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Abstract: Before the thermodynamic limit, macroscopic averages need not com-
mute for a quantum system. As a consequence, aspects of macroscopic fluctuations
or of constrained equilibrium require a careful analysis, when dealing with several
observables. We propose an implementation of ideas that go back to John von
Neumann’s writing about the macroscopic measurement. We apply our scheme to
the relation between macroscopic autonomy and an H−theorem, and to the prob-
lem of equivalence of ensembles. In particular, we prove a quantum version of the
asymptotic equipartition theorem. The main point of departure is an expression of
a law of large numbers for a sequence of states that start to concentrate, as the size
of the system gets larger, on the macroscopic values for the different macroscopic
observables. Deviations from that law are governed by the entropy.

KEY WORDS: quantum macrostate, autonomous equations, H−theorem, equiv-
alence of ensembles

1. Introduction

“It is a fundamental fact with macroscopic measurements that ev-
erything which is measurable at all, is also simultaneously measurable,
i.e. that all questions which can be answered separately can also be
answered simultaneously.” That statement by von Neumann enters his
introduction to the macroscopic measurement [12]. He then continues
to discuss in more detail how that view could possibly be reconciled
with the non-simultaneous measurability of quantum mechanical quan-
tities. The mainly qualitative suggestion by von Neumann is to con-
sider, for a set of noncommuting operators A,B, ... a corresponding set
of mutually commuting operators A′, B′, . . . which are each, in a sense,
good approximations, A′ ≈ A,B′ ≈ B, . . .. The whole question is: in
exactly what sense? Especially in statistical mechanics, one is inter-
ested in fluctuations of macroscopic quantities or in the restriction of
certain ensembles by further macroscopic constraints which only make
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sense for finite systems. In these cases, general constructions of a com-
mon subspace of observables become very relevant. Interestingly, at
the end of his discussion on the macroscopic measurement, [12], von
Neumann turns to the quantum H−theorem and to the relation be-
tween entropy and macroscopic measurement. He refers to the then
recent work of Pauli, [13, 14], who by using “disorder assumptions” or
what we could call today, a classical Markov approximation, obtained
a general argument for the H−theorem.

In the present paper, we are dealing exactly with the problems above
and as discussed in Chapter V.4 of [12]. While it is indeed true that
averages of the form A = (a1 + . . . + aN)/N,B = (b1 + . . . + bN)/N ,
for which all commutators [ai, bj] = 0 for i 6= j, have their commutator
[A,B] = O(1/N) going to zero (in the appropriate norm, corresponding
to [ai, bi] = O(1)) as N ↑ +∞, it is not true in general that

lim
N→+∞

1

N
log Tr[eNA eNB]

?
= lim

N→+∞

1

N
log Tr[eNA+NB]

These generating functions are obviously important in fluctuation the-
ory, such as in the problem of large deviations for quantum systems,
[11]. It is still very much an open question to discuss the joint large
deviations of quantum observables, or even to extend the Laplace-
Varadhan formula to applications in quantum spin systems. The situ-
ation is better for questions about normal fluctuations and the central
limit theorem, for which the so-called fluctuation algebra provides a
nice framework, see e.g. [6]. There the pioneering work of André Ver-
beure will continue to inspire coming generations who are challenged
by the features of non-commutativity in quantum mechanics.
These issues are also important for the question of convergence to equi-
librium. For example, one would like to specify or to condition on
various macroscopic values when starting off the system. Under these
constrained equilibria not only the initial energy but also e.g. the initial
magnetization or particle density etc. are known, and simultaneously
installed. As with the large deviation question above, we enter here
again in the question of equivalence of ensembles but we are touching
also a variety of problems that deal with nonequilibrium aspects. The
very definition of configurational entropy as related to the size of the
macroscopic subspace, has to be rethought when the macroscopic vari-
ables get their representation as noncommuting operators. One could
again argue that all these problems vanish in the macroscopic limit, but
the question (indeed) arises before the limit, for very large but finite
N where one can still speak about finite dimensional subspaces or use
arguments like the Liouville-von Neumann theorem.

In the following, there are three sections. In Section 2 we write
about quantum macrostates and about how to define the macroscopic
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entropy associated to values of several noncommuting observables. As
in the classical case, there is the Gibbs equilibrium entropy. The sta-
tistical interpretation, going back to Boltzmann for classical physics, is
however not immediately clear in a quantum context. We will define
various quantum H−functions. Secondly, in Section 3, we turn to the
equivalence of ensembles. The main result there is to give a counting
interpretation to the thermodynamic equilibrium entropy. In that light
we discuss an aspect of an older result in [10]. Finally, in Section 4, we
study the relation between macroscopic autonomy and the second law,
as done before in [4] for classical dynamical systems. We prove that
if the macroscopic observables give rise to a first order autonomous
equation, then the H−function, defined on the macroscopic values, is
monotone. That is further illustrated using a quantum version of the
Kac ring model.

