσess(H) = σ(h) + σ(H). Finally, assume thatA
is as in condition (A) page 32 and let us identifyA ⊗ 1L = A. If H is of classC1

u(A) andh is of class
C1

u(a) with ρa

h ≥ 0, then the conclusions of Theorem 8.6 are valid.

Proof: We assume, without loss of generality, thatL ≥ 1. We have e−tH0 = Γ(e−th)⊗e−tL ∈ F (O, L )
for all t > 0 and strict affiliation follows by noting that‖e−tH0T ⊗K − T ⊗K‖ → 0 if t → 0 for all
T ∈ F (O) andK ∈ K(L ), see the proof of Lemma 7.5. The assertion concerning the existence ofH
as self-adjoint operator is clear by the preceding discussion (see also [BD]). We shall now prove the strict
affiliation of H to F (O, L ) and we do this by checking the conditions of Theorem 7.3, moreprecisely

we shall prove thatθ(H0)φ(v)H
−1/2
0 ∈ F (O, L ) if θ ∈ C0(R). We shall prove by two different

methods that e−H0a∗(v)H
−1/2
0 ∈ F (O, L ) andH

−1/2
0 a∗(v)e−H0 ∈ F (O, L ), which clearly suffices.

We first show thatLH−1
0 belongs to the multiplier algebra ofF (O, L ), whereL ≡ 1Γ(H) ⊗ L. It

suffices to prove that(LH−1
0 )(S ⊗ T ) ∈ F (O) ⊗K(L ) for dense sets of operatorsS andT in F (O)

andK(L ) respectively. Note that the linear span of the operatorsT = L−1K with K compact onL
is dense inK(L ) because it contains the rank one operators of the form|f〉〈g| with f in the range of
L−1, which is dense inL . Since(LH−1

0 )(S ⊗ T ) = H−1
0 (S ⊗K) for suchT , it suffices to prove that

e−H0(S ⊗K) ∈ F (O) ⊗K(L ), because then this will remain valid if e−H0 is replaced by anyθ(H0)
with θ ∈ C0(R). But e−H0(S ⊗K) = (Γ(e−h)S)⊗ (e−LK) clearly belongs toF (O) ⊗K(L ).

Now by using (10.9) we get:

e−H0a∗(v)H
−1/2
0 = (Γ(e−h)⊗ e−L)a∗(v)(1Γ(H) ⊗ L−1/2) · (LH−1

0 )1/2

= a∗(e−h−LvL−1/2)Γ(e−h) · (LH−1
0 )1/2

whereLH−1
0 is interpreted as above. Since e−h−LvL−1/2 is compact we can use Lemma 10.7 and then

it suffices to note that(LH−1
0 )1/2 is also a multiplier for the algebraF (O, L ).

Next we consider the case ofH
−1/2
0 a∗(v)e−H0 . In order to simplify the writing we shall sometimes iden-

tify 1n ≡ 1n⊗1L and similarly for1n. SinceH01
⊥
n ≥ (n+1)m1⊥n we easily see thatH−1/2

0 a∗(v)e−H0

is the norm limit asn→∞ of H
−1/2
0 a∗(v)e−H01n. But1n is a finite sum of projections1k, so it suffices

to show thatT ≡ H
−1/2
0 a∗(v)e−H01n belongs toF (O, L ) for eachn. From (10.6) we get:

T = H
−1/2
0 (Sn,1 ⊗ 1L )(1n ⊗ v)

[
Γ(e−h)1n

]
⊗ e−L

= H
−1/2
0 (Sn,1 ⊗ 1L ) (1n ⊗M)

(
1n ⊗

[
M−1vL−α

]) (
Γ(e−h)⊗ Lαe−L

)
.

whereM = h1/2 + L1/2 is an operator acting inH⊗L such that(h + L)1/2 ≤ M ≤
√

2(h + L)1/2.
Thus, by hypothesis,v0 = M−1vL−α is a compact operatorL → H ⊗ L . In the rest of this proof
we realizeH∨k as the subspace ofH⊗k consisting of symmetric tensors (the norm being modified by a
factor

√
k!, but this does not matter here), and then we haveH

−1/2
0 (Sn,1 ⊗ 1L ) = (Sn,1 ⊗ 1L ) H

−1/2
0

in a natural sense and we have:

T = (Sn,1 ⊗ 1L )H
−1/2
0 (1n ⊗M)(1n ⊗ v0)

