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Abstract. Following an old and simple idea of Takagi we propose a formula
for computing the norm of a compact complex symmetric operator. This ob-
servation is applied to two concrete problems related to quantum mechanical
systems. First, we give sharp estimates on the exponential decay of the re-
solvent and the single-particle density matrix for Schrödinger operators with
spectral gaps. Second, we provide new ways of evaluating the resolvent norm
for Schrödinger operators appearing in the complex scaling theory of reso-
nances.
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1. Introduction

Although complex symmetric matrices (complex matrices coinciding with their
transposes) are as ubiquitous as Hermitian matrices (those coinciding with their
complex adjoint), the first class is less well-known than the second. Indeed, the
spectral decomposition of a Hermitian matrix remains one of the main tools of
modern mathematics. The canonical diagonal form of a complex symmetric matrix
was (re)discovered during the last century, for quite different aims, at least by
Takagi, Wellstein, Siegel, Schur, and Jacobson (see [11, 17]). In equivalent terms,
the difference between complex symmetric and Hermitian matrices corresponds
to the distinction between symmetric bilinear and sesquilinear forms (over the
complex field).
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It was Takagi [29] who first remarked that the antilinear eigenvalue problem
Tf = λf , where T is a complex symmetric matrix and f denotes complex conju-
gation, entry by entry, of the vector f , solves a fundamental interpolation problem
for bounded analytic functions in the disk. He remarked there that the largest such
positive skew-eigenvalue λ coincides with the operator norm of T . Later on, this
observation was extended to bounded linear operators with certain symmetries.
About half a century ago, Glazman [12, 13] laid the foundations of the theory
of unbounded complex symmetric operators. Since then, Glazman’s fundamental
ideas have been successfully tested on several classes of differential operators (see
[5, 19, 24]). Recently, two of the authors discovered an additional structure in the
polar decomposition of a complex symmetric operator [10]. For certain unbounded
operators with compact resolvent, the refined polar decomposition leads to a new
method for estimating the norm of their resolvent. In the present note, we ex-
ploit this idea in conjunction with the (complex) scaling method for Schrödinger
operators.

Dealing with non-selfadjoint operators is much more difficult than with self-
adjoint operators due to the lack of an equivalent spectral decomposition and fine
functional calculus. In particular, situations where the norms would have been
trivially estimated using the spectral theorem can become extremely difficult, of-
ten forcing us to make rough approximations. Although Quantum Mechanics is
built on the theory of selfadjoint operators, it is not rare when we have to deal
with non-selfadjoint operators. For instance, this is the case when appealing to the
complex scaling technique. This method became a standard tool in the theory of
Schrödinger operators and turned out to be the key to several problems such as:
the absence of singular continuous spectrum [1, 2], calculus of resonances and con-
vergence of time-dependent perturbation theory [27], and asymptotic behavior of
the eigenvectors [8]. As the examples in this paper will show, the complex scaling
technique naturally leads to complex symmetric operators.

Our first application deals with Schrödinger operators with a spectral gap.
Using complex scaling and recent results on complex symmetric operators, we
provide sharp exponential decay estimates on the resolvent and the single-particle
density matrix. Such estimates became increasingly important since it was real-
ized that the localization of the single-particle density matrix provides the key to
efficient numerical electronic structure algorithms for systems with large number
of particles [32]. For 1D periodic insulators, exact exponential decays can be de-
rived from Kohn’s analytic results [20]. In an attempt to generalize these results to
higher dimensions, des Cloizeaux [6, 7] developed a method which can be regarded
as the first application of the complex scaling idea. He proved the exponential
decay of the single-particle density matrix for a class of 3D insulators. Relatively
recently, we have seen a renewed interest in the subject and remarkable new exact
results in dimensions higher than one [3, 15, 18, 30]. These results, however, are
limited to periodic systems and some of them to the extreme tight-binding limit.
In the present note, we treat the general case of gapped Schrödinger operators,
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which find applications, in addition to the periodic insulators, to amorphous in-
sulators, molecular liquids, or large molecules. For recent results and the state of
the matters in this subject, one can consult the survey [16].

In our second application, we show that the technique of estimating the
norms of complex symmetric operators also extends to operators with non-compact
resolvent, such as the scaled Hamiltonians appearing in the problem of resonances.