2. Quantum macrostates and entropy

Having in mind a macroscopically large closed quantum dynamical
system, we consider a sequence H = (H N)N↑+∞ of finite-dimensional
Hilbert spaces with the index N labeling different finitely extended
approximations, and playing the role of the volume or the particle
number, for instance. On each space H N we have the standard trace
TrN . Macrostates are usually identified with subspaces of the Hilbert
spaces or, equivalently, with the projections on these subspaces. For
any collection (XN

k )n
k=1 of mutually commuting self-adjoint operators

there is a projection-valued measure (QN) on Rn such that for any
function F ∈ C(Rn),

F (XN
1 , . . . , X

N
n ) =

∫
Rn

QN(dz)F (z)

A macrostate corresponding to the respective values x = (x1, x2, . . . , xn)
is then represented by the projection

QN,δ(x) =

∫
"k(xk−δ,xk+δ)

QN(dz)

for small enough δ > 0. Furthermore, the Boltzmann H−function,
in the classical case counting the cardinality of macrostates, is there
defined as

HN,δ(x) =
1

N
log TrN [QN,δ(x)]

with possible further limits N ↑ +∞, δ ↓ 0. However, a less triv-
ial problem that we want to address here, emerges if the observables
(XN

k ) chosen to describe the system on a macroscopic scale do not mu-
tually commute.

Consider a family of sequences of self-adjoint observables (XN
k )N↑+∞,k∈K

whereK is some index set, and let each sequence be uniformly bounded,
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supN ‖XN
k ‖ < +∞, k ∈ K. We call these observables macroscopic,

having in mind mainly averages of local observables but that will not
always be used explicitly in what follows; it will however serve to make
the assumptions plausible.

In what follows, we define concentrating states as sequences of states
for which the observables XN

k assume sharp values. Those concentrat-
ing states will be labeled by possible ‘outcomes’ of the observables XN

k ;
for these values we write x = (xk)k∈K where each xk ∈ R.

2.1. Microcanonical set-up.

2.1.1. Concentrating sequences. A sequence (PN)N↑+∞ of projections
is called concentrating at x whenever

lim
N↑+∞

trN(F (XN
k ) |PN) = F (xk) (2.1)

for all F ∈ C(R) and k ∈ K; we have used the notation

trN(· |PN) :=
TrN(PN · PN)

TrN(PN)
=

TrN(PN ·)
TrN(PN)

(2.2)

for the normalized trace state on PNH N . To indicate that a sequence
of projections is concentrating at x we use the shorthand PN mc→ x.

2.1.2. Noncommutative functions. The previous lines, in formula (2.1),
consider functions of a single observable. By properly defining the joint
functions of two or more operators that do not mutually commute, the
concentration property extends as follows.
Let IK denote the set of all finite sequences from K, and consider all
maps G : IK → C such that∑

m≥0

∑
(k1,...,km)∈IK

|G(k1, . . . , km)|
m∏

i=1

rki
<∞ (2.3)

for some fixed rk > supN ‖XN
k ‖, k ∈ K. Slightly abusing the notation,

we also write

G(XN) =
∑
m≥0

∑
(k1,...,km)∈IK

G(k1, . . . , km)XN
k1
. . . XN

km
(2.4)

defined as norm-convergent series. We write F to denote the algebra
of all these maps G, defining non-commutative “analytic” functions on
the multidisc with radii (rk), k ∈ K.

Proposition 2.1. Assume that PN mc→ x. Then, for all G ∈ F ,

lim
N↑+∞

trN [G(XN) |PN ] = G(x) (2.5)
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Remark 2.2. In particular, the limit expectations on the left-hand side
of (2.5) coincide for all classically equivalent non-commutative func-
tions. As example, for any complex parameters λk, k ∈ R with R a
finite subset of K and for PN mc→ x,

lim
N↑+∞

trN(e
P

k∈R λk(XN
k −xk) |PN) = lim

N↑+∞
trN(

∏
k∈R

eλk(XN
k −xk) |PN) = 1

no matter in what order the last product is actually performed.

