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Abstract

We defineC*-algebras on a Fock space such that the Hamiltonians of guafield models with
positive mass are affiliated to them. We describe the quotiésuch algebras with respect to the
ideal of compact operators and deduce consequences indgbgapheory of these Hamiltonians: we
compute their essential spectrum and give a systematieguoe for proving the Mourre estimate.
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1 Introduction

This paper is motivated and related to the work on the sple&itré scattering theory of quantum field
models initiated in [HS, Gel] and further developed in [DeBG&G2, DJ]. Our purpose is to show that
abstractC*-algebra techniques allow one to obtain in this contextajgéneral results in a rather simple
and systematic way which avoids ad-hoc and intricate cootitms. We use ideas introduced in [BG1,
BG3] in the context of theV-body problem and in a more general setting in [GI1]. The npaimt of this
approach is that understanding the quotientGf aalgebra with respect to the ideal of compact operétors
gives a lot of information relevant to the spectral analydishe operators affiliated to the algebra. In
[GI1, GI2] the relevantC*-algebras are generated by a set of “elementary” Hamiltengpecific to a
certain physical situation. The “real” Hamiltonians arerihthe self-adjoint operators affiliated to the
algebra. We adopt here the same strategy.

In order to avoid any misunderstanding we emphasize thatoiiies considered in this paper are quite
far from the theory of relativistic quantum fields. As in tredarences quoted above (and in the Reference
section) our results are relevant only for quantum field nt®ddth a spatial cutoff and living in a Fock
space (hopefully this last restriction will be removed ie tiear future). On the other hand, our approach
clearly covers many physically interesting models of theayabody theory, our focus being on the study
of systems with an infinite number of degrees of freedom arldoumit particle number conservation.

Our results on the spectral analysis of quantum field Hamigtos (QFH) are consequences of the theorem
stated below. Let H be a complex Hilbert space and [E{H) be the symmetric or antisymmetric
Fock space ovel. The field operatorg(u) and the Segal operatof§ A) are defined as usual. If
U = (uy,...,u,) belongs to the Cartesian powHf* we setp(U) = ¢(uq) .. . ¢(u,); in the caser = 0

this is interpreted ag(()) = 1rx). If | A]| < 1 theng(U)I'(A) is a well defined bounded operator. Let
2 (H) be the space of all compact operatorsfi).

Theorem 1.1 Let O be an abeliarC*-algebra on such that its strong closure does not contain finite
rank projections. Let# (O) C B(I'(H)) be theC*-algebra generated by the operatat§U )I'(A) with
U as above andl € O with ||A|| < 1. Then there is a unique morphishh: % (0) — O ® Z(O) such
thatP [¢(U)I'(4)] = A® [¢(U)T'(A)] for all U, A. We havéer P = % (H), which defines a canonical
embedding

F(O)/H (H) — O F(0). (1.2)

This statement has the advantage that it is simple and cbe#iighe bosonic and fermionic cases. Al-
ternative, technically more convenient, versions of Tlkeeof.1 are Theorem 5.4 (see also Lemma 5.11)
and Theorem 6.2. Instead of working separately with the BwgkFermi case one may consider a su-
persymmetric (0Z--graded) Hilbert spac@{ as in [De] which gives a unified approach to the subject.
Since this requires more preliminary developments, ancksome gets the same result by taking a tensor
product of the bosonic and fermionic Fock space, we did neg¢mt this version.

In spite of the simplicity of its statement, Theorem 1.1 mapartant consequence in the spectral theory
of QFH: itimmediately gives a description of the essengcrum of these Hamiltonians and also gives
a systematic and simple way of proving the Mourre estimateHem with conjugate operators of the
form A = dI'(a). Such an estimate allows one to prove absence of singuléincons spectrum and is
an important step in the proof of asymptotic completendsfDeG1, DeG2, Am1, Am2].

T More general ideals also play a role, cf. [BG1, BG3, ABG].
% In this introduction we shall freely use notions, notati@msl terminology which are defined in precise terms in the kmfdy
the paper, see especially Sections 2, 6 and 7.



The first difficulty one meets in the algebraic approach weisiske isolation of the correct “algebra of
energy observables”, in the terminology of [GI1, GI2]. Ircfaif the algebra we start with is too large,
then its quotient with respect to the compacts will probdd@ytoo complicated to be useful. On the other
hand, we cannot choose it too small because then physieddlyant Hamiltonians will not be affiliated

to it. Since we have chosen the algebfa&)) in such a way that general classes of QFH are self-adjoint
operators affiliated to them, it seems to as quite remarkiblethe description of the quotient given in
(1.1) is so simple.

One can also give a priori justifications of the choice®fO), we describe two of them below. First, the
algebraZ (O) can be obtained by a procedure completely analogous todkdtin [GI1] in the setting of
guantum systems with a finite number of degrees of freedomintepret’{ as the one particle Hilbert
space and@ as theC*-algebra generated by the one particle kinetic energy Haméng. We take as
algebra of kinetic energy observables of the fiBld) = C*(T'(A) | A € O,||4|| < 1), because this
is the C*-algebra generated by the operators of the foing/d with h a self-adjoint operator operator
affiliated toO with inf h = m > 0 (in this paper we restrict ourselves to the case of partigigsstrictly
positive mass). Now we have to decide what kind of interactioe take into account. It is characteristic
to quantum fields that the interaction term is some kind okgalized polynomial in the field operators. In
the fermionic case we define the “algebra of elementaryacteyns”% (H) as theC*-algebra generated
by polynomials in the field operators. Since in the bosongedhe field operators are not bounded, we
define.Z (H) in this case as th€*-algebra generated by operators of the ftﬁgei‘i’(“)f(u)dEu, where

E is a finite dimensional vector subspacerofdpu is the measure associated to the Euclidean structure
we have onF, and f is an integrable function oft. Finally, the algebra of energy observables of the
field should be the norm closed linear space of operatorB(@1) generated by the productsS with

F € Z(H) andS € T'(0). ltis easy to see that this is exact(O).

A second characterization of the algebfqO) is physically more satisfactory. Let us calementary
quantum field Hamiltonian of typ@ a self-adjoint operator of the forfH = dI'(h) + V, whereh is a
self-adjoint operator oft{ affiliated to© such thath > m for some realn > 0 andV € #(H) is a
symmetric operator. This seems to be the smallest clasdfeddjeint operators which may naturally be
thought as QFH. Bu# (O) is just theC*-algebra generated by these QFH (Proposition 3.10).

On the other hand, the condition which characteriPeimn Theorem 1.1 can be stated in the following
equivalent formP(H) = h ® 1px) + 11 ® H for each elementary QFH (Proposition 5.10 and Lemma
5.11). But this relation has a simple physical interpretatit says that by taking the quotient with respect
to the compacts one gets the Hamiltonian of the system donsisf a free particle with kinetic energy

h and of the initial field (the interaction between them beingpéf). So one particle has been pull out
from the field without modifying the Hamiltonian of the fielhich is possible because it consists of a
(potentially) infinite number of particles.

As we said above, the embedding (1.1) has interesting coesegs in the spectral analysis of the self-
adjoint operators affiliated t&# (©). Thus it is important to show that physically realistic QFeldng to
this class and this is not at all obvious because the elemye@faH which generate the algebra are just
toy models, they only look like real QFH. In Section 7 we giegeral general criteria for an operator to
be affiliated taZ (©O) which show that the class of affiliated Hamiltonians is laye an application, we
point out in Section 9 an abstract class of operators a#fiiav.% (©O) which covers the Hamiltonian of
the P(p)2 model with a spatial cutoff. In Section 10, where we show hotvéat coupled systems in our
framework, we prove that massive Pauli-Fierz Hamiltoniaresaffiliated to# (0) @ K(.£) (£ is the
Hilbert space of the confined system) and deduce the locafitireir essential spectrum and the Mourre

T We assume here thé acts non-degenerately 61, the only situation of physical interest. The model one #haiways have
in mind isH = L?(X) with X a locally compact abelian group, the configuration spacé@particle, and? = Co(X*), the
algebra of continuous, convergent to zero at infinity, fioret of the momentum operator.



estimate under conditions on the form factor weaker thaalsee assumption (PF) 40).

We shall describe now in colloquial terms the kind of resulesget concerning the spectral properties
of the operators affiliated t&7 (O) (precise statements and details are in Sections 7, 8 andril@hat
concerns the essential spectrum, the following is an imatedionsequence of (1.1):4f is a self-adjoint
operator affiliated ta# (O) then

oesd H) = o(P(H)). (1.2)

HereH = P(H) is a self-adjoint operatéion H @ I'(H) affiliated toO @ 7 (0). If 2 is the spectrum
of the abelian algebr@ thenO @ 7 (0) = Co(2;.#(0)) andH is identified with a continuous family
{H(z)}4c 2 of self-adjoint operators ofi(H) affiliated to.# (0). Then (1.2) can be written as:

vesd H) = U, e o 0(H(x)). (1.3)

The Hamiltonians of the quantum field models usually considién the literature are, however, much
more specific than just affiliated t& (O): they are bounded from below and have the property that there
is a self-adjoint operatok affiliated toO with h > m > 0 such thatP(H) = h ® 1pp) + 1 @ H.

We call such QFHstandard(Definition 7.7). The simplest standard QFH are the elenmgrdaes, but

the class is much larger, for example tR¢p). and Pauli-Fierz models as well as the fermionic models
considered in [Am1, Am2] belong to this class. Now for a stad? we clearly have:

oesd H) = o(h) + o(H). (1.4)
This formula covers the models treated in [DeG1, DeG2, DJ1AAM?2] (in historical order). The
version (11.9) for systems with a particle number cutoffe@the spin-boson model [HS, Gel].

We then study the Mourre estimate ftandardQFH (in this case the result is quite explicit, but more
general situations may be treated, see Remark 8.10). AsHB8 [BFSS, DeG1, DeG2, Sk] we consider
only conjugate operators of the forsh = dI'(a) wherea is a self-adjoint operator of(. We assume

e taOgte = O for all realt and thatt — e~'**S¢e*® is norm continuous i € O (these conditions are
easy to check in applications). Moreovéf,andh must satisfy usual regularity conditions with respect
to A anda respectively (see Theorem 8.6). Finally, the commutfiora] must satisfy a weak local
positivity condition (this is assumptigsf, > 0 in Theorem 8.6), namely:

for each real andd > 0 there iss > 0 such thaty, (A, ) [h,ia]En (N, €) > —0ER (), €) (1.5)

whereFE}, (), ) is the spectral projection éf associated to the intervig—e, A+¢]. In fact, in applications
one chooses such thath,ia] > 0, so this condition is trivial to check.

Let us define théhreshold set () of h with respect tar as the complement iR of the set of\ where
the Mourre estimate holds, i.&.is such that:

there ares, 6 > 0 and a compact operatdf such thatey, (A, )[h,ia|Ep (N, e) > 6Ep (A e) + K. (1.6)
Denoter? (h) = 14(h) + - - - + 74 (h) (n terms) and let
Ta(H) = [UnZy 73 ()] + op(H), (1.7

Then Theorem 8.6 says that(H) is the threshold set o with respect tad. So at each point outside
74(H) the operatoH is conjugate tdd in the sense of Mourre (i.e. an estimate similar to (1.6) spld

The relation (1.7) is quite intuitive physically speakingsays that an energy is an A-threshold forH
if and only if one can write it as a sum= \; + - -- + \,, + u where the\; area-threshold energies of

 Or, in very singular situations that do not concern us hesdightly more general object, since its domain could be reotse.



the free particle of kinetic energyandy is the energy of a bound state of the field. So at enargpe
can extract free particles from the field such that each one has-threshold energy and such that the
field remains in a bound state.

We wish to make some historical comments concerning theadsttve use. First, the fact that quotients
of C*-algebras with respect to the ideal of compact operatoss gateimportant rle is an old and quite
natural idea in the context of the theory of pseudo-difféedperators; the references [Co, Ty] seem
particularly relevant for us. Second, the first use’falgebra methods in the spectral analysis of phys-
ically interesting models appears, as far as we know, in tagkwf J. Bellissard [Bel, Be2] on solid
state physics (see [Be3] for more recent results and refesnBut the”*-algebras and thé™-algebra
technigues used by Bellissard and his collaborators agediéferent from ours, e.gK -theory plays an
important rdle in their works but are probably irrelevaeté (it would be nice if somebody would show
the contrary). The usefulness of techniques like computaif quotients of”*-algebras in the spectral
theory of many body systems and quantum field models seenavéoldeen first noticed in [BG1, BG3].
Note that some of the results described here were announ¢€eo, Gl1, GI2].

The paper is organized as follows. In Section 2 we summahizertost important notations and results
from the theory of symmetric Fock spaces following [BR, B%#)] and also the more recent [DeG1,
DeG2]. We prefer to define the scalar product (2.13) on a Fpakesas in [Ni] and the definition (2.6) of
the annihilation and creation operators in terms of the figldrators is slightly unusual, which explains
some differences in the numerical factors. Similar coniegrst are adopted in the antisymmetric case
presented in Section 6 where we use [PR] as main reference.

In Section 3 we define the algebr&&(©) and present some of their properties and alternative charac
terizations. In Section 4 we prove the main theorem for tlyellae’ (H) = % (Cly), which is an
important technical step but also has an intrinsic mathealanterest because we show that the quotient
o/ (H)/# (H) is canonically isomorphic te7 (). We also give there some consequences of this fact
in the spectral analysis of the elements:6fH). In Section 5 we prove our main technical result, Theo-
rem 5.4. We consider only the bosonic case until Section Gewve describe briefly the corresponding
results in the fermionic case (which is nicer but easier).

Sections 7-11 are devoted to applications in the spectadysis of quantum field models of Theorem
1.1. In Section 7 we give criteria for affiliation t& (O) and a general formula for the essential spectrum
of the operators affiliated to this algebra (Theorem 7.6 ahation (7.6)). We also introduce there the
important class of standard QFH and describe their es$epigtrum. The main result of Section 8 is
Theorem 8.6 which gives the Mourre estimate for such Hami#tos. In Section 9 we show that a general
class of QFH, including th&(p), model, are standard in the sense defined before, hencesd tesults
apply to them. In Section 10 we sketch a method of analyzingraéfields with couplings between
them and external systems and consider in detail the maRaivie Fierz model. Note that the Pauli-Fierz
Hamiltonian is also standard. In the last section we treadet®owith a particle number cutoff, which
have some interesting features. We do not treat explidittyfermionic case because it is easy to see
that models like those considered in [Am1, Am2] are standamlur sense so their spectral properties
(essential spectrum and Mourre estimate) follow from theegal theorems of Sections 7 and 8.

Acknowledgments:| am grateful to Christian Gérard and George Scandals for elpful discussions,
cf. the Remarks 4.5 and 4.8 and the comment after Theorem 9.5.



2 Bosonic Fock space

1. Our notations are rather standard but we recall here sonteeaf to avoid any ambiguity. i, F are
vector spaces thela(&, F) is the space of linear mags— F and we abbreviaté(£) = L(E,E). IfE, F
are Banach spaces thé&{&, F) and K (€, F) are the subspaces &{&, F) consisting of continuous or
compact maps respectively and we B&€) = B(E,€), K(&€) = K(&,£). When needed for the clarity
of the argument we denote hy the identity operator on a Banach spacer the identity element of an
algebra. The domain of an operatd@ris denotedD(T"). The Hilbert spaces are complex Hilbert spaces
unless the contrary is explicitly mentioned and the scatadpct is linear in the second variable. If a
symbol likeT*) appears in a relation, this means that the relation holds footZ” and7*. We denote
byC*(T | T € ,P,,P,,...)theC*-algebra generated by a familyj of operatorsl” which have the
propertiesP;, P», etc. TheC*-algebra generated by a self-adjoint operaiois Co(H) = {f(H) | f €
Co(R)}. More generally, theo*-algebra generated by a family of self-adjoint operatorthéssmallest
C*-algebra which contains the re solvents of these operatonsorphismbetween twaC*-algebras is a
x-morphism.Cy(X) is the space of continuous complex valued functions on tbalipcompact space
X that converge to zero at infinity arfél.(X ) that of continuous functions with compact support.

We need a version of the polarization formula. LDétY be vector spaces) : X x --- x X — Y an
n-linear symmetric map, and let us ggt:) = Q(«, ..., z). Denotela| the cardinal of a set. Then:

(=1)"n!Q(z1,...,2n) = EaC{L...,n}(_l)lalq (EiEa wi) . (2.1)

2. Let H be a complex Hilbert space with scalar prody¢t) and letU(H) be the group of unitary
operators or{. A (regular) representation of the CCR ovef, or aWeyl system ovek{, is a couple
(s, W) consisting of a Hilbert space” and a magV’ : H — U () which satisfies

W(u+v) =3 Ww)Ww) forallu,veH (2.2)
and such that the restriction &f to each finite dimensional subspace is strongly continudlen
W) =1, W(u)* =W(-u), W)W (v)=e 23w ()W (u). (2.3)
We denote? (H) the C*-algebra generated by the operatidrgu) and we call itWeyl algebra ovef:
W (H)=C"(W(u) | ueH). (2.4)

TheC*-algebras#’ (H) associated to two Weyl systems are canonically isomorghie[BR] for a proof.
This also gives canonical embeddingg§X) C # (H) for closed subspadg of H.

Thefield operatorassociated to the one particle state 7 is defined as the unique self-adjoint operator
#(u) on . such thatV (tu) = €'*(*) for all realt. We have for alk, v € H:

W(u)p()W (u)* = ¢(v) — 23(ulv) and [p(u), p(v)] = 203 (u|v). (2.5)

The spaces”> of vectorsf € . such thatu — W(u)f is aC* map on each finite dimensional
subspace of{ is a dense subspace.¢f stable under all the operatdig(u) and¢(u). Moreover, ;>

is a core for eacly(u) (by Nelson Lemma) and the second relation in (2.5) holds erafor sense on
. The mapu — ¢(u) € L(5°°°) is clearlynotlinear but onlyR—linear, as it follows from (2.2)
after replacingu, v by tu, tv with ¢ real and then taking derivativestat 0.

