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Abstract

We introduce a notion of weak isospectrality for continuous deformations. Let us consider the
Laplace-Beltrami operator on a compact Riemannian manifold with boundary with Robin
boundary conditions. Given a Kronecker invariant torus A of the billiard ball map with a
Diophantine vector of rotation we prove that certain integrals on A involving the function
in the Robin boundary conditions remain constant under weak isospectral deformations. To
this end we construct continuous families of quasimodes associated with A. We obtain also
isospectral invariants of the Laplacian with a real-valued potential on a compact manifold
for continuous deformations of the potential. As an application we prove spectral rigidity in
the case of Liouville billiard tables of dimension two.

1 Introduction

This is a part of a series of papers (cf. [13, 14, 15]) concerned with spectral rigidity for compact
Liouville billiard tables of dimensions n > 2. The general strategy is first to find a list of spectral
invariants and then to prove for certain manifolds that these invariants imply spectral rigidity.
The aim of this paper is to present a simple idea of how quasimodes can be used in inverse
spectral problems. This idea works well for isospectral deformations whenever continuous with
respect to the parameter of the deformation quasimodes can be constructed for the corresponding
eigenvalue problem. Given a compact billiard table (X, g) with a smooth Riemannian metric
g and the corresponding Laplace-Beltrami operator on it, we consider continuous deformations
either of the function K in the Robin boundary condition or of a real-valued potential V' on X.
To construct quasimodes we assume that there is an exponent B, m > 1, of the corresponding
billiard ball map B which admits an invariant Kronecker torus A with a Diophantine vector of
rotation. This means that A is a Lagrangian submanifold of the coball bundle of the boundary
which is diffeomorphic to the torus T"~! and invariant with respect to B™ and such that the
restriction of B™ to A is smoothly conjugated to a rotation with a constant Diophantine vector.
If the deformation is isospectral we prove that certain integrals on A of the function K or of the
potential V' remain constant under the deformation. In the case of Liouville billiard tables we
treat these integrals as values of a suitable Radon transform. Then the spectral rigidity follows
from the injectivity of the Radon transform. Liouville billiard tables of dimension two have
been studied in [13]. Liouville billiard tables of dimension n > 2 are introduced in [15], where
the integrability of the corresponding billiard ball map is obtained using a simple variational
principal. The injectivity of the Radon transform in higher dimensions is investigated in [14].
A billiard table (X, g) is a smooth compact Riemannian manifold of dimension dim X =n >
2 equipped with a smooth Riemannian metric g and with a C* boundary I := 0X # (). The
corresponding continuous dynamical system on it is the “billiard flow” which induces a discrete



dynamical system B on an open subset of the coball bundle of T' called billiard ball map (see
Sect. 2.1). Let A be the “positive” Laplace-Beltrami operator on (X, g). Given a real-valued
function K € C(I',R), we consider the operator A with domain
ou
D= H*X): —|p=K
{uemrco: S = rur},

where v(z), z € I', is the inward unit normal to I" with respect to the metric g. We denote this
operator by Ay k. It is a selfadjoint operator in L?(X) with discrete spectrum

SpecAg g :={A <A <1}

where each eigenvalue A = ); is repeated according to its multiplicity, and it solves the spectral
problem

Au = Adu inX, )
ou 1.1
— = Kulr.
8V|F ulr

1.1 Invariants of isospectral families

Fix ¢ € N and consider a continuous family of C¢ real-valued functions K, t € [0, 1], which
means that the map [0,1] > ¢ — K is continuous in C*(I',R). To simplify the notations we
denote by A; the corresponding operators A, x,. These operators are said to be isospectral if

Vt e [0,1], Spec(Ay) = Spec(Ay) . (1.2)

We are going to introduce a weaker notion of isospectrality. Fix two positive constants ¢ and
d > 1/2, and consider the union of infinitely many disjoint intervals

Hy) Z = U, fak,be], O0<ar<by<---<ap<b,<---, such that
limag = limb, = 400, lim(by —ag) = 0, and agy1 — b, > cb,:d for any k>1.

