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ABSTRACT. In the present paper we consider a discrete dynamical sys-
tem generated by a bounded affine mapping on a Banach space or on a
Montel locally convex space. We show that if this dynamical system has
a bounded trajectory then it has a periodic one. Different applications
are considered.

1. INTRODUCTION

A connection between bounded and periodic solutions to ordinary differ-
ential equations was first noted by Massera in [7].

In the linear setup corresponding Massera’s theorem is as follows. Con-
sider ODE of the form:

&= A()z +b(t), xeR™ (1.1)

the matrix A(t) and the vector b(t) are continuous on Ry and w—periodic
int, w > 0. Then if system (1.1) has a bounded solution on R, then it
has an w—periodic one.

Since that time this result has been widely extended in the different di-
rections. In [1] Massera type theorems have been obtained for functional
differential equations with delay, for equations with advance and delay in
[2, 3, 4], for abstract functional differential equations in [17]. The case of
almost periodic solutions have been studied in [8, 9, 10, 11].

In [19] an ordinary differential system that possesses a bounded solution
with some stability property was considered and a problem of existence for
kw-periodic (k > 0, integer) solution to this system has been investigated.

In [5] such a sort results for functional-differential equations with infinite
delay and for some class of integral equations are shown.

In [6] different aspects of the Massera type results for non linear func-
tional differential equations are considered and examples of existence and
non existence are given.

Semigroup approach for an equation on Banach space is contained in [13].
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By K(t,ty), t >ty >0 denote the Cauchy operator of system (1.1):

K(t,ty) = A(t)K(t,to), K(to,to) =1I.

Then as it is well known, any solution to (1.1) presents as follows:

x(t) = K(t,0)xo + /Ot K(t,7)b(T)dr, 9= xz(0),

and to find the initial value zg for an w—periodic solution one must solve
the equation:
xo = P(x9),
here "
P(y) = K(w,0)y +/ K(w,7)b(r)dr, yeR™
0

stands for the Poincaré mapping.

So, the Poincaré mapping of (1.1) is an affine operator. Our version of
the Massera theorem is concerned to the such type operators in reflexive
Banach spaces. Since the transfer from continuous dynamical system to the
discrete one is a very general construction, our result can be applied not only
to finite dimensional version of system (1.1) but to very different ordinary,
partial and functional differential inhomogeneous equations, provided the
operator K (t,ty) is continuous. Note that, in case of A independent on ¢
the operator K (t,tp) is usually described in terms of semi-groups.

In the present paper we show that in the linear setup Massera type the-
orems have an ergodic nature. They follow from a very simple ergodic
proposition on affine operators in the reflexive Banach space.

2. MAIN THEOREMS

Let (Ep, | - |lo) be a normed space and let (E, || - ||) be the strongly con-
jugated space to the space Ejy:

E = E}.

Introduce a bounded linear operator Qo : By — Epandlet Q = Q5 : £ — E.
For example on a role E¥ we can take any reflexive Banach space and
consider a bounded linear operator of this Banach space.
Define the following affine operator by the formula:

Pr=Qx+g, g€k, (2.1)

The operator P generates a discrete dynamical system with the phase space
E. We identify this system with operator (2.1).
The set
{P"T}nen (2.2)
is called a trajectory of dynamical system (2.1). The element Z is called the
initial point of this trajectory. Trajectory (2.2) is said to be bounded if

sup | P"Z|| < oo.
neN
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We say that a trajectory {z} is periodic if Pz = %.
Theorem 1. If dynamical system (2.1) has a bounded trajectory { P"Z},en:

sup [|[P"z]| < c < o0
neN

then it has a periodic trajectory &, ||z| < ec.

From the contraction mapping principle it follows that if |Q|p—g < 1
then system (2.1) has a unique periodic trajectory and this trajectory is
asymptotically stable.

Theorem 1 generalizes the Massera result even if the space E is finite
dimensional: in our considerations the operator P may not necessarily be a
bijection.

Consider a locally convex space version of theorem 1. Let W be a locally
convex space with a topology defined by a collection of seminorms {|| - ||s},
the parameter s belongs to a set .S. Suppose the space W to be sequentially
complete with respect to these seminorms. Moreover suppose that the space
W has the Montel property: any bounded and closed subset of W is a
compact set.

Recall that a set M C W is said to be bounded if there is a collection of
constants ¢;, s € S such that for any © € M one has

lz]ls < cs.

Let R : W — W be a bounded linear operator. Construct an affine
operator H as follows:

Hx=Rx+h, xzecW, (2.3)
here h is a fixed element of W.
Theorem 2. If dynamical system (2.3) has a bounded trajectory {H"Z}nen
then it has a periodic trajectory &, ||z|ls < cs.
3. APPLICATIONS

3.1. Transport Equation. Let M be an m—dimensional compact smooth
manifold without boundary, = (z!,...,2™) be local coordinates on M.
A vector field v(t,z) = (v!,...,v™)(t,x) and a scalar function f(t,z) are
smooth on R x M. Assume also them to be w— periodic in ¢.