2. Complex symmetric operators

The aim of this section is to recall a few definitions and facts about complex
symmetric operators. For full details and examples the reader can consult [9, 10].

2.1. Bounded complex symmetric operators

We consider a separable Hilbert space H which carries a conjugation operator C :
H −→ H (an antilinear operator satisfying the conditions C2 = I and 〈Cf,Cg〉 =
〈g, f〉 for all f, g ∈ H). For a fixed C, we define the transpose T t of a bounded
linear operator T to be

T t ≡ CT ∗C.

Definition 2.1. We say that T is C-symmetric if T = T t (equivalently, if CT =
T ∗C). More generally, we say that T is complex symmetric if there exists a C such
that T is C-symmetric.

Complex symmetry has a simple interpretation in terms of two forms on
H, the standard sesquilinear form 〈f, g〉 and the symmetric bilinear form [f, g] ≡
〈f, Cg〉 induced by the conjugation operator C. It is easy to show that T is C-
symmetric if and only if T is symmetric with respect to the corresponding bilinear
form: [Tf, g] = [f, Tg] for all f, g in H.

The following simple factorization theorem will be the main ingredient in the
proofs contained throughout this note.

Theorem 2.2. [10] If T : H −→ H is a bounded C-symmetric operator, then there
exists a conjugation operator J : H −→ H, which commutes with the spectral
measure of |T | = √

T ∗T , such that T = CJ |T |.
The proof of this and several related results can be found in [10]. The pre-

ceding theorem generalizes an early observation of Godič and Lucenko [14] which
asserts that every unitary operator U on a Hilbert space H can be expressed as
the product of two conjugation operators: U = CJ . This in turn generalizes the
simple fact that a planar rotation is the product of two reflections.

The theorem above asserts, among other things, the equivalence of the an-
tilinear eigenvalue problems Tf = λCf and |T |f = λJf . Here we may assume
that λ ≥ 0 since we may multiply either of the above equations by a suitable
unimodular constant.
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Given that the norm of a compact operator T is equal to the largest eigenvalue
of |T |, the norm of a compact C-symmetric operator T can be characterized in
terms of the antilinear eigenvalue problem Tf = λCf :

‖T‖ = sup{λ > 0 : (∃f)(f 6= 0, T f = λCf)}
The classical motivation for such antilinear eigenvalue problems lies in the consid-
eration of the corresponding variational problem:

‖T‖ = sup
‖f‖=1

Re〈Tf, Cf〉.

This problem is entirely analogous to Takagi’s inductive process for computing the
singular numbers of a complex Hankel matrix, [29].

Examples of bounded complex symmetric operators include all normal op-
erators (due to the symmetry contained in their diagonalization), Hankel opera-
tors, finite Toeplitz matrices, all Jordan model operators (the infinite dimensional
analogs of Jordan blocks), Volterra’s operator (integration with a free end), and
quite a few other classes. It is also worth mentioning that on a finite dimensional
Hilbert space, any linear operator is similar to a complex symmetric one. However,
the unilateral shift S is not complex symmetric, because the identity CS = S∗C
would imply the equality of Fredholm indices indS = indS∗, and the latter is not
true.

2.2. Unbounded complex symmetric operators

The study of unbounded complex symmetric operators was pioneered by Glaz-
man [12, 13], who established a complex symmetric parallel to von Neumann’s
theory of selfadjoint extensions of symmetric operators, although real unbounded
symmetric operators (that is C-symmetric operators with respect to the standard
complex conjugation symmetry) had appeared earlier in von Neumann’s work [31].
A renewed interest in Glazman’s theory was sparked by its application to certain
Dirac-type operators [5] and the realization that the closely related class of C-
unitary operators is relevant to the study of complex scaling transformations in
quantum mechanics [25]. Moreover, certain Sturm-Liouville operators with com-
plex potentials can also be treated similarly [19, 24]. Further examples are fur-
nished by Schrödinger operators −∆ + q with complex potentials q (where C is
simply complex conjugation) subject to appropriate boundary conditions [13, 24].
One can also consider Schrödinger operators −∆ + q with real potentials q, but
complex (non-selfadjoint) two point boundary conditions, in which case the con-
jugation C is slightly more involved.