We impose the following “weak isospectral assumption”:
(Hg) There is a > 1 such that ¥Vt € [0,1], Spec(A;) N[a,+o0) C T.

Using the asymptotic of the eigenvalues \; as j — oo we shall see in Sect. 2 that the condition
(Hy)-(Hz2) is “natural” for any d > n/2 which means that the usual isospectral assumption
implies (H;)-(Hz) for any such d and any ¢ > 0.

We suppose also that there is an integer m > 1 such that the map P = B™, B being the
billiard ball map, admits an invariant Kronecker torus with Diophantine vector of rotation,
namely,

(Hs) There exists a positive integer m and an embedded submanifold A of B*T" diffeomorphic
to T ! and invariant with respect to P = B™ such that the restriction of P to A is C>
conjugated to the rotation Ron,(p) = ¢ — 21w (mod 27) in T, where w is Diophantine.

We take m > 1 to be the smallest positive number with this property, then P = B™ is just the
return map along the broken bicharacteristic flow near A. Recall that w € R"~! is Diophantine
if there is kK > 0 and 7 > 0 such that

K

V(kkn) €Z" k= (kiye o k1) 20 0 [(w k) +kn| > ——1—.
(520 ks

(1.3)



Then A C B*T" is Lagrangian (see [7], Sect. 1.3.2). Let nr : T*I" — I" be the canonical projection
and denote by du the measure associated to a Leray form at A. Given (z,§) € B*I', we denote
by £t € T#X the corresponding outgoing unit co-vector and by 6 = 0(x,£) € (0,7/2] the angle
between £+ and T:T in T X (see Sect. 2.1).

Fix d > 1/2 and 7 > 1 and set ¢ = ([2d] + 1)([7] +n) 4+ 2n + 2, where [p] stands for the entire
part of the real number p. In what follows d will be the exponent in (H;), and 7 the exponent
in the Diophantine condition (1.3). Our main result is:

Theorem 1.1 Let A be an invariant Kronecker torus of P = B™ with a vector of rotation 2mww
satisfying the Diophantine condition (1.3). Let

0,1] 5t +— K; € CYT,R) ,

be a continuous family of real-valued functions on I' such that A; satisfy (Hy) — (Hz2). Then

m—1 m—1
Kiomr - Koornr -
Vi 1 Blduy = Bldu. 14
<l X [ Sogtenian = X [ S e s i (14

Before giving applications of the theorem we would like to make some comments on it. It is
inspired by a result of Guillemin and Melrose [5, 6]. They consider a connected clean submanifold
A of fixed points of P = B™, m > 2, satisfying the so called “non-coincidence” condition. Let
Ta be the common length of the closed broken geodesics with m vertexes issuing from A. The
“non-coincidence” condition means that these geodesics are the only closed generalized geodesics
in X of length T. Under this condition, Guillemin and Melrose prove that if K;, j = 0,1, are
two real-valued C'*° functions on I' such that Spec (A k,) = Spec (Ag k,), then (1.4) holds for
t = 1. In the case when X C R? is the interior of an ellipse I' they obtain an infinite sequence
of confocal ellipses I'; C X tending to I' such that the corresponding invariant circles A; of B
satisfy the non-coincidence condition. In particular, (1.4) holds for ¢ = 1 and m = 1 on each A;.
As a consequence they obtain in [5] spectral rigidity of (1.1) in the case of the ellipse for C'*°
functions K which are invariant with respect to the symmetries of the ellipse. The main tool in
the proof is the trace formula for the wave equation with Robin boundary conditions in X (see
[6]). This result was generalized in [13] for two-dimensional Liouville billiard tables of classical
type.

