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Abstract

In this paper, one-dimensional (1D) wave equation with a general nonlinearity
Ut — Ugpe +mu+ f(u) =0, m>0
under Dirichlet boundary conditions is considered; the nonlinearity f is a real analytic,
odd function and f(u) =au® 1+ > fori1u?**t1 a#0 and 7 € N. It is proved that
E>r+1
for almost all m > 0 in Lebesgue measure sense, the above equation admits small-
amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori

of an associated infinite dimensional dynamical system. The proof is based on infinite
dimensional KAM theorem, partial normal form and scaling skills.

1 Statement of the main result

In this paper, we are going to study the nonlinear wave equation
Ut — Ugg +mu+ f(u) =0, m>0 (1.1)

on the finite x—interval [0,7] with Dirichlet boundary conditions
u(t,0)=0=wu(t,m). (1.2)

Here, m > 0 is a real parameter, sometimes referred to as “mass”, and f is a real analytic,
odd function of u of the form

flu)=au® '+ Z forr1u® 1 a#£0 and FeN. (1.3)
k>7+1

As [24], we study this equation (1.1) as an infinite dimensional hamiltonian system on
P = H([0,7]) x L*([0,7]) with coordinates u and v=1u;. Let
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be the basic modes and frequencies of the linear equation uy = Uz, —mu with Dirichlet
boundary conditions. Then every solution of the linear equation is the superposition of
their harmonic oscillations and of the form

u(t,z) =Y q;(t)g;(x), ¢;(t)=1I;cos(\jt+¢))

Jj=1

with amplitudes /; > 0 and initial phases gi)?. Their combined motion is periodic, quasi-
periodic or almost periodic, respectively, depending on whether one, finitely many or
infinitely many modes are excited. In particular, for every choice

T={j1<jo<---<p}CN

of finitely many modes there is an invariant 2b—dimensional linear subspace E 7 that is
completely foliated into rotational tori with frequencies Aj ,---,Aj, -

By ={(u,0) = (5, + -+ @y, P15, +- -+ o8, ) } = | Tr (),
Iepb
where Pb = {I€R?: I; >0 for 1 <j <b} is the positive quadrant in R™ and
T7(I)={(u,v) :qu»—l—)\j_2p? =1, for 1 <j<b},

using the above representation of v and v.
Upon restoration of the nonlinearity f, we show that there exists a Cantor set C C P?,
a specially chosen index set Z={n; <ng <---<ny} CN (see below) and a family of b-tori

Z[Cl= | ) Tz(I) C Ex
IeC

over C, and a Whitney smooth embedding
q):’]'I[C] —>51C77,

such that the restriction of ® to each 77(I) in the family is an embedding of a rotational
b-torus for the nonlinear equation. In [24], The image & of 77[C] is called a Cantor
manifold of rotational b-tori.

Theorem 1 (Main Theorem) For almost all m >0 and each index set T={n; <--- <mnp}
with b> 2, satisfying

sn; #nj for any s=1,2,---,7, i<j, i,j€{1,---,b}, (1.4)

the wave equation (1.1) with (1.2) possesses a local, positive-measure, 2b dimensional
invariant Cantor manifold E1 given by a Whitney smooth embedding ® : T7[C] — &1,
which is a higher order perturbation of the inclusion map ®¢: Ex — P restricted to T7[C].
Moreover, the Cantor manifold £7 is foliated by real analytic, linearly stable, b dimensional
mvariant tori carrying quasiperiodic solutions.



Remark 1.1 The size of Cantor manifold E1 is not uniform, but depends on m, b, T and
etc..

Remark 1.2 The frequencies of the diophantine tori are cglsc; under control. They are
W)= (wn, (1), ,wn, (1)), where wp; (I) = Ay, +A;+0O(||I||""s), j=1,---,b,

Aj .
R DV

C*(Qf‘f‘]_) IZ C,(f_i_l) [Fz
_or j T Z/\if—i- Z O(Iﬁ"jﬁﬁ)
i#j i 0<py<F, t=1,-.b

p1++pp=7

and
B (2r—1)!
T2 g (2) 1)

Remark 1.3 The similar conclusion holds for 1D nonlinear wave equation
Ut — Uz +mu~+g(u) =0, m >0 (1.5)
with periodic boundary condition
u(t,x+2m) =u(t,z), (1.6)
where the nonlinearity g(u) is real analytic and
g(u) =au® 1+ Ou*?), a#0 and 7 €N,

if one uses the so-called “compactness property” observed in [16]. For 7 =1, the result has
been obtained in [22].

The rest of the paper is organized as follows: In section 2 we firstly discuss some known
results on nonlinear wave equations, and then present the idea of the proof. Section 3 con-
tains a concluding theorem about 1D nonlinear beam equation with a general nonlinearity
under the hinged boundary conditions. In section 4, the hamiltonian function is written in
infinitely many coordinates and then put into partial normal form in section 5. In section
6 we introduce an infinite dimensional KAM theorem and the measure estimates are given
in section 7. Some lemmata are proved in the Appendix.

2 Discussion and idea of the proof

In this section, we will mainly discuss the relations of our results with previous results on
1D nonlinear wave equations with constant potentials. For > 1, the known results are
all about periodic solutions. The first result is due to Walter Craig and C. E. Wayne, who
discuss ¢?—nonlinear Klein-Gordon equation

Ut — Ugg +0Pu—ud™1 =0, d>4 (2.1)

in [15]. They obtain families of periodic solutions for open set of parameters b? of full
measure when d = 2n(n > 2) under either periodic or Dirichlet boundary conditions. For



the existences of periodic solutions of 1D completely resonant wave equation(m =0) with
all kinds of nonlinearities, see [1, 3, 4, 5, 18, 23].

All the above cases are about the existences of periodic solutions. There are also many
results on the existences of quasi-periodic solutions for 7 = 1. The first result in this
direction is due to A.I.Bobenko and Kuksin [6]. They get the quasi-periodic solutions
corresponding to finite dimensional invariant tori of (1.1)+(1.2). Their starting point is
to take the equation (1.1) as a perturbed sine-Gordon equation. This result is regained
by Poschel [24] by the infinite KAM theory and normal form technique. The existence
of quasi-periodic solutions of the equation (1.5)+(1.6) is firstly proved by Bourgain [10]
with the famous Craig-Wayne-Bourgain’s methods (see [7, 8, 9, 10, 11, 14]). Later Jean
Bricmont, Antti Kupiainen and Alain Schenkel [12] give a new proof of this result based
on a renormalization group procedure. For the existences of quasi-periodic solutions cor-
responding to finite dimensional invariant tori of (1.5)+(1.6), see [22].