Definition 2.3. We say that a densely defined, closed graph operator is C-symmetric
if T ⊂ CT ∗C and C-selfadjoint if T = CT ∗C.

From the classical theory of selfadjoint operators, one knows that a symmetric
operator has selfadjoint extensions if and only if the deficiency indices are the
same. In contrast, every C-symmetric unbounded operator admits a C-selfadjoint
extension T̃ . Indeed, it suffices to observe that the maximal antilinear symmetric
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operators S (in the sense that 〈Sf, g〉 = 〈Sg, f〉 for all f, g in D(S)) produce
C-selfadjoint operators CS.

There are several practical criteria for determining whether a C-symmetric
operator T is C-selfadjoint. For example, the explicit formula

D(CT ∗C) = D(T )⊕ {f ∈ D(T ∗CT ∗C) : T ∗CT ∗Cf + f = 0}
from [24] provides one method. A different criterion goes back to Zhikhar [33]: if a
C-symmetric operator T satisfies H = (T − zI)D(T ) for some complex number z,
then T is C-selfadjoint. The resolvent set of T consists of exactly those z fulfilling
the latter condition. We denote the inverse (to the right) of (T −zI) by (T −zI)−1

and note that it is a bounded linear operator defined on all of H.
Unfortunately, not all unbounded C-selfadjoint operators possess a spectral

resolution and a corresponding fine functional calculus. Nevertheless, if an un-
bounded C-selfadjoint operator has a compact resolvent, then a canonically asso-
ciated antilinear eigenvalue problem always has a complete set of mutually orthog-
onal eigenfunctions:

Theorem 2.4. [10] If T : D(T ) −→ H is an unbounded C-selfadjoint operator with
compact resolvent (T − zI)−1 for some complex number z, then there exists an
orthonormal basis (un)∞n=1 of H consisting of solutions of the antilinear eigenvalue
problem:

(T − zI)un = λnCun

where (λn)∞n=1 is an increasing sequence of positive numbers tending to ∞.

We remark that the preceding result is a direct consequence of the refined
polar decomposition T = CJ |T | for bounded C-symmetric operators described in
Theorem 2.1. Our main technical tool in estimating the norms of resolvents of
certain unbounded operators is contained in the following corollary:

Corollary 2.5. [10] If T is a densely-defined C-selfadjoint operator with compact
resolvent (T − zI)−1 for some complex number z, then

‖ (T − zI)−1 ‖ =
1

infn λn
(1)

where the λn are the positive solutions to the antilinear eigenvalue problem:

(T − zI)un = λnCun. (2)

Finally, we remark that the refined polar decomposition T = CJ |T | applies,
under certain circumstances, to unbounded C-selfadjoint operators:

Theorem 2.6. [10] If T : D(T ) −→ H is a densely defined C-selfadjoint operator
with zero in its resolvent, then T = CJ |T | where |T | is a positive selfadjoint oper-
ator (in the von Neumann sense) satisfying D(|T |) = D(T ) and J is a conjugation
operator on H which commutes with the spectral measure of |T |. Conversely, any
operator of the form described above is C-selfadjoint.

The preceding factorization can be used, for example, in the study of the
semigroup generated by the antilinear transformation CT (see [10] for details).
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3. Exponential Decay of the Resolvent for Gapped Systems

In this section, we consider the problem of finding sharp estimates on the exponen-
tial decay of the resolvent of a Schrödinger operator with a gap in the spectrum.
A short account on the subject has been already given in the Introduction.

Our approach relies on the complex scaling technique which reduces the prob-
lem to finding sharp norm estimates on the resolvent of a complex symmetric op-
erator. This last part is solved by employing the general theory presented in the
previous section.

We now formulate the problem and the main result. Let −∇2
D denote the

Laplace operator with zero (Dirichlet) boundary conditions over a finite domain
(with smooth boundary) Ω ⊂ Rd; let v(x) be a scalar potential, which is ∇2

D-
relatively bounded, with relative bound less than one. Throughout this section all
potentials v are presumed to be bounded from below. By measuring the energy
from the bottom of the potential, we can assume without loss of generality that
v(x) ≥ 0. Let

H : D(∇2
D) −→ L2(Ω); H = −∇2

D + v(x),

be the associated selfadjoint Hamiltonian with compact resolvent. The assumption
on H is that its energy spectrum σ consists of two parts, σ ⊂ [0, E−] ∪ [E+,∞),
which are separated by a gap G ≡ E+ − E− > 0. We refer to the spectrum
σ± above/below the gap as as the upper/lower band. The corresponding spectral
projectors are denoted by P±.