Theannihilationandcreationoperators associated to the one particle siesdee defined by

a(u) = ((u) +i¢(iu))/2, a*(u) = (d(u) —i¢(iu))/2 (2.6)



on s> and then extended by taking closures. 2#° we have¢(u) = a(u) + a*(u). The map
u— a*(u) € L(s) is linear,u — a(u) € L(5) is antilinear, and:

[a(u),a*(v)] = (u|v), [a(u),a(v)] =0, [a*(u),a*(v)]=0 ons#>. (2.7)
On the other hand, from (2.5) we also get:
W (w)a™ ()W (u)* = a™ (v) — @|iu)®), [a™) (), W(u)] = (@]iv) W (u). (2.8)

Some of our later constructions will depend only on the exise of gparticle number operator for the
Weyl systeniV’, which is a self-adjoint operatd¥ on .7# such that

eNW(u)e N = w(etu) forallt € Randu € H. (2.9)

Such an operator is clearly not uniquely defined and it is ¢agyrove that if it exists thermV can be
chosen such that its spectrum be eitNee {0,1,2,...} or Z, see [Ch1]. In [Ch2] it is shown that we
are in the first situation if and only if” is a direct sum of Fock representations (cf. below). Since

112

W(€tu) = W(ucost +isint) = ezl SN2 (4 cos t) W (iu sin t)

by taking derivatives in (2.9) d@t= 0 we get (this is easy to justify in the Fock representation):

W(u)NW (u)" = N = ¢(iu) +[|ul]®, [N, W (u)] =W (u)(@(iu) + ul*). (2.10)
Replacingu by tu in the last equation and then taking the derivatives-at) we get
IN.ig(w)] = 6(iu), (N +1)a(u) = a(w)N, (N —1)a*(u) = a*(u)N. (2.11)

A vacuum statéor the Weyl systeniV is a vector2 € s with ||Q| = 1, Q@ € D(¢(u)) forall u € H,

and such that the map+— ¢(u)S2 is linear. It is easy to prove that a vacuum state belonggts and
that a vectof2 of norm one is a vacuum state if and onlfife N, D(a(u)) anda(u)Q2 = 0 for all u, see
for example [DeG2, Proposition 4.1].

A Fock representationf the CCR overH is a triple (57, W, Q) consisting of a Weyl systerfiz’, W)
over’H and a vacuum state which is cyclic forW¥. It is easy to show that two Fock representations are
canonically isomorphic, more precisely(it#’, W’ Q') is a second Fock representation then there is a
unique bijective isometry : 5% — s’ such that/QQ = Q" andJW (u) = W' (u)J for all u € H. For

this reason one may s#lyeFock representation and speak about “realizations” ofrépsesentation. The
realizations are constructed such as to diagonalize vadets of operators. ¥ is infinite dimensional
then there are irreducible representations of the CCR wéiemot Fock.

The Fock space realization that we describe below is metiVay the following observations. Let”° =
CQ and for each integer > 1 let s#™ be the closed linear subspacesf generated by the vectors of the
forma*(u1) ... a*(u,)Q with u;, € H. From (2.7) and sinc® is cyclic we get’# = @22 . (Hilbert
direct sum) and|a*(u)"|| = v/n!||u|™. Let us denotes(n) the set of permutations dfl, ..., n}.
Then, since the operatos$(u) are pairwise commuting, we have:

<CL* (’U,l) co.af (’U,n)Q|CL* (Ul) co.a¥ (Un)Q> = ZUEG(n) <’U,1|’UU(1)> “ee <un|vg(n)> (212)

3. Let H;g be the symmetric algebfaver the vector spack. We denote byuv the product of two
elementsu, v of Hy, and byu” the n-th power of an element € ;. The unit element is denoted

T This is a complex abelian unital algebra in whikhis linearly embedded and which is uniquely determined (ntmdanonical
isomorphisms) by the following universal property:&if: H — A is a linear map with values in a unital algebfasuch that
E(u)é(v) = &(v)€(u) for all u, v then there is a unique extensiongfo a morphism of unital algebraligg — A (see [Bo] for
example). Concerning the notatiarv we use for the product we note that in concrete situationgrwgome other produetv is
already defined, this notation could be ambiguous. Then placge it byu \V v and denote by,V™ the powers of.



either1 or Q. Let Héﬁg be the linear subspace spanned by the powérsvith « € H. Note that

Hyg = CQ. ThenHy, = =, o Hig (direct sum of linear spaces) and ffre Hy¢ andg € Hyo" we

havefg € H;é"“”). We setH,; = {0} forn < 0, soHy, becomes &-graded algebra.

We shall equi, with the unique scalar product such thgty | Hye" if n # m and

(ug ... uplvy .. o) = Zaee(n) <u1|v0_(1)> .. (un|va(n)> (2.13)

From the polarization formula (2.1) we see that this scaladpct is uniquely determined by the condition
(u™o™) = nl{u|v)"dn.m forall u,v € H andn, m > 0 (see also the characterization given on page 9).
Then it is easy to prove that:

1/2
n+m . n m
luv|| < ( . ) [ull o]l if u € Hyg andv € Hyg". (2.14)

We define thécock spacd’(H) = H" overH as the completion oﬂglg for the scalar product defined by
(2.13). Let'™ be the closure ot in T'(H). Then we can writd'(H) = ,, "™, a Hilbert space
direct sum. We shall also use the notatibhg) = >,_, H"™ andTin(H) = U, T'»(H). Note that

HYO = CQ. The vector? is thevacuum stat@nd the orthogonal projection on itis= |Q)(€.

Using (2.14) we can extend by continuity the multiplicateomd get a structure of unital abelian algebra
onT'sn(H) such that{V*H"™ c HY(*+™), Then (2.14) remains valid for all € H"™ andv € H"™.
We keep the notationv for the product of two elementsandv of T'sin (H).

We denote byl™ and1,, the orthogonal projections @f() onto the subspacé¢"" andrl',,(H) respec-
tively. Thusl, = 1° +--- + 1™ and1® = w. Thenumber operatois defined byN = 3" n1".

For eachu € H the creation operatora™(u) is the closure of the operator of multiplication lyon
I'(H) and theannihilation operatora(u) is its the adjoint of. Thei's,(#) is included in the domains
of a*(u) anda(u), is left invariant by both operators, and the operatar) is a derivation of the algebra
Tin(H). Thefield operatorg(u) = a(u) + a*(u) is essentially self-adjoint oFsn () and the following
elementary estimate

[@(u)Pol| < [|2ul|”|[v/ (N +1)... (N + p)o]| (2.15)
valid for allu € ‘H, v € T'(H), andp > 1 integer. TherdV (u) = €¢(*) defines a Weyl system ovét.

4.1f A; € B(H) fori = 1,...,n are given then there is a unique operatarv --- v A, € B(H"")
such that(4; v --- V A,)u™ = (A1u) ... (Ayu) for all u € H. We extend it tol'() by identifying
A V---VA,=A,V---V A,1". By conventionAV? = w.

If A € B(H)thenthereis a unique unital endomorphB(m) of the algebrd’s,(H) such thal’(A)u =
Auw for all uw € H and such that the restriction bf A) to eachl’,, () be continuous. One hd% A)u™ =
(Au)™ if u € H andT'(A) = @®,,>0AY™ in an obvious sense. The operald) is bounded ol(H)
if and only if ||A|| < 1 (we keep the notatiofr(A) for its closure). ThenI'(4)|| = 1, I'(AB) =
I'(A)T(B), (1) = 1andl'(0) = w. Note thatz" = I'(z) for z € C.

Moreover, there is a unique derivatiol @) of the algebrd s, () such that @#(A)u = Auw for all
u € H. Thus we have B(A)u" = n(Au)u"~" if n > 1and d’(A)Q = 0. This operator is closable and
we denote its closure by the same symbol lis self-adjoint ther’(€4) = &4T'(4),

The definition of d'(A) is extended as usual to operatetavhich are infinitesimal generators of con-
tractive Cp-semigroupg e’} onH: the operator #(A) is defined by the rul& (&) = g9 (4),



The following identities hold o', (H) for all A € B(H) andu € H:
I'(A)a*(u) = a*(Au)I'(A), T'(A)a(A*u) = a(u)I'(A). (2.16)
If A*A=1we alsogel’(4)a(u) = a(Au)I'(A) by replacingu by Au in the second identity, hence
I'(A)p(u) = ¢(Au)T'(A) andT(A)W (u) = W (Au)['(A) if A*A=1. (2.17)
More generally, ifA* : H — H is a surjective map then there is an operatdrc B(H) such that
A* AT =1 and then, if we denoté 4 (u) = a(AT) + a*(Au) we get:
I'(A)a(u) = a(ATu)I(A) and T(A)p(u) = da(u)T(A). (2.18)
Observe that ifd € B(H) is invertible thenAT = (A4*)~1.

5. Let £ C H be a linear subspace. Then we have a canonical embemgjglg: Héﬁg obtained by
identifying qu with the unital subalgebra Gflgg generated byC. If £ C H is another linear subspace
then Icg%and L, are subalgebras of the abelian algebfég so we have a natural unital morphism
/c;g ® Lag — Hayg (algebraic tensor product) which is injective if and onlyifn £ = 0 and surjective
ifand only if € + £ = H. Thus(K @ L)}y = Kyg @ Lg:

Let £ C M be a closed subspace. Then the embedtifjg C 7, obviously extends to an isometric
embedding’(K) C T'(H). Moreover, the canonical algebraic identificatibl, = Ky ® ICéﬁgV extends
to a Hilbert space identificatiofi(®) = I'(K) ® I'(K*). Indeed, the scalar product (2.13) has been
chosen such that the identification map be isometric (therwdra tensor product of Hilbert spaces being
defined in the standard way). In fact (2.13) is the uniqueasgaloduct oereY,g such that|Q2|| = 1, a

vectoru € H has the same norm i and in{;j,, and for each closed subspaCec :
(wo | u'v') = (u | u)(v[v) =(uev|[uv @) foralue Ky, v e (ICL)X@.

In order to avoid ambiguities we indicate, when necessarya Bubindex the Hilbert space on which
the various objects depend, for examplg;, N2, and so on. We also use abbreviations liK¢ =
Nic1,Qf = Qx, etc. Then, relatively to the factorizatidgi{H) = I'(K) ® I'(K+), we have for € K:
Wag(u) = Wic(u) @ 1, ép(u) = éc(u) @1, aly) (u) = o (u) © 1. (2.19)
Note also the relation@;; = Qx @ Qe andwy =wx Quwi. FA=BCiINH=K & K+ then:
IrNA)=T(B)T(C), dI'(Ad)=dl'(B)®@ 1+ 1xdl'(C). (2.20)
In particularzN* = zNe @ 2Nk for |2| < 1andNy = Ne ® 1 + 1@ Nj..

After the identificatio(H) = I'(K) @ I'(K+) the embeddin@ (K) c I'(H) is nothing else buf (K) =
I'(H) ® Q). Then extending an operat@r defined on the subspad&/’) by zero on the orthogonal
subspace of () amounts to identifyind” = T’ ® wj. This is coherent with the first relation in (2.20):
I'B&0)=T(B)®I'(0) =T(B) ® w.

Let# (H) = K(T'(H)) be theC*-algebra of compact operators B(i/). Clearly:
H(H) = (K) @2 (KL) (2.21)

As explained above, we have a natural identificatiot6fXC) with a C*-subalgebra#i (H) of 2 (H),
a compact operator dif(#) being identified with its extension by zero 61kC)*:

Hic(H) = 2 (K) @ w C H (H). (2.22)



Lemma 2.1 {#z(H)}, whereE runs over the set of finite dimensional subspacég,a§ an increasing
family of C*-algebras and the closure of its unionJg ().

Proof: It suffices to note that the spadegF), with E' C H finite dimensional, form an increasing family
of closed subspaces BfH) whose union is dense IN(H).

3 The algebras# (O)

We fix a complex Hilbert spack and to eact*-algebra® of operators on it we associat€&d-algebra
of operators on the bosonic Fock spdt@t) according to the following rule:

D(0) = C*(I'(A) | A € O,]A] < 1). (3.1)

Sincel'(A)I'(B) =T'(AB) andI'(A)* = I'(A*) this is in fact the norm closed linear space generated by
the operator§'(A) with A € O and||4|| < 1. We shall prove in a moment that

I'(O) = closure of the linear space generated bylifd) with A € O and0 < A < ||A]| < 1. (3.2)

Proposition 3.1 The map® — I'(O) is increasing and we have:
I'({0}) = Cw, T(Cly)=Co(N)={0(N)|0 € Co(N)}. 3.3)
If H="H; ®HsandO = O; & O, for someC*-subalgebra®); ¢ B(H;), then
I'(0) =T(01) @ T(O02) (3.4)

where the tensor product is defined by the identificaligh) = T'(H1) ® T'(H2).

Proof: The first assertion is obvious and the first relation in (3@)ofvs fromI'(0) = w. Since the
closed subspace generated by the functiors A™ with 0 < A < 1 is dense inCy(N) we see that the
second relation in (3.3) is true. To prove (3.4) we use (2a2) the fact that fod = A; & A; we have
[|A]| = sup(]|A1]|, [|Az|]) so that||A]| < 1 if and only if || 41| < 1 and||Az|| < 1. |

We shall give a more explicit description BfO) for an arbitraryO below. Observe first that the linear
subspace oBB(H"") generated by the operators of the form v - - - vV A, with A; € O is ax-algebra.
Indeed, this follows fromfA; v --- Vv A,)* = A7 v---V A and

nl(ALV .- VA)(BLV -V Bn) = 3 cam)(A1Be) V-V (AnBo(n))- (3.5)

which is obvious ifA; = --- = A, andB; = --- = B,, and the general case follows by applying twice
the polarization formula (2.1). Thus the norm closed lirgece generated by the operatdgs/- - -V A,
with 4; € O is aC*-algebra that we shall denot2'™. We make the conventic"? = C1° = Cuw.

Proposition 3.2 OV is the norm closed linear space of operatorsTi” generated by the operators
AV with A € O and A > 0. Moreover, we havé3.2)and:

[(0)=@,0" ={3, An1" | Ay € O, ||Au] — 0} (3.6)
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Proof: Let £ be the linear space of operators &fY” generated by the operata#s’™ with A € O and
A > 0. From the polarization formula (2.1) we first deduce thatdperatorsd; v -- -V A,, with A; € O

and A; > 0 belong to£ and then, byn-linearity, that the same assertion holds without the cioorli
A; > 0. This proves the first assertion of the proposition.

Let.Z be the norm closed linear space generated by the opefatdissuch thatd €¢ O and0 < A < a
for somea < 1. Let A > 0 with ||| < 1. For0 < ¢ < 1 we then havd'(tA) = > t"AY", so the
mapt — T'(tA) € £ is of classC> and its derivative of orden att = 0 is equal ton!AV". Clearly
then we getdV" ¢ ¥ forall A € O, A > 0. From what we proved before we g&t'" c .¥. Then
if A e O,]|A| < 1we havel'((A)1, € £ and|T'(A) — T'(A)1,] < [|A|"*! — 0, soT(A4) € £.
This clearly proves? = I'(0O), i.e. (3.2). The inclusiort in (3.6) is obvious and the inverse inclusion
follows from the preceding arguments. u

We are mainly interested i@i*-algebras of operators df(+) of the following form:
FO)=C*"Wu)T(A) |[ueH,Ae€O,]A] <1). (3.7)
Observe thal'(O) C .7 (0).

Proposition 3.3 (1) If O, € O, are C*-subalgebras o3(H) then.#(0;) C F#(O5).
(2) We haveZ ({0}) = 2 (H), in particular ¢ (H) c % (0O) forall O.
() IfH =H1®HzandO = O & O, for someC*-subalgebra®); C B(H,), then

F(0) = F(01) ® F(02) (3.8)

where the tensor product is defined by the identificaligh) = T'(H1) ® T'(Hs).

Proof: The first assertion is obvious and an easy proof of (2) inbaherent vectors [Gu]. Indeed:

n

W) = e ImlP/2du = gl /25~ i

n n!

and the linear span of these vectors is dendg(#). Thus the norm closed linear subspacesdf’(H))
generated by the operatofg (u)w = |W(u)Q)(€| is equal to the space of rank one operators of the
form |u)(Q| with v € T'(H). But theC*-algebra generated by these operators is exa&tlyH). Fi-
nally, to prove (3) we argue as in the proof of Propositioni3ylusing (2.19) and (2.20) in order to get

If O Cc B(H) isaC*-subalgebrathen I6{» be the closed linear space generated by the vedtonsith

A € O,u € H. One says thaD is non-degeneratéor acts non-degenerately @) if Ho = H. Denote
Oy the algebrad when viewed as &"*-algebra of operators oH». ThusO, acts non-degenerately on
Ho and we haved|Hg = {0}, hence by (2) and (3) of Proposition 3.3:

F(0) =.F(0y) @ #(HE) relatively tol' (H) = T'(Ho) @ T(HE). (3.9)

In some of our results we shall assume téais non-degenerate but one may use (3.9) to extend them
to possibly degenerate algebras. We shall not do it exiyliicitorder to simplify the arguments and also
because this is of no interest in the applications we havarid nin fact, we interpre@ as theC*-algebra
generated by the allowed one particle Hamiltonians of tHd,fie particular there should be self-adjoint
operatorsh onH affiliated to©. But this implies thatD is non-degenerate (see Section 7).

Proposition 3.4 If O is non-degenerate the# (O) is the norm closed linear subspace generated by the
operators of the forniV (u)I'(A) withw € H and A € O such thatd > 0 and|| 4| < 1.
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Proof: Let .# be the norm closed linear subspace generated by the opeddttre formW (u)I'(A)
with A as in the statement of the lemma. Cleady C .#(0) and (3.2) implies that# contains a set
which generates” (0) as aC*-algebra, so it suffices to show that is a x-algebra. Proposition 3.2
shows thatV (u)I'(4)1" = W (u)AY" € # if u € HandA € O. By computing derivatives with
respecttd,. .., t, of W(tiu1 + - - - + tpu,) and by using the estimate

()P Ll < /Pll[2v/n + Tulf? (3.10)

which is a consequence of (2.15) we @éti1) . .. ¢(u, ) T'(A)1™ € A forall uq, ..., u, € H. And this
is equivalent tav* (u)Pa(v)11"T'(A) € . for all u,v,p, ¢, n.

Now let A, B € O be positive and > 0 real. Then (2.16) and"a* (u)?a(v)? = a*(u)Pa(v)91" P
imply:

1"T (A +eB)a*(u)Pa((A+ eB)v)? = a*((A+ eB)u)Pa(v)?1" PHIT(A) € A .