There is no hope to apply the wave-trace formula in our situation. An invariant Kronecker
torus A of the billiard ball map B can always be approximated with periodic points of P = B™
using a variant of the Birkhoff-Lewis theorem and a “Birkhoff normal form” of P near A.
Unfortunately, we do not know if the corresponding closed broken geodesics are non-degenerated.
Moreover, it is impossible to verify in general the non-coincidence condition.

We propose a simple idea which relies on a quasimode construction. It is natural to use
quasimodes for this kind of problems since quasi-eigenvalues are close to eigenvalues and they
contain a lot of geometric information. In order to prove (1.4), we construct continuous with
respect to ¢t € [0,1] quasimodes for A; of order N = [2d] + 1, [2d] being the entire part of 2d.
The quasi-eigenvalues (see Theorem 2.2) are of the form p,(t)?, ¢ € M C Z", where

Ha(t) = g + cqo + cq(O)(Hg) ™+ + cqn () (1g)



,ug and cq o are independent of ¢, lim),_ ,ug = 400, and ¢, j, ¢ € M, is an uniformly bounded
sequence of continuous functions in ¢ € [0, 1]. The function ¢, ; has the form

KtOTFF
/!
cq1(t) —01+C1/Z 00

where cq 1 and ¢f # 0 are independent of ¢ and ¢/ does not depend on ¢ either. Moreover, there
is C' > 0 such that forany ge M CZ" and t € [0, 1], there is \;(t) € Spec (A;) such that

Aglt) = pg(t)?] < C DA

Notice that p4(t) is continuous in ¢ € [0, 1] but A,() is not continuous in general. Because of
(Hz) the quasi-eigenvalues 14(t)?, |q| > go > 1, belong to the union of intervals [aj, —ca, % /4, by, +
cb;? /4] which do not intersect in view of (Hy). Since ,(t)? is continuous in [0,1], it can not
jump from one interval to another. Hence, for each ¢ € M, |q| > 1, there is k = k(q) > 1 such
that

e (t) = cq1(0)] < 11g(0)]1q(t) — 11 (O)] + C" (1) ™" < C"(I1q (1) = g (0)?| + () ™)

< C'(by — ap, + ca* + (,ug)_l) =€k,
for any ¢ € [0,1], where C” stands for different positive constants, and lim ey, = 0 as [g] — oo
in view of (Hj), which proves (1.4).
We point out that if a}, /2 (b —ar) — 0 as k — oo for some integer p > 0 and if ¢ is sufficiently
large, one can prove also that Cq,j(t) = ¢q,5(0) for j < p+1, which would give further isospectral
invariants involving integrals of polynomials of the derivatives of K;.

1.2 Applications and spectral rigidity

Kronecker invariant tori usually appear in Cantor families (with respect to the Diophantine
vector of rotation w), the union of which has positive Lebesgue measure in T*T", and Theorem
1.1 applies to any single torus A in that family. Consider for example a strictly convex bounded
domain X C R? with C* boundary I', and fix 7 > 1. It is known from Lazutkin [9] that for any
0 < k < Ky < 1 there is a Cantor set =, C (0,eg], g < 1, of Diophantine numbers w satisfying
(1.3) and such that for each w € E, there is a KAM (Kolmogorov-Arnold-Moser) invariant circle
A, C B*T of B satisfying (Hg) with m = 1 and with rotation number 27rw. Moreover, Z, is of
a positive Lebesgue measure in (0, g¢], the Lebesgue measure of (0,¢] \ 2, 2 = UE,, is o(¢) as
e — 0, and so is the Lebesgue measure of the complement to the union of the invariant circles in
an e-neighborhood of S*I" in B*I". More generally, the result of Lazutkin holds for any compact
billiard table (X, g), dim X = 2, with connected boundary I" which is locally strictly geodesically
convex. Set ¢ = ([2d] + 1)([r] + 2) + 6.