Let E ∈ (E−, E+) and GE = (H − E)−1 be the resolvent. We are interested
in the behavior of the kernel GE(x,y) for large separations |x − y|. Instead of
looking directly at the pointwise behavior, we take the average

ḠE(x1,x2) ≡ 1
ω2

ε

∫

|x−x1|≤ε

dx
∫

|y−x2|≤ε

dy GE(x,y),

where ωε is the volume of a sphere of radius ε in Rd. The main result of this section
is stated below.

Theorem 3.1. For q smaller than a critical value qc(E), there exists a constant
Cq,E, independent of Ω, such that:

|ḠE(x1,x2)| ≤ Cq,Ee−q|x1−x2|. (3)

Cq,E is given by:

Cq,E =
ω−1

ε e2qε

min |E± − E − q2|
1

1− q/F (q, E)
(4)

with

F (q, E) =

√
(E+ − E − q2)(E − E− + q2)

4E−
. (5)

The critical value qc(E) is the positive solution of the equation q = F (q, E).
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Proof. The complex scaling formalism reduces the problem to norm estimates on
the resolvent of a scaled Schrödinger operator. It is at this point where the results
about C-symmetric operators come in handy.

If χx denotes the characteristic function of the ε ball centered in x, then one
can equivalently write

ḠE(x1,x2) = ω−2
ε 〈χx1 , (H − E)−1χx2〉.

Given a vector q ∈ Rd (q ≡ |q|) of arbitrary orientation and magnitude, let Uq

denote the following bounded and invertible map

Uq : L2(Ω) → L2(Ω), [Uqf ](x) = eqxf(x),

which leaves the domain of H unchanged. Let Hq ≡ UqHU−1
q be the family of

scaled Hamiltonians. Explicitly, they are given by

Hq : D(∇2
D) → L2(Ω), Hq = H + 2q∇− q2. (6)

We notice that for q 6= 0, these are non-selfadjoint and not even complex symmetric
operators (with respect to any natural conjugation). The identity

Uq(H − E)−1U−1
q = (Hq − E)−1

holds true for all q ∈ Rd (this happens only for finite Ω). We denote

γ(q, E) = sup
|q|=q

‖(Hq − E)−1‖. (7)

As the following lines show, the entire problem can be reduced to estimating
γ(q, E). Indeed, if ϕ1(x) ≡ e−q(x−x1)χx1(x) and ϕ2(x) ≡ eq(x−x2)χx2(x), then

|ḠE(x1,x2)| = ω−2
ε |〈ϕ1, (Hq − E)−1ϕ2〉|e−q(x1−x2)

≤ ω−1
ε e2qεγ(q, E)e−q(x1−x2).

Choosing q parallel to x1 − x2, we infer at this step that

|ḠE(x1,x2)| ≤ ω−1
ε e2qεγ(q, E)e−q|x1−x2|.

Next we estimate γ(q, E) using the results on C-symmetric operators pre-
sented in the previous section. As we already mentioned, Hq is not complex sym-
metric. However, note that the operators Hq and H−q are dual: H∗

q = H−q and
that Hq commutes with complex conjugation C: CHq = HqC. We define the fol-
lowing block-matrix operator H and conjugation C on L2(Ω)⊕ L2(Ω):

H =
(

Hq 0
0 H−q

)
, C =

(
0 C
C 0

)
.

It is a simple task to check that H is C-selfadjoint: H∗ = CHC. Moreover, given
that Hq and H−q are adjoints,

‖(H− E)−1‖ = ‖(Hq − E)−1‖ = ‖(H−q − E)−1‖. (8)

According to the previous section, the antilinear eigenvalue problem (with λn ≥ 0)

(H− E)φn = λnCφn (9)
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generates an orthonormal basis in L2(Ω)⊕ L2(Ω) and

‖(H− E)−1‖ =
1

minn λn
. (10)

If we write φn = fn ⊕ gn, the antilinear eigenvalue problem Eq. (9) is equivalent
to {