Thus1™T(A + eB)a*(u)Pa(w)? € .# for eachw in the closure of the range of an operator of the form
A + B (because the preceding expression is norm continuous atidarof w). Now let J, be an
approximate unit fol0 [Mu, pages 77-78], leR, be the closure of the range df + cJ,, and N, =
ker(A+¢J,), sothatR = NV;}. We havev € A, if and only if (v|Av) = (v|J,v) = 0 henceN,, C N, if

i > v. Moreover,,, and henc&,, is independent of. And we have"T'(A+¢J,)a*(u)Pa(w)? € A

for eachw € R, by what we proved before. If we make here- 0 then we get norm convergence and
so1"T'(A)a*(u)Pa(w)? € 4 forw € R,. Onthe other hand, NV, = {0} becaus® is non-degenerate
and solim, J,v = v for all v € H. It follows that{R,} is an increasing family of closed subspaces
of H whose union is dense iH. Thus we hava"T'(A)a*(u)Pa(w)? € .# for w in the union and then
by norm continuity for alkv € H. Clearly then we get"T'(A)¢(u)? € .4 forall A € O with A >0
andu € H. From (3.10) we see that' W (u) = > 1"(i¢(u))? /p! the series being convergentin norm.
Hencel"T'(A)W (u) € . for all uw € H and positived € O. By arguments already used in the proof of
Proposition 3.2 we obtaiti’ AV W (u) € .# forarbitraryA € O. This clearly implied (A)W (u) € .4

if Ae Oand|4] < 1.

To summarize,# is equal to the norm closed linear subspace generated bypératorsiV (u)I'(A)
with 4 € O, ||A]| < 1, and we have proved thB{ A)W (u) € .# under the same conditions. Thu# is
stable under taking adjoints. For a produic{w)I'(A)W (v)I'(B) we writeI'(A)W (v) as limit of linear
combinations of operato§’ (w)I'(C) with C' € O, ||C|| < 1, and use (2.2) anb(C)I'(B) = I'(CB).
This givesW (u)I'(A)W (v)I'(B) € .#, hence# is aC*-algebra. u

Remark 3.5 The arguments of the preceding proof show tha®ifs non-degenerate the# (O) is the
norm closed linear span of the operatofs)"I'(A) with u € H,n € NandA € O with ||4] < 1.

Remark 3.6 Proposition 3.4 is not valid i© is degenerate. Indeed, with the notations of (3.9) and if
u = ug + u1 With ug € Ho,u1 € Hg, then forA € O with ||A|| < 1 we have

W (u)T'(A) = [W(uo)I'(Ao)] ® W (u1)I'(0)] = [W(uo)I'(Ao)] ® [W (u1)Q2)(Q]
and the operator$¥ (u;)$2) (2| do not generate linearly? (Hg ).
Lemma 3.7 Assumed, B € B(H) and||A| < ¢, | B|| < cwithc < 1. If we set = sup,>, kc*~! then

IT(A) =T(B)|| < ¢lA - BJ|.
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For u,v € Handn € N we have:
(W () = W (0)) L]l < [S{ufv)] +2vn + Llju— o]

If |A|| < 1the mapu — W (u)I'(A) is norm continuous ofit and||¢(u)?T'(A)|| < oo for all p.

Proof: To prove the first part it suffices to show tHetV* — BV¥|| < kc*~!||A — B if k > 1. But this
follows from AV* — BVF = Zf;é BYiv (A - B)v AV*=1-7)_For the proof of the second estimate
we note that (2.2) implie(W (u) — W (v))1,,|| < |€3¢1% — 1]+ ||(W (u—v)1,, — 1, and then we use

[(W(u)ln = 1n] = II/0 W (tu)ig(u)lndt| < [[¢(u)lnll < 2vn + 1jul.

Next observe thatV (u)['(A) = W (u)1,['(A) + W(u)T'(A)1+ and |W (u)T(A)1L] < ||A|"*L. Fi-
nally, the estimate

()P AN < [[2u]PlV/ (N +1) . (N +p)AN]| < V/pl2ulP[(N +1)2AY] (3.11)
is a straightforward consequence of (2.15), and this prowefast assertion of the lemma. |

We define now an analog in the present setting of the graded &\gybra which has been introduced
and studied for finite dimensional symplectic spakgis [BG3, GI3]. The following construction makes
sense for an arbitrary Weyl systefy?’, W). A finite dimensional real vector subspaEeof H inherits
an Euclidean structure so it is equipped with a canonicaktedion invariant measuk&; v and the cor-
responding.! (E) space is well defined. Since the map- W (u) is strongly continuous o, we can
defineW (f) = [, W(u)f(u)dgu € B(#)if f € L*(E). Let:

Z(E,H) = norm closure of W (f) | f € L*(E)}. (3.12)

From (2.2) one may deduce th&z (H) is aC*-algebra and that we have (the proof given in [BG3] for
finite dimensional{ extends without any modification to our context):

(i) F(EH) F(FH) CFE+FH),
(i) if Lis afinite family of finite dimensional real subspacestthen) . . .7 (E, H)
is a norm closed subspace and the sum is a direct of lineaespac

We define thegraded Weyl algebra” (H) = #4(H) as the norm closure oY , . (E,H), whereE
runs over the set of all finite dimensior@mplexsubspaces dft. Thens (H) is equipped with a graded
C*-algebra structure in the sense of [DaG2, Definition 3Z]H) is unital because” ({0}, H) = C.

In the Fock representation we have a quite explicit desonigif the algebras? (E, H). This follows, as
explained in [BG3], from the fact that a complex finite dimiemsl subspace df{ is symplectic:

F(E,H) = #(E) ® 1 relatively to the tensor factorizatidn(®) = I'(E) ® ['(E™). (3.13)

Finally, we define#max(H), the largestC*-algebra of operators which can be naturally associated to
the Weyl system in the Fock representation. In particilégax(#) contains? (H) and.7 (H). If f

is a bounded Borel regular measure An(for the norm topology) and € Tin(H) then the integral
W(f)v= [, W(u)vdf (u) is well defined because, by Lemma 3.7, the map W (u)v is bounded and
continuous ort{. Clearly ||[W (f)v| < |[v]|||f]| where| f|| is the variation off, sov — W (f)v extends
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to a bounded operatd¥ (f) on'(H). It is easy to show that the set of operattg /) is ax-algebra
and we define/max(H) as its norm closure. Clearly

If 4,/ areC*-subalgebras of a giveti*-algebra we denote hy7 - .4 the linear subspace consisting
of the operators of the forri, T4 + - - - + S, T}, With S; € .#,T; € 4 andn > 1, and by[.# - 4] the
norm closure of this linear subspace.

Proposition 3.8 If O is non-degenerate then

Z(0) = [#(H) -T(0)] = [#(H) - T(O)] = [#mad(H) - T(O)]. (3.14)

Proof: We first observe thalV (u)['(A) € [#(H) - T'(0)] if w € H and||4]] < 1. Indeed, since

W (tu)T'(A) is a norm continuous function af(see Lemma 3.7), the sequenfeW (tu) fx(t)dtI'(A)
converges in norm téV (u)I'(A) if fi is a sequence ih!(R) which converges to the Dirac measure
att = 1. Thus#(0) C [Z(H) - I'(O)] by Proposition 3.4. The converse inclusion follows from
the norm continuity of the map — W (u)I'(4) (use again Lemma 3.7). For the same reason we have
W(f)T'(A) € [# (H) - I'(O)] for an arbitrary bounded Borel regular measureton u

Proposition 3.10 will justify the physical interpretatiof the algebraZ (O) as C*-algebra of energy
observables of the field with one particle kinetic energyiaféd toO. Recall that QFH is an abbreviation
for “quantum field Hamiltonian”.

Definition 3.9 We shall callelementary quantum field Hamiltonian of tyd& a self-adjoint operator
of the formH = dI'(h) + V where: (i) h is a self-adjoint operator of{ with h > m for some real
m > 0andh~! € O; (i) V a symmetric operator such that = W (f) with f € L*(E) for some finite
dimensional linear spac& C H.

For a self-adjoint operatdr such that, > m > 0 the relationsh—' € © and € € O are equivalent
and implyf(h) € O forall § € Cy(R). If an elementary QFH of typ@ exists ther contains a positive
injective operator, e.gA = h~1, and this clearly implies tha® is non-degenerate. Reciprocally:

Proposition 3.10 If O contains a positive injective operator thefi(O) is theC*-algebra generated by
the elementary QFH of typ®. In particular: .#(0) = C*(e ¥ | H is an elementary QFH.

Proof: Let H; = dI'(h) 4+ sV = Hy + sV whereh, V are as in Definition 3.9 anglis a real number. 1£
is far enough from the spectrum &f, then we have a norm convergent expansionior= (z — H)~':

Ry=Ro(1—VRo) ' =3,505"Ro(VRo)". (3.15)

We have et = T'(e~*") € T(0O) if t > 0 because €" € O and has norm 1, soR, € I'(O). From
Proposition 3.8 we then gét, € % (0), hence the&’*-algebra® generated by the elementary QFH is
contained inZ (O).

We now prove the converse inclusion. lleand H; be as above, so that, € ¢ for all s. By taking the
first order derivative at = 0 in (3.15) we getRo\V Ry € ¥. By definition we havé(H,) € ¢ for any
0 € Cp(R), hence we also haw Hy)RyV Ry € €. By choosing conveniently inC.(R) and then by
an approximation argument we ggtHy)V Ry € € forall n € Cp(R).

Letn, be a sequence of continuous functions vlitk n,, < 1, n,(z) = 1if |z| < n, andn, (z) = 0 if
|x| > n+ 1. Our next purpose is to prove that(Hy )V Ry — V Ry in norm. The operatofN + 1) Ry is
bounded, hence it is easy to see that it suffices to show|tHat (N + 1)~!|| — 0 asn — co. We have
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V =W(f) = [ W(u)f(u)d\g(u) for some subspack of finite dimension ang’ € L'(E) and it is
clear that for the proof of this assertion it suffices to assdinatf has compact support. We have

W )N+ 1D)7H < (n+ )7+ [[15 (W (w), (N + 1) 7).
On the other han@lV, W (u)] = W (u)(¢(iu) + ||u||?) hence by using (3.10) we get:

5 W (), N+ DT = 1y (N + D7 W () (gliu) + [ul>) (N + 17
< (4 D7) + [ul) NV + DT < (0 + 1) 7 @llull + [Jull).

Thus we have
1AW (W) (N + 1)~ < (1 + [[ul)*(n+ 1)~

from which we get|1;-V (N + 1)~!|| — 0. This finishes the proof dim »,,(Ho)V Ry — V Ry in norm
which in turn impliesV Ry € €.

Thus we havéd/ Ry € ¥ and thenVe o = VR, - (z — Hp)e Ho € €. Since efo = T'(e™") we
obtainVI'(A) € ¢ for any operatord of the formA = e~" with h a self-adjoint operator of such
thath > m > 0and e’ € O. In other terms, we havET(A4) € ¥ for any operatord € O such thatd
is positive and injective and such tHat|| < 1. Indeed, it suffices then to chooke= — log A. Now let
A € O be positive and|A|| < 1. By assumption{ contains a positive injective operatsr If £ > 0 is
small enough therd. = A + &S5 belongs ta0, is positive and injective, anlA. || < ¢ < 1 uniformly in
e. ThenVT'(A.) € € and from Lemma 3.7 we gétI'(A) € ¥. Finally, (3.2) shows that'T" € ¥ for
all T € I'(O). From Proposition 3.8 we obtai#F (0) C ¢. |

4 o/('H) and its canonical endomorphism

We sete/ (H) = .% (Cly). From Proposition 3.8 we get:

A (H) = [F(H) - Co(N)] = [#'(H) - Co(N)] = [#max(H) - Co(N)]. (4.1)
Alternative descriptions of/ () are consequences of the results form Section 3. For exanf{{#,)
is the norm closed subspace generated by each of the fobimlasses of operators: ¢)u)"0(N) with
u € H,n € Nandfd € C.(R); (i) a*(u)Pa(v)?1™ with u,v € H andp, ¢,n > 0.
Proposition 4.1 ¢ (H) C </ (H) and.# (H) = </ (H) if and only ifH is finite dimensional.

Proof: The first assertion is clear by Proposition 323.s finite dimensional if and only it € ¢ (H)
and therCy,(N) C ¢ (H). Sincel! € .Z, the second assertion of the proposition follows. n

If Eis afinite dimensional (complex) subspacég-bfet us define
dg(H) = [V (E) - Co(N)] = [#(E,H) - Co(N)]. (4.2)

The equality follows from the arguments of the proof of Prsition 3.8. Note that?{,) (H) = Co(N).
With the notationV}, = Ny introduced in Section 2, we have:
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Proposition 4.2 /i (H) = 2 (E) ® Co(Ny,) relatively tol'(H) = I'(E) ® ['(E+). In other terms:
dp(H) =@, X (E)o 1y, = {3, K, ®1%. | K, € Z(E),||Ky,| — 0} (4.3)

wherel?’, ., is the projection onto the particle subspace af (E+), in particular 1‘]{JL =uwh. IfHis
infinite dimensional:
dg(H)N A (H) = X (F) @wy = #(H). (4.4)

Proof: By an argument used beforg; is the closed linear space generated by the oper@tdfs with

T € W (E/H) and0 < A < 1. By (3.13) this is the same as the closed linear space gedebgt
(KAN?) @ ANe with K compact oi’(E). Replacingk’ by K6(Ng)A~N= with 6 with compact support
and then making — 1 we see that7j; is generated by the operatdisz AV=, which proves the assertion
of the proposition. |

We now prove that? (H) is the inductive limit of the family of”*-algebrad «/x(H)}.

Proposition 4.3 If £ C F are finite dimensional subspaceséfthen«/z(H) C </r(H). And we have

o (H) = Up u(H). (4.5)

Proof: We begin with a general remark. LEtbe a closed subspace®f If z is a complex number such
that|z| < 1 thenzV = 2Vr @ 2Nk € Cy(Nk) ® Co(Ny.). This clearly implies:

Co(N) C Cop(Nk) ® Co(N;/C) (4.6)
Now letus setG = FO E. FromH = E® G & F+ we getl' (H) = I'(E) ® I'(G) @ I'(F1), hence:

dp(H) = H(E)®Co(Ng) C A (E)® Co(Na) ® Co(Np)
C H(E)® X (G)& Co(Np) = A (F) @ Co(Np) = o/r(H).

We have used (4.6), the fact tha§(Ng) C # (G) sinced is finite dimensional, and (2.21). u

If P is an endomorphism of/ (H), then the following conditions are equivalent:

(i) P (W(u)AY) = AW (u)AY for eachu € H and0 < A < 1;
(i) P(W(w)é(N)) =W (u)d(N + 1) for eachu € H andf € Cp(N).

Indeed, sincé,(n) = A" defines a function iy (N), we see that (ii}> (i). To prove the converse, it
suffices to note that the closed subspace generated by tbiofust),, 0 < A < 1 is dense irCy(N).

If amorphismP : &7 (H) — </ (H) satisfying the conditions (i) or (ii) above exists thiers unique and
surjectiveby (4.1). We shall call ithe canonical endomorphism &F. If H is finite dimensional then
o/ (H) = 2# (H) has no nontrivial ideals, so the canonical endomorphismaiexist.

Theorem 4.4 If H is infinite dimensional then the canonical endomorphisax'¢f) exists and its kernel
is # (H). Hence we have a canonical identification

A (H) ) H (H) = o (H). (4.7)
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Proof: Let be the endomorphism @, (N) defined by(r0)(m) = 8(m+1). If K # {0} thenCy(N)
is isomorphic withCy (N) hence we get a realization efas endomorphism afy(Nx). For each finite
dimensional subspadglet Pr = 1®7, which is an endomorphism efy = %7 (E)®Cy(Ny). We have
ker Pp = J#(F) ® ker T because tensor product withi"(E') preserves exact sequences [Mu, Theorem
6.5.2]. Sincerd(Nj,) = 0(Nj + 1) we haveker 7 = CwY,, Soker P = J# (E) @ wh = o5 N H (H)
because of (4.4).

Let F' be a second finite dimensional subspace suchAhat . Then we havery C 7 and we shall
prove thatPg is the restriction ofPr to «7r. From (4.2) and arguments used before we seedhats
the norm closed linear space generated by the operaters W (u)\Y with w € E and0 < A < 1,
hence it suffices to show th@&z andPr are equal on such elements. We hdve (W(u)ANE) ® A\VEe
relatively to the tensor factorizatidi() = I'(E) ® I'(E+) hence

Pe(T) = (W(w)AVE) @ ANeTt = W (u) AN+,
An identical computation giveBx(T) = W (u)AN+1, which proves our assertion.

Now from Proposition 4.3 it follows that there is a unique emabrphisniP of & such thatP|«/r = Pg.
It is clear thatP is the canonical endomorphism gf. From Lemma 2.1 it follows thaP(K) = 0 if
K is a compact operator. Reciprocally, assume gk) = 0 and lete > 0. From (4.5) it follows
that there isE and K € </g such thal| K — Kg|| < e. Thus||Pg(Kg)| < e. The kernel ofPg is
Hr = 95 N & (H) andPg induces an isometric map from the quotiet /% onto.«/. From the
definition of the quotient norm it follows that therefise ¢z such thal| Kr — L|| < 2¢. This implies
|| — L|| < 3¢ and sincel is a compact operator ands arbitrary, we see that” is compact. u

Remark 4.5 The following explicit expression dP has been noticed by George Skandalis:

P(T)u = S'hi% a(e)Ta*(e)u forall T € o/ (H) andu € T'sin(H). (4.8)

This is similar to relation (2.2) in [BG3]. The notatien— 0 means thafe|| = 1 and that converges to
zero in the weaktopology. (4.8) follows easily from (2.8), (2.11) andisz. . a(e)a*(e)1, = 1,.

We give an application of Theorem 4.4 in spectral theory. K ede infinite dimensional.

Lemma 4.6 If T € o/ (H) thenlimy_, |P*(T)|| = 0. Moreover:1" € o7 (H) andP*(17) = 1"~*.

Proof: From the characterizations of (H) given in (4.1) we see that it suffices to considénf the
form T = W (u)0(N) with 6 € C¢(N). ThenP*(T) = W (u)0(N + k) = 0 for k large. u

Proposition 4.7 The spectrum of an element(H) is countable. Ifl" € </ (H) then its essential spec-
trum is equal to the spectrum &f(T").