Corollary 1.2 Let (X,g), dim X = 2, be a compact billiard table with C°°-smooth connected
and locally strictly geodesically convex boundary I'. Let

[0,1] 5 t+— K; € CYT,R),
be a continuous family of real-valued functions on I' such that A, satisfy (Hy) — (Hz2). Then

K;omr Koomnr

YweE, Vtelo,1], dy =

du . 1.
A, Sind A, Sinf a (1.5)



It will be interesting to know if the relation (1.5) implies Ky = K| for generic I

Another example can be obtained applying the KAM theorem to the Poincaré map of a
non-degenerate elliptic periodic broken geodesic with m vertexes (in any dimension n > 2).

Theorem 1.1 can be applied also in the completely integrable case, for example for the
ellipse or the ellipsoid, or more generally for Liouville billiard tables of classical type [13, 14]
in any dimension n > 2. We are going to prove spectral rigidity for two dimensional Liouville
billiard tables of classical type (see Sect. 5 for definition). Such billiard tables have a group
of isometries I(X) = Zo & Zo which induces a group of isometries I(I') = Zy @ Zo on the
boundary. We denote by Symmf(F) the space of all C*¢ real-valued functions which are invariant
with respect to I(I'). We show next that any continuous weakly isospectral deformation of K in
Symm®(I"), ¢ = 3[2d] + 9, is trivial. More precisely, we have

Corollary 1.3 Let (X,g), dim X = 2, be a Liouwville billiard table of classical type. Let Ky, t €
[0,1], be a continuous family of real-valued functions in C*(T',R) such that A satisfy (Hy)—(Ho).
Assume that Ky, K1 € Symmé(F). Then K1 = K.

It seams that even for the ellipse this result has not been known. Using Lemma 2.1 and Corollary
1.3 we obtain that any continuous isospectral deformation of K in the sense of (1.2) in Symm?®(T"),
£ > 15, is trivial. We point out that the Liouville billiard tables that we consider are not analytic
in general and the methods used in [5] and [13] can not be applied.

In the same way we treat the operator A; = A + V; in X with fixed Dirichlet or Robin
(Neumann) boundary conditions on T', where V; € C(X), t € [0,1], is a continuous family of
real-valued potentials in X. The corresponding results are proved in Sect. 4. Injectivity of
the Radon transform and spectral rigidity of Liouville billiard tables in higher dimensions is
investigated in [14].

We point out that the method we use can be applied whenever there exists a continuous
family of quasimodes of the spectral problem and if the corresponding Radon transform is
injective. It can be used also for the Laplacian A in the exterior X = R™ \ © of a bounded
domain in R™ with a C'"*°-smooth boundary with Robin boundary conditions on it. In this case
an analogue of (H;)-(Hs) can be formulated for the resonances of Ag close to the real axis
replacing the intervals in the definition of Z by boxes in the complex upper half plain. Given a
Kronecker torus A of B we obtain quasimodes of A associated to A. By a result of Tang and
Zworski [18] and Stefanov [16] the quasi-eigenvalues are close to resonances and one obtains an
analogue of Theorem 1.1. The corresponding results will appear elsewhere.

2 Quasimodes and spectral invariants

2.1 Billiard ball map

We recall from Birkhoff [1] the definition of the billiard ball map B associated to the billiard
table (X, ¢g) with boundary I'. Denote by h the Hamiltonian corresponding to the Riemannian
metric g on X via the Legendre transformation. The billiard ball map B lives in an open subset
of the coball bundle

BT ={(x,&) e T*T : ho(x,§) < 1},

where hg is the Hamiltonian corresponding to the induced Riemannian metric on I' via the

Legendre transformation. The map B is defined as follows. Denote by B* T the interior of B*I"



and set
S*X ={(x,§) e T*X : h(z,§) =1}, E=5"X|p:={(z,§) e "X : 2z €T},

25 = {(2,6) € X : £(§v(x)) > 0}
The natural projection 7y, : ¥ — B*T" assigning to each (x,7n) € X the covector (x,n|r,r) admits
two smooth inverses 5