(Hq − E)fn = λnḡn

(H−q − E)gn = λnf̄n.
(11)

With q small, such that E + q2 lies in the spectral gap, the polar decomposition

H − E − q2 = S|H − E − q2|,
holds, where S = P+−P−. We take the scalar product of the first equation in Eq.
(11) against the vector Sfn. Keeping only the real part of the result and solving
for λn, we find

λn =
|〈fn, |H − E − q2|fn〉 − 2Re〈Sfn,q∇fn〉|

|Re〈Sfn, ḡn〉| . (12)

After elementary manipulations, the second term in the numerator can be rewrit-
ten as

Re〈Sfn,q∇fn〉 = 2Re〈fn, P+(q∇)P−fn〉.
Moreover, denoting

Bq ≡ P+|H − E − q2|−1/2(q∇)|H − E − q2|−1/2P−,

one obtains

|〈fn, P+(q∇)P−fn〉| ≤ 1
2‖Bq‖〈fn, |H − E − q2|fn〉.

Eq. (12) implies

λn ≥ min{ |E± − E − q2| }(1− 2‖Bq‖) ‖fn‖2
‖fn‖‖gn‖ .

Similarly, by taking the scalar product of the second equation of Eq. (11) against
Sgn, one obtains:

λn ≥ min{ |E± − E − q2| }(1− 2‖Bq‖) ‖gn‖2
‖fn‖‖gn‖ .

The sum of the last two equations yields

λn ≥ min{ |E± − E − q2| }(1− 2‖Bq‖). (13)

It remains to evaluate ‖Bq‖. Since the potential is positive and we work with
zero boundary conditions, the following inequality between quadratic forms

q2(−∇2 + v + a) ≥ (q∇)2, ∀ a ≥ 0,

holds true. Consequently

‖(q∇)|H + a|−1/2‖ ≤ q, ∀ a > 0.
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The norm of ‖Bq‖ can be calculated as ‖Bq‖ = sup
η±

|〈η+, Bqη−〉|, where the supre-

mum is taken over all unit vectors η± ∈ P±H. Denoting

ψ− ≡ |(H + a)(H − E − q2)−1|1/2η−, ψ+ ≡ |(H − E − q2)|−1/2η+,

one has

‖ψ−‖ ≤
√

E− + a

|E− − E − q2| , ‖ψ+‖ ≤
√

1
E+ − E − q2

and

‖Bq‖ = sup
η±

|〈ψ+, (q∇)|H + a|−1/2ψ−〉|

≤ q

√
E− + a

(E+ − E − q2)(E − E− + q2)
. (14)

Finally one can pass to the limit a → 0. Eq. (10), together with Eqs. (13) and (14)
provide the desired estimate of γ(q, E). ¤

Corollary 3.2. Consider an insulator with the lower band completely filled. Then
the single-particle density matrix (i.e. the projector onto the occupied states P−)
decays exponentially, with a rate q̄ satisfying

q̄ ≥ G

4
√

E−
. (15)

Proof. Again, we look at the average

P̄−(x1,x2) = ω−2
ε 〈χx1 , P−χx2〉,

which has the following representation:

P̄−(x1,x2) =
i

2π

∫

Γ

ḠE(x1,x2) dE,

where Γ is a contour in the complex energy plane, surrounding the lower band. The
estimates given in the preceding Theorem trivially extend to the case of complex
energies:

|ḠE+iζ(x1,x2)| ≤ Cq,Ee−q|x1−x2|, ∀ q < qc(E).

Given that Γ can be deformed so as to intersect the real axis at any point in
(E−, E+), we need to find the energy where qc(E) is maximum. We have

qc =

√
(E+ − E − q2

c )(E − E− + q2
c )

4E−
≤ G

4
√

E−
(16)

with equality at energy

Ē =
E+ + E−

2
− G2

16E−
. (17)

¤
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Figure 1. The exponential decay constant of the single-particle
density matrix as a function of G/W for the Kronig-Penney insu-
lator. The continuous line represents an exact calculation and the
dashed line represents the estimate given in Eq. (15). The inset
shows the relative difference between the two.