Proof of Proposition 2.1. For any monomialG(XN) = XN
k1
. . . XN

km
,m ≥

1, we prove the statement of the proposition by induction, as follows.
Using the shorthands Y N := XN

k1
. . . XN

km−1
and y := xk1 . . . xkm−1 , the

induction hypothesis reads limN↑+∞ ρN(Y N |PN) = y and we get

|trN(Y NXN
km
− yxkm |PN)|

= |trN(Y N(XN
km
− xkm) |PN) + xkmtrN(Y N − y |PN)|

≤ ‖Y N‖{trN((XN
km
− xkm)2 |PN)}

1
2 + |xkm| |trN(Y N − y |PN)| → 0

since PN mc→ x and (Y N) are uniformly bounded. That readily extends
to all non-commutative polynomials by linearity, and finally to all uni-
form limits of the polynomials by a standard continuity argument. �

2.1.3. H−function. Only the concentrating sequences of projections
on the subspaces of the largest dimension become candidates for non-
commutative variants of macrostates associated with x = (xk)k∈K , and
that maximal dimension yields the (generalization of) Boltzmann’s
H−function. More precisely, to any macroscopic value x = (xk)k∈K

we assign

Hmc(x) := lim sup
P N mc→x

1

N
log TrN [PN ] (2.6)

where lim sup
P N mc→x

:= sup
P N mc→x

lim supN↑+∞ is the maximal limit point
over all sequences of projections concentrating at x. By construction,
Hmc(x) ∈ {−∞} ∪ [0,+∞] and we write Ω to denote the set of all
x ∈ RK for which Hmc(x) ≥ 0; these are all admissible macroscopic

configurations. Slightly abusing the notation, any sequence PN mc→ x,
x ∈ Ω such that lim supN

1
N

log TrN [PN ] = Hmc(x), will be called a
microcanonical macrostate at x.

2.1.4. Example. Take a spin system of N spin-1/2 particles for which
the magnetization in the α−direction, α = 1, 2, 3, is given by

XN
α =

1

N

N∑
i=1

σα
i (2.7)

in terms of (copies of) the Pauli matrices σα.
Let δN be a sequence of positive real numbers such that δN ↓ 0 as
N ↑ +∞. For ~m = (m1,m2,m3) ∈ [−1, 1]3, let ~e ‖ ~m be a unit vector
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for which ~m = m~e with m ≥ 0. Consider Y N(~m) :=
∑3

α=1mαX
N
α and

its spectral projection QN(~m) on [m− δN ,m+ δN ]. One easily checks
that if N1/2δN ↑ +∞, then (QN(~m))N is a microcanonical macrostate
at ~m, and

Hmc(~m) =

{
−1−m

2
log 1−m

2
− 1+m

2
log 1+m

2
for m ≤ 1

−∞ otherwise

2.2. Canonical set-up. The concept of macrostates as above and as-
sociated with projections on certain subspaces on which the selected
macroscopic observables take sharp values is physically natural and re-
stores the interpretation of “counting microstates”. Yet, sometimes it
is not very suitable for computations. Instead, at least when modeling
thermal equilibrium, one usually prefers canonical or grand-canonical
ensembles, and one relies on certain equivalence of all these ensembles.

2.2.1. Concentrating states. For building the ensembles of quantum
statistical mechanics, one does not immediately encounter the prob-
lem of noncommutativity. One requires a certain value for a number
of macroscopic observables and one constructs the density matrix that
maximizes the von Neumann entropy.

We write ωN 1→ x for a sequence of states (ωN) on H N whenever
limN↑+∞ ωN(XN

k ) = xk (convergence in mean).
That construction and that of the concentrating sequences of projec-
tions of subsection 2.1.1 still has other variants. We say that a sequence
of states (ωN) is concentrating at x and we write ωN → x, when

lim
N↑+∞

ωN(G(XN)) = G(x) (2.8)

for all G ∈ F . The considerations of Proposition 2.1 apply also here
and one can equivalently replace the set of all noncommutative analytic
functions with functions of a single variable.

2.2.2. Gibbs-von Neumann entropy. The counting entropy of Boltz-
mann extends to general states as the von Neumann entropy which
is the quantum variant of the Gibbs formula, both being related to
the relative entropy defined with respect to a trace reference state.
Analogously to (2.6), we define

Hcan(x) = lim sup
ωN→x

1

N
H(ωN) (2.9)

where H(ωN) ≥ 0 is, upon identifying the density matrix σN for which
ωN(·) = TrN(σN ·),

H(ωN) = −Tr[σN log σN ] (2.10)
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Secondly, we consider

Hcan
1 (x) = lim sup

ωN 1→x

1

N
H(ωN) (2.11)

Obviously, Hcan
1 is the analogue of the canonical entropy in thermo-

statics and the easiest to compute, see also under subsection 2.2.3. To

emphasize that, we call any sequence of states (ωN), ωN 1→ x such that
lim supN

1
N
H(ωN) = Hcan

1 (x) a canonical macrostate at x.
Another generalization of theH−function is obtained when replacing

the trace state (corresponding to the counting) with a more general
reference state ρ = (ρN)N . In that case we consider the H−function
as derived from the relative entropy, and differing from the convention
used above by the sign and an additive constant:

Hcan
1 (x | ρ) = lim inf

ωN 1→x

1

N
H(ωN | ρN) (2.12)

Here, defining σN and σN
0 as the density matrices such that ωN(·) =

Tr[σN ·] and ρN(·) = Tr[σN
0 ·],

H(ωN | ρN) = Tr[σN(log σN − log σN
0 )] (2.13)

Remark that this last generalization enables to cross the border be-
tween closed and open thermodynamic systems. Here, the state (ρN)
can be chosen as a nontrivial stationary state for an open system, and
the above defined H−function Hcan

1 (x | ρ) may loose natural count-
ing and thermodynamic interpretations. Nevertheless, its monotonic-
ity properties under dynamics satisfying suitable conditions justify this
generalization, see Section 4.

2.2.3. Canonical macrostates. The advantage of the canonical formu-
lation of the variational problem for the H−function as in (2.11) is
that it can often be solved in a very explicit way. A class of general
and well-known examples of canonical macrostates have the following
Gibbsian form.
If λ = (λ1, . . . , λn) are such that the sequence of states (ωN

λ ), ωN
λ (·) =

TrN(σN
λ ·) defined by

σN
λ =

1

ZN
λ

eN
P

k λkXN
k ZN

λ = TrN(eN
P

k λkXN
k ) (2.14)

satisfies limN↑+∞ ωN
λ (XN

k ) = xk, k = 1, . . . , n, then (ωN
λ ) is a canonical

macrostate at x, and

Hcan
1 (x) = lim sup

N

1

N
logZN

λ −
∑

k

λkxk (2.15)
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3. Equivalence of ensembles

A basic intuition of statistical mechanics is that adding those many
new concentrating states in the variational problem, as done in the pre-
vious section 2.2, does not actually change the value of theH−function.
In the same manner of speaking, one would like to understand the def-
initions (2.9) and (2.11) in counting-terms. In what sense do these
entropies represent a dimension (the size) of a (microscopic) subspace?

3.1. Equivalence. Trivially, Hmc ≤ Hcan ≤ Hcan
1 , and Hcan(x) =

Hcan
1 (x) iff some canonical macrostate ωN 1→ x is actually concentrating

at x, ωN → x. We give general conditions under which the full equality
can be proven.
We have again a sequence of observables XN

k with spectral measure
given by the projections QN

k (dz), k ∈ K.

Theorem 3.1. Assume that for a sequence of density matrices σN > 0,
the corresponding (ωN)N is a canonical macrostate at x and that the
following two conditions are verified:

i) (Exponential concentration property.)
For every δ > 0 and k ∈ K there are Ck(δ) > 0 and Nk(δ) so
that ∫ xk+δ

xk−δ

ωN(QN
k (dz)) ≥ 1− e−Ck(δ)N (3.1)

for all N > Nk(δ).
ii) (Asymptotic equipartition property.)

For all δ > 0,

lim
N↑+∞

1

N
log

∫ δ

−δ

ωN(Q̃N(dz)) = 0 (3.2)

where Q̃N denotes the projection operator-valued measure of the
operator 1

N
(log σN − ωN(log σN)).

Then, Hmc(x) = Hcan(x) = Hcan
1 (x) ≥ 0.

Remarks on the conditions of Theorem 3.1. Whether one can
prove the assumptions of Theorem 3.1, depends heavily on the partic-
ular model.

The exponential concentration property (3.1) is far from trivial even
for quantum lattice spin systems as it is deeply related with the problem
of quantum large deviations. For the moment the best results in that
area, presenting conditions under which (3.1) can be proven, are in
[11, 9]. In particular, we know that (3.1) is verified for translation-
invariant and local quantum lattice spin systems in the following cases:

(1) For one-dimensional systems where the observables XN
k are lat-

tice averages over finite range observables, [9];
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(2) In a high-temperature regime β ≤ β0 for lattice averages, when-
ever each empirical average XN

k commutes with its translates
(e.g. when it is a lattice average of single-site observables), [11].