75 BT — £ 18 (2,€) = (,85).

Take (x,&) € B*T and consider the integral curve exp(tX},)(z,£T), of the Hamiltonian vector
field X}, starting at (z, &) € 2. If it intersects transversally ¥ at a time ¢; > 0 and lies entirely

in the interior S* X of S*X for ¢ € (0,%1), we set

(%77_) = J($7£+) = exp(thh)(ac,§+) € X )

and define B(z,§) := (y,n), where  := n_|r,r. We denote by B*T the set of all such points
(z,€). In this way we obtain a smooth symplectic map B : BT’ — B*T', B = 7y, 0 Jomd. Asin
[10] we can write 7y, in an invariant form as follows. Consider the pull-back wp in T*X|r of the
symplectic form w in T* X via the inclusion map. Then the projection along the characteristics
of wg induces the map ny : ¥ — B*T.

Denote by 7p : T*T" — T the inclusion map. Given (z,&) € B*T", we denote by 6 = 0(x,¢) €
(0,7/2] the angle between £ and T:T in T;X (equipped with the metric || - || = /h(z,")),

which is determined by sinf = /1 — ho(z,§).

2.2  Quasimodes

First we shall show that the isospectral condition (Hj)-(Hsz) is natural for any d > n/2. Given
¢ >0 and a > 1 we consider

Iy = {)\ >a: |Spec(Agr) — Al < 2C>\_d} .

Let us write Zy as a disjoint union of connected intervals [Ek,gk], and then set ap = @ + c&,;d
and by, = by — cg,zd. We have by — @ > 2c(a;? + E,jd), hence, by, — ax > c(@,? + E,jd) > 0.
Denote by Z = 7 (Ag k) the union of the disjoint intervals [ay,b;], & > 1. By construction
api1 — by > ca,;fl since the intervals [ay, by are disjoint.

Lemma 2.1 The setZ (A k) satisfies (Hy) for any d > n/2. In particular, the usual isospectral
condition (1.2) implies (H)-(Ha) for T =7 (Ag) and any d > n/2.

Proof of Lemma 2.1. 1t remains to estimate the length of the interval [ag, bi]. Let Ay, <o <\,
be the eigenvalues of Ay i in [a, by|. Then

[Aj = Al < der;d

for p < j <. On the other hand, by Weyl’s formula, \; = vj%/"(1 + o(1)) as j — 400, where
v > 0 is a constant. Then choosing k > 1, respectively j > 1, we get \; > 27 1y42/" and

2d 2 2d

T r d
bo—a < CY j < C/s_zrflds <C)\ " <Ca, ",
J=p P

6



where C stands for different positive constants. Hence, by — aj, < by — @ = o(1) for d > n/2,
which proves the Lemma. O

Fix a positive integer V. By quasimode Q of A, i of order N we mean an infinite sequence
(14> Ug)gem, M being an index set, such that p, are positive, limpu, = +oo, u; € C*(X),
|ugllr2(xy = 1, and

HAuq - ,uguqH < CN,u;N in L2(X),
(2.6)
|Oug/Ov|r — Kuglr] < CNuq_N in L*(T).

Denote by A(p) the action along the broken bicharacteristic starting at o € A and with endpoint
P(p) € A. Note that 2A(p) > 0 is just the length of the corresponding geodesic arc.

Theorem 2.2 Let A be a Kronecker torus satisfying (Hs) with frequency given by (1.3) and
exponent T > 1. Fiz two positive integers N > 2 and | > N([r] + n) + 2n + 2 and let B be a
bounded subset of C'(T',R). Then for any K € B there is a quasimode (j1q,uq)qem, M C Z", of
Ay i of order N satisfying (2.6) such that

Mg = :“2 + g0+ Cq,l(ﬂg)_l +oeet Cq,N(Ng)_N

where
(i) ,ug is independent of K and there is C° > 0 such that ug > CVq| for any g € M,

(ii) the map K — c,; € R is continuous in K € CY(T',R) and there is C = C(B) > 0 such
that |cq;| < C for any ge M, 0<j <N, and any K € B,

(111) cq0 is independent of K and

vl Kon
/ 1" r J
Co1=C 1+ g - oBld
q, q,1 1 / 0//; Sln9 M,
]:

where C;,1 is independent of K, and

2
P VAl dp

Moreover, the positive constant Cy in (2.6) is uniform with respect to K € B.