The remained case is whether there exist quasi-periodic solutions corresponding to
finite dimensional invariant tori of (1.1)4(1.2) when 7 > 1. Theorem 1 actually gives a
positive answer towards this problem.

The proof follows the main steps of the infinite dimensional KAM theorem. However,
as one will see, there exist some technical difficulties when considering 1D wave equation
with a general nonlinearity. The first appears when we want to get a partial Birkhoff
normal form. For this purpose, we mainly expect that the following inequality holds

|)\i1:|:)\i2:|:---:|:)\i2f—|—)\i—)\j]Zc(m)>0, (2.2)

where i1,--- ,ior € {n1, -+ ,np}, 1#J, and ny,--- ,n;p are tangent sites while ¢, j are normal
ones. For the 1D Schrédinger equations with higher order nonlinearities(see [20]), (2.2) is
guaranteed by carefully choosing the tangent sites. But this method couldn’t be applied
to the wave equation as considered in this paper. Comparing with [20], one gets (2.2) from
throwing a small set of m. The second technical difficulty lies in the measure estimates.
Since the nonlinear term is of higher order, the measure estimate becomes much more
complicated. Since it is very technical, the reader is deferred to section 7.

3 A Concluding Theorem
The same conclusion holds for 1D beam equation with a general nonlinearity
Ut + Uggre +mu+ f(u) =0, m>0 (3.1)
under the hinged boundary conditions
w(0,t) = Uy (0,t) =u(m,t) = ugy(m,t) =0, (3.2)
where f is a real analytic, odd function and

flu)=au” '+ Z forr1u® 1 a#0 and FEN.
k>l

Here we give the result while omitting the proof.



Theorem 2 (Main Theorem) For almost all m >0 and each index set T={n; <---<mnp}
with b> 2, satisfying

sn; #n; for any s=1,2,---,7, i<j, i,j€{1,---,b}, (3.3)

the beam equation (5.1) with (3.2) possesses a local, positive-measure, 2b dimensional
invariant Cantor manifold £ given by a Whitney smooth embedding ® : 77[C] — &7,
which is a higher order perturbation of the inclusion map ®¢: Ex — P restricted to Tz|C].
Moreover, the Cantor manifold E1 is foliated by real analytic, linearly stable, b dimensional
mvariant tori carrying quasiperiodic solutions.

Remark 3.1 When 7=1, for any index set J={n1 <---<np} and almost all m >0, our
conclusion holds while in [17] a set of positive measure of m is thrown.

Remark 3.2 For the completely resonant beam equation
Ut +Uggzr + f(u) =0 (3'4)

under the hinged boundary condition (3.2), the result is obtained in [21], where f is a real
analytic, odd function and

fu)y=au®+> " fopru® ', a0

E>2
Remark 3.3 The similar conclusions hold for 1D nonlinear beam equation
Ut + Uggze +mu+g(u) =0, m>0 (3.5)
with periodic boundary condition
u(t,x+2m) =u(t,z), (3.6)
where the nonlinearity g(u) is real analytic and

g(u) :au2F+I+O(U2F+2), a#O and reN.

4 The hamiltonian setting of wave equations

Without losing generality, let a =1. In the following, we always suppose m € I = (0, M,],
where M, is a fixed large number. Let us rewrite the wave equation (1.1) as follows

up+Au=—f(u), Au=—uz,+mu, z, tER, (4.1)
u(0,t) =0=u(m,t),

Equation (4.1) may be rewritten as

u=wv, 0+ Au=—f(u), (4.3)



which, as is well known, may be viewed as the (infinite dimensional) hamiltonian equations
u=H,, " =—H, associated to the hamiltonian

H= ;<v,v)+;(Au,u>+/oﬂg(u) dx, (4.4)

where g is a primitive of f(u) (with respect to the u variable) and (- ,-) denotes the scalar
product in L?.

As in [13], we introduce coordinates ¢ = (q1,92," - ),p = (p1,p2,- - - ) through the relations

u(@) =" Lgi(@), 0= Apid;(),

where ¢j =+/2/msinjz for j=1,2,.-- are the orthonormal eigenfunctions of the operator
A with eigenvalues )\]2 = j24+m. The coordinates are taken from some Hilbert space H®”
of all real valued sequences w = (w1, ws,---) with finite norm

JwllZ ,= Z |w;|*j**e*”.
i>1

Below we will assume that a >0 and p>0. We formally obtain the hamiltonian
1 i q;
H:A+G:22Aj(p§+q§-)+/ g(Z—;qu) dx (4.5)
j>1 O 1 VA
with the lattice hamiltonian equations

0H OH oG

=5 = Npjs Bi=—a =—Nti— 5 4.6
J 8pj NRa) J aqj 7] aqj ( )
Rather than discussing the above formal validity, we shall use the following elementary
observation:

Lemma 4.1 Let I be an interval and let

tel—(a(t)p(®) = ({0021, {ps(0)521)

be a real analytic solution of (4.6) for some p>0. Then

u(t,r)= qj(t) i(x
(t,z) ;ﬁj@( ),

is classical solution of (4.1) that is real analytic on I x [0,7].

For the proof, see [24].

Next we consider the regularity of the gradient of G. Following Pdschel [24], we have
the following Lemma.



Lemma 4.2 For a >0 and p > 0, the gradient Gy is real analytic as a map from some
neighbourhood of the origin in H®? into HTYP, with

HGqHa-&-Lp (HQHQTH)~

For the nonlinearity u* 1, we find

1 " 2742
:2T+2/0 u do 27’+2 Z Giyigryain Qa2 (4.7)

i1, 7,27-4,2

with
(4.8)

1 s
Giyovigryn = / Giy i+ Pinryn AT
V Aiy -+ ')‘12F+2 0

It is not difficult to verify that Gj,...;,.,, =0 unless i1 £ig £+ - -Figr 0 =0, for some combi-

nation of plus and minus signs. For simplicity, write Gp,-..n; =Gn, and Gn;---njnm; =

2742 o

G;n,, where j#i,i,j€{1,---,b}. Note (1.4), we have

2r L (2Fr 1) 27 (2F — 1)1
ny — = - y Ungng — : 4.
Gne A, T (27 +2)1! Gy A A, T (271! (49)

by elementary calculation.