(
Γ(e−h)⊗ Lαe−L

)
.
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The operatorH−1/2
0 (1n ⊗ M), acting inH⊗(n+1) ⊗ L , is bounded andv0 is norm limit of linear

combinations of operators of the formu0⊗K0 whereu0 ∈ H andK0 ∈ K(L ) (see the proof of Lemma
10.7). Thus it suffices to prove thatT ∈ F (O, L ) under the assumptionv0 = u0 ⊗K0 and clearly we
may also assumeu0 ∈ D(h1/2) andK = L1/2K0 compact. If we setu = h1/2u0 then we obtain:

T = H
−1/2
0 (Sn,1 ⊗ 1L )(1n ⊗ [u⊗K0 + u0 ⊗K])

(
Γ(e−h)⊗ Lαe−L

)

= H
−1/2
0 a∗(u⊗K0 + u0 ⊗K) · Γ(e−h)⊗ 1L · 1Γ(H) ⊗

(
Lαe−L

)
.

From Lemma 10.7, and since1Γ(H) ⊗
(
Lαe−L

)
is multiplier forF (O, L ), we getT ∈ F (O, L ).

To prove thatH is a SQFH it remains to show thatP(H) = h⊗ 1H + 1H⊗H (then the formula for the
essential spectrum is a consequence, cf. Remark 10.5). Letλ ≥ 0 real and let us setΛ = (H0 + λ)−1/2

(recall that in this proof we assumeH0 ≥ 1) andU = Λφ(v)Λ. By Theorem 7.3 and by what we proved
above,U belongs to the multiplier algebraM of F (O, L ). Indeed, this argument gives directlyΛ ∈M

if λ = 0 and for the general case it suffices to writeU = (H
1/2
0 Λ)(H

−1/2
0 φ(v)H

−1/2
0 )(H

1/2
0 Λ) and to

note thatH1/2
0 Λ ∈ M becauseH0 is strictly affiliated toF (O, L ). We have e−H0 = Γ(e−h) ⊗ e−L

hence from Theorem 10.4 we getP
(
e−H0

)
= e−h ⊗ e−H0 hence

H̃0 ≡ P(H0) = h⊗ 1H + 1H ⊗H0, Λ̃ ≡ P(Λ) =
(
H̃0 + λ

)−1/2

.

We shall prove below that
Ũ ≡ P(U) = Λ̃(1H ⊗ φ(v))Λ̃ ≡ Λ̃φ̃(v)Λ̃ (10.11)

whereP is canonically extended toM as mentioned before Lemma 7.1. Assuming that this has been
done, chooseλ such that‖U‖ < 1 (this is possible because±φ(v) ≤ aH0 + b with a < 1). Then clearly
we have a norm convergent expansion

(H + λ)−1 = Λ(1 + U)−1Λ =
∑

(−1)nΛUnΛ

which implies

P
(
(H + λ)−1

)
=

∑
(−1)nP(Λ)P(U)nP(Λ) =

∑
(−1)nΛ̃ŨnΛ̃ = (H̃ + λ)−1

whereH̃ = H̃0 + φ̃(v) and this finishes the proof of the relationP(H) = h⊗ 1H + 1H ⊗H . Note that
±φ̃(v) ≤ aH̃0 + b with the samea, b as above.

It remains to prove (10.11). Sincea∗(v) = (φ(v) + iφ(iv))/2 we haveΛa∗(v)Λ ∈M and its adjoint is
Λa(v)Λ. Thus (10.11) is a consequence of

P(Λa∗(v)Λ) = Λ̃(1H ⊗ a∗(v))Λ̃, (10.12)

which is what we show now. From (10.9) we have

e−H0a∗(v)
(
1Γ(H) ⊗ L−1/2

)
= a∗

(
e−h−LvL−1/2

) (
Γ(e−h)⊗ 1L

)
.

The operator1Γ(H) ⊗ L−1/2 belongs toM and it is easy to check that

P
(
1Γ(H) ⊗ L−1/2

)
= 1H ⊗ 1Γ(H) ⊗ L−1/2.
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From now on we simplify notations and no more write the tensorproduct symbols when they are obvious
from the context. Then:

e−
eH0P (Λa∗(v)Λ)L−1/2 = P

(
e−H0Λa∗(v)ΛL−1/2

)
= P

(
Λa∗

(
e−h−LvL−1/2

)
Γ(e−h)Λ

)
.