Proof of Theorem 1.1. Denote by B the set of Ky, t € [0,1]. Take N = [2d] + 1 > 2, the
smallest positive integer bigger than 2d, and consider the quasi-eigenvalues ,uq(t)2, t € [0,1],
given by Theorem 2.2. It is easy to see ([9], Proposition 32.1) that there is a positive constant
C’ depending only on Cy such that for any ¢ € M C Z" and t € [0, 1],

!Spec (A1) — :“q(t)2| < Clﬂq(t)_pd}_l'



Then for any ¢ € M, |¢| > qo > 1, and t € [0,1] there is A\r, € Spec(A;) such that A\, , >
(C") gl and
—([2d]+1)/2

where C’ > 0 depends only on C° and Cly. Since ([2d]+1)/2 > d, using (Hz) we obtain that the
quasi-eigenvalue f1,(t)? belongs to the union of the intervals [ay — cay®/4, by + cb,?/4] for any
q € M with |g| > go > 1 and any ¢ € [0, 1]. These intervals do not intersect each other in view of
(H;) and since p4(t)? is continuous in [0, 1] it can not jump from one interval to another. Hence,
for each g € M with |g| > qo there is k = k(q) such that uy(t)? € [ay — ca, @ /4, by, + b, ? /4] for
any t € [0,1], and we obtain

sin 0

Z / Ry o Bldu| = |cq,1(t) — cq,1(0)]

Mq(o)
Vag

< (bk —ay + ca,;d + (ug)_l) = e},

< puglpig(t) — p1g(0)] + C'(ug) ™ < € < g (t)* — 11g(0)?] + (MS)‘1>

where C’ stands for different positive constants depending only on the constants C°, C' and Cy
in Theorem 2.2. Hence C’ depends neither on ¢ nor on ¢ and hgl Ek(q) = 0 in view of (H;)
g—+0o0

which proves (1.4). O

3 Construction of continuous quasimodes

3.1 Reduction to the boundary.

We are going to use an outgoing parametrix for the Helmholtz equation with initial conditions
on I'. In the time dependent case such a parametrix has been constructed by Guillemin and
Melrose [5].
Set A; = B/(A), j =0,1,...,m, where A,,, = P(A) = A, m > 1. Since w is Diophantine,
P acts transitively on each Aj, hence, A;NA; = 0 if 0 < |i — j| < m and m > 2. Choose
neighborhoods U; C B*T of Aj;, 0 < j < m, such that Uj;q is a neighborhood of the closure
of B(Uj) for j = 0,...,m —1, m > 1, and such that U; NU; = 0 if 0 < |i — j| < m and
m > 2. We denote by (X,g) a C™ extension of (X, g) across I such that any integral curve ~
of the Hamiltonian vector field X7, h being the corresponding Hamiltonian, starting at 71'2'“ (Uj),
7 =0,...,m — 1, satisfies B
’}/ﬂT*Xh" CW;(Uj)Uﬁi(Uj_;_l). (37)

Then + intersects transversally 7*X|r and for each ¢ € U; there is an unique T}(0) > 0 such
that

exp(T}(0)X5,) (75; (0)) € 75 (B(U;) -
Let ¥;(X), 7 =0,1,...,m, be classical A\-pseudodifferential operators (A-PDOs) of order 0 on I
with a large parameter A and compactly supported amplitudes in U; [12] such that

WF/(Id — ) N Aj = 0,



and
WF'(¢41) C B(U;j), WF'(Id — ¢j11) N B(WF'(¢;)) =0 for j =0,...m —1. (3.8)