5 Partial Birkhoff normal form

Next we transform the hamiltonian (4.5) into some partial Birkhoff normal form so that
it may serve for our aim. We first switch to complex coordinates

L (g+ing) 5= —=(g—ipy)
e — Lip), Z = i),
g \/5% Pj J \/qu Pj

then the hamiltonian (with respect to the symplectic structure i) dz; AdZ;) is given by

J
™ 2i+Zs
H:Z)\j|2’j|2+/0 g(; 5/2—/\j¢]> dx

2 - - _
_Z)‘ |Z]| _'_1)2T+2 Z Gil'-'i2f+2 (2, +Zi1)"'(zi2f+2 +zi2f+2)+0(2r+4)'
Zlﬂ:'--i’igf+2=0

For simplicity, we will write c= T So we obtain the hamiltonian
— E ]2 E o . .
H= )‘J ’Z]’ +c GZl"'12f+2 Ziy " Rigpga
j ili---ii27+2:0

1 _
+ CCQF+2 E Gi1'“i2f+2 Zi1 %4y " Rigpyo +--
i1E-Fiopp2=0

k - _
+CC2F+2 E Gi1~~'i2f+2 Ziy t Zig Ry Rigpa T
i1 igr =0

2742 - _
0271:+2 Z Gi,.. digryaZin Zin T Rigpgn T O(2T+4)‘
i1t Eiory2=0

(5.1)



We define the index sets A,, * = 0,1,2 and As. A,(x = 0,1,2) is the set of index

(i1,--- ,i2741) such that there exist exactly * components not in {nj,ng,---,np}. Ag is
the set of the index (i1,---,i27+1) such that there exist at least three components not in
{ni,n2,---,np}. Define the resonance sets

N ={(i1,01,- - irt1,9741) N Ao

and
M ={(1,1, irp1,0r41) F N Ag.

We will transform the hamiltonian (5.1) into a partial Birkhoff form of 27+ 2 order
so that the infinite dimensional KAM Theorem, which will be given in section 6, can be
applied. In the following, A(H%?, H®P*1) denotes the class of all real analytic maps from
some neighbourhood of the origin in H** into H***!. For conveniences, we also denote
J=1\J. ,where J, = J1JZp and Zy = Z}UZZUZ3\JZ3\JZ. The relative constants
7, ¥* in Jy are chosen suitably in section 7. We remark that! | Zy| =0 and |J;| < cy*, where
c depends on b, ny, M,. For the explanations for Ji, see Lemma 8.4 in the Appendix. For

the explanations of Zé, i1=1,---, b, see Lemma 5.2, Lemma 5.3, Lemma 5.4 and Lemma,
7.8.
Lemma 5.1 For m € J and any given index set {n1 < ng < --- < ny}, there exists a

real analytic, symplectic change of coordinates X}ﬂ in some neighborhood of the origin that
takes the hamiltonian (5.1) into

HOXF A+G+G+K

where Xz, Xé, Xk € A(Ha,p7Ha,P+1)7

7“+1 2r+2
2r+2 E :G”J ‘z'"'] ’
7=1

b
_|_Z Z Z O(|Zni1|2h"'|znik|2lk)

k=2 i1, i €{1,-,b} U1, 1, 0<lp<itlt=1,-k,

i< <ig 1+l =1
+e(r+1)° S;EQZ > Gz |
i=1 £
ije{l b} (5.2)

1 27 2
+e(F+1) §f+zz Y Guilzn Tzl
t=1j#n1,,np

b
2. X 2
k=2 i1, i €{l,-,b} l1, 1, O<ly<F, t=1,---,k
i <o <ip I+l =7

2 : ly--1 1 l
Cli ’LZGnil SRR (VPRRY (P nzkjj‘znzl ‘2 Lo.. ‘ank ’2 k’ZjIQ,
——— ———

J#nlf..?nb 2l1 2lk

'For a set, we denote by |-| the Lebesgue measure of the set.



G=c Z Gil"'i2F+2 (2iy + %) <2i2F+2 + 2i2?+2)7

(i1, i2742)EAZ
i1 ﬂ:<-<:ti2,;+2:0

. 2
K = O(||2||Z"}*) and the constant chle — (C%HC?C?_ZI“-CZJ“ ) and c de-

(AREI F=li——=lg—1
pends on T, T, np.

The proof is obvious from the following Lemmata.
Lemma 5.2 FormeJ, if (i1, ,ior42) € Ao and iy£---Figr0 =0, then A\j +---+\j, =
Njepr T+ Njoryo of and only if (j1,-++,Js) = (Js41, s Jor+2), where (1, jort2) =
(i1, yiop42). For the case Njj £---£Ni,.., #0, one has
|/\i1:|:"'j:)‘i2;+2| >c(m) > 0. (53)

Proof: If N\j, +---+Xj, =Aj ., +-+Aj,,,, from collecting terms, one obtains

LAk, HloAk, ++ - +lpAg, =0, (5.4)
where 0 <|l1]+--+|lp| <27 +2 and kyi,---, kp€{ni,--, np} and lila---1, #0 (otherwise
one obtains (ji,-++, Jjs) = (Js+1, ", jg;+2)). Now we denote

UXg, + A, =01, [l €{1,--- ,2F+2}
1: 17\kq p\kp s |61 s [Up ) ) )
ZO {mel‘{khk%'“akp}g{la"'anb}71<p<b7p€Z '

From Lemma 8.5, we have | Z}| = 0. Since m € J, then (5.4) can’t hold unless (I, la,- -, ) =
(0, 0,---, 0). (5.3) is obvious when X\;, £--- & X;, ., #0.

Lemma 5.3 FormeJ, if (i1, ,iory2) € A1 and iy £+ Liorra =0, then
|)\Z~1i-~i/\i2ﬂ2|>c(m)>0.

Proof: 'We only give a sketch since it is similar with above. After collecting terms,
one gets

ll)\k1+"'+lp)\kp+)\i:07 (55)
where i is the unique normal site. Since i1=+---+isr12 =0, we have |i| < (2741)n,. Denote

Zg:{meI‘ll)‘kl+"'+lp)\kp+)‘i:03 |ll|a 7|lp|6{1a"' 727‘"1'1}’}.