The asymptotic equipartition property (3.2) is easier. The terminol-
ogy, originally in information theory, comes from its immediate conse-
quence (3.5) below, where PN projects on a “high probability” region:
as in the classical case, the Gibbs-von Neumann entropy measures in
some sense the size of the space of “sufficiently probable” microstates.
A recent argument, similar to our approach, can be found in [1].
For (3.2) it is enough to prove that the state ωN is concentrating for
the observable

AN =
1

N
log σN (3.3)

Explicitly, one actually needs that for all F ∈ C(R),

lim
N↑+∞

[
ωN(F (AN))− F (ωN(AN))

]
= 0 (3.4)

As Hmc ≤ Hcan ≤ Hcan
1 , we only need to establish that there is a

concentrating sequence of projections for which its H−function equals
the Gibbs-von Neumann entropy. Hence, the proof of Theorem 3.1
follows from the following lemma:

Lemma 3.2. If a sequence of states (ωN) satisfies conditions i) and
ii) of Theorem 3.1, then there exists a sequence of projections (PN)
exponentially concentrating at x and satisfying

lim
N↑+∞

1

N
(log TrN(PN)−H(ωN)) = 0 (3.5)

Proof. There exists a sequence δN ↓ 0 such that when substituted
for δ, (3.2) is still satisfied. Take such a sequence and define PN =∫ δN

−δN
dQ̃N(z). By construction,

eN(hN−δN )PN ≤ (σN)−1PN ≤ eN(hN+δN )PN (3.6)

for any N = 1, 2, . . ., with the shorthand hN = 1
N
H(ωN). That yields

the inequalities

TrN(PN) = ωN((σN)−1PN) ≤ eN(hN+δN )ωN(PN) (3.7)

and

TrN(PN) ≥ eN(hN−δN )ωN(PN) (3.8)

Using that limN↑+∞
1
N

logωN(PN) = 0 proves (3.5).
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To see that (PN) is exponentially concentrating at x, observe that
for all Y N ≥ 0,

ωN(Y N) = TrN((σN)
1
2Y N(σN)

1
2 )

≥ TrN(PN(σN)
1
2Y N(σN)

1
2PN)

= TrN((Y N)
1
2PNσN(Y N)

1
2 )

≥ eN(hN−δN )TrN(PN) trN(Y N |PN)

≥ e−2NδNωN(PN) trN(Y N |PN)

(3.9)

where we used inequalities (3.6)-(3.8). By the exponential concentra-
tion property of (ωN), inequality (3.1), for all k ∈ K, ε > 0, and
N > Nk(ε)∫

R\(xk−ε,xk+ε)

trN(dQN
k (z) |PN) ≤ e−(Ck(ε)−2δN )N(ωN(PN))−1 (3.10)

Choose N ′
k(ε) such that δN ≤ Ck(ε)

8
and 1

N
logωN(PN) ≥ −Ck(ε)

4
for all

N > N ′
k(ε). Then (3.10)≤ exp[−Ck(ε)N

2
] for allN > max{Nk(ε), N

′
k(ε)}.

�

3.2. Equilibrium ensembles. One of the sharpest results on the
equivalence of ensembles is due to R. Lima, [10], in the framework of
lattice spin models. We are now able to give a simplified presentation
of Lima’s arguments.

We consider a quantum spin system on the d−dimensional regular
lattice with an interaction Φ which is assumed to be bounded, local
and translation invariant.

Let ΛN be cubes with side N = 1, 2, . . . centered at the origin. The
label N will play a somewhat different role in the present section; we
will write |ΛN | for the cardinality of ΛN (and thus replaces the N of the
previous sections). We write H N for the associated finite-dimensional
Hilbert space. The Hamiltonian in the volume ΛN is denoted by HΦ

N

and we write ωN for the corresponding finite-volume Gibbs state. A
priori one can consider various boundary conditions but in the end that
will not matter as we will consider the uniqueness regime.

As a standard procedure, we consider the inductive limit of algebras

A =
∞⋃

N=1

B(H N) (3.11)

where the closure is in the norm topology and where we assume the
natural identification of H N as a subspace of H N ′

for N ≤ N ′.
Putting

{ω} := w∗− lim
N
ωN (3.12)
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we obtain Φ−equilibrium states on A. The notation w∗− lim stands
for the weak∗−limit. Note that the set of limits points is not empty
by w∗−compactness. These states can be defined through local ap-
proximants (with different boundary conditions), as here, or via the
KMS condition. We refer to [2] for further details. If the potential
is sufficiently regular (the here assumed locality is sufficient and not
necessary), then these notions are equivalent. We assume that Φ is in
the uniqueness regime, i.e., that there exists a unique and translation
invariant KMS state associated to Φ, or, (3.12) is unique. Define the
energy density

e(Φ) = lim
N↑+∞

1

|ΛN |
ω(HΦ

N) (3.13)

Consider the spectral projections QN,δ of HΦ
N on the interval [e(Φ)−

δ, e(Φ) + δ]. Identify the cube ΛN with a d−dimensional torus and let
T N be the set of all lattice translations. Define the normalized density
matrix

σ̄N,δ =
1

|T N |TrN [QN,δ]

∑
π∈T N

π(QN,δ) (3.14)

and let ωN,δ
mc be the associated state on HN .

We are now ready to reformulate the result in [10].