We mention that (see also the remarks in [16]) for E close to the gap edges:
E → E±, a brute perturbation theory on (Hq−E)−1 leads to an exponential decay
constant of the resolvent proportional to |E±−E|. Using physical arguments (see
the theory of effective mass [21]), Kohn showed a long time ago that the decay
constant is actually proportional to |E± − E|1/2. Note that the constant qc(E)
of Theorem 3.1 has the correct behavior for E → E±. Moreover, at least for 1D
periodic systems, we know that the energy where the resolvent has the fastest
exponential decay moves toward the lower band as the gap increases. We remark
that Ē of Corollary 3.2 has this qualitative feature.

The lower bound on q̄ given in Eq. (15) can be calculated entirely from the
energy spectrum. What is the best estimate of the exponential decay constant that
one can get by only using the information contained in the energy spectrum? In
what follows, we illustrate by an example that Eq. (15) comes close to such an
optimal estimate. Namely, for 1D periodic systems, the exact exponential decay
of the single-particle density matrix can be derived from the analytic properties of
the Bloch functions [20]. In Fig. 1, we consider a comparison between our estimate
Eq. (15) and an exact result for a one dimensional insulator described by the
Kronig-Penney model [22]:

H = −∂2
x + v0

∑
n

δ(x− n), v0 > 0,
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with the first band completely filled. By varying the strength of the potential v0,
we sweep from a weak to strong insulating regime, which we quantified by the
ratio between the gap G and the width of the valence band W . One can see that
even in the extreme insulating regime (typically G/W < 5), Eq. (15) estimates
the exponential decay to within a 15% error. Notice that for G/W < 5, the error
is less than 5%.

4. Norm Estimates on Resolvents Near Resonances

In this section, we extend the results concerning norm estimates to not necessarily
compact resolvents of unbounded complex symmetric. At the same time, we apply
this technique to the problem of locating the resonances of a specific class of
Hamiltonians.

We first formulate the problem in precise terms. Let

H : D(∇2) −→ L2(Rd), H = −∇2 + v(x)

be a Hamiltonian with v(x) a dilation analytic potential in a finite strip | Im θ| < I0

and ∇2-relatively compact. We consider the usual dilation operation:

(U(θ)ψ)(x) = edθ/2ψ(eθx)

and define the analytic family (of type A) of operators:

Hθ ≡ U(θ)HU(θ)−1 = −e−2θ∇2 + v(eθx),

where θ runs in the finite strip | Im θ| < I0. As a function of θ, it is well known
that [1, 2, 26]:
(a) the discrete spectrum σd remains invariant,
(b) the essential spectrum σess rotates down by an angle −2 Im θ,
(c) as the continuum rotates, it uncovers additional discrete spectrum (the res-

onances).
In many practical situations, it is desired not only to locate the resonances

but also to know how they move under different perturbations [4, 23, 28]. Here
we are concerned with the second problem, where norm estimates on the resolvent
(z−Hθ)−1 for z near the resonances become especially important either for probing
the stability of the spectrum or for building perturbation series.

The Hamiltonians Hθ are C-selfadjoint relative to the complex conjugation
Cf = f̄ . The question that we want to answer is if one can provide an exact
norm estimate of (z −Hθ)−1 for z near a resonance, using the theory of complex
symmetric operators. The answer is contained in the following theorem:

Theorem 4.1. Let γw(x) represent the change in v(x) and H(γ) = H +γw denote
the perturbed Hamiltonian. We assume that both vθ(x) ≡ v(eθx) and wθ(x) ≡
w(eθx) are ∇2-relatively bounded for | Im θ| < I0, with bound less than one. For z
close to a resonance z0 of H and γ sufficiently small, the following are true:
(i) σess( |Hθ(γ)− z| ) = [d(z, θ),∞).
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(ii) σd( |Hθ(γ)− z| ) ∩ [0, d(z, θ)] 6= ∅.
(iii) λn ∈ σd(|Hθ(γ)− z|) if and only if there exists ψn ∈ D(∇2) such that:

(Hθ(γ)− z)ψn = λnCψn.

Moreover

‖(Hθ(γ)− z)−1‖ =
1

minn λn
.

Above, d(z, θ) = |z sin(2 Im θ−α)| denotes the distance from z to σess(Hθ) (where
z = |z|e−iα).