{k17k27”' 7kp72}g{17 7<2f+1)nb}7 1<p<b7 pEZ

Similarly, one has |Z2| =0. Note m € J, one easily gets the conclusion.

Lemma 5.4 Forme J, ’if (il,- .- ,i27=+2) S AQ and i1 £-- -:|:i27=+2 :(); then Ajl-i-' : '+)‘js =
)\js+1 +“'+)\j277+2 Zf and O’I'lly /I’f (jla"' 7j8) = (js+la"' 7j2f+2)7 where (jl)"' aj2f+2) —
(i1, iop42). For the case Njy £---£Ni,.., #0, one has

iy £ Xigr | > ¢(m) >0, (5.6)



Proof: ~ We only need prove the necessary condition. After collecting terms, one
obtains
UAgy +ladg, +--- —i—lp)\kp + )\ :E)\j =0,

where ¢, j are normal sites and the others are tangent ones. We only need prove the
conclusions in the following two cases.

(i)
ll)\kl+l2)\k2+"’+lp/\kp+)\i+)‘j207 1>7. (57)
It is obvious that (5.7) can’t hold When i > 274 /nZ + M,. Hence, one has i <27y /n? + M,.
Denote
5 Ay -+ A, + X+ =0, |la], -, |l €{1,--- 2T},
{klakQa"' 7kpal7j}g {17 7[2T\/ nb+M*]}7 1 gpébv pGZ

From Lemma 8.5, one has |Z3| =0, since m € J, (5.7) can’t hold.
(ii)
ll)\k1+l2)\]€2++lp)\kp+)\l_)\]:07 1> 7. (58)
Write p’ =i —7j. We have
1
ll)\k1+"'+lp/\kp —l—p/—l-O(;):O. (5.9)

It is obvious that (5.8) can’t hold when p’ > 47n,M,. Therefore
p’ < 4inyM,. (5.10)
From (5.8), one gets (li,---,l,) #0. Combined with m € J, it results in

2 xb
’ll/\kl-i-"'—i-lp)\kp —l—p/‘ > il A -
(27) 47

T
27) 47
*

Hence, when MT < -2~ (5.8) can’t hold. In other words, when j > %, (5.8) can’t

el T

hold true. The left case is that j < %?4? and ¢ < %?4? +47ny M,. Similarly, denote

*

WAk 4+ Ag, + A=A =0, ||, [l €{1,--- .27},

T

. T
Zi= mEI{khk27.__7kp7i’j}g{1’...,[W+4FnbM*]}a 1<p<b, peZ

From Lemma 8.5, one has |Z§| =0. Since m € J, (5.8) can’t hold.
The conclusion of (5.6) is obvious from the above proof. |

10



Now we introduce the symplectic polar and complex coordinates by setting

z»:{ (&+yj)e ™, j=n1,n2, ,mp
J Wy, j?én17n27"'7nb

depending on parameters ¢ € II = [0,1]°. The precise domain will be specified later. In
order to simplify the expression, we substitute &,,,7=1,2,---,b by §;,7=1,2,---,b. Then
one gets

iy dzindzi= Y dajAdy;+i Y dwjAdw;.

Jj=1 J=n1,n2, Ny J#NL,N2,
Note (4.9), the new hamiltonian
H=A+G+G+K = (w(€),y) +(Qw,®)+G+G+K
with frequencies w(§) =o'+ A(E), Q(§) ="+ B(§), where
o' = (Anys Angs 5 Ay )y B = (Ai)istny oy
A©) = (4)))=1 = (A1, Ab), BE) = (By)jn oy

(27 +1) & cr(FH1) ¢r
AR SRS LT RES WD D DR G

J i£7 i 0<py<F, t=1,-,b
7 “p1 b tpyer
b
(i 2 ~F+1 T
B =c(r+1) sz+2 E Gn,j&t
t=1
b (5.11)
byl el Uy
+Z Z Z Ci1~-~iani1 Cr Mgy e Mgy o Ty, JJ§i1 ”'gikﬂ
k=2 i1, yig €41, b} U,y O<Up<7, t=1,- .k —_— ——
i< <ig I+l =F 201 21
T (2r-1)n
T2 g (2)1)

We obtain

H = (@(€), 1)+ (@ w @) + Oy Pl ™)+ Oulf lullel™ )+ Ol 6™+ )+O(ET™)

4

Rescaling & by €5¢,w,w by e¢*w, e*w, and y by €%y, one obtains a hamiltonian given by the

rescaled hamiltonian

(©(6),y) + (O w, @) +eP(a,y, w,@,E,¢€),

where (&) = 6_677()4/+A(§), Q=53 +B(¢), € [1,2]°. For simplicity, we rewrite H by
H, & by w, Q by Q and P by P.

In the following, we will use the KAM iteration which involves infinite many steps
of coordinate transformations to prove the existence of the KAM tori. To make this

11



quantitative we introduce the following notations and spaces.
Define

D(r,s)={(,y,2,2) : Imz| < s,]y| <12, ||

2llap <7 l|2]lap <7}

a complex neighborhood of T x {y =0} x {z =0} x {Z= 0}, where |-| denotes the sup-norm
for complex vectors. For a p (p>1) order Whitney smooth function F'(§), define

. PF
3l —max{zupm, bl e 1}
HFH*—max{sup\ 5\ up](zéj}

If F(£) is a vector function from & to H*P(R™) which is p order whitney smooth on &,
define [|F11; , = 111l ap (| Flfen = maxi (14 (€)][%))- T F(1,€) is a vector function
from D x1II to H*?, define ||F|[; 5 , =sup,cp||F[3 5. We usually omit D for brevity. To
functions F, associate a hamiltonian vector field defined as Xp = {F,,—F,iFs,—iF.}.

Denote the weighted norm for Xy by letting

| XFly

r,D(r,s)

1 L1 1
= IR+ 5 I+ I El 5 = IFl

6 An Infinite Dimensional KAM Theorem

Theorem 1 is a direct result of the following Theorem 3 and measure estimates in section
7. Consider small perturbations of an infinite dimensional hamiltonian in the parameter
dependent normal form

N = (w(€),y) +(Q(&)z,2)

on a phase space
PGP — T 5 R™ x HYP x HYP (x,y,z,é),

where
.. jd_|_...
+0(M)1, Q;= 5 +0(&"),

t, p€N, p>0, a>0. Suppose that ||w|[. < M, |||« < M2j°, My+ My > 1. Define
M = (M + M>3)P. The parameter set II is [1,2]™.