Theorem 3.3. If Φ is in the uniqueness regime then there is a sequence
δN ↓ 0 such that

ωmc := w∗− lim
N↑+∞

ωN,δN
mc = ω (3.15)

Proof. For a translation-invariant state ρ on A, denote by4 TrNρ the
restriction of ρ to ΛN . The limits

eΦ(ρ) = lim
N↑+∞

1

|ΛN |
ρ(HΦ

N) (3.16)

and

s(ρ) = lim
N↑+∞

1

|ΛN |
H(TrNρ) (3.17)

exist and define the entropy density and the Φ−energy density.
We will use the variational principle for translation-invariant states

to prove that ωmc is a KMS state with respect to the dynamics gen-
erated by Φ. (Alternatively, ωmc satisfies the Gibbs condition with
respect to Φ.) Since we are in the uniqueness regime, that will prove
the theorem.

To apply the variational principle, we will prove

s(ωmc) = s(ω) eΦ(ωmc) = eΦ(ω) = e(Φ) (3.18)

4This is a slight abuse of notation since A is not constructed as the algebra of
operators over some Hilbert space.
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Remark first that

eΦ(ω) = lim
N↑+∞

1

|ΛN |
ωN(HΦ

N) (3.19)

s(ω) = lim
N↑+∞

1

|ΛN |
H(ωN) (3.20)

The first equality (3.19) is obvious, the second (3.20) follows e.g. by
the variational principle for finite volume Gibbs states.

Secondly, we will need that the sequence of states ωN satisfies the
asymptotic equipartition property (3.2). That is a consequence (see
e.g. [7]) from the fact that the KMS state ω is ergodic, which follows
because we are in the uniqueness regime.

Thirdly, let δN ↓ 0 be chosen such that (3.2) holds with δN replacing
δ. Then there exists a subsequence of integers kN , N = 1, 2, . . ., such
that

|H(TrNωmc)−H(ϕN)| ≤ |ΛN | δkN
(3.21)

for the restriction ϕN := TrNω
kN ,δkN
mc . (That is possible since H N

is finite dimensional.) Moreover, for certain finite subsets of lattice
translations TN ⊂ T N ,⋃

π∈T N

π(ΛN) = ΛkN
(3.22)

For all π 6= π′ ∈ TN : π(ΛN) ∩ π′(ΛN) = ∅ (3.23)

Collecting the above, we can write

s(ωmc) = lim
N

1

|ΛN |
H(ϕN) ≥ lim

N

1

|ΛkN
|
H(ϕN) = s(ω) (3.24)

The first equality follows by (3.21), the first inequality follows by (3.22),
subadditivity and translation invariance of ϕN on the torus. The last
equality is a consequence of (3.2) (via (3.5)) and (3.20).

By the variational principle, (3.24) implies s(ωmc) = s(ω). That
finishes the proof since the other equality in (3.18) is trivial. �

Remark 3.4. Within the framework of translation-invariant spin lattice
models, Theorem 3.3 is stronger than Theorem 3.1 in that it does
not need the exponential concentration property, but weaker in that
one does not obtain the equivalence for a true microcanonical state
(= a sequence of projections), but only for its average over lattice
translations. To show that the limiting microcanonical state exists and
is translation invariant even when defined without the lattice averaging,
goes beyond the scope of the reviewed argument.
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4. H−theorem from macroscopic autonomy

When speaking about an H−theorem or about the monotonicity of
entropy one often refers, and even more so for a quantum set-up, to
the fact that the relative entropy verifies the contraction inequality

H(ωNτN | ρNτN) ≤ H(ωN | ρN) (4.1)

for all states ωN , ρN on H N and for all completely positive maps τN

on B(H N). That is true classically, quantum mechanically and for
all small or large N . When the reference state ρN is invariant under
τN , (4.1) yields the contractivity of the relative entropy with respect to
ρN . However tempting, such inequalities should not be confused with
second law or with H−theorems; note in particular that H(ωN) defined
in (2.10) is constant whenever τN is an automorphism: H(ωNτN) =
H(ωN).

In contrast, anH−theorem refers to the (usually strict) monotonicity
of a quantity on the macroscopic trajectories as obtained from a micro-
scopically defined dynamics. Such a quantity is often directly related
to the fluctuations in a large system and its extremal value corresponds
to the equilibrium or, more generally, to a stationary state.

In the previous Section we have obtained how to represent a macro-
scopic state and constructed a candidate H−function. Imagine now
a time-evolution for the macroscopic values, always referring to the
same set of (possibly noncommuting macroscopic) observables XN

k . To
prove an H−theorem, we need basically two assumptions: macroscopic
autonomy and the semigroup property, or that there is a first order au-
tonomous equation for the macroscopic values. A classical version of
this study and more details can be found in [4].