Proof: Let oesdT") be the essential spectrum of an operdtcandoy(T) its discrete spectrum, so that
o(T) is equal to thalisjointunionoy(T") Ll oesdT') andoy(T") does not have accumulation points outside
oesdT). If T' € o7 (H) thenoes{T') = o(P(T)) hence we get by induction:

o(T) = oa(T) Ua(P(T)) = [Ui_goa(P*(T))] L a(P"*(T))

which proves the assertion of the proposition. |

T More precisely, the limit is taken along the filter consigtiof the intersections of the neighborhoods of zero in thekwea
topology with the unit sphere ¢ft. One may also replace it by the finer filter consisting of thiessis of the unit sphere which are
orthogonal to finite dimensional subspaces-fthe proof is then simpler.

17



Remark 4.8 The following comments on the algehr#(H) play no role in this paper but are of some
intrinsic interest. The advantage in using the graded Weglaa.# (H) instead of other Weyl algebras
which can be found in the literature is thatimplements a norm continuous action of the unit circle on
it. Indeed, (2.9) gives fot € ¥ = {z € C| |z| = 1} andu € H:

NW ()N = W (zu) (4.9)

If £ is a (complex) finite dimensional subspacerothen E is stable under multiplication by and for
f € LY(E) we have

zNW(f)ZN:/EW(zu)f(u)dEuz/EW(u)f(Zu)dEuEW(fz).

Since||[W (f.) = W ()|l < |If- — fllz» — 0asz — 1 we see that — 2V W (f)zV is norm continuous.

Thusa, (T) = zNTz" induces a norm continuous action®fon .% (H) which is compatible with the
grading (i.e. eact¥ (E,H) is stable under the action). In particular, the crossed yrbd*-algebra
Z(H) x X is well defined. The algebra/(H) is a quotient of this crossed product: there is a unique
morphism.Z (H) x ¥ — & (H) such that the image of ® n be TH(N) = T [, 2Vn(z)d= for all

T € #(H),n € L}(%), see [GI2, Theorem 2.9]. This morphism is surjective butinjetctive.

The similarly defined morphisi¥ (E, H) x ¥ — «/g(H) can be used in order to give a more conceptual
proof of the existence of the morphisRE constructed at the beginning of the proof of Theorem 4.4. |
am indebted to G. Skandalis for a comment which clarifiedlisit to me.

5 Canonical morphism of % (O)

We now extend the results of Section 4 to a larger clags*eélgebrag) of operators ort.
Definition 5.1 If a morphismP : #(0) — O @ #(0O) with the property

PW(u)'(A) = A® [W(u)'(A)] ifueHandA € Owith ||A] <1 (5.1)
exists, then it is uniquely determined and we call it¢haonical morphisrof % (O).

Example 5.2 Assume thaP exists and recall thdt(O) c .#(0). ThenP(I'(4)) = AQT'(A)if A€ O
and| /4| < 1. ReplacingA by tA and taking derivatives at= 0 we obtainP?(4"°) = P(w) = 0 and
P(AV") = A® AV if n > 1 (recall thatAV° = w). From the polarization formula we then get

nP(AL V- VA,) =3 A @[A1 V- VA1 VA V.. A, (5.2)
forall A,..., A, € O.

Remark 5.3 If needed we denotP the morphism from Definition 5.1. Observe that¥f c O, and
if the canonical morphist®, exists, therPy, exists too and we havBp, = Po,|F (01).

Theorem 5.4 If O is an abelianC*-algebra on’H and its strong closure does not contain finite rank
operators then the canonical morphigiexists andker P = ¢ (H). This gives a canonical embedding

F(O))H (H) — O F(O). (5.3)
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Remark 5.5 Observe that{ cannot be finite dimensional. In the rest of this remark weig&s) non-
degenerate and denaf® and®” its commutant and bicommutant. Note that

H(H) C F(0) c Z(0"). (5.4)

The strong closure o is O, thus in Theorem 5.4 we have to assume thétdoes not contain finite
rank operators. Clearly this is equivalent® N K(H) = {0}. Observe that if there is a sequence of
unitary operatoré¢/,, € @' such that wkm,, .. U,, = 0 then this assumption is satisfied. On the other
hand, ifH is separable the®” N K () = {0} if and only if there is a self-adjoint operatSre O’ with
purely absolutely continuous spectrum; and if this is theedhen &5 ¢ O’ and WM | o0 s = 0.

Lemma 5.6 Let O be an abelian finite dimensionél*-algebra onH with 1, € O. Let P, ..., P, be
the minimal projections a® and’H; = P,’H. ThenH = &, H, and we have

F(0) = Qe (Hi) relatively tol'(H) = ®I'(Hk). (5.5)

Proof: Recall that we have’, # 0, P, P; = 0if ¢ # j andP; + - - -+ P, = 1. Moreover, each element
of O is a linear combination of these projections. Thus we catew®ias a direct sum of'*-algebras
O = @,CP; and then we may use (2) of Proposition 3.3. More explicifldic O thenA =", 2, Py
and we havd| A|| = sup,, |z|. Assume||A|| < 1 and letu = >, ug, then we get from (2.19) and (2.20)

W(u)I'(A) = @k [W (ur)I (25 Pk )] = @5[W (ug)T(21)]

where we have identifief, = 14, . Then (5.5) follows easily from this relation. |

Lemma 5.7 Theorem 5.4 is true iP is finite dimensional andy € O.

Proof: We keep the notations of Lemma 5.6 and observe that gacls infinite dimensional because
O does not contain finite dimensional projections. By Theodeithe canonical endomorphishy, of
o/ (H},) exists. We shall now use Proposition 10.1: defffjeas in that theorem and note thafi, =

JH (Hy) and 427(7-{;) = o/ (Hy). Proposition 4.2 implies that eacl(H) is nuclear. Taking into
account Lemma 5.6 and Proposition 10.1 we get a morphism
P=@,_,P: Z(0) =D, 4(H1)® @ (Hk)® - @A (H,) =C"0.7(0) 2 OR.F(0)
whose kernel is? (H1) ® - - - ® # (H,,) = # (H). Then, with the notations of the proof of Lemma 5.6:
PW(uI'(A)) = @Dp_y Pr [@k[W (wi)L'(2)]]
= @ W(u)T(z)] @ - @ [26W (up)T(21)] @ - - - @ [W (un )T (20)]
= (:1Pi+ 4 2,Pn) @ (W)'(4) = A® (W(u)T'(A)).

~—

Thus’P is the canonical morphism oF (O). u

Prof of Theorem 5.4: If the theorem has been proved for non-degenefatben the general case is a
consequence of the factorization (3.9) and of Propositidd Withn = 2, ¢, = F#(0y), 62 = > =

2 (Hg). Thus we may assume th@tis non-degenerate. Then, due to Remark 5.3, it suffices tovaess
that© is a Von Neumann algebra, i.©. = O”. Let.Z be the set of all finite dimensionalsubalgebras
of O which containl ;. Then.Z is a lattice for the order relation given by inclusion. Inde€ is stable
under (arbitrary) intersections and M, N' € . then their upper boun® is constructed as follows: if
P(M), Z(N) are the sets of minimal projections 8, N then we define”?(R) as the set consisting
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of the non-zero projections of the forfQ with P € Z(M),Q € Z(N) and takeR equal to the linear
span of Z(R). The total algebr@ is the norm closure of the union of the algebrasdh because each

A € O is normal, its spectral measufg, has values irQ, and so is a norm limit of finite sums of the
form B = )", zi Ea(Ag) with 2, € CandA;, C C Borel sets. Note also that the standard construction
of such sums will produce operators witlB|| < || A]|.

From Proposition 3.3 we see tha# (M) | M € .Z} is afiltered increasing family of*-subalgebras
of Z(0O). The definition (3.7), Lemma 3.7, and the remark made aborearoing the norm oB imply
that.# (O) is the norm closure of the union of these subalgebras. Irr dghms,.# (O) is the inductive
limit of the net{.# (M)} mc». Lemma 5.7 gives us for eackt € .# a canonical morphisr®,, and
from the Remark 5.3 it follows thaPn (T') = Pam(T) is independent ofM if T € Uy F(M). It
remains to exten®Py to all . (O) by continuity and to check condition (i) of Proposition 5.4 an
obvious density and continuity argument.

Remark 5.8 This is a natural extension of Remark 4.5. hebe a state on &*-algebra® C B(H) and
let{e} be a net of unit vectors i such that — 0 and such that the state associateelon O converges
weakly toy (G. Skandalis has shown me that each stab& aC*-algebra® with O N K (H) = {0} can
be expressed in this way). Then

s-lim a(e) [W(w)['(T)1,]a*(e) = x(T)YW (u)['(T)1,,—1 forallu € HandT € O.

e—0
Denote b the identity morphism o and for each integer > 1 let us define
Pe =155V g p: 020D g 7(0) — 0% 0 Z(0). (5.6)

This is a morphism wittO®*~1) @ 7 (H) as kernel (tensor product with an abelian algebra preserves
exact sequences). Note th@®*—1) @ 7 (H) ¢ B(H®*~1 @ I'(H)) does not contain compact
operators ift > 1 and if we are in the conditions of Theorem 5.4. The followingeads Lemma 4.6.

Proposition 5.9 Under the conditions of Theorem 5.4 the map
Pk =Pro--- 0P : F(O) = O @ .F(0) (5.7)

is @ morphism uniquely determined by the prope®:(W (u)I'(A)) = A%k @ [W (u)T'(A)] if u € H
andA € O, ||A|| < 1. We havéimy_., |P*(T)| = 0forall T € #(0O).

Proof: It remains only to prove the last relation. Clearly it sufide consider only operators of the form
T = W (u)T'(A). But then we havéd P* (W (u)['(A))|| < [|A||*|T(A)]. |

We mention a description of the canonical morphiBrin the spirit of Proposition 3.10. Belo® is any
C*-algebra ortH. At point (ii) we use the extension of the action®fto unbounded operators affiliated
to .#(0) (see section 7): so (ii) is just (i) written at generator l¢gee the proof of Proposition 7.10).

Proposition 5.10 Assume tha) contains a positive injective operator.# : #(0) — O ® #(0O)is a
morphism therP is the canonical morphism if and only if it satisfies the fafllog equivalent conditions:

(i) P(e ) =er®e Mif H=dI(h)+V is an elementary QFH;
(i) P(H)=h®lpm + 1y Hif H=dI'(h) +V is an elementary QFH.
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Proof: Note thatP is uniquely determined by the condition (i) because of Psitign 3.10. IfH =
dl'(h) + V = Hy + V then (7.3) holds in norm becaugg is bounded from below and is bounded. If
P is the canonical morphism, and sincé &0 = I"(e~*"), we obtain (i) from:

P [(e*"/”e*HO/")n} = [P (e*V/"e*HO/”)]n = {e*h/" ® (e*V/”e*HO/”)]n. (5.8)

Reciprocally, assume tha@ is a morphism and (i) holds. Léf be as in (i) and sell = h ® Iy +
1% ® H. The operatorsd, H are bounded from below arféi(e~) = ~H  SinceP is a morphism
and the function: — e~ algebraically generateSy ([a, oo|) if a € R, we getP(0(H) = 6(H) for all
6 € Cy(R). In particular, ifz is a complex number with sufficiently large negative reat pag can take
0(z) = (z—z)"*and getP|(z— H) ] = (z— H)~!. DenoteR, = (z— Hy) ' andR, = (z— Hy)"?,

whereHy = h ® 1p(y) + 1% ® Ho. Then we make a norm convergent series expansion to get:
PYy RAVRIN = ¥, R [(1n @ V)R.]F.

We replacé/ by sV and take derivatives at= 0 to obtainP[R.V R.] = R.(13 ® V)R,. On the other
hand, by taking” = 0 in this argument we ge®(0(H,)) = 6(Ho) forall § € Cy(R). Thus

P[0(Ho)R.VR.)] = 0(Hy)R. (15 ® V)R..
By arguments already used in the proof of Proposition 3.1Qetdirst
P [n(Ho)V R.] = n(Ho)(13 ® V)R,

for n € Cp(R) and then we see that this relation remains truerfoe 1. Thus we haveP [VR,| =
(Ix® V)RZ for all complex numbers with sufficiently large negative real part. By standard anguts
we then geP[VI(Hy)] = (1% V)0(Hy) forall§ € Cy(R), in particularP [Ve o] = (1@ V)e o,
But this is the same as

PVI(EeM] =y V)(e"al(e") =" [VT(e")].

ThusP[VT(4)] = A® [VI(A)] if A = e . By first choosing: conveniently and then by using the
same argument as in the last part of the proof of Propositib@ ®&e see that the preceding relation holds
forall A € O with ||A]| < 1andA > 0. As in Example 5.2 this implies

nPV(AL V- VA =2, A @ V(AL V- VA1 VA V. Ay

first for A;, > 0 and then for all4;, € O. ThusP[VAY"] = A® [VAY(~D]forall A € O from which
we clearly getP[VI'(4)] = A® [VIT'(A)] if A € O and||A|| < 1. That this holds also foV’ = W (u)
follows easily as in the proof of Proposition 3.8. Bds the canonical morphism. |

We give one more characterization Bfwhich is sometimes useful (e.g. it implies Theorem 1.1). The
proof involves the same ideas as that of Proposition 3.4 sdoneot give details.

Lemma 5.11 .7 (O) coincides with theC*-algebra generated by the operators of the foftm)"T'(A)

withu € H,n € NandA € O with ||A]| < 1. A morphismP : O — O ® .#(0O) is the canonical
morphism if and only if it satisfieB (¢(u)"T'(A4)) = A ® [¢(u)"T'(A)] for all suchu, n, A.
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6 The fermionic case

1. The fermionic version of the theory seems to me most pleassthietically speaking and certainly
much easier. As befor# is a complex Hilbert space with scalar prodydt). A representation of the
CAR overH, or aClifford system ovet, is a couple(s#, ¢) consisting of a Hilbert spacg?” and an
R-linear mapy : H — B(s¢) which satisfies

dp(u)* = ¢p(u) andé(u)? = |jul|* forallu € H. (6.1)
We set[4, B]+ = AB + BA. Then the second condition above is equivalent to:
[p(w), d(v)]+ = 2R(ulv) forall u,v € H. (6.2)

Note that the map : H — B(s¢) is an isometry, which makes the theory much simpler. We define
theannihilationandcreationoperators associated to the one particle stdig the relations (2.6), so that
o(u) = a(u) + a*(u). Thena* : H — B(J¢) is a linear continuous map,: H — B(J¢) is antilinear
and continuous, and*(u) is just the adjoint of the operatefu). We have

[a(u),a*(v)]+ = (ulv), [a(u),a(v)]y =0, [a*(u),a”(v)] = 0. (6.3)
A number operator for the Clifford systefw?’, ¢) is a self-adjoint operataV on .7 satisfying
eV p(u)e N = p(dtu) forallt € Randu € H. (6.4)
As in the bosonic case we have:
[N ig(u)] = diu), (N + Da(u) = a(w)N, (N —1)a*(u)=a*(u)N. (6.5)

A vacuum statdor the Clifford system(.7, ¢) is a vectorQ2 € 5 with ||Q2|| = 1 such that the map
u — ¢(u)§Yis linear and this condition is equivalentddu)? = 0 for all u.

2. We define theClifford algebra overH by
F(H) =C*(¢(u) | u € H). (6.6)

We refer to [PR] for a presentation of the theory of Clifforjebras suited to our context. In their
terminology,.% (H) is the Clifford algebra generated by tremal vector spacét equipped with the scalar
productR(u|v). In particular, if the (complex) dimension &t is n then.% (H) is of dimensior2?". The
C*-algebrasZ (H) associated to two Clifford systems overare canonically isomorphic in a natural
sense, which explains wh?’, ¢) is not included in the notation. The algeb#a() has a rich and
interesting structure: itis central and simple, it has ajuritracial state, and it 8,-graded %, = Z/27),

i.e. there is a unique automorphisnof .% (1) such thaty(¢(u)) = —¢(u) forall u € H. Clearlyy? = 1
and if we set#,(H) = {T € Z(H) | v(T') = £T'} then we get a linear direct sum decomposition
F(H)=FL(H)+ F_(H).

If K is a closed vector subspace’gfwe identify % (K) with the C*-subalgebra of# (H) generated by
the operatorg(u) with uw € K. If E C F are finite dimensional subspacesifthen.7 (E) C .%(F)
are finite dimensional-subalgebras of? (H) and

F(H) = UpZ(E) (6.7)

whereFE runs over the set of finite dimensional subspace’ o particular,.# (H) is nuclear.
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3. One defines the Fock representation exactly as in the bosagsé&; the uniqueness modulo canonical
isomorphisms is obvious. The construction of the “partiedek realization” is parallel to that in the Bose
case, one just has to replace “symmetric” and the symbloy “antisymmetric” andA (the details can
be found in [PR]). Sdigg is the antisymmetric (or exterior) algebraver the vector spack, we use
the notationuv for the product of two elements, v of HQ,g (or u A v if ambiguities occur in concrete
situations), and the unit element is denoted either (). ThenHQ,g is the linear subspace spanned by
the products; . . . u,, with u; € H andHQg is equal to the linear direct subn,, Hgg. We shall equip
H3, With the unique scalar product such théfy | Hje for n # m and:

<u1 v e un|v1 v e vn> = dee(n) Eg<u1|vg(1)> v e <un|vg(n)> (68)
wherez,, is the signature of the permutatien The estimate (2.14) remains valid in the present situation

We define theFock spacd’(H) = H” overH as the completion oﬁgg for the scalar product defined
by (6.8). ThenH"" is the closure of{, in T'(H), we havel'(H) = ,, H " (Hilbert space direct
sum), and the spacés, () andIs, (H) are defined as in the symmetric case. Similarly for the number
operatorN and the projections,,, 1", w. Note thatl's,(H) is a unital algebra but not abelian: it is a

Z-gradedanticommutativalgebra, i.e. we havev = (—1)""vu if v € H " andv € H ™.

The creation-annihilation operatoe$* (u) and the field operatos(u) are defined exactly as in the
bosonic case. Important differences are the boundednetsesé operatorsila™ (u)|| = ||u//, and
the fact that(v) is anantiderivation

a(u)(vw) = (a(u)v)w + (—=1)"v(a(u)w) if v € H', w € Tain(H). (6.9)

If Ay,..., A, € B(H) then there is a unique operatdg A --- A A,, € B(H"") such that

(Al VANRERAN An)(ul .. un) = (n!)71 ZaéG(n) €U(A1u(7(1)) . (Anu(,(n)) (6.10)
for all uy,...,u, € H. We extend it tol'(H) by identifying Ay A --- AN A, = A1 A--- A A 1™ If
A; = --- = A, = A we denoted”” this operator. Note that"" is uniquely defined by the relation
AN (uy . .ouy) = (Aug) ... (Auy) forall ug, ..., u, € H. Observe thatl; A --- A A, is a symmetric
function of A4, ..., A, hence one may use the polarization formula in this case too.