For the hamiltonian H = N + P, there exists n-dimensional, linearly stable torus
73" =T" x{0,0,0} with frequencies w(&§) when P =0. Our aim is to prove the persistence
of a large portion of this family of linearly stable rotational tori under small perturbations.
Suppose that the perturbation P is real analytic in the space variables, C? in &, and for
each ¢ € I1 its hamiltonian vector field Xp = (P,,—P;,iPs,—iP,)T defines near 7" a real
analytic map Xp : P4’ — P (p> p). Without losing generality, suppose p—p<d§ <d—1.
Under the previous assumptions, we have the following theorem.

TO(£P) means pth order terms in &1,---,&,

12



Theorem 3 Suppose that H= N + P satisfies
XPI: pgs.ry <78*0 7, (6.1)

where vy depends on n,p,7 and M, p = (p+1)7+p+75. Then there exists a Cantor set
I, CII, a Whitney smooth family of torus embeddings ® : T x Il — P*?, and a Whitney
smooth map w, : Il — R™, such that for each & € 11, the map ® restricted to T™ x {&} is
a real analytic embedding of a rotational torus with frequencies wy (&) for the hamiltonian
H até.

Each embedding is real analytic on [Imxz| <35, and

@~ o <2,
s —|l* <,
uniformly on that domain and Il¢, where ®g is the trivial embedding T" xI1 —7;*. More-
over, there exist whitney smooth maps wy, and 2, on Il for m > 1 satisfying wy =w, 2 =2
and
[lwm —w]||* <ce, (6.2)
| — Q" 5 <ce. (6.3)

Remark 6.1 Note that in the theorem, we didn’t claim that the measure of Il¢ is positive.
For positive measure, one needs further information of the frequencies w(§) and Q(§). We
shall come back to this point in Section 7.

Since the proof of Theorem 2 is essentially standard, we only state the main step of
KAM iteration. The more detailed steps can be found in [25] and other papers.

6.1 Solving the Linearized Equations and KAM Step

At each step of KAM iteration, the symplectic coordinate change ® is obtained as the
the time 1-map X% |,—1 of the flow of hamiltonian vector field X p. Its generating function
F and some normal correction N to the given normal form N are solutions of the linear
equation

{F.N}+N =R, (6.4)

where R = 22m+\q+q|g2 kaqq—ymzqz‘je“k’@,kaqq = Pimgq, and the coefficients Rypqq
depend on ¢ such that Xg: P%? — P% is real analytic and whitney smooth in £. Below

we solve the linear equation and estimate the generating function F.

Lemma 6.1 Suppose that uniformly on 11 C1I,

B
[(k,w)] > S for k#0, (6.5)
Ay,
B
() + Q| > < (6.6)
Ay,
ﬁ s
(yeo) 4 Qs+ > ST, (6.7)
Ay,
A(li—jl+1) . .
w051 > I i (63)

13



Then the linear equation has solution F and N, which satisfy [F] =0, [N]=N. Moreover,

* * * cM *
Nlr,D(s,r) < ‘XR’r,D(s,r)’ ‘XF’r,D(sfo',r) < c(p+D)Bn ‘XR‘T,D(S,T)7 (69)

where A, =1+1k|", B will be denoted later.
For the proof refer to [25].

Lemma 6.2 If |XF\TDS o) S0 then for any & € 114, the flow XL(- ,€) emists on
D(s—20,3) for[t| <1 and maps D(s—20,5) into D(s—o,r). Moreover, for [t| <1,
’X%‘_id‘:,D(szJ,%)vaHDX%_IdH:,r,D(sf?)a,ﬁ) < C‘XF’*

r,D(s—o,r)’

where D is the differentiation operator with respect to (z,y,z,2z), id and Id are identity
mapping and unit matriz, and the operator norm

A a,r
AGE D rrper = sup sup G Cllar
neD(s,r) w#0 Hw| |a,T
14
Al =maox{lAll -+ 1 g e

For the proof see [26].
Below we consider the new perturbation under the sympletic transformation ® =
Xtli—1. Let | Xpl|* ) < €. From the above we have

,D(s,r)
R= Z kaqq—ymzqéqei<k’x>.
2|m|+|g+q|<2
Thus |XR|7~D(5 ") -|Xp]:7D(S,T) <-¢, and for n < %,
| X PRl D(s anry < MNXPL Do) < ME- (6.10)
Since N = > Pomqqymzqiqe“km, the new normal form is

2|m|+lg+a1<2,4=q
Ny=N+N=(w;,y)+(222).
By Lemma 6.1, one has ’XN‘TD (s, < € Note that p—p < d, therefore,
[lw+ =l [[2+ = Q25 < e, (6.11)

where [|Q[|* ; = max;>1 ||Q][*570. If %ﬁpm <1, by Lemma 6.1 and Lemma 6.2, it

follows that for |t| <1,

cMel—(p+1)8

i (6.12)

1 s X
;‘X% _Zd’T,D(sf2o',%)’ HDX%_IdHT,T»D(S*E’U&) =

14



Under the transformation ® = XL, (N+R)o® = N,+R, where R, = fol {(1 —t)N+1tR, F}o
Xt Thus, Ho® =N, + Ry +(P—R)o®= N, + P, where the new perturbation

P+:R+—|—(P—R)O(I):(P—R)oq)+/1{R(t),F}oX%dt
0

where R(t) = (1—t)N +tR. Hence, the hamiltonian vector field of the new perturbation
is Xp, = (X})*(Xp-g) +f01(X})*[XR(t),XF]dt. For the estimate of Xp, , we need the
following lemma.