Consider an equation

ur = Lyu + f(t,x). (3.1)
Here u is a scalar function, L, stands for the Lie derivative:
Lyu = vy,

We use Einstein’s summation convention.
We look for solutions to equation (3.1) from H*¥(M), k€ N.
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Let g(t,to,x) be the phase flow of the dynamical system with the vector
field v:
© o(t,t0,) = (b, 9(t,10,2)), gltosto, ) =
Then the Cauchy operator is defined as follows:
K(t, to)w = w(g(t,to,z)), we H(M).
The function K(¢,tg)wq satisfies a homogenous problem
wy = Lyw,  w(tg,x) = wp. (3.2)

The solution to (3.1) u(t,x), wu(te,x) = uo(x) € H*(M) is written explic-
itly:
t
U(t,:ﬂ) = K(ta tO)UO+ K(t7 S)f(sa') ds.
to
From this formula one can see that

u € C([t()vt/)? Hk(M)) m Cl((t07t/)7Hk71(M))7

here t’ is an arbitrary constant greater than ty. Correspondingly, the Poincaré
mapping is given by the formula:

Puw = K(w,0)w + /Ow K(w,8)f(s,-) ds, (3.3)

obviously the mapping P : H*(M) — H¥(M) is continuous. As a corollary
from Theorem 1 one has

Theorem 3. If system (3.1) has a bounded solution in H*(M) then it has
a an w—periodic solution in H*(M).

3.2. Differential Equation with Piecewise Constant Argument. As
above (E,| - ||) is a reflexive Banach space. Let u,v be nonnegative pa-
rameters and let A(u,v), B(u,v) be bounded linear operators of E, and let
f(u,v) € E be a function, all of them are w—periodic in both arguments
and continuous on

R% = {(u,v) € R? | u>0,v > 0}.
The number w is rational:

W=, p,qu

Consider the following dynamical system:

&= A, [t))x(t) + B, [x([t]) + f(4,[t]), z€kE (3-4)
here [-] is the largest integer function. Such type systems are appeared in
[15, 16, 21].

By means of the standard technique one shows that system (3.4) has
a unique piecewise differentiable solution z(t) € C([to,0), E), z(to) =
xo. Indeed, to obtain the local existence and uniqueness in C((t — e,t +
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€),E), t,e > 0 one must apply the contraction mapping principle to the
integral equation:

(t) = zo + /t A(s, [s])z(s) + B(s, [s])x([s]) + f (s, [s]) ds. (3.5)

As long as the solution to this equation is continuous it is piecewise differ-
entiable in (f —¢,t +¢).

The solution to (3.5) can be a priori estimated by means of Grénwall’s
Lemma, this gives the global existence.

Theorem 4. If system (3.4) has a bounded solution then it has a p—periodic
one.

This theorem generalizes the result from [18]: in that article £ = R™, A
equals to zero identically, B is a constant matrix and f depends only on the
second argument, so that system from [18] can be integrated explicitly.

By virtue of our notations concerned the existence and uniqueness in
system (3.4) one can construct the Cauchy operator K(¢,ty) : E — E such
that the function K (t,ty)zo is a solution to the homogeneous problem

&= A(t, [t)z(t) + B, [t)=([t]), 2(0) = 0.
and K (tg,t9) = idg. Then by Theorem 1, the Poincaré mapping

Py =K(p.0)y + /0 " K(p, ) f(s,s]) ds

has a fixed point, say g. Since the operators A(t, [t]), B(t,[t]) and the func-
tion f(t,[t]) are p—periodic and [t + p| = [t] + p, the point § is the initial
value for p—periodic solution to (3.4).

4. PROOF OF THE THEOREMS

We start from theorem 1. Consider the following sequence of affine oper-
ators

P, =

SRS

iPk:EHE.
k=1

Let
By ={we E||wl]| <r}
be a closed ball of the space E.
The following inclusion holds: {P,Z},en C Be.
The ball B, is x—weakly sequentially compact [20]. Thus, the sequence
{P,z} contains a subsequence {P,,&} such that

P,% — & *—weakly as n' — oo.
We shall prove that & is the desired fixed point of the mapping P.
Simple calculation yields:

1
PP,z — Pyx = — (P”“x _ Px).
n
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By this formula and since the sequence {P"Z} is bounded we obtain
PP, — Py — 0 strongly as n' — oo.

For any f € Ey this gives:

(PP, f) — (Pyx, f) — 0. (4.1)
On the other hand the following formulas hold true:

Gathering formulas (4.1), (4.2), (4.3) we see that

(P, f) = (&, ).

Theorem 1 is proved.

The proof of theorem 2 repeats the arguments above, but it is simpler.
Due to the Montel property, all the bounded sequences from the proof of
theorem 1 have strongly convergent subsequences. In other respects the
proof of theorem 2 is the same as the proof of theorem 1.
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