As in the bosonic case, for eache B(H) there is a unique unital endomorphidtd) of the algebra
Tsin(H) such thafl'(A)u = Au for all w € H and such that the restriction @fA) to eachl’,,(H)
be continuous. In fack(4) = @,>0A4"". ClearlyI'(AB) = I'(A)I'(B), I'(1) = 1, I'(0) = w, and
2N =T(z) for 2 € C. The relations (2.16)-(2.18) remain valid. The operattd) is bounded ol (H)
if ||A|| < 1. Finally, there is a unique derivatio®'dA) of the algebrd’s, (H) such that & (A)u = Aw if
uw € H. Hence d(A)(ui ...up) =Y pur...(Aug)...u, if n > 1Tand d'(4)Q = 0. We denote also
by dI'(A) the closure of this operator. | is not bounded but generates a contracfigesemigroup on
H then d"(A) is defined byl'(e/4) = €/dI'(4),

If X C His aclosed subspace we idenﬂ@@,g with the subalgebra dﬁ-(Q,g generated byC and then by
taking the closure if'(H) we get an isometric embeddidig/C) C T'(H). The scalar product (6.8) has
been chosen such that

(wv | u'v') = (u | v | V) = (w@v | @) forallu € Iin(K),v € Din(KL)

hence the linear map'in(K) ®ayqg Iin(K+) — Tn(H) associated to the bilinear mdp, v) ~— wuv
extends to a linear bijective isometfy{X) @ I'(KX+) — I'(H). This gives us a canonical Hilbert space

T The definition is similar to that in the symmetric case, cé fbotnote on page 7, just replace the commutativity coomliti

§(w)€(v) = £(v)§(u) by E(u)€(v) = —£(v)E(u).
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identificationI" () = T'(K) ® I'(K*). Note that the product oRin(K) ®aig T'in(K1) induced by the
embedding i, (H) is the anticommutative tensor algebra product, see [Boje Mty = Qi @ Q)
and everything we said starting with (2.20) until the end e€t®n 2 remains valid.

It is also trivial to check that, as in bosonic case, for each X we haveag)(u) = a,(c*)(u) ® 1 and
dn (u) = ¢x (u) @1 relatively to the factorizatiol' () = I'(K) @ T'(K+). On the other hand, if € K+

itis easy to check thﬁ)(u) = (-1 ® afﬁ (u). Thus foru € K andv € K+ we have:
dr(u+v) = dc(u) ® 1+ (—1)V* @ ¢er (u) (6.11)

4. The theory developed in Sections 3-5 has a complete anatbg present setting. Many things become
in fact simpler and look more natural due to the boundedniseedield operators. So in what follows
we state the results and make some comments concerningabis pr

If O is aC*-algebra or{ thenT'(O) is defined as in (3.1) and Proposition 3.2 (withreplaced byn)
remains true becausg A --- A A, is a symmetric function ofl, ..., A,. Then we define:
F(O)=C*(ST(4) | Se F(H),Ac O,]|4| <1) (6.12)
and we set/ (H) = .% (Cly). If O is non-degenerate then we have
F(0) =[F(H) -T(0)] (6.13)

The proof is a much simplified version of that of Propositio#.3Ve now consider Proposition 3.3.

Proof of the fermionic version of Proposition 3.3:.% ({0}) is theC*-algebra generated by the operators
d(u1) ... ¢(un)w (Where the product may be empty) and the linear span of thesetors coincides with
the linear span o™ (u1) . .. a*(up)w = |ug ... u,){Q|, from which (2) of Proposition 3.3 in the Fermi
case follows easily. Now we prove (3) of Proposition 3.3. iBal$y this follows from

Puw)(A) = (Pp(ur) @14 (=1)" @ ¢(uz)) T'(A1) @ T(Ay)
= [p(u)(A1)] @ '(A2) + (= A1) ® [p(u2)'(A2)].

but the complete argument is complicated by the fact that awee o consider arbitrary polynomials
in the fields. Consider a produg{w) ... ¢(w,)I'(A) and decomposey, = ux + vy, A = B C
with uy,...,u, € Hy, v1,...,0, € Ho,andB € O1,C € O with norms< 1. Due to (6.11) and
since(—1)V1 = I'(—1y, ) we havep(wy) = ¢(ux) @ 1 + I'(—1) @ ¢(vi;) with some simplifications
in the notations. If we develop the produttw,) ... ¢(w,) and if we take into account the relation
T(—=1)p(ur) = ¢(—ug)T'(—1) we clearly get a sum of terms of the form (ordered products)

Myea @] © [Miepé(0)] -TED @1
wherea is a subset of1,...,n}, 3 is the complementary subset, aiigis eitheru; or —u,;. Since
IN'+l) @1 -T'(A) = I'(£B) ® I'(C) we see that(wy) ... ¢(w,)I'(A) € F(0;1) ® F(O2) and the
proof is finished by an obvious argument. |

We mention one more fact, which is also true in the bosonie bas with a more complicated proof.

Proposition 6.1 If O is non-degenerate the# (O) is theC*-algebra generated by the operators of the
formI'(A) or ¢(u)['(A) withuw € HandA € O, A >0, [|4| < 1.
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Proof: We give the proof under the supplementary assumptionhebntains a positive injective ope-
rator (this is the only situation relevant in field theory;ganeral one has to use an approximate unit as
in the proof of Proposition 3.4). L&t be theC*-algebra generated by the operators of the fayd)

or p(u)I'(A) with w € HandA € O, A > 0, ||A]| < 1. Due to (3.2) it is sufficient to show that any
producte(uq) . . . ¢(u, )['(A) with A as above belongs 6. We show this in the case of two field factors
#(u)p(v)T'(A), the general case is similar. We hate= (v/A)? andv/A € O, is positive, and has norm
strictly less tharl. By writing ¢(u)$(v)T'(A) = ¢(u)[¢(v)I'(V/A)T(v/A) we see that it suffices to show
the following: for eachv € H andB € O with B > 0,||B|| < 1, the operator(v)I'(B) belongs to
the norm closureZ of the linear span of the operators of the fofttA)¢(u) with u, A as before. We
have¢(v)T'(B) = a(v)['(B) + a*(v)T'(B) and so it suffices to hawe™) (v)T'(B) € .Z. In the case of
a(u)T'(B) this is obvious by (2.16). Now le¥ € O be positive and injective and let> 0 real. Then
(2.16) impliesa*((B +eS)w)I'(B+¢eS) =T(B+&S)a*(w) € £ forallw € H. The operatoB + ¢S

is positive and injective hence it has dense range. Theunapa™(u) € B(I'(H)) is norm continuous,
hence we get*(v)['(B +¢5) € . for all v € H. From Lemma 3.7 we easily g€{B +¢S5) — I'(B)

in norm asz — 0, hencex*(v)I'(B) € Z. u

One may define elementary QFH as in Definition 3.9 by asking % (H) or V € .%(E) for some finite
dimensional subspade of H. And then Proposition 3.10 remains true (only a minor moditfan of the
end of the proof is required). We may now state the fermioeision of our main result.

Theorem 6.2 If O is an abelianC*-algebra on’H and its strong closure does not contain finite rank
operators, then there is a unique morphigm % (0) — O ® %#(0O) such that

P[ST(A)| = A®[ST(A)] ifSe Z(H)andA € O, ||A] < 1. (6.14)
We haveker P = ¢ (H), which gives us a canonical embedding

F(O))H (H) — O F(O). (6.15)

If O is non-degenerate then one may requel4)to hold only forS = ¢(u)* (the powersp(u)* with

k € N are multiples of(u) or of the identity). The second characterizatiorPyresented in Proposition
5.10 remains valid. The canonical endomorph®rof <7 (H) satisfiesP(S0(N)) = SO(N + 1) for all

S € #Z(H) andd € Cy(N).

The strategy of the proof of Theorem 6.2 is identical to thabf the symmetric case. We first treat the
case ofe7 (H) as in Section 4 with the help of the algebras

d5(H) = [F(E) - Co(N)] = # (E) @ Co(N},) relatively tol () = T'(E) ® [(EL).

Here E is finite dimensional and? (F) = % (F) ® 1x. the #(FE) from the right hand side being the
algebra of all operators on the finite dimensional sgacg). In particular we now hav&/p € .Z(E),
infact Ng = ZZ:O a*(eg)a(er) if e1,..., e, is an orthonormal basis df. For a general algebi@ we
proceed as in Section 5.

We now prove that# (H) has a naturaf,-grading and we state the fermionic version of Remark 4.5.

Proposition 6.3 There is a unique automorphistnof <7 (H) such thaty(S60(N)) = ~v(S)8(N) for all
S € Z(H) andf € Cy(N). We havey? = 1 and for eachl’ € & (H):

P(T) = s-lim a(e)y(T)a™(e) (6.16)

e—0
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Proof: From the fermionic version of (4.5) it follows that it suffie& definey on .« (H) for each finite
dimensionalE. Since, as explained above, we then haxig(H) = # (E) @ Cy(N};), the existence
is rather obvious. However, the following explicit consttion, cf. [PR, Theorem 1.1.10], gives more
information. Observe first that if € H and|le|| = 1 theng(e)¢(ie) = ia(e), a*(e)], hencep(e)g(ie) =
o(ze)¢(ize) for all complexz with |z| = 1. Letey,...,e, be an orthonormal basis df andw =
odler)p(ier) ... d(en)d(iey). Itis clear thatw is a unitary element of? (E) with w* = w if n is even
andw* = —w if nis odd. The relationvSw* = v(S) for S € #(E) is easy to check (or see Theorem
1.1.10in [PR]). By using the expression given aboveXgy we getw Ngw* = Ng and it is clear that
wNpw* = N. ThuswNw* = N and we may defing(T") = wTw* forall T' € % (E).

We havea(e)ug . .. u, = Y (—1)*ug ... (e|lug) . .. u, hence sim._o a(e) = 0. From the anticommu-
tation relationa(e)a*(e) + a*(e)a(e) = 1 we get shim._.g a(e)a*(e) = 1. ThusP definedby (6.16) is
an endomorphism of7 (H). Note that

l[a(e)p(u) + ¢(u)ale)]| = [{e]u)| — 0if e — 0.
Finally, by using (6.5) it follows easily th&® is the canonical endomorphism.of (H). |

It is clear that everything we said in Section 5 starting vijtbposition 5.9 remains true or has an analog
in the fermionic case.

7  Self-adjoint operators affiliated to.%# (O)

1. It will be convenient to use the notion of observable affdito aC*-algebra as introduced in [BG3]
and further studied in [ABG, DaG2]. In this paper a self-agjmperator is supposed to be densely
defined but not densely defined operators appear by takingnjn@solvent limits or images through
C*-algebra morphisms. An observable is a Hilbert space indgat formulation of the notion of “not
necessarily densely defined self-adjoint operator”.

An observable affiliated to &*-algebra%’ is a morphismAd : Cy(R) — ¥. We setH(0) = 0(H)
althoughH cannot be realized as a self-adjoint operator in generate@®fables have the advantage that
one can consider their images through morphisms? if ¥ — 2 is a morphism, therP(H) is the
observable affiliated t& defined byd(P(H)) = P(0(H)) (this operation makes no sense at the Hilbert
space level). Thepectrumof H is the seto(H) of real pointsA such thatd)(H) # 0 if 6(\) # 0.

A sequenced H,,} of observables affiliated t& is convergenif lim,, (H,,) exists (in norm) for each

0 € Co(R). Thend(H) = lim,, 6(H,,) is an observable affiliated & and we writeHd = lim,, H,.

Let ¢ be aC*-algebra of operators on a Hilbert spa#é. We say that a self-adjoint operatflr on 7

is affiliated’ to ¢ if (H — z)~! € ¥ for somez € C\ o(H). This is equivalent t#(H) € ¥ for

all 9 € Cy(R) and this gives us a morphistn— 6(H), henceH defines an observable affiliated ¥
and this observable determines the self-adjoint opeddtoniquely. So the set of self-adjoint operators
affiliated to% is a subset of the set of observables affiliate@toBut there are observables affiliated to
% which do not correspond to self-adjoint operators#h(and these could be physically interesting).
See [ABG, page 364] and [BGS] for details on this question.

It is clear that the spectrum df as self-adjoint operator os#” and as observable affiliated ® are
identical. If{ H,,} is a sequence of self-adjoint operators affiliate@tthen the sequence of observables
H,, converges if and only if the sequence of operafdysconverges in norm resolvent sense.

 This should not be confused with the terminology of Wororezysee [DaG2].
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If one insists in working with self-adjoint operators thdléwing notion is useful. We say that an observ-
able or a self-adjoint operatdf is strictly affiliated to¥’ if the linear space generated by the products
0(H)T with 8 € Cy(R) andT' € ¥ is dense ir¢’. If there is a self-adjoint operator o’ affiliated to%
then% is non-degenerate of¥’.

We refer to [DaG2, Appendix] for a proof of the following fadf H is a self-adjoint operator strictly
affiliated to% and if P is a non-degenerate representation®@fon a Hilbert space’’, then there is a
unique self-adjoint operatdP (H) on.#" such thatP(¢(H)) = ¢(P(H)) for all ¢ € Cy(R). Moreover,
P(H) is strictly affiliated to theC*-algebraP (¥).

From now on we assume that ¢ B(#) is non-degenerate o#’. Then themultiplier algebrd of ¢
is defined by:
M ={Be B(H)|BCe¥andCB e ¥ if C € ¢}. (7.1)

Each non-degenerate representafivof ¥’ on a Hilbert space?” extends in a unique way to a represen-
tation (also denote®) of .# on.# such thatP(B)P(C) = P(BC) forall B € .# andC € €.

Lemma 7.1 Assume thal is a self-adjoint operator (strictly) affiliated t& and thatl” = VV* belongs
to the multiplier algebra off. ThenH = H, + V is (strictly) affiliated to#. If P is a non-degenerate
representation o¥ thenP(H) = P(Hy) + P(V).

This is an easy consequenceifz) = Ro(z) (VRo(z))’“ for largez, whereR(z) = (z — H)~! and
Ro(z) = (2 — Hy)~'. See [DaGZ2] for the proof of the strict affiliation.

We quote below several affiliation criteria which are corieanfor quantum field models.

Theorem 7.2 Let Hy andV be bounded from below self-adjoint operators.#fisuch that the operator
H = Hy + V with domainD(H,) N D(V) is self-adjoint (in particular, the intersection has to berde
in 7). If e tHog=2tVe~tHo ¢ ¢ for all t > 0 thenH is affiliated to%.

This follows from a result of Rogava [Ro] (see [IT] for moreeat results) which says that

e—QtH — lim [e—tHo/ne—QtV/ne—tHo/n}n: lim |:(e—tV/ne—tH0/n)* (e—tV/ne—tHo/n):|n (72)

n—oo n—o0o

holds in norm for allt > 0. Under the same conditions we also have norm convergence in:
et — lim [e—“’/ ng-tHo/ "] " (7.3)
Other affiliation criteria can be found in [DaGZ2], for exarepl

Theorem 7.3 Let Hy > 0 be a self-adjoint operator affiliated t8” and letVV be a symmetric form
such that—aHy — b < V < bHy + b for some real number8 < a < 1 andb > 0. Assume that
U = (Ho+ 1)"Y2V(Hy + 1)~'/2 belongs to the multiplier algebraz. ThenH = H, + V defined in
form sense is a self-adjoint operator affiliated4o If Hy is strictly affiliated to¢” thenU € .# if and
only §(Ho)V (Ho +1)~'/2 € & for all § € C;(R) and thenH is strictly affiliated to%".

Now let us fix a probability measure spa@eand consider the associated scald.bkpaces. Let, be a
positive self-adjoint operator ah? which generates laypercontractivesemigroup in the following sense:
for eacht > 0 the operator /0 is a contraction in each” and there are > 2 andt > 0 such that

T This is isomorphic with the abstractly defined multipliegetbra, cf. [La], but we shall not use this fact.
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e tHo[2 ¢ LP. We shall say that a real functidn on @ is admissibléf V and e belong toL? for all
p < oo (observe that il is bounded from below the second condition is automatictisfied). Under
these conditions ofl, andV it can be shown thall, + V' is essentially self-adjoint o (Hy) N D(V)
and its closuréd is bounded from below, see [RS, Theorem X.58]. Then [RS, TdradX.60]:

Theorem 7.4 Assume thafd is as above, le{V,,} be a sequence of admissible functions, andHgt
be the closure of the operatdi, + V,,. Assume that there is > 2 such that|V,, — V||z» — 0 and
sup,, ||€"V||L» < co. Thenlim H,, = H in norm resolvent sense.

2. We consider now the case of interest in this paper./i.&ie a complex Hilbert space addlan abelian
non-degenerat€*-algebra orf{ such that0” N K(H) = {0}. We takes” = I'(H), which is either
the bosonic or the fermionic Fock space, &id= .%#(0). Then according to Theorems 5.4 and 6.2 we
have a canonical morphisf : . (0) — O ® % (0O) whose kernel is? (H) = K(I'(H)). The algebra

O ® ZF(0) is naturally realized on the Hilbert spagéx I'() and thus we get an embedding

F(0))H (H) — O F(O) C B(HeT(H)). (7.4)

Thus we may think of® as a representation ¢f (O) on’H @ I'(H) with range.# (O)/.# (H) included
(strictly in general) inO ® #(0).

Lemma 7.5 % (0O) is non-degenerate af(7{) and the representatioR of #(0) onO @ T'(H) is non-
degenerate. Ik > m > 0is a self-adjoint operator ori strictly affiliated toO thenHy = dI'(h) is
strictly affiliated toI'(O) and to.# (O).

Proof: The action of the algebté (O) onT'(H) is non-degenerate becaug&(H) C .#(O). The action
of P(#(0)) onH®T'(H) is also non-degenerate because this algebra containseetors of the form
S ®T(S)with S € Oand|S|| < 1and if we take a sequendé,, } of such operators witly,, — 1
strongly thenS,, ® T'(.S,,) converges strongly to the identity operatordne 7.