Lemma 6.3 If the hamiltonian vector field W (-,§) on V = D(s —40,2nr) depends on
the parameter § € Ty with |[W]|7y, < +oo, and ® = X, : U = D(s —50,nr) — V, then

O*W =Dd 'Wod and if M- <1 we have QW[ o < clWI, v

n2ohtl

For the proof refer to [25].
Now we estimate Xp, . By Lemma 6.3, if CM;;;# <1,

1
’XP-&- ’;;r,D(s—Sa,m") < C|XP*R|;;7’,D(S—4U727]7‘) JrC/O HXR(t)’XF] |7);7",D(s—40,2777’)dt'

By Cauchy’s inequality and Lemma 6.2, one obtains

i} cMe2—+1)8
’[XR(t)7XF] |nr,D(sf4a,2nr) < W

= cMne,
where one chooses 7 = 61?::11 7 Combining (6.10) we have
|XP+ |1>;T',D(S—50',T]T) < CMT]E.

6.2 Iteration and Proof of Theorem 2

To iterate the KAM step infinitely we must choose suitable sequences. For m > 1 set

3—3p+1 —(p+1
. _ CM(m)an 3(p )8 . _ 0-7m 773 _ 67171 (p+1)8
m+1 %(1""#) s Um—+1 2 s Tlm Om )
Om
where 3= m. Furthermore, $;,,41 = S$m—50m, Tm+1 = NmTm, M(m)= (Mi+Ma+2c(e1+

o t€p-1))P, and Dy, = D(8m,7m). As initial value fix o1 = 3 < % Choose €1 < Voaf(H”),

where v9 < 74, 7+ is a constant depending on M, p, n, 7. Finally, let K,, = K;2™ ! with
Kl :lné, K()IO.
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Lemma 6.4 Suppose H,, = Ny, +Py, is given on Dy, XIL,,,, where Ny, = (wim (€), y)+H(Qm, 22)
1s a normal form satisfying

B
| (K, wm)| Z%n for k0, (6.13)

k
B

‘<k7wm>+Qm,i|Zeﬂ7 (614)
Ay
B
em(lt—7|+1
B
m(t—J|+1) . .

for any £ €1l,,. and

Then there exists a Whitney smooth family of real analytic symplectic coordinate transfor-
mations ®pyy1: D1 X Iy, — Dy, and a closed subset

M1 =i\ U RZ;—H(GW-&-I)

|k|>Km
of I1,,, where
R (emy1) = AT UATT U AT U AT,
and
P
AZ}—H ={£ €Il [{k,wm+1)| < Zzl h
&£
At =U B =\ €T (b o)+ Q] < 250,
i i

(li—jl+1)
e

15}
€
A= Bt = {6 € |(kywim1) + Qi + Q5| < 2

1,j 1,3
emluz’—jm)}
Ay ’

1,12
AZT_I = U B;c—rzl;_ = U{§ €y 2 [(kywimt1) + Q1,0 — Qg | <
i#] i#]
such that for Hpi1 = Hpo @1 = N1 + Pyt the same assumptions are satisfied with
m+1 in place of m.

Proof: Note the value for pi1,€e1,0 and o1, one verifies that

1-(p+1)B 1—(p+1

M6t ™ 1 Myer P47
14+p - 1+p
0m+1 2 Om

(6.17)

for all m > 1. So the smallness condition of the KAM step is satisfied. For the remained
proof, see Iterative Lemma in [25].
With (6.11) and (6.12), we also obtain the following estimate.
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Lemma 6.5 Form>1,

1 , cM(m)elf(erl)ﬁ
TH(I)m-H_Zd’|:m,Dm+1’HDq>m+1_IH:m,rm,Dm+1 < qul (6.18)

m

||Wm+1_wm”1jilmv||Qm+1_Qm||i§,Hm < Cém. (6.19)
Proof of Theorem 3. The smallness condition is

0 214w
a<onm (6.20)

To apply Lemma 6.4 with m=1, set s;=s,7r1=7r,--- , N1=N,PL=P |

_
202(1+4)

y= and €] —'ysl( e

The smallness condition is satisfied, because
_ 2(1+p) _
‘Xpl ‘:hD(sl,rl) - ’XP|:,D(’I",S) <vs () — €1-

The small divisor conditions are satisfied by setting II; = IT\ |, R, (€), where k # 0 for
A}d, and IIp =II. Then the Iterative Lemma applies. [

Remark 6.2 For the rescaled hamiltonian H, we fir r=1. Then

|X5P|I,D(s,1) < |X6P|I,D(1,1) <ce< 752(1+u)7
for € small enough. If fix p > 0 and a > 0 arbitrarily, Theorem 3 can be applied to the
rescaled hamiltonian.

7 Measure Estimates

The whole measure estimates for all the steps are given by the following Lemmata. From
section 5, we have p=7, p=p+1, = (7’+1)’ t = 67. Note (4.8) and (5.11), we have
6 = —1. For our conveniences, we will extend w, and €2, defined in II, to II.

Before giving all the measure estimates, we outline the main idea of this section in the
following. The main trouble lies in estimating the measure of the set Uy~ x, , Uiz; BZ;?.
In fact, we have

U Usit= U U UBE,),

|k|>K,_1i#] |k|>K,_10<p<cl|k| Jj
v,12 v
< 2 2 2 Byt X X IRhal
|k|>K, — 10<p<c\k:\0<J<Jo |k|>K,—10<p<c|k| ( : )
JOEV |k’
s Z kfrl"i' Z |‘T1 0+]6t) [kl
|]€‘>KV 1| | |]€|>K,, 1

The trouble lies in 6%, where € = -¢p. It’s hard for us to choose a suitable jg. Our method
is to pick up a suitable tg, which satisfies

1
=< |k|fo. (7.2)
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It is obvious that (7.2) holds when v > N, = - s Ini - +2. Now we can choose a suitable
Jjo at the cost of choosing a larger 7 when v > N In order to get the measure estimates
for v > N,, we further require

-
— >14+1. .
57 = +to (7.3)

At this time, we can’t fix the value for ¢3. In fact, we have to combine the constraint
condition for ¢y from estimating the measure for 1 < v < N,. To obtain the measure
estimates of these parts, we also require m € J and

to > ? +1. (74)
Now we fix tg = 5= — 1 which satisfies (7.3) and (7.4) clearly when 7 > 87. We remark that
the choose of to 1s not unique. Different choices for ¢ty will correspond to different range
for 7. The remained is the measure estimates for the first step. In order to get them, we
also require m € J.
We turn to the concrete measure estimates. A couple of Lemmata are needed. The
following Lemma has been used many times in this section. For the proof see [27].