4.1. Microcanonical set-up. Assume a family of automorphisms τN
t,s

is given as acting on the observables from B(H N) and satisfying

τN
t,s = τN

t,u τ
N
u,s t ≥ u ≥ s (4.2)

It follows that the trace TrN is invariant for τN
t,s.

Recall that Ω ⊂ RK is the set of all admissible macroscopic configu-
rations, Hmc(x) ≥ 0. On this space we want to study the emergent
macroscopic dynamics.

Autonomy condition
There are maps (φt,s)t≥s≥0 on Ω and there is a microcanonical macrostate
(PN), PN = PN(x) for each x ∈ Ω, such that for all G ∈ F and
t ≥ s ≥ 0,

lim
N↑+∞

trN(τN
t,sG(XN) |PN) = G(φt,sx) (4.3)

Semigroup property
The maps are required to satisfy the semigroup condition,

φt,u φu,s = φt,s (4.4)
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for all t ≥ u ≥ s ≥ 0.

Theorem 4.1. Assume that the autonomy condition (4.3) and the
semigroup condition (4.4) are both satisfied. Then, for every x ∈ Ω,
Hmc(xt) is nondecreasing in t ≥ 0 with xt := φt,0x.

Proof. Given x ∈ Ω, fix a microcanonical macrostate PN mc→ x and
t ≥ s ≥ 0. Using that (τN

t,s)
−1 is an automorphism and TrN((τN

t,s)
−1·) =

TrN(·), the identity

trN(τN
t,sG(XN) |PN) =

TrN(G(XN)(τN
t,s)

−1PN)

TrN((τN
t,s)

−1PN)
= trN(G(XN) | (τN

t,s)
−1PN)

yields (τN
t,s)

−1PN mc→ φt,sx due to autonomy condition (4.3). Hence,

Hmc(φt,sx) ≥ lim sup
N↑+∞

1

N
log TrN((τN

t,s)
−1PN) = Hmc(x)

In particular, one has that xs = φs,0x ∈ Ω. The statement then follows
by the semigroup property (4.3):

Hmc(xt) = Hmc(φt,0x) = Hmc(φt,sxs) ≥ Hmc(xs)

�

It is important to realize that a macroscopic dynamics, even au-
tonomous in the sense of (4.3), need not satisfy the semigroup prop-
erty (4.1). In that case one actually does not expect the H−function
to be monotone; see [3] and below for an example. As obvious from
the proof, without that semigroup property of (φt,s), (4.3) only implies
H(xt) ≥ H(x), t ≥ 0. Or, in a bit more generality, it implies that for
all s ≥ 0 and x ∈ Ω the macrotrajectory (xt)t≥s, xt = φt,s(x) satisfies
H(xt) ≥ H(xs) for all t ≥ s.

Remark that while the set of projections is invariant under the au-
tomorphisms (τN

t,s), this is not true any longer for more general micro-
scopic dynamics defined as completely positive maps, and describing
possibly an open dynamical system interacting with its environment.
In the latter case the proof of Theorem 4.1 does not go through and
one has to allow for macrostates described via more general states, as
in Section 2.2. The revision of the argument for the H−theorem within
the canonical set-up is done in the next section.

4.2. Canonical set-up. We have completely positive maps (τN
t,s)t≥s≥0

on B(H N) satisfying

τN
t,s = τN

t,u τ
N
u,s t ≥ u ≥ s ≥ 0 (4.5)

and leaving invariant the state ρN ; they represent the microscopic dy-
namics. The macroscopic dynamics is again given by maps φt,s.
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As a variant of autonomy condition (4.3), we assume that the maps
φt,s are reproduced along the time-evolution in the mean. Namely, see
definition (2.12), for every x ∈ Ω1(ρ) := {x; Hcan

1 (x | ρ) < ∞} we ask

that a canonical macrostate ωN 1→ x exists such that, for all t ≥ s ≥ 0,

φt,sx = lim
N↑+∞

ωN(τN
t,sX

N) (4.6)

At the same time, we still assume the semigroup condition (4.4).

Theorem 4.2. Under conditions (4.6) and (4.4), the function Hcan
1 (φt,0x | ρ)

is nonincreasing in t ≥ 0 for all x ∈ Ω1(ρ).