If his strictly affiliated toO then the linear span of the operaté(®)T with 6 € Cy(R) andT € O
is dense inO. If h is also bounded from below this clearly implige=<*7 — T|| — 0 ase — 0 (and
reciprocally). Ifh > m > 0 then from Lemma 3.7 we clearly gge—=7°T'(A) — I'(A)|| — 0 ase — 0

if A€ O,|A] < 1,and from this we deduce tha, is strictly affiliated toI'(O). Finally, we make
a general remarkif H is an observable strictly affiliated t6(QO) then it is strictly affiliated toZ (O).
Indeed, we havE(O) C .#(0) and the natural (left or right) action 6fO) on.# (O) is non-degenerate,
cf. Proposition 3.8. |

Thus, if H is a self-adjoint operator ofi(H) strictly affiliated to.#(O) thenP(H) is a self-adjoint
operator or{ ® I'(H) strictly affiliated to the quotient algebr& (O)/. 7 (H). If H is only affiliated to
Z(0) thenP(H) is only an observable affiliated t& (O)/.# (H) and in general can not be realized
as a self-adjoint operator cH ® I'(H). In any case, as the simplest application in spectral thebry
Theorems 5.4 and 6.2, we have the following description efetbsential spectrum éf.

Theorem 7.6 We haveresd H) = o(P(H)) if H € #(0O) or H is affiliated to.# (0O).

This result can be made more explicit in the following ternince O is an abelianC*-algebra its
spectrumZ” is a locally compact topological space and we have a canddematification

0 © F(0) = Co(2: F(0)), (7.5)
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whereCy(2"; % (0)) is theC*-algebra of norm continuous functiods: 2~ — .#(0O) which tend to
zero at infinity. Assume for simplicity thai = P(H) is a self-adjoint operator ok ® I'(H) (which
holds if H is strictly affiliated to.Z (©)), thenH is identified with a continuous familyH (z)},c 2~ of
self-adjoint operators affiliated t& (©) and we have

Gesd H) = U, e o o(H(2)). (7.6)

See [ABG, 8.2.4] for details and for the proof that the uni®closed ﬁ could be only an observable).

3. The simplest operators affiliated & (Q©) are the elementary QFH, and their images throfgare
described in Proposition 5.10. We give other examples belod in later sections. Since we think
of #(0) as theC*-algebra of energy observables of a quantum field, any obhbenaffiliated to it
should be interpreted as the Hamiltonian of some quantunh fireldel with one particle kinetic energy
affiliated to®. Thus Theorem 7.6 and the formula (7.6) should cover a ldagsof models. However,
the Hamiltonians of the usual models are of the same natutfecaslementary QFH (only much more
singular). We isolate this class of operators in the nexhitedn.

Definition 7.7 A self-adjoint operato onI'() is astandard quantum field Hamiltonian (SQRH}
is bounded from below and affiliated #6(0) and if there is a self-adjoint operatdr > 0 on 7 affiliated
to O suchthatP(H) = h ® 1y + 19 ® H. Under these conditions we shall also say thais of type
O and thath is theone particle kinetic energgndm = inf h theone particle masassociated tdd .

If we apply Theorem 7.6 to SQFH Hamiltonians we get:

Theorem 7.8 If H is a SQFH with one particle kinetic energyand one particle mass: then:
OesdH) = o(h) + o(H) = {A+ 1| X € o(h), pu € o(H)}. (7.7)

In particular, if m > 0 theninf H is an eigenvalue of finite multiplicity df isolated from the rest of the
spectrum. Iy (h) = [m, oo[ thenoesd H) = [m + inf H, oo.

The class of SQFH is quite large and many singular physidatBresting Hamiltonians are affiliated
to it. We shall give such examples in the next sections and evetd the rest of this section to some
preliminary results in this direction.

Lemma 7.9 The multiplier algebra of# (O) contains#max(H) in the bosonic case ané (H) in the
fermionic case. IV belongs to one of these classes we HA(E) = 11, @ V.

Proof: In the bosonic case it suffices to considie= W ( f) with f a bounded Borel regular measure on
‘H and to show that fof’ = I'(A)S with S € # (H) andA € O, ||A]| < 1 we haveVT € .%#(0O) and
P(VT) = (19 @ V)P(T). We haveVT = [ W (u)I'(A)Sdf (u) the integral being convergentin norm
by Lemma 3.7, andlV (u)T'(A)S € #(0O), hencelV'T € #(0) and

Py = [P0V 0= [As W)W
= A®(VI(A)S) = (1x @ V)(A® (T(A)S) = (15 @ V)P(T).

The proof in the fermionic case is similar and easier. |

29



Proposition 7.10 Let h be a self-adjoint operator ofi{ affiliated to O and such thainf » > 0. Let
V = V* be an element of the multiplier algebra &f(0). ThenH = dI'(h) + V is affiliated to.% (O)

and we havéP(H) = h @ 1ppy) + 1 @ dl'(R) + P(V). In particular, if V' € #max(H) in the bosonic
case and/ € .# (H) in the fermionic case, then we haR¢H ) = h® 1)+ 11 ® H, s0OH is a SQFH.

Proof: The operatotf, = dI'(h) has the property €0 = I'(e~*") for t > 0 and e*" € O and has
norm< 1, so that
P (e—tHo) _ e—th ® F(e_th‘) _ e—th ® e—tHg.

ThusP(Hy) = h ® 1r) + 1% ® Hy and then we use Lemmas 7.1 and 7.9. |

Proposition 7.11 Let V be a bounded from below self-adjoint operatorofi) affiliated to #max(H)
in the Bose case and t# () in the Fermi case. Let be a self-adjoint operator ofi affiliated toO
with h > m > 0 and let us sef{y, = dI'(h). If H = Hy + V is self-adjoint onD(Hy) N D(V') thenH
is a SQFH of typ& with h as one particle kinetic energy.

Proof: ThatH is affiliated to.7 (©) is a consequence of Theorem 7.2. THér= P(H) is an observable
affiliated to.%# (©) but we do not yet know if it can be realized as a self-adjoirgrapor onH @ I'(H). In

any case, the semigrm{p‘fﬁ}bo is well defined (it could be zero on a nontrivial subspace) @n8l)
implies:

e tH _ P(e‘“{) — lim [73 (e—tV/ne—tHo/n):|n

n—oo

o (0 ()]
e (e

n
lime " ® [e—tV/ne—tHo/n] —ethgetH,
n

Since this holds for alt > 0 we getﬁ' =h®lpp + 1@ H. |

The fact that the class of SQFH contains singular physidgaigresting Hamiltonians is mainly due to its
stability under norm resolvent convergence.

Proposition 7.12 Assume thaf H,, } is a sequence of SQFH of tygkwith the same one particle kinetic

energyh and such thatd,, — H in norm resolvent sense, whekgis a self-adjoint operator ofi'(H).
ThenH is SQFH of type) with one particle kinetic energy.

Proof: Due to norm resolvent convergence the operaféysare uniformly bounded from below and
e tfn — e~tH in norm for each > 0. Thus ' € .7 (0) henceH is affiliated to.# (0O) and we have

P (e—tH) — hmP (e_tH") — e—th ® e—tHn — e—th ® e—tH

forallt > 0. This is equivalent t®®(H) = h ® 1y + 1y @ H. u
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8 Mourre estimate for operators affiliated to .# (O)

1. We begin with some basic facts concerning the Mourre estiraatpresented in [ABG, Ch. 7]. Im-
provements of the theory including an extension to congiggeratorsd which are only maximal sym-
metric can be found in [GGM1] (this is especially useful foe treatment of zero mass fields).

Fix a self-adjoint operatod (the conjugate operator) on a Hilbert spa#é An operatorS € B(s5¢) is
of classC' (A) if the mapt — e~ 4 5¢*4 s stronglyC". If this map is of clas€" in norm, we say that
Sis of classC(A). Itis easy to see that is of classC! (A) if and only if the commutatofA, S], which
is well defined as sesquilinear form @h A), extends to a bounded operatdr, S]° on 7.

Now let H be a second self-adjoint operator.g#i (the Hamiltonian). We say thaf is of classC! (A) or
CL(A)if (H - z)~! has the corresponding property (hens any number not in the spectrum . Itis
possible to characterize tiie' (A) property in terms of the commutatpt, H], we recall here only what
is strictly necessary (see [GGM1]). H is of classC*(A) thenD(H) N D(A) is a core forH and the
commutatorf A, H], defined as sesquilinear form @ H) N D(A), extends to a continuous sesquilinear
form [A, H]° on D(H) equipped with the graph topology [GGM1, Proposition 2.1®oreover, we
have:

[A,(H —2)7'° = —(H - 2)" YA H°(H - 2)". (8.2)

From now on we keep the notatigA, H]| for the extensionA, H]°.

We definess; : R — (—o0, c0] as follows: 54 (\) is the upper bound of the numbergor which there
are a real functiod € C¢(R) with 6(\) # 0 and a compact operatéf such that

O(H)[H,iAO(H) > af(H)? + K

In other terms 4 (\) is the best constant in the Mourre estimate. Themfgt)\) be the upper bound
of the numbers: such that the preceding inequality holds for sofrend X' = 0. So we get a second
functionpy, : R — (—oo, o] such thatpf, < p4. We haveps (A) < oo if and only if A € o(H) and
pa(\) < ocifand only if A € oesd H), See Lemma 7.2.1 and Proposition 7.2.6 in [ABGI\ I§ 74 (H)
we say thatd is conjugate taH at \.

The two functions defined above are lower semi-continuotmisThe set4(H) whereps () < 0'is
closed and will be called the set dfthresholdsof H. The closed set 4 (H) of A-critical pointsof H
is given by the conditiops;(\) < 0.

ClearlyT4(H) C x4(H). In order to understand how much differ these sets we intedhe following
notion. Say that € R is anM-eigenvalueof H if it is an eigenvalue an@4 (\) > 0. By the virial
theorem, these eigenvalues are of finite multiplicity aredreot accumulation points of eigenvalues. Thus
the setu 4 (H) of all M-eigenvalues off is discrete. The next result [ABG, Theorem 7.2.13] says that
the functionsp4; andp4; differ only on the small set (H). Letoy(H) be the set of eigenvalues &f.

Proposition 8.1 We haveps (\) = 0 if X is a M-eigenvalue off and otherwiseps (\) = pa()).
Moreover,p4 (X)) > 0 if and only if 5z (\) > 0 and\ ¢ op(H). In particular (L means disjoint union):

ka(H) =7a(H)Uop(H) = 7a(H) U pa(H). (8.2)

We shall also need the following result, which is a partic@iase of [ABG, Theorem 8.3.6] (see also
[BG2, Theorem 3.4] for a simpler proof in an important parter case).
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Proposition 8.2 Let 27 = JA ® % and let H;, A; be self-adjoint operators o, such thatH; is
bounded from below and of claé¥, (4;). Consider the self-adjoint operatof$ = H; ® 1 + 1 ® H,
andA = A4; ® 1+ 1® A ons#. ThenH is of classC!(A) and

A _ . Ay Ag
pEO = _inf (o () + o (a)] (8:3)

2. We shall explain now how one may compute the funcfighusing C*-algebra methods. This tech-
nigue has been introduced in [BG3] in the context of Mvody problem and further developed in [ABG,
Ch. 8]. The main point of this approach is that it avoids theafsauxiliary objects like partitions of unity.
The presentation below is adapted to our needs, that fron3]B®BG] is more general since it does not
require the quotient algebra to be represented on a Hilpades

Let ¥ be aC*-algebra such thak (7)) C € C B(). Then the quotient*-algebrag’ = C/K(H)

is well defined. IfH is a self-adjoint operator o’ affiliated to ¢ then one can consider its image
H = P(H) through the canonical morphisf : ¢ — %. ThenH is an observable affiliated 6’ and

the essential spectrum &f is equal to the spectrum @f. We shall assume that a faithful non-degenerate
realization of¢’ on some Hilbert spacé;is given and that the observatieis realized as a self-adjoint
operator (which we denote also tﬁ/) on 2.

Let A be a self-adjoint operator ap?” with e~'*A¢’e*4 = ¢ for each real and such that the map
t — e '*4 54 be norm continuous for each € €. Since €A K (#)é!4 = K (), there is a norm

continuous one-parameter group of automorphismsf ¢ such that? (e'*4.5€*4) = a,(S) for all ¢

andS € ¥. Finally, assume that the groug is unitarily implemented in the representation.¢fi (this

is not needed in the more abstract theory presented in [BB&]JA More precisely, our hypotheses are:
A is a self-adjoint operator op¢’ with e A€ €4 = % for all ¢;

(CA) { the mapt — e "4 5€* is norm continuous for eachi € ¢;

A'is self-adjoint on” andP (e45et4) = e~ A P(S5) €' for all t andS € €.

The next proposition follows immediately from the preceglitefinitions and comments.

Proposition 8.3 Assume that{ is a self-adjoint operator o’ affiliated to¢” and of classCl(A). If
H is a self-adjoint operator o’ then H is of classC; (4) andpy; = pi.

3. We shall apply the preceding general theory in the situatibimterest for us in this paper. Lé&{

be a complex Hilbert space arf@ an abelian non-degenerai&-algebra of operators oK such that
0" N K(H) = {0}. Lets# = T'(H) be the symmetric or antisymmetric Fock space okeand
¢ = % (0). We shall consider only conjugate operators of the form:

(oA A = dI'(a) wherea is a self-adjoint operator oK such that e'**O€** = O
and such that the map— e~ '**Se*® is norm continuous for alf € O.

Lemma 8.4 We have g4.7(0)e" = Z(0) for all real t and the mag — e *AT€* is norm
continuous for alll” € .#(0O).

Proof: Note that &4 = TI'(€**). In the bosonic case it suffices to take= W (u)T'(S) with v € H and
S € O with || S]] < 1. Then, due to (2.17), we have:

g itAPdtA W(e—itau)r(e—itaseita) (8.4)
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and we get norm continuity by Lemma 3.7. In the fermionic oasemay assumé& = ¢* (u)T'(.S) with
k = 0,1 and the argument is even simpler. |

Lemma 8.5 Let H be a self-adjoint operator affiliated t& (O). ThenH is of classC(A) if and only
if H is of classC!(A) and the operatofA, (H — z)~!] given by(8.1) belongs toZ (O).

Proof: If S = (H — 2)~! thenS(t) = e '*45€' belongs to.# (O) for all realt. If H is of class
CL(A) then[S,iA] is the norm derivative at = 0 of the mapt — S(t) hence belongs t# (0). On the
other hand, ifH is of classC?(A) then[S(t),iA] is the strong derivative of the map— S(t) hence we
haveS(t) — S = [, e~"A[S,iA]é™ in the strong topology. IfS,iA] € #(0) then by Lemma 8.4 the
integrand here is norm continuous, hence the integralsiisiorm, sat — S(t) is normC™. u

From Theorems 5.4 and 6.2 and from relations like (8.4) (hixscase) we get canonical identifications:

C=P(F0)CORF0), #£=HeA=HRT(H), A=a@1+1 A. (8.5)

Our main result on the Mourre estimate for SQFH follows.

Theorem 8.6 Let H be a SQFH of typ& with one particle kinetic energy and one particle mass
m = inf h > 0. Assume that condition (OA) from page 32 is fulfilled, tHais of classC(A), and that
his of classC} (a) and such thap$ > 0. Thenk,(h) = 74(h), we havep4 > 0 and:

TA(H) = [UZO:1 rg](h)] +op(H), (8.6)
wherer? (h) = 1q(h) + - - - + 7o (h) (n terms). Alternatively, if we séi, = dI'(h) then:

Ta(Ho) = Uy (k) and 7a(H) = 7a(Ho) + op(H). (8.7)
Proof: The operatoh cannot have eigenvalues of finite multiplicity because threesponding spectral
projection would be i¥0”" which does not contain finite dimensional projections. Heinem Proposition
8.1 we gepj, = pj, in particulark, (h) = 74(h). SinceH is a SQFH we havél = h® 1py) + 11 ® H.
By taking into account (8.5) we deduce from Propositionssh@ 8.2 that:

PN = _inf  [oh(\) + pir (o)) = inf [ph O = 1) + pii ()] (8.8)
In this proof we simplify notations and sgt= p4, p = p#, andp, = p¢. Also, without loss of
generality, we shall assume thaf H = 0. Thenoes{H) C [m,oo[ due to Theorem 7.8. Thus the
functionsp on the interval\ < 0 andp andp;, on A < m are equal to infinity, in particular

P(A) = infocy<r—m [pn(A — ) + p(1)] (8.9)

with the convention that the infimum over an empty set is etpadfinity. Observe that if\ < m thenA

is either in the resolvent set &f, and therp(\) = oo, or A is in the discrete spectrum &f, hence is an
M-eigenvalue of, sop(\) = 0 by Proposition 8.1. Thug(A) > 0if A < m. Assume now that we have
shown thafp(\) > 0if A < km for an integerk > 1. If A < km + m thenin (8.9) onlyu < km will
appear and sp(u) > 0. Sincep, > 0 by hypothesis, we get(\) > 0if A < (k 4+ 1)m. By induction
we finally obtainp(A\) > 0 for all A.

We thus havé) < p < pandp, > 0. Hencer(H) = 74(H) is the set ofA such thafp()\) = 0 and
k(H) = ka(H) is the set of\ such thato(A\) = 0. Moreover,7(h) = 14(h) = kq(h) is the set ofA
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such thafpy (A) = 0. Then the first equality in (8.8) clearly gives{)\) = 0 if and only if one can write
A = A1 + A2 with p, (A1) = 0 andp(\2) = 0 (these functions are lower semi-continuous). Finallygrfro
(8.2) we obtain:

7(H) = 7(h) + 5(H) = 7(h) + [7(H) Uop(H)] = [7(h) + op(H)|U[r(h) + 7(H)].  (8.10)

This equation for the set(H) has as unique solutidn, >, [ (h) 4+ op(H)| obtained by iteration. This
gives (8.6), for (8.7) note théatis the only eigenvalue afi. |

Remark 8.7 The relation (8.6) describing the sei(H) of A-thresholds ofH has a simple physical
interpretation. It says that an energyis an A-threshold if and only if one can write it as a sumn=
A1+ -+ A + pwhere the\, area-threshold energies of the free particle ani$ the energy of a bound
state of the field. This means that at eneiggne can pull out: free particles from the field, each one
having ana-threshold energy, such that the field remains in a bound.stat

Remark 8.8 Outside the threshold set; (H) one expectd] to have nice spectral properties. A rather
weak condition which implies the absolute continuity of 8pectrum ofH outsider4(H) (and many
other properties) is tha be of clasg!'! (A4), which means that the map— e *A(H + i)~ 'e*4 is of
Besov clasBL:! in norm (this is slightly more restrictive than &l (A) class; the boundedness of the
double commutatdiA, [A, (H — z)~!]] implies it). In particular, in order to exclude the existeraf the
singularly continuous spectrum, it is important to be shat4 (H) is a small set. Note thats(H) is
always closed and that it is countable{ ) is countable an@ separable. In fact, in the mostimportant
physical cases we havg(h) = {m} and thenrs(H) = mN* 4 o,(H).