Hereafter WF’(¢);) stands for the frequency set of ¢, [12], and by a “classical” A-PDO we mean
that in any local coordinates the corresponding distribution kernel is of the form (A.1) where the
amplitude has an asymptotic expansion g(z,§,\) ~ > 7 qr(z,&)A7F and ¢ are C*° smooth
and uniformly compactly supported. In particular the distribution kernel OP(q)(-,-) is smooth
for each A fixed. We take X in a complex strip

D:={2e€C: |[Imz| < Dy, Rez > 1},

Dy > 0 being fixed. N
We are looking for a microlocal outgoing parametrix H; : L*(T') — C°°(X), of the Dirichlet
problem for the Helmholtz equation with “initial data” concentrated in U; such that

(A = M) H;(N) = O (]A~) (3.9)
in a neighborhood of X in X. Hereafter,
Om(IA™™) + LA(T) — Li,o(X)

stands for any family of continuous operators depending on A with norms < Cys p(1 + [A|)~M,
Ca,r > 0, on any compact F' C X. We shall denote also by

Om(A™) = LX) — LA(T)

any family of continuous operators depending on A with norms < Cps(1 4 |A))~, Cyr > 0.

The operator H; is a Fourier integral operator of order 1/4 with a large parameter A € D
(A-FIO) the distribution kernel of which is an oscillatory integral in the sense of Duistermaat [4]
(see also [12]). In any local coordinates its amplitude is C*° smooth, it is uniformly compactly
supported for A € D and it has an asymptotic expansion in powers of A up to any negative
order. In particular, Hj(A)u is a C* smooth function for any fixed A and u € L*("). The
corresponding canonical relation lies in TI" x T*X and it is given by

C; = {(0; exp(sX;)(7(0))) : 0€U;, —e<s<Tj+e},e>0.

We parameterize it by (o0,s). Consider the operator of restriction i} : C®(X) — C=(T),
{58 (u) = ur, as a A-FIO of order 0, the canonical relation R of which is just the inverse of the
canonical relation given by the conormal bundle of the graph of the inclusion map 2 : I' — X.
Notice that the composition R o C; is transversal for any j and it is a disjoint union of the
diagonal in U; x U; (for s = 0) and of the graph of the billiard ball map B : U; — U1 (for
s =1T}). Let ¥;(\) be a A-PDO of order 0 such that WF'(¥; —Id) "WF’(¢);) = 0. Taking ¥,(\)
as initial data at I" for s = 0 and solving the corresponding transport equations, we obtain an
operator H;(\) satisfying (3.9) and such that

i Hj(A) = U5(A) + G5(A) + Our(IA7Y) (3.10)

where G () is a A-FIO of order 0, the canonical relation of which is the graph of the billiard ball
map B : U; — Uj41. Moreover, its principal symbol is equal to 1 in a neighborhood of WE' (1))



modulo Maslov’s factor times the Liouville factor exp(iAA;(p)), where A;(o) = f%,(g) &dx is the
action along the integral curve 7;(o) of the Hamiltonian vector field X5 starting at o € Uj
and with endpoint B(g) € Uj41. In particular, the frequency set WF' of G;()) is contained in
UjxUjtq for any j =0,...,m—1. Note that 24,(p) is just the length T} (o) of the corresponding
geodesic ¥;(p) in X and we have

s (exp(24;(0)X5) (755 (0))) = B(o), 0 € Uj.

Fix a bounded set B in CYT',R) and take K € B. Consider the operator N' = 0/0v — K ina
neighborhood of T" in X where 7 is a normal vector field to T’ and K is a C'- smooth extension
of K with compact support contained in a small neighborhood of I'. To construct K we extend
K as a constant on the integral curves of 7 and then multiply it with a suitable cut-off function.
In this way we obtain a continuous map K — K from C!(I',R) to CO(X R).