Lemma 7.1 Suppose that g(x) is an mth differentiable function on the closure I of I,
where I C R is an interval. Let I = {z|g(x) < h}, h > 0. If for some constant d >

0, [¢™(z)| >d for any x € I, then |I,| < chwm , where I, denotes the Lebesgue measure of
I, and c=2(2+3+---+m+d1).

Lemma 7.2 For |k| > c. >0,

v, (li—jl+1)ey
By < [T]

3=

kij

Proof: ~ For our conveniences, we write ' and ' for w, and Q,. Define v; =
(1,0,---,0)7, and v, = (0,0,---,1)T. Define S*=! = {(z1,29,--,23) € R : |z1| + ]a:2| +
-+ |xp| =1}, Write A(m) = (D}, w, Dl w,---, Dl w)T. It is easy to check that [A(m)| =

(_1)17710
(Ang Ang ~--/\nb)’“+1

any (£,v) €Il x S°~1,

=0 for any & € I, where C' is a positive constant depending on 7, b. For

|[A(m)v|1 >¢1 >0. (7.5)

Thus for any (£,v) € I x S, there exists an open neighborhood S, of v in S*~!, such
that for some i, (D} w,v")| > g, for any (&,v") €IIx.S,,. Since {IIxS,} covers the compact

ko
set IT x S®~1, there exist finite covers: IIx Sy, ---,II x Sk, such that [J IIx.S; DIIx o1

i=1
and for any (£,v) € IIx S;,
_ Cl
(Df,0)| 2 5,
where © € {v1,v9,-++,vp}.
Now fix k£ # 0 and suppose % € S;. Then for any & €11,
|(DIw, )]_—>0 (7.6)

[kl
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Define f(§) = (k,w’) +§; — ). Note

f@zﬁ T DS(Q@'_QJ') DQ(Q;_QZ)
Dy = g Do =

+D;(Qj—sz;) +<£ Drw —w) (7.7)
14 L. '
We estimate every term in (7.7). From (6.2) and (6.3), one obtains
k - -
|(m7D§(w'—w)>!Sng(w'—w)l <ce, (7.8)
‘Di(Q/-—QZ')’ ce 1
I—ov\ 7 TV S _ S — (7'9)
|| [k~ k]
|D§(Qj—93)| ce 1
Gk B FA ey ey (7.10)
|| L
Note
DI — 9,

I |k

and (7.8), (7.9), (7.10), (7.6), we arrive at \DT T | > 4 when |k| > ¢, > 0. It is obvious
that D] f(§)| > G|k| >¢>0, when |k| > ¢, > 0. The result now follows with Lemma 7.1.

Remark 7.1 If define F(m ac) |A(m)v|1, (m,v)€[0,M,] xS, it is easy to check that
F' is continuous on [0, M] S . Therefore c1in (7.5) depends on 7, b, M,. Further, we
also know c, depends on ¥, b,

In the following, we choose tg = 5= —1, N, = 7o 1n2 Ini c+2.
Lemma 7.3 For 7>2(b+1)72+2, v> N,
v,12 %
U UBgIse”.

|k|>Kufl Z#J

Proof: Write p=1i—7j. We firstly prove

U U UBG,,l= (7.12)

|k|>K,—1p>clk| j

In fact, we have

’<k7wu>+QI/,i_Ql/,j| > |<kaw>+Q’L_Q]’ _ C|k‘

p+1 - p+1 p+1
p+OG) + (BN k]
(p+1)e p+1
1
> = >>1
€
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From above, it is clear that (7.12) holds. From (7.12), one has

U UsE=1 U UG

‘k‘>KU 1’L75_] ‘k‘>KV 1’L>]
_. v,12
- |1<;>ng ]LJB (G+p)i (7.13)
v—1J»
v,12
<] U U UBk(j+p

|k|>K, —1 0<p<clk| j
In order to get the estimate for (7.13), noticing the following inequality
p
[k wu) + SIS (ks wi) 4+ Qs = Q[+ [ — il

p
+\Qv,j—9j\+\9i—ﬂj—g!

<ce€p c cp
= A g2

we define 5
D ceyp € cp )

It is obvious that Bz(ﬁp )i € C @y, (p>0) and QF,; CQF ;. for j > jo. Therefore

<t U U U B Ukl

|k|>K, 1 0<p<c|k| 0<J<Jo

SID DD SL-RITED DD DA SR

[k|>K, —10<p<c|k| 0<j<jo |k|>K,_10<p<c|k|
B
U B
€ € k
< Y Mo 3 (gt e M
|k|>KV—1 ’k‘ " ‘k">K1/—1 0 '7

Note v > N,, it is easy to check that

1
E<|k]t0
Therefore
2 B ]k]lH
Jo€D €y 0
(7.14) <- Z — = T Z (kT—1+ + )7 k| (7.15)
= W || jo o gd
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|k|2; , note 7> 2(b+1)7?+2, then

Choosing jg=

e?
o 9 52
€zr € e € 1
(7.15) < - Z #71+' Z (k:ff’_ 1
57 | ‘ |kj|27‘ ‘k|2r
‘k‘>KV71 |k|>KV71
8 _B_
€2 EEFQ (7.16)
< D g 2 k|22 !
k|>K,_1 |7 27 k|> K1
B8
<-e2.

Lemma 7.4 For 1<v<N,, 7>2(b+1)f2+2,

The proof is similar to Lemma 7.3, we omit it.

Lemma 7.5 For 2<v<N,, meJ, 7>max{87, 3[r(b+1)+1]},

8
12 ;
U UBZZJ S
57%_|k|>Ku—1 #
Proof: We write p=1i—j. One easily has
[(Fywu) 4+ Qi — Qo 2 [(kyw) + Qi — Q| = [ — i — [0 — €
(k. X)+p] € (7.17)
>———— —clk|.
€
Note m € J, we get
2,)/*b
ko) 4912 [ 20
4ar
For 5 > C' W , one then obtains
’Y*b
(7.17) —c|k|. (7.18)
e'[k|3
In fact
’Y*b
— —clk| > 1. (7.19)
et|k|aF
Firstly, from ¢ > &£ (f= +1) and |k <e g , we get
et iolart ) >. | k| T
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Now it is easy to get (7.19) when e is small enough(also depending the constant v*). On
the other hand, we have

65(‘Z’—j’+1)<. e
Ak: - |k|’r—1
<-f<<1,

when p =[i —j| <c|k|. Hence, one gets

U Usiisr U U U &7

_t _t <
e ! ,\k\>Ku—1l7é] e % Z\k|>Kl,_10<p*C|k|J§ ‘ilzf:
€V|k‘ +Z
<) (5 )= |kl
Ay,
|/<:|>Kl,,1
8
<-€).