As an example, we consider the important particular casenihés a Sobolev space over an Euclidean
spaceX = R?, e.g.H = L%(X). The P(p)2 model as treated in [DeG2] is covered by this example.
Then we take? = Cy(X*) (space of continuous functions of the momentum oper&tamich tend to
zero at infinity). A self-adjoint operatdron™ with inf h = m > 0 is strictly affiliated toCy (X *) if and
only if h = h(P) whereh : X — Ris a continuous function such that(p)| — co when|p| — oc.

We shall assume thdt : X — R is a function of clas€’! in the usual sense. Leth) be the set of
critical values of the functioh in the usual sense, i.e. the numbers of the fofp) with Vi(p) = 0. In
this context it is natural to consider one patrticle conjegagterators of the form = F(P)Q + QF(P)
with F' a vector field of clas€’¢°(X). The corresponding operatoss = dI'(a) will be calledof class
VF (vector fields). The following is a consequence of Theoren 8.

Corollary 8.9 In the preceding framework, Iéf be a SQFH with one particle kinetic energgy Then
oes{ H) = [m + inf H, 0o[. Assume thal{ is of classCl(A) if A is of class VF and let

T(H) = [Us2, 7"(h)] + op(H), (8.11)

wherer™(h) = 7(h) + --- + 7(h) (n terms). Therfd admits a conjugate operator of class VF at each
point not in~(H). If H is of classC*1(A) (e.g. if[A, [A, (H — z)~!]] is bounded) for each operatot
of class VF therf{ has no singular continuous spectrum outsidél ).

Remark 8.10 It is possible to prove the Mourre estimate for more genemanHtoniansH affiliated

to #(0) if the operatorA satisfies the condition (OA). We use again Proposition 8.3alkyng into
account the identifications made in (8.5). But now one steperpreceding arguments is missing because
in generalH is no more representable in the forn® 1p) + 1% ® H' with operatorsh and H'
affiliated to © and % (O) respectively, so we cannot use the Proposition 8.2. Howéyeusing the
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techniques from [DaG1, Sections 5 and 6] one can sometimesawe this difficulty. For example,

if H=h® M + 14 ® H with M > ¢ > 0 then one can proceed as in [DaG1, Section 6] (in fact,
the situation here is much simpler). The main point is thapBsition 8.3 shows that we only have to
estimate from below the commutatdf, i A] which has the following special structure:

[H,iA] = [H,ia ® Ipgy) + [H, 1y @ iA]. (8.12)

As already mentioned in the comments after Theorem 7.5, i strictly affiliated to.# (O) the quo-
tient H is identified to a continuous familyH ()} < 2~ of self-adjoint operators/ () onT'(H) strictly
affiliated to.# (0). Sincea “acts” only on the variable: (by condition (OA)) and due to Lemma 8.4,
each term on the right hand side of (8.12) formally belongsA@) and one may impose conditions
which ensure strict positivity of the sum. All this can be daigorously by working with the resolvent
of H instead ofH, as in [DaG1, Section 5], and in fact the situation here igp$@mthan in the case of an
N-body dispersive Hamiltonian.

9 QFH associated to Lagrangian subspaces @f

Our purpose in this section is to show that Hamiltoniansthie of theP (), model are covered by our
formalism. We shall consider only the bosonic situation. fik& recall another classical procedure for
constructing realizations of the Fock representation efGICR, the so-callefield realizations The idea

is to use maximal abelian subalgebras of the Weyl algghfa/) defined on page 6. Note th#t(H) de-
pends (modulo canonical isomorphisms) only on the symiglstructure ofH defined by the symplectic
formo(u,v) = S(u|v). We recall that a real linear subspaceofs calledisotropicif o(u,v) = 0 for all
u,v € € and that a maximal isotropic subspace is callagrangian A straightforward argument gives:

Lemma 9.1 For any isotropic subspac& we havef Ni€ = {0} and ||u + iv]|? = |Ju]|? + ||v||* for all

u,v € &; and £ is Lagrangian if and only iff = £ + i€ and then€ is closed. Ifc is a conjugation
(antilinear isometry such thaf = 1) thenH. = {u € H | cu = u} is a Lagrangian subspace & and
reciprocally, each Lagrangian subspace7gfis of this form for a uniquely determined

For each real linear subspa€eC H let #/(£) be the closed linear subspace#fH) generated by the
operatord¥V (u) with u € £. This is obviously aC*-subalgebra o# (H).

Lemma 9.2 Let& be a real linear subspace &{. Then?/ (£) is abelian if and only i€ is isotropic and
W (€) is maximal abelian i (H) if and only if€ is Lagrangian.

Proof: Assume that? (£) is abelian and let;,v € £. From (2.2) we get'&(l*) = 1 forallt € R
henceX(u|v) = 0, sof is isotropic. If€ is Lagrangian thet? (£) is maximal abelian ir” (H) because
# (£)" is maximal abelian on the Fock spat€H). Finally, assume thaf is not Lagrangian, so that
K =E&+I€E # H. If u e H\ K then, as shown in the proof of Proposition 5.2.9 from [BR]e dras
Wi(u) ¢ #(K)soW (u) ¢ #(€). If Kis not dense i{ we may choose, L K and getiW (u) in the
commutant of# (£) but notin (£). If K is dense ir{ then& cannot be closed and we choasin the
closure of€ but notin€. Since the closure & is isotropic we see thdtV (u), W(v)] = 0forall v € £.
But since the sun'C = £ + i€ is directiW (u) ¢ #(E).

In the rest of this section we fix a Lagrangian subspaa# 7. It is not difficult to show that the Von

Neumann algebr# (£)” generated by# (£) onT'(H) is maximal abelian and th& is a cyclic and
separating vector for it. The(i’) = (Q|TQ) defines a faithful state o# (£)” and we denotd? (&)
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the L? spaces associated to the cou@#(€)”, (-)). These spaces are intrinsically defined by abstract
integration theory [Ne] and can be realized as ugifaspaces over a probability measure sp@oghich

we shall not specify because this is of no interest here (we refer to [DeG2, Sildketails on these
guestions). However, we mention that at the abstract leechave canonical identificatiords*(£) =

# ()" and if 1 < p < oo thenLP(€) is the completion of.> (&) for the norm||T||, = (|T|?)/>.
Moreover, from(W (v)*W (u)) = (W (v)QW (1)) it follows that the magh (u) — W (u)2 extends

to a unitary map.?(€£) — T'(H) which will be used from now on to identify these two Hilberasgs.
Thus we have

WE) =L®E) CLPE)CL*E)=T(H)cLYE) C L) ifl<g<2<p<oo. (9.1)

We get a realization o2 () of the Fock representation by transport frdi+) with the help of the
identification map defined above. Thfsrealizationis a “field realization” in the sense that the field
operatorsp(u) are realized as operators of multiplication by (equivaienlasses of) real measurable
functions defined on a probability spa@e Note that the “momentum operators” defined by

m(u) = ¢(iu) =i(a*(u) — a(u)) forue &
can be realized as differential operators for certain ad®mf(). One has the commutation relations
[p(u), p(v)] = [w(u),7(v)] =0 and [(u),n(v)] = 2i{ulv) if u,v e €.

Example 9.3 This is the most elementary situation which is of physic&iiest. Leth be a self-adjoint
operator orH which leavest invariant (i.e. is real with respect to the conjugation atsed tof) and
has pure point spectrum. Then there is an orthonormal Hagis.c x of the real Hilbert spacé€ and
a functionh : K — R such thath = ), h(k)|ex)(ex| as operator orH{. Let us seta;, = a(ey),
or = d(er/V/2), andmy, = w(ex/v/2). ThenH, = dI'(h) has the following familiar expression:

Hy = 323 h(k)AT (|ex)(ex]) = 325 hk)agar = 5 325 h(k)(mf + 6 — 1)

wheregy,, 7, are self-adjoint operators satisfying the commutatioatiehs|¢;, ¢x] = [7;, 7] = 0 and
[¢j, ] = 1d,5. This is the kinetic energy operator of the (discretizedjifand the total Hamiltonian is
obtained by adding a “generalized polynomi&l'in the field operators,.

We want to show that much more general Hamiltonians con®duloy procedures similar to that of
Example 9.3 are SQFH in our sense. I&tbe an abelian non-degener&i&-algebra orfH such that
0" N K(H) = {0}. In the statement of the next result we use the terminologgbsfract integration
theory; we refer to [Ne] for a short review of the main facts.

Theorem 9.4 Let Hy = dI'(h) whereh is a self-adjoint operator ori affiliated to © and satisfying
m = infh > 0andh~ '€ C £. LetV be a self-adjoint operator o () which is bounded from
below, affiliated to# (£)”, and has the property” € LP(€) for all p < co. ThenH, + V' is essentially
self-adjoint onD(Hy) N D(V') and its closuref is a SQFH of typ& with one particle kinetic energy.

Proof: We shall use Theorem 7.4 witH, = dI'(h). The conditions imposed oh imply that H,
generates a hypercontractive semigroup due to Nelsonsehe[Si, Theorem 1.17]. TheW, viewed
as function o, is admissible by hypothesis, 6 is essentially self-adjoint o (Hy) N D(V). Now

T We emphasize that #{ is infinite dimensional one can never taie= £ in any natural sense, so the notatibh(£) could be
misleading. Of course, one may taieequal to the spectrum of th@*-algebra#/ (£), but this is not a really convenient choice.
On the other hand, the theory of Gaussian cylindrical messong offers many useful realizations.
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assume that € L> = #/(£)”. Kaplansky’s density theorem [Mu, Theorem 4.3.3] implikattthe
closed ball of radiug|V|| in # (£) is strongly dense in the closed ball of radilig|| in #(£)”. Since
the functionl = Q belongs tal? it follows that there is @equencgV,,} of self-adjoint operator¥, in

# (0) with |V,,|| < ||V]| such that|V,, — V||Lz= — 0. But we have|V,, — V||~ < 2||V] hence we
get by interpolatior|V,, — V|| — 0 forall p < oo. Let H, = Hy + V,,, then Theorem 7.4 implies
that H,, — H in norm resolvent sense. From Proposition 7.10 it followat #achH,, is a SQFH hence
H is a SQFH of type? with one particle kinetic energly by Proposition 7.12. In the general case, we
consider the operatofg, = inf(V,n) € L which obviously have the properties required in Theorem
7.4. ThusH,, — H in norm resolvent sense and we use again Proposition 7.12. |

The preceding theorem coveP§ ). models with a spatial and an ultraviolet cutoff in any dimensin
space-time dimensiodit is possible to remove the ultraviolet cutoff staying i thock space. The fact
that the corresponding Hamiltonian is a SQFH in the senseetifhifion 7.7 follows from:

Theorem 9.5 Let Hy be as in Theorem 9.4 and I&t be a self-adjoint operator oii () affiliated to
w (£)"” with the propertyV € LP(€) for all p < oco. Assume that there is a sequence of operatQrs
with the same properties &8 and that there is some > 2 such that: (i) eachV;, is bounded from
below; (ii) sup,, eV ||a < oo; (i) ||V, — V|« — 0. ThenH, + V is essentially self-adjoint on
D(Hy) N D(V) and its closured is a SQFH of typ& with one particle kinetic energy.

This follows immediately from Theorems 9.4 and 7.4 and Psitjan 7.12. Christian Gérard sent ine
a short proof of the fact that the conditions of this theoremsatisfied in the two dimension&l(y)-
model with a spatial cutoff witl¥,, defined with the help of ultraviolet cutoffs.

10 Coupling of systems and Pauli-Fierz model

1. Our treatment of the coupling between several fields and ettternal systems is based on the follow-
ing elementary fact (which follows by induction from [Gl1h&orem 2.3]). Byidealwe mean a closed
bilateral ideal.

Proposition 10.1 Assume tha¥, . . ., ¢, are nuclearC*-algebras equipped with idealg, , ..., 7,.

LetPy : €1 — €, = 61/ 71 be the canonical surjection and I, = 14, ® --- @ P, @ --- ® 1, be
the tensor product of this morphism with the identity mapghsat

PLiCi® R R Q€D @,
is a morphism. Then the kernel of the morphism
73569’,52173,;:%1®---®<gn4@2'21%@...@@@...@%
isequalto /1 ® - ® _Zy.

Corollary 10.2 Assume that eact, is realized on a Hilbert space?;, and #;, = K (7). Let H be
@Vself-adjoint operator ow?’ = J ® --- ® ¢, affiliated 04" = 61 @ --- ® ¢, and let us denote
H, =P (H), which is an observable affiliated 6, ® --- ® ¢, @ - - - ® 6,,. Then:

vesd H) = U, o(Hy). (10.1)

t By fax, on March 15, 2001s{c).

37



For this it suffices to note thdt' (7)) = K(J4) ® - - - @ K(5%,,).

For simplicity we taken = 2, we assume that we are in the framework of Corollary 10.2, taatthe
quotlent%k is realized on a Hilbert spacﬁ‘ﬁC ThenP = P; & P} gives an embedding of the quotient
algebraz’ = ¢ /K () as follows:

% C (%71 ® %) ® (%1 ® %Z) . (10.2)
The C*-algebra from right hand side is realized on the Hilbert gpac
H = (%@%)@(%@%). (10.3)

ThusifH is a self-adjoint operator o’ affiliated to%¢ then its imageP(H) = H1 ® H, = H, an

observable affiliated t&, is expected to be realized as a self-adjoint operato%ﬁmthls is always the
case if we accept not densely defined self-adjoint opefators

We shall explain now how to prove the Mourre estimate in sutthasons. We assume that the data
%k,Pk,%,Ak,%i,Ak satisfy condition (CA) page 32. Il = A; ® 1,4 + 1o ® Ay onZ then
gth = @t @ d142 hence e''A¢ €4 = ¥ and the map — e *AT€' = € is norm continuous for
all'T € . Letus set

A =A®1lm+1z®A, A3=A01z+1neA4, A=A7e A (10.4)

Then A is a self-adjoint operator o’ such thatP (e~ *A7d'4) = e=*AP(T)&*4 for all T e €. Soif

H is of classC(A) thenH is of classC(A ), eachH, is of classC(A?). Let us sepy, = p~ﬂ Then,
by using Proposition 8.3 and [ABG, Proposition 8.3.5] weairdnt

Py = pd = min(p1, p2). (10.5)
Thus we are reduced to finding estimates from below for thetfansp; which can be done by using its
relation with the corresponding functigiy as explained in the first part of Section 8. For this we need
to know more about the operatofs, and we shall consider this question below only in the muchemor
elementary case of the Pauli-Fierz Hamiltonians. Couglimigh V-body systems as in [BFS, BFSS, Sk]
should be covered by the preceding formalism (we did notkctiee details).

2. An often studied situation is that of a field coupled with a Broanfined system. Confinement means
that the Hamiltonian of the small system has purely discspeetrum, hence we take @5-algebra of
energy observables of the small system the algebra of canopacators. Since taking tensor products
with a nuclear algebra preserves short exact sequencegweestightly more than in the general case.

Proposition 10.3 Let ¥ be aC*-algebra of operators on a Hilbert spac#’ such thatK (s#¢) C &
and let us denote’ = ¢ /K (). Let.Z be a second Hilbert space arfd a self-adjoint operator on
A © £ affiliated to¢ ® K(). LetH = P(H)whereP = P®ld: ¢ @ K(¥) — ¢ @ K(Z) is
the canonical morphism. Thensd H) = o(H).

We apply this to a bosonic or fermionic field coupled with a fooed system. The next result is an
immediate consequence of Theorems 5.4 and 6.2 and of thes$itiop 10.3.

Theorem 10.4 Let’H be a Hilbert space an@ C B(H) a non-degenerate abeliai*-algebra such that
0" NK(H) = {0}. Let.Z be a second Hilbert space an#’ = I'(H) ® .. Then there is a unique
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morphismP : Z(0) @ K(£) — O® Z(0)® K(£) suchthatP[(FT'(A))® L] = A® (FT'(A))® L
forall F € #(H), A € Owith ||[4|| < 1,andL € K(¥). One haskerP = K (). If His a
self-adjoint operator o? affiliated t0.# (0) @ K () thenoesd H) = o(P(H)).

Remark 10.5 We shall adopt, in the framework of Theorem 10.4, exactlystirae definition o§tandard
QFH as in Definition 7.7, we just replace the algeb#4O) with .# (0, .%). Then clearlyTheorem 7.8
remains true without any chang&he conjugate operators which are well adapted to the ptegeation
are of the formA ® 1. whereA is as in assumption (OA) page 32. We keep the notatidor them and
note thafTheorem 8.6 and Corollary 8.9 remain valid without any chang

Our purpose now is to show that the Hamiltonians of the masBauli-Fierz models are covered by
Theorem 10.4. We shall consider the abstract version ofrtfudel introduced in [DeG1] and further
studied in [Ge2, DJ, GGM2, BD]. We treat only the case of a bdsgld, the fermionic case is easier
(just replace/ by A and note that many assertions become obvious). The foltpisia standard fact.

Lemma 10.6 For eachp, g € N there is a unique linear continuous m&p , : H"? @ HV? — HV P+

such thatS, ;(u ® v) = uv for all u € HY? andv € HY?. One hag|S, 4| = (”;q)m.