We require the following lemma:

Lemma 4.2. Let A and B be two closed operators such that D(A) ⊂ D(B) and
B|A|−1 is compact. Let A + B be the closed sum on D(A) and C = |A + B|2,
defined on |A|−2H. Then (C − ζ2)−1 is a meromorphic operator valued function
on ζ ∈ C\[σ(|A|) ∪ σ(−|A|)].
Proof of Lemma 4.2. This follows from the identity

(C − ζ2)−1 = (|A|+ ζ)−1[1 + N(ζ)]−1(|A| − ζ)−1 (18)

where
N(ζ) = (|A| − ζ)−1[A∗B + B∗A + B∗B](|A|+ ζ)−1

is an analytic family of compact operators on ζ ∈ C\[σ(|A|) ∪ σ(−|A|)]. ¤

Proof of (i). Taking A = −e−2θ∇2 − z and B = vθ(x) + γwθ(x), it follows that
the essential spectrum of |Hθ(γ)− z| is contained in σ(| − e−2θ∇2 − z|), which is
[d(z, θ),∞). ¤

Proof of (ii). We need to show that |Hθ(γ) − z| has spectrum below d(z, θ). Let
ψ0 be the eigenvector corresponding to the resonance, Hθψ0 = z0ψ0. Remark that

(Hθ(γ)− z)ψ0 = (z0 − z)[1 + γwθ(Hθ − z)−1]ψ0

and consequently

‖|Hθ(γ)− z|ψ0‖ ≤ |z0 − z|(1 + γ‖wθ(Hθ − z)−1‖ ).

With our assumptions, there exists 0 < a < 1 and b > 0 such that ‖wθψ‖ ≤
a‖∇2ψ‖ + b‖ψ‖ and similarly for vθ, for any ψ ∈ D(∇2). A relatively elementary
manipulation then yields:

‖wθ(Hθ − z)−1‖ ≤ a

1− a
+

b + a|z|
1− a

‖(Hθ − z)−1‖.

The conclusion is that we can make ‖|Hθ(γ) − z|ψ0‖ arbitrarily small, in partic-
ular, smaller than d(z, θ), by taking the limit z → z0 and γ → 0. Consequently,
inf σ(|Hθ(γ) − z|) < d(z, θ) for γ small enough and z close enough to the reso-
nance. ¤
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Proof of (iii). Since the operator Hθ(γ)− z is C-selfadjoint, it admits the decom-
position stated by Theorem 2.4:

Hθ(γ)− z = CJ |Hθ(γ)− z|,
where the second conjugation J commutes, in the strong sense, with the selfadjoint
operator |Hθ(γ) − z|. In particular J leaves invariant the spectral subspaces of
|Hθ(γ)− z|. Thus if λn belongs to the discrete spectrum of |Hθ(γ)− z|, then the
vector space consisting of the eigenvectors φn ∈ D(∇2):

|Hθ(γ)− z|φn = λnφn

is left invariant by J . Thus, either φn = −Jφn or φ′n = φn + Jφn provide a new
eigenvector ψn satisfying Jψn = ψn. Therefore,

C(Hθ(γ)− z)ψn = J |Hθ(γ)− z|ψn = |Hθ(γ)− z|ψn = λnψn.

This proves the last assertion in the statement. ¤
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and Fejér and on an allied theorem of Landau, Japan J. Math. 1 (1925), 83-93.

[30] Taraskin, S.N., Fry, P.A., Zhang, X., Drabold, D.A., Elliot, S.R., Spatial decay of
the single-particle density matrix in thight-binding metals: Analytic results in two
dimensions, Phys. Rev. B 66 (2002), 233101.

[31] von Neumann, J., Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren,
Math. Ann. 102 (1929), 49-131.

[32] Wo, S.Y., Jayanthi, C.S., Order-N methodologies and their applications, Phys. Rep.
358 (2002), 1.

[33] Zhikhar, N.A., The theory of extensions of J-symmetric operators, Ukrainian Mat.
Z. 11 (1959), 352-364.



Complex symmetric operators 15

Stephan R. Garcia
Mathematics Department
University of California
Santa Barbara, CA 93106
e-mail: garcias@math.ucsb.edu

Emil Prodan
Physics Department
University of California
Santa Barbara, CA 93106
e-mail: eprodan@physics.ucsb.edu

Mihai Putinar
Mathematics Department
University of California
Santa Barbara, CA 93106
e-mail: mputinar@math.ucsb.edu