Due to (10.8) this is equal to:

P(Λ)P
(
a∗

(
e−h−LvL−1/2

)
Γ(e−h)

)
P(Λ) = Λ̃ · e−h ⊗

[
a∗

(
e−h−LvL−1/2

)
Γ(e−h)

]
· Λ̃

which in turn is equal to

Λ̃ · e−h ⊗
[
e−H0a∗(v)L−1/2

]
· Λ̃ = Λ̃e−

eH0(1H ⊗ a∗(v))L−1/2Λ̃.

Thus we have proved:

e−
eH0P (Λa∗(v)Λ)L−1/2 = Λ̃e−

eH0(1H ⊗ a∗(v))L−1/2Λ̃ = e−
eH0Λ̃(1H ⊗ a∗(v))Λ̃L−1/2.

Since the operators e− eH0 andL−1/2 are injective, we get (10.12).

The last assertion of the theorem concerns the Mourre estimate and is clear by the Remark 10.5.

Remark 10.10 We note that the description of the essential spectrum givenin Theorem 10.9 is an im-
provement of themassivecase of [BD, Theorem 2.3], where it is assumed thath−1/2v(L + 1)−1/2 is
compact, but not of [GGM2, Proposition 4.9], which does not require(L + 1)−1 to be compact.

11 Systems with a particle number cutoff

In this section we fix an abelian non-degenerateC∗-algebraO of operators on the infinite dimensional
spaceHwithO′′∩K(H) = {0} and letΓ be the symmetric or antisymmetric Fock space functor. We are
interested in models where the number of particles is at mostn, a given positive integer. Then the Hilbert
space of the states of the system isΓn(H) and the algebra of energy observables must be aC∗-algebra of
operators on this space. LetKn(H) = K(Γn(H)) be the algebra of compact operators onΓn(H).

We define for each integern ≥ 0 aC∗-subalgebra ofF (O) by the following rule:

Fn(O) = 1nF (O)1n. (11.1)

Let Fn(O) = 0 for n < 0. ThusFn(O) lives in the subspaceΓn(H) (i.e. it is non-degenerate onΓn(H)
and its restriction to the orthogonal subspace is zero) and:

F0(O) = Cω, Fn(O) ⊂ Fn+1(O) andF (O) = ∪nFn(O). (11.2)

Note thatKn(H) = 1nK (H)1n and this is an ideal ofFn(O).

In particular, the algebraAn(H) = Fn(C1H) = 1nA (H)1n is aC∗-subalgebra ofA (H) which lives
in the subspaceΓn(H), has1n as unit element, and containsKn(H) as an ideal. Moreover:

A0(H) = Cω, An(H) ⊂ An+1(H), A (H) = ∪nAn(H). (11.3)

These algebras can be defined independently of the material from the preceding sections. First, it is not
difficult to prove thatAn(H) is the unitalC∗-algebra generated by the operatorsφn(u) = 1nφ(u)1n.
If Γn(O) is theC∗-algebra generated by the operatorsΓn(S) = ⊕k≤nS∨k with S ∈ O, then we have
Fn(O) = JAn(H) · Γn(O)K. With Pn = P|Fn(O), we get from Theorems 5.4 and 6.2:
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Proposition 11.1 There is a unique morphismPn : Fn(O)→ O ⊗Fn−1(O) such that

Pn

(
φn(u)kΓn(S)

)
= S ⊗

(
φn−1(u)kΓn−1(S)

)
(11.4)

for all u ∈ H, k ≥ 0, S ∈ O. We haveker(Pn) = Kn(H), hence we get canonical embedding:

Fn(O)/Kn(H) →֒ O ⊗Fn−1(O). (11.5)

The case of the algebrasAn(H) is particularly nice (we use Remark 4.5):

Corollary 11.2 There is a unique morphismPn : An(H)→ An−1(H) such thatPn[φn(u)] = φn−1(u)
for all u ∈ H. This morphism is unital, surjective, it hasKn(H) as kernel, and is explicitly given by:

Pn(T ) = s-lim
e⇀0

a(e)Ta∗(e) for all T ∈ An(H). (11.6)

Thus we get a sequence of canonical surjective morphisms

0← A0(H)← A1(H) · · · ← An−1(H)← An(H)← · · · (11.7)

which induce canonical isomorphismsAn(H)/Kn(H) ∼= An−1(H).