We consider the framework of Theorem 10.4 (bosonic case}akel# (0,.7) = F(0) ® K(Z) as
algebra of energy observable of our system. We recall [Delet]for each operatar € B(.¥, H ® ¥)

the creation operatai*(u) acting in .57 is defined as the closure of the algebraic direct sum of the
operators

ai(u) H" @ L — HY @ 2 defined bya’ (u) = (Sp1 ® 1) o (Iyva ®u).  (10.6)

The difference in coefficients with respect to [GGM2, (3.i%)tlue to our choice of scalar product in the
Fock space. Since no ambiguity may occur we shall ided{ifys N ® 1. Then clearly we have:

la*(w)(N + 1)) = ||ull iz, mo2) (10.7)

Leta(u) be the adjoint of the operataf (u) and letp(u) = a(u)+a*(u). The domains of these operators
contain4,, the algebraic direct sum of the spa@es” ® ., and it is easy to see thafu) is essentially
self-adjoint on this domain; we use the same notation foclisure. It is clear that the commutation
relations (2.11) remain valid. Below and later on we shadniify I'(A) = I'(4) ® 1 exceptin the
situations when the clarity of the text requires more piiecis

Lemma 10.7 Ifu € K(Z, H® %) andA € O,||A| < 1, thena™ (u)T'(A) € .Z(0,.Z) and

Pla™ (u)(A)] = A@ [a™) (u)T(A)] onH @ . (10.8)

Proof: From (10.7) we get
la™ (A < la™ (w)(N + 1) TN + 1)VEL(A)]| < Cllull gz mow)

hence the map +— a™) (u)I'(A) is norm continuous oB(.Z, H ® .£). Thus it suffices to prove the
assertions of the lemma far of the formu = f ® K with f € H and K a compact operator off’.
More preciselyu € B(.Z,H ® .£) is the defined byu(e) = f ® K(e). Thenitis easy to check that
a®(u) = a®(f) ® K hences™ (u)I'(4) = [ (f)['(A)] ® K € .F(0) ® K(Z). |
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Lemma 10.8 For eachu € B(.%¢, H ® .£) the following relations are satisfied.
(i) LetS,T € B(.Z) and A € B(H) with ||A|| < 1. Then

(C(A) ® S)a*(u)(Irp) @ T) = a* (A @ S)uT)(T'(4) ® 1o). (10.9)

(ii) Leth, L be self-adjoint operators oK and.Z respectively such thdt > m > 0 andL > 0 and let
Hy=dI'(h) ® 1 + 1p() ® L. Thenfor allf € 7, and all numbers: > 0 we have:

[(flo(w) )] < Clu,r){f|(Ho +7)f) (10.10)
whereC(u,r) = ||(h"*/2 ® 1.¢)u(L + r)~/2||? and the right hand side is allowed to bex.

The proof of (i) is a mechanical application of the definispnote that both sides of (10.9) are bounded
operators. The second assertion is a particular case of [5®kbposition 4.1], but see also [DJ, Propo-
sition 4.1] and [BD, Theorem 2.1].

The second part of the Lemma 10.8 allows us to defiie) as a continuous sesquilinear form on
D(H)'?) for an arbitrary continuous linear map, : .4, — Hi ® .Z. Here.; = D(L'/?) and
H1 = D(h'/?) are equipped with the graph topologiés; is the space adjoint t&(;, and we embed as
usualH; C H C Hi. ThenB(Z, H® £) C B(Z, Hi ® ) densely in the strong operator topology
and if B(R) is the closed ball of radiuB in B(.%, H} ® .£) thenBy(R) = B(R)N B(Z, H® L) is
strongly denséin B(R).

Let, for exampleZ be the symmetric algebra ovef; algebraically tensorized witl¥;. This is a core
for Hé/Q consisting of linear combinations of decomposable vectBrs f € 2 and consider the map
u — (f|p(u)f) defined for the moment only oB(.Z, H ® .Z). Itis clear from the definition (10.6)
that this map is continuous for the strong operator topologyced byB(.Z1, H; ® .£). Thus, by the
preceding considerations, (10.10) remains validfer B(.Z;, H; ® %) with the same constait(u, ).

One can definé(u) in a second way (which below gives the saffig The graph norm ofi{; defined

by h'/2 is such that the embeddirfg; C H is contractive. Then we get injective contractive linear
mapsH; — H — H; hence contractive dense embeddifigd{;) C I'(H) C I'(H}). On the other
hand, we have a natural identificati®f?,)* = T'(H;). If v : 4 — H ® £ then (10.6) clearly
gives a continuous mag, (u) : HV" ® £ — (H%)V("+t1) @ £ hence we obtain as usual a linear map
a*(u) : Tin(H) ® A — Tin(H]) ® £. Then we defing(u) as a quadratic form ofin(H1) ® £
(which is a core foH) by taking(f|¢(u) f) = 2R(f|a*(u) f).

We summarize below our assumptions concerning massivé Paw models:

H and.Z are Hilbert spaceg;(H) is the symmetric Fock space? =T'(H) ® .Z;
O C B(H) is a non-degenerate abeliati-algebra such tha®” N K (H) = {0};
h > m > 0is a self-adjoint operator oK strictly affiliated toO;

(PF) L > 0 is a self-adjoint operator o with purely discrete spectrum

v € B(D(L'?), D(h*/?)* © £) is such thatlim,_.., C(v,r) < 1;

(h+L)~*v(L+1)"%2 and (h+ L)~'/?v(L + 1)~ are compact operatorsdf > 1/2.

T The theory of Pauli-Fierz Hamiltonians for such “form fawtohas first been developed in [BD], but we shall not followith
method. However, the reader might prefer the direct argusnemd the more detailed presentation from [BD].
¥ Indeed, it suffices to approxima@with [(1 +ech)™! ® 1. |T(1 + L)~ !
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Here and later we use the abbreviationr L =h ® 1 + 11y ® L.

Theorem 10.9 Assume that conditions (PF) are fulfilled. Théfy = dI'(h) ® 1o + Ippy) @ L is
a positive self-adjoint operator o’ strictly affiliated to.# (0, %) and ¢(v) is a symmetric quadratic
form onD(H}/?) such thatt(v) < aHo+ b for somed < a < 1,b > 0. The form sun = Hy+ ¢(v)
is a self-adjoint operator oo strictly affiliated to.7 (O, %) and H is a standard QFH withh as one
particle kinetic energy (see Remark 10.5). In particwdas{ H) = o(h) + o(H). Finally, assume thatl
is as in condition (A) page 32 and let us identify 1 = A. If H is of classC!(A) andh is of class
Cl(a) with p& > 0, then the conclusions of Theorem 8.6 are valid.

Proof: We assume, without loss of generality, tiiat 1. We have /0 = I'(e"*"\we ™t ¢ .#(0, %)

for all t > 0 and strict affiliation follows by noting thdte=**T @ K — T ® K|| — 0if ¢t — 0 for all

T € #(0)andK € K(.%), see the proof of Lemma 7.5. The assertion concerning thetemde off

as self-adjoint operator is clear by the preceding disons@ee also [BD]). We shall now prove the strict
affiliation of H to .7 (0, ¢) and we do this by checking the conditions of Theorem 7.3, mpogeisely

we shall prove that(Ho)p(v)H; */? € F(0,2) if 6 € Co(R). We shall prove by two different
methods thatefoa*(v) Hy /2 € Z(0, %) andH,, '/*a* (v)e~Ho € Z(0,.%), which clearly suffices.
We first show thatLHO‘1 belongs to the multiplier algebra of (0,.Z), whereL = 1) ® L. It
suffices to prove thatLH, *)(S @ T) € .Z(0) @ K (%) for dense sets of operatafsandT in .7 (O)
and K (.#) respectively. Note that the linear span of the operafors L~'K with K compact on?
is dense inK (¥) because it contains the rank one operators of the fgiry| with f in the range of
L~', which is dense inZ. Since(LH;")(S ® T) = Hy *(S ® K) for suchT, it suffices to prove that
e (S® K) € Z(0) ® K(£), because then this will remain valid if &° is replaced by any(H,)
with 0 € Cy(R). Bute o(S ® K) = (I'(e™")S) ® (e ' K) clearly belongs to7 (0) ® K (.£).

Now by using (10.9) we get:
e oa’(w)Hy ? = (L") ®e )a (v)(Irpy © L) - (LH )Y
_ a*(efhvaLfl/Z)F(efh) X (LH()_1)1/2
whereLH,; ! is interpreted as above. Since’e “vL~1/2 is compact we can use Lemma 10.7 and then

it suffices to note thatL H, *)'/? is also a multiplier for the algebr& (O, .7).

Next we consider the case HI‘O_l/Qa* (v)e~Ho. In order to simplify the writing we shall sometimes iden-
tify 1,, = 1,,® 1. and similarly forl™. SinceHy1 > (n-+ 1)m1}- we easily see thal, */*a* (v)e~Ho

is the norm limit as: — oo of Ho_l/Qa*(v)e*HOln. But1,, is a finite sum of projections®, so it suffices
to show thafl” = H;, '/?a*(v)e~Ho 1™ belongs toZ (O, .#) for eachn. From (10.6) we get:

T = Hy'*(Sn1®1lg)1"®v) [[(eM"] 0e ™
= Hy'*(Sp1®1g) (1" @ M) (1" @ [M~wL ™)) (F(e*h) ® L"e*L).
whereM = h'/? + L'/? is an operator acting ift @ .# such thath + L)'/? < M < v/2(h + L)Y/2.
Thus, by hypothesigyy = M~'vL~“ is a compact operata? — H ® .Z. In the rest of this proof
we realizeHV* as the subspace #1®* consisting of symmetric tensors (the norm being modified by a

factor/%!, but this does not matter here), and then we haye’? (S,1 ® 1.o) = (Sp.1 ® 1) Hy '/?
in a natural sense and we have:

T = (Su1 ® L) Hy /2(1" @ M)(1" @ vo) (F(e*h) ® Lae*L).
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The operatorH, */?(1" ® M), acting inH®"+) @ #, is bounded andy, is norm limit of linear
combinations of operators of the form ® K whereuy € H andK, € K(.¥) (see the proof of Lemma
10.7). Thus it suffices to prove thate .Z (O, %) under the assumption, = uo ® Ky and clearly we
may also assume, € D(h'/?) andK = L'/?K, compact. If we set, = h'/?u, then we obtain:
T = HyY*Su1®1g)(1" @ [u® Ko+ uo ® K])(r(e—h) ® L(’e‘L)
= H(;l/?a*(u ®@Ko+u®@K) T(e") @1y lppy @ (L ).

From Lemma 10.7, and sinde ;) @ (L*e~*) is multiplier for.# (0, %), we getl’ € .7 (0, %).

To prove thatd is a SQFH it remains to show th®(H) = h ® 1 + 15 ® H (then the formula for the
essential spectrum is a consequence, cf. Remark 10.5)\ e real and let us sek = (Hy + \)~'/2
(recall that in this proof we assuni&, > 1) andU = A¢(v)A. By Theorem 7.3 and by what we proved
above U belongs to the multiplier algebr# of % (0O, ). Indeed, this argument gives direcflye .#

if A = 0 and for the general case it suffices to wiite= (H,/>A)(H, /*¢(v)Hy */?)(H3/*A) and to

note thatf)/>A € .# becausel, is strictly affiliated t0.7(0, ). We have 0 = I'(e™") @ e~

hence from Theorem 10.4 we get(e=0) = e~ © e~*o hence

N ~ _ ~1/2
Hy=P(Hp) =h® 1l + 1y ® Ho, AEP(A):(H0+)‘) :

We shall prove below that N N o
U=PU)=A1x® o)A = Ap(v)A (10.11)

whereP is canonically extended to# as mentioned before Lemma 7.1. Assuming that this has been
done, choosea such that|U|| < 1 (this is possible becausep(v) < aHy + b with a < 1). Then clearly
we have a horm convergent expansion

(H+ N "P=A1+U)""A =3 (-1)"AU"A
which implies
P((H+N) =X (=1)"PA)PU)PA) = S (~1)"AU"A = (H + )~

whereH = Hy + ¢(v) and this finishes the proof of the relatiGt{H) = h ® 1, + 13, ® H. Note that
+¢(v) < aHy + b with the samer, b as above.

It remains to prove (10.11). Sineé (v) = (¢(v) + i¢(iv))/2 we haveAa*(v)A € .# and its adjoint is
Aa(v)A. Thus (10.11) is a consequence of

P(Aa*(v)A) = A1y ® a* (v))A, (10.12)
which is what we show now. From (10.9) we have
—Ho —1/2\ _ o« (a—h—L, 7-1/2 —h
e "°a*(v) (1F(H) ® L ) =a (e vl ) Te"®le).
The operatolr ;) ® L~'/? belongs ta# and itis easy to check that

P (1F(H) (9 L_1/2) =1y ® 1F(H) & L_1/2.
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From now on we simplify notations and no more write the temsoduct symbols when they are obvious
from the context. Then:

e 0P (Aa*()A) L7V = P (&0 Aa" ()AL /?) = P (Aa* (6" FoL=1/2) T(e)A)

Due to (10.8) this is equal to:

P(A)P (a* (e*h*LvL*W) P(e’h)) PA)=A-e " [a* (e*h*LvL*W) F(e*h)} A
which in turn is equal to
Aelg [e*HOa*(v)Lfl/ﬂ A = Ae (15, ® a*(v))L~V/2A.
Thus we have proved:
e Hop (Aa*(v)A) L=Y2 = Re o (15, @ a* (v)) L™ H/2A = e ok (1 @ a* (v))AL~Y/2.

Since the operatorséo andL—1/2 are injective, we get (10.12).

The last assertion of the theorem concerns the Mourre etstiamal is clear by the Remark 10.5. H

Remark 10.10 We note that the description of the essential spectrum givareorem 10.9 is an im-
provement of thenassivecase of [BD, Theorem 2.3], where it is assumed that/?v(L 4 1)~/2 is
compact, but not of [GGM2, Proposition 4.9], which does majuire(L + 1)~ to be compact.

11 Systems with a particle number cutoff

In this section we fix an abelian non-degenei@tealgebra® of operators on the infinite dimensional
spaceH with O” N K (H) = {0} and letl" be the symmetric or antisymmetric Fock space functor. We are
interested in models where the number of particles is at mogsgiven positive integer. Then the Hilbert
space of the states of the systenlijg§H) and the algebra of energy observables must©&-algebra of
operators on this space. Lét, (H) = K(I',(H)) be the algebra of compact operatorsIgn).

We define for each integer > 0 a C*-subalgebra of# (O) by the following rule:
Fn(0) = 1, F(0)1,,. (11.1)

Let.Z,(O) = 0forn < 0. Thus%, (0O) lives in the subspade, (H) (i.e. it is non-degenerate an, (H)
and its restriction to the orthogonal subspace is zero) and:

Z0(0) = Cw, Z,(0) C Z,41(0) and.Z (0) = U,.Z,(0). (11.2)
Note that7,, (H) = 1,,.# (H)1,, and this is an ideal of7,,(O).
In particular, the algebray,,(H) = %, (Cly) = 1,9 (H)1,, is aC*-subalgebra o7 (H) which lives
in the subspacE,,(H), hasl,, as unit element, and contairig, () as an ideal. Moreover:
(H) = Cw, Tp(H) C Fpi1(H), o (H)=U,(H). (11.3)

These algebras can be defined independently of the matenmlthe preceding sections. First, it is not
difficult to prove that«,(H) is the unitalC*-algebra generated by the operatofu) = 1,¢(u)l,.

If I',,(O) is theC*-algebra generated by the operatbr(S) = ®r<,S"* with S € O, then we have
In(0) = [ (H) - Tn(0)]. With P,, = P|.%,(0O), we get from Theorems 5.4 and 6.2:
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Proposition 11.1 There is a unique morphisf, : .#,(0) — O ® %,,_1(0) such that
Po (60 (w)FT,(9)) =S @ (dn—1(u) T_1(5)) (11.4)
forallu e H,k > 0,5 € O. We haveer(P,) = #,(H), hence we get canonical embedding:

The case of the algebras, (H) is particularly nice (we use Remark 4.5):

Corollary 11.2 There is a unique morphis®,, : <, (H) — <,—1(H) such thatP,[¢n (u)] = ¢n_1(u)
for all w € H. This morphism is unital, surjective, it hag, (H) as kernel, and is explicitly given by:
Pn(T) = s-lim a(e)Ta*(e) forall T € o, (H). (11.6)

e—0
Thus we get a sequence of canonical surjective morphisms
0 — o(H) — A (H) - — Tn1(H) — & (H) — - (11.7)
which induce canonical isomorphism$,(H) /7, (H) = o7, —1(H).

Remark 11.3 Theorem 1.2 from [Geo] looks more general then Propositiba, but | found a gap in my
proof of that theorem, cf. the comment on page 162 in [GI2ffabt, | know how to deduce Proposition
11.1 from [GI2, Proposition 3.32] (which is elementary armgdyeto prove), but the argument is much
more involved than the methods used in the present papetltfarassumptions thal is abelian and that
there are no finite rank operators in the Von Neumann algedmamted by) cannot be avoided).

We finish with some applications in spectral theory. An adage in having a particle number cutoff
is that the strict positivity of the one particle mass is norenoecessary, in fact the one particle kinetic
energyh can be an arbitrary bounded from below self-adjoint operaffiiated to®. On the other hand,
the notion ofstandardQFH as introduced in Definition 7.7 does not make sense nostedd, in the
present context it is natural to consider the following sla§elementaryQFH with a particle number
cutoff: these are the operators of the folfy = dI',,(h) + V,, whereh is a self-adjoint bounded from
below operator affiliated t@® andV,, € <, (H) is bounded and symmetric. It is clear that, as in the
preceding sections, one may consider much more generedatiens, but this is of no interest here.

Such aV;, being fixed, we defin&), = P"~*(V,,) € #.(H) for k < n. Note that ifV;, is a polynomial
in the operatorg ¢,,(u) }wer thenVj, is the same polynomial in which eaeh (u) has been replaced by
or(u). Orif v, = 1,,V1, forsomeV € #(H), thenV,, = 1,,V1;.

Let us setH, = dI'x(h) + V4, this is a self-adjoint operator dr (H). Of course,Hy = V; = cw for
some complex number The techniques used before easily give tHatis affiliated to.%; (O) and:

'P(Hk) =h® 1Fk—1(H) + 1y ® Hp—1 forl <k <n. (118)
In particular, we get an HVZ type description of the essesfi@ctrum of the operatdt,, :
Uess(Hn) = U(h) + U(Hn—l)- (119)

Note how much simpler is this formula than in thébody situation.
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The treatment of the Mourre estimate is entirely similattatfrom Section 8, so we give only the result.
We consider only conjugate operators of the fotmn = dI',,(a) wherea is as in condition (OA) page 32.
Exactly as in the proof of Theorem 8.6 we now get:

Ta, (Hn) = U=y [78 (h) + op(Ho—r)] (11.10)

where we make the conventiop(H,) = {0}. Indeed, if we abbreviate(h) = 7,(h) andr(H,) =
74, (H,), then (11.10) follows by induction from the analogue in thesent context of (8.10), namely:

7(Hyp) = 7(h) + [op(Hp—1) UT(Hp—1)] = [7(h) + op(Hp—1)] U [7(h) + T(H,-1)] . (11.11)
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