From Lemma 7.4 and Lemma 7.5, we obtain the following Lemma.

Lemma 7.6 2<v<N,, meJ, 7>7, =max{87, 3[F(b+1)+1], 2(b+1)r?+2},

|k|>K,—11#£]

The remained is the measure estimate for the first step. We will consider two cases to

get it. From Lemma 7.4 and the same method from Lemma 7.5, we obtain the following
Lemma.

Lemma 7.7 FormeJ, 7> 7,

|k|>cx i#£]

where 7. as above.

Lemma 7.8 For me J, then
1 12
U U By 1=0.
0<|k|<cx i
Proof:

U Usgl= U UBG

0<|k|<cx i#j 0<|k\<c* 1>

U U Usg

0<|k|<cs 0<p<Zc|k| j

(7.20)
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Ifj> el lb , as Lemma 7.5, we obtain

U U U Bg=o. (7.21)

0<|k|<ex 0<p<clk] .77
>3

W*b
Note Remark 7.1, if j < C|k|r < %, one has 1=j+p< (*b*). In this case we will
v+t ¥

prove that for m e J,

[(k,A)+Xi —A\j| > >0. (7.22)
Denote

75 ll)\kl oAk, F A=A =0, 11|, |l € {1, [C(My)]}
0 {kbk?a T p,z,]}g{l,---,[Cg{\k/[b*)]},lépéb,pEZ ’

From Lemma 8.5, we have |Z3| =0. Since m € J, then (k, \)+X;—\; #0. It is obvious that
(7.22) holds. This follows that

U U U Bgi=o, (7.23)

0<|k|<ex 0<p<clk] . _ .77
IS5

— *

~y

when € is small enough. From the direct computation, one gets

JUB = (7.24)

k=0i#j

Note (7.21), (7.23) and (7.24), we complete the proof.

From the above two Lemmata, we arrive at the following Lemma.

Lemma 7.9 For me J and 7> 7y, then

k| >0i%

Since the measure estimates for the remained are obvious, we only give the Lemmata
and omit the proofs.

Lemma 7.10 Forv>1 and 7> (b+2)7+1, then
v 11
U A=l U UBG <
|k|>Ku—l ‘k|>Ku 1 Zv]
Lemma 7.11 For v>1 and 7> (b+1)7, then

U anl=l U UBG<e.

|k‘|>KV 1 ‘k}‘>KV,1 7

SiI@
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Lemma 7.12 Forv>1 and 7> br, then

Lemma 7.13 If 7> (b+2)F+1, then

8
1,11 H
‘ U A11€3|:‘ U UBkij | <€

|k[=0 |k[>0 4.5

Lemma 7.14 If 7> (b+1)7, then

]
1,1 H
| U Apa| = U UBki [ <-ef.

k=0 |k[>0 i

Lemma 7.15 If 7> br, then

@

| U A1161’ <€
|k|>0

Combining with all the Lemmata in this section, we easily get the total measure of
the parameter sets Il., which are thrown in all the steps. Before that, one has to fix some
constants. We choose 7 > 7y, = max{7,,47b(b+1)}. Then, for m € J,

1
L[ <€ <27 =20

where |J,| < ¢v* and ¢ depends on M,, b, np and € is small enough and depends on all
the constants including m. If we choose a series of 72‘71) = 02%, n=1,---, then one gets a

series of;Jin) correspondingly and |J£n)|A§ 27" n=1,2,---. Write J, =1\ Jin). Now, we
choose J =] J,. It is obvious that |I'\J| =0. Since M, is arbitrary, Theorem 1 is proved

for almost arlll m > 0. [ ]

8 Appendix

The following two lemmata are born from Lemma 6.8 and Lemma 6.9 of Bambusi [2].

Lemma 8.1 Let me I=(0,M,], if write

Ay dAny dAn,

dm dm dm
PAny PAny  dAny
- 2 2 2
e (5.1)

d®Any d®Any AP,
dmb  dmb dmb

we have |det(A)| >c>0, where ¢ depends on b, M., ny.
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Lemma 8.2 Let u(), .-, u¥) be K independent vectors with |[u®||; < 1. Let w € RE
be an arbitrary vector, then there exists i € [1,---, K| such that

0 Ilhdet()

where det(u(i)) is the determinant of the matrixz formed by the components of the vectors
(4)
ul".

From the above two Lemmata and the proof of Corollary 6.10 in Bambusi [2], we get
the following Lemma.

Lemma 8.3 Denote f(m) = (k,\)(k # 0), then there exists ig € {1,---,b}, so that
|£00) (m)| > o >0, where A= (Any,--+,An,) and co depends on b, ny, M,.

From Lemma 8.3, one gets the following lemma easily.

Lemma 8.4 For 7> 47b(b+1),

27*b
IE

A= |J {mel:|(k\)+pl<
k#0,pEZ

H<er, (8.2)

where A= (Ap,,-+,Ap,) and ¢ depends on b, ny,, M.,.

Lemma 8.5 If f(m) = ki, +---+ks\i,, where 0 < |ki|+---+|ks| <8B, ki1, ko,---, ks €
Z, kiky---ks#0 and iy, -+, is are different with each other and iy = min{iy,---, is}, we

have 3 InB+2
n
Number of {m €117(m) =0} <5+ G i
i+ M.

Proof: For our convenience, write a; =4>+m. We have

1

1_ 1_ 1_
F(m) = co(kra? " +kaal "+t hsal ), n>2,

(=1)"*+1(2n-3)!

e [T It is easy to check that

where ¢, =

1_ 1_
2 n_.|_..._|_k'sa2

1n 1n 1n

|klail | Z |kla’i1 +'“+kl_1a]il_1 +kl+1a’bl+1 iS |
In(8)

—_—

In (1lJ.r21) + M«
ll + M

when n > Ng = + % Therefore, there exists positive integer ng such that

| £(0)(m)| > 0. For example, we choose ng=[Ng]+ 1. This results in at most ng m’s such
that f(m)=0. The proof is similar with Lemma 2.1 in [27]. We omit it.
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