Remark 11.3 Theorem 1.2 from [Geo] looks more general then Proposition 11.1, but I found a gap in my
proof of that theorem, cf. the comment on page 162 in [GI2]. Infact, I know how to deduce Proposition
11.1 from [GI2, Proposition 3.32] (which is elementary and easy to prove), but the argument is much
more involved than the methods used in the present paper (andthe assumptions thatO is abelian and that
there are no finite rank operators in the Von Neumann algebra generated byO cannot be avoided).

We finish with some applications in spectral theory. An advantage in having a particle number cutoff
is that the strict positivity of the one particle mass is no more necessary, in fact the one particle kinetic
energyh can be an arbitrary bounded from below self-adjoint operator affiliated toO. On the other hand,
the notion ofstandardQFH as introduced in Definition 7.7 does not make sense now. Instead, in the
present context it is natural to consider the following class of elementaryQFH with a particle number
cutoff: these are the operators of the formHn = dΓn(h) + Vn whereh is a self-adjoint bounded from
below operator affiliated toO andVn ∈ An(H) is bounded and symmetric. It is clear that, as in the
preceding sections, one may consider much more general interactions, but this is of no interest here.

Such aVn being fixed, we defineVk = Pn−k(Vn) ∈ Ak(H) for k ≤ n. Note that ifVn is a polynomial
in the operators{φn(u)}u∈H thenVk is the same polynomial in which eachφn(u) has been replaced by
φk(u). Or if Vn = 1nV 1n for someV ∈ F (H), thenVk = 1kV 1k.

Let us setHk = dΓk(h) + Vk, this is a self-adjoint operator onΓk(H). Of course,H0 = V0 = cω for
some complex numberc. The techniques used before easily give thatHk is affiliated toFk(O) and:

P(Hk) = h⊗ 1Γk−1(H) + 1H ⊗Hk−1 for 1 ≤ k ≤ n. (11.8)

In particular, we get an HVZ type description of the essential spectrum of the operatorHn:

σess(Hn) = σ(h) + σ(Hn−1). (11.9)

Note how much simpler is this formula than in then-body situation.
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The treatment of the Mourre estimate is entirely similar to that from Section 8, so we give only the result.
We consider only conjugate operators of the formAn = dΓn(a) wherea is as in condition (OA) page 32.
Exactly as in the proof of Theorem 8.6 we now get:

τAn
(Hn) =

⋃n
k=1

[
τk
a (h) + σp(Hn−k)

]
(11.10)

where we make the conventionσp(H0) = {0}. Indeed, if we abbreviateτ(h) = τa(h) andτ(Hn) =
τAn

(Hn), then (11.10) follows by induction from the analogue in the present context of (8.10), namely:

τ(Hn) = τ(h) + [σp(Hn−1) ∪ τ(Hn−1)] = [τ(h) + σp(Hn−1)]
⋃

[τ(h) + τ(Hn−1)] . (11.11)
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[BFSS] Bach, V., Fröhlich, J., Sigal, I., Soffer, A.: Positive commutators and the spectrum of Pauli-
Fierz Hamiltonian of atoms and molecules, Comm. Math. Phys.2o7 (1999), 557–587 (and
preprint 97-268 at http://www.ma.utexas.edu/mparc).

[BSZ] Baez, J.C., Segal, I.E., Zhou, Z.:Introduction to algebraic and constructive quantum field
theory, Princeton University Press, 1992.

[Be1] Bellissard, J.: K-Theory ofC∗-algebras in solid state physics, inStatistical Mechanics and
Field Theory: Mathematical Aspects, T.C. Dorlas, N.M. Hugenholtz, M. Winnink (eds.),
Groningen 1985.

[Be2] Bellissard, J.: Gap labelling theorems for Schrödinger operators, inFrom Number Theory to
Physics, Les Houches 1989, J.M. Luck, P. Moussa, M. Waldschmidt (eds.), Springer Proceed-
ings in Physics47 (1993), 538–630.

[Be3] Bellissard, J.: The noncommutative geometry of aperiodic solids, inGeometric and Topological
Methods for Quantum Field Theory, (Villa de Leyva, 2001), 86–156, World Sci. Publishing,
River Edge, NJ, 2003 (pdf version available at http://www.math.gatech.edu/ jeanbel).

[BG1] Boutet de Monvel, A., Georgescu, V.: Graded C*-algebras in theN -body problem, J. Math.
Phys.32 (1991), 3101–3110.

[BG2] Boutet de Monvel, A., Georgescu, V.: Graded C*-algebras and many-body perturbation the-
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