Proof. If ωN 1→ x is a canonical macrostate at x then, by the mono-
tonicity of the relative entropy,

Hcan
1 (x | ρ) = lim inf

N↑+∞

1

N
H(ωN | ρN) ≥ lim inf

N↑+∞

1

N
H(ωNτN

t,s | ρN)

On the other hand, by (4.6), the sequence (ωNτN
t,s) is concentrating in

the mean at φt,s(x), yielding

Hcan
1 (x | ρ) ≥ Hcan

1 (φt,sx | ρ)
Using (4.4), the proof is now finished as in Theorem 4.1. �

4.3. Example: the quantum Kac model. A popular toy model to
illustrate and to discuss essential features of relaxation to equilibrium
has been introduced by Mark Kac, [8]. Here we review an extension
that can be called a quantum Kac model, we described it extensively in
[3], to learn only later that essentially the same model was considered by
Max Dresden and Frank Feiock in [5]. However, there is an interesting
difference in interpretation to which we return at the end of the section.

At each site of a ring with N sites there is a quantum bit ψi ∈ C2

and a classical binary variable ξi = ±1 (which we also consider to
be embedded in C2). The microstates are thus represented as vectors
(ψ; ξ) = (ψ1, . . . , ψN ; ξ1, . . . , ξN), being elements of the Hilbert space
H N = C2N⊗C2N . The time is discrete and at each step two operations
are performed: a right shift, denoted below by SN and a local scattering
or update V N . The unitary dynamics is given as

UN = SNV N UN
t = (UN)t for t ∈ N (4.7)

with the shift

SN(ψ; ξ) = (ψN , ψ1, . . . , ψN−1; ξ) (4.8)

and the scattering

V N(ψ; ξ) = (
1− ξ1

2
V1ψ1 +

1 + ξ1
2

ψ1, . . . ,
1− ξN

2
VNψN +

1 + ξN
2

ψN ; ξ)

(4.9)
extended to an operator on H N by linearity. Here, V is a unitary 2×2
matrix and Vi its copy at site i = 1, . . . , N .
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We consider the family of macroscopic observables

XN
0 =

1

N

N∑
i=1

ξi, XN
α =

1

N

N∑
i=1

σα
i α = 1, 2, 3

where σ1
i , σ

2
i , σ

3
i are the Pauli matrices acting at site i and embedded

to operators on H N . We fix macroscopic values x = (µ,m1,m2,m3) ∈
[−1,+1]4 and we construct a microcanonical macrostate (PN) in x in
the following way.
Let δN be a positive sequence in R such that δN ↓ 0 and N1/2δN ↑ +∞
as N ↑ +∞. For µ ∈ [−1, 1], let QN

0 (µ) be the spectral projection asso-
ciated to XN

0 , on the interval [µ− δN , µ+ δN ]. For ~m = (m1,m2,m3) ∈
[−1, 1]3, we already constructed a microcanonical macrostate QN(~m)
in Section 2.1.4. Obviously, QN

0 (µ) and QN(~m) commute and the prod-
uct PN = QN

0 (µ)QN(~m) is a projection. It is easy to check that PN is
a microcanonical macrostate at x = (µ, ~m).
The construction of the canonical macrostate is standard along the
lines of Section 2.2.3. The corresponding H−functions are manifestly
equal:

Hmc(x) = Hcan
1 (x) = η

(1 +m

2

)
+ η

(1−m

2

)
+ η

(1 + µ

2

)
+ η

(1− µ

2

)
(4.10)

with η(x) = −x log x for x ∈ (0, 1] and η(0) = 0, otherwise η(x) = −∞.
We now come to the conditions of Theorem 4.1. The construction

of the macroscopic dynamics and the proof of its autonomy was essen-
tially done in [3]. The macroscopic equation ξt = ξ is obvious and the
equation for ~mt can be written, associating ~mt with the reduced 2× 2
density matrix νt = (1 + ~mt · ~σ)/2, in the form νt = Λt

µν, t = 0, 1, . . .,
where Λt

µ = (Λµ)t and

Λµ(ν) =
1− µ

2
V νV ∗ +

1 + µ

2
ν (4.11)

The semigroup condition (4.4) is then also automatically checked.
In order to understand better the necessity of the semigroup property
for an H−theorem to be true, compare the above with another choice
of macroscopic variables. Assume we had started out with

XN
0 =

1

N

N∑
i=1

ξi, XN
1 =

1

N

N∑
i=1

σ1
i

as the only macroscopic variables, as was done in [5]. A microcanon-
ical macrostate can again be easily constructed by setting QN

0 (µ) the
spectral projection associated to XN

0 on the interval [µ − δN , µ + δN ]
and QN

1 (~m) the spectral projection for XN
1 on [µ − δN , µ + δN ], and

finally PN = QN
0 (µ)QN

1 (~m) as before. The sequence (PN) defines a
microcanonical macrostate at (µ, ~m) and the autonomy condition (4.3)
is satisfied. However, the macroscopic evolution does not satisfy the
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semigroup property (4.4) and, in agreement with that, the correspond-
ing H−functions are not monotonous in time (see [3]).

Acknowledgment
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