Suppose first that m = 1 and set G(A) = Ho(A\)to(A). Then (A — A2)H;(\) = Op (A7)

in a neighborhood of X in X, in view of (3.9). Moreover, using the symbolic calculus and (3.8)
we obtain

it NGV = 01\ ARF + K) vo(A) + 1A AR + K) Go(Mwo(A) + Oar(]AI7).

Here, R(J{ (A) is a classical A-PDO of order 0 on I' independent of K, with a C§°-symbol in any
local coordinates, and with principal symbol

o(R§)(0) = iv/1—holo), 0€ Uy,

and R is a classical A-PDO of order 0 on I' independent of K with principal symbol

o(Ry)(e) = —i\/1—ho(e), 0€ Uy .

We consider the following equation with respect to Q1
1 ARy + K + (AR + K)Q1(V)] = 0s(A ™) , (3.11)

which we solve using the classes PDO; 2 p—1(I'; B; A) defined in the Appendix. Hereafter,
Op(IA|™M) : L*T') — L?(I") denotes any family of continuous operators depending on K € B
and on A € D with norms uniformly bounded by Cg(1 + |A|)™, where Cz > 0 is a constant
independent of K € B. We cover U; by finitely many local charts, and in each of them we write
the complete symbol of @; of the form (A.2). Then using a suitable C'* partition of the unity
in the phase space, we put them together and obtain an operator

Q=Q+\"'Q

which is well defined modulo Og(|A| ™). Here QY is a classical A-PDOs of order 0 independent of
K and with a C'*° symbol, and Q% € PDO; 2 pr—1(I'; B; A). The corresponding principal symbols
are

2K (x)  2iK(x)
].—hO(IE,f) sin@(aj,ﬁ)
in a neighborhood of WF'(11) in U;. In this way the equation

UO(Q(I])(:L‘vE) =1, UO(Q%)(ZL‘vE) =

5N G\ = O (1N
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reduces to (W(A) —Id)yg(A)v = Op(|A|~M)v, where W()) := Q1 (N)Go(N).
Suppose now that m > 2. In order to satisfy the boundary conditions at U; 41,0 < j < m—2,
we are looking for a A-PDO Q;1(\) such that

it VN Hya (V@1 (NG (V) + by (Vi N H; () = Op(IA). (3.12)

Using the symbolic calculus we write
it O N Hjp1(NQj+1 (NG (A) = ¢t MRS (A) + K)Qjr1 (NG5 (A) + Onr(|AI ™)

where R; +1()\) is a classical A-PDO of order 0 on I' independent of K, with a C§°-symbol in any
local coordinates, and with principal symbol

( ]+l \/1—h0 QEU]_H

In the same way we obtain
it Vi N Hy(N) = 951 (MRS + K) G(A) + O (A7),

where R i+ is a classical A-PDO of order 0 on I' independent of K with principal symbol

U(R]—i-l \/1—h0 QEU]_H

Then (3.12) reduces into the equation
BN [ARS + K)Qiun + ARy, + K| = Os(IN ™) (3.13)

on Uj41, which we solve as above in the classes PDO; 2 a7—1(I'; B; ). More precisely, we obtain
an operator

Qj—i—l = Q?—‘,—l + )\_IQJI‘-H

which is well defined modulo Og(|A\|~™), where Q° 1 1s a classical A-PDOs of order 0 independent
of K and with a C'° symbol, and Q]H € PDO; 2 p—1(I'; B; A). The corresponding principal
symbols are

2iK(z)  2iK(x)
1-— ho(m,f) B Sin@(ZL‘,f)

UO(Q?+1)($7£) =1, UO(QJI'+1)($7£) =

in a neighborhood of WF'(¢;41) in Uj41.
Consider the operator G(A) : C*°(I') — C*°(X) defined by

G(N) = Ho(Nvho(A) + D Hem1(MITEZF (Qy1 (V)G (V) tho(A) -
=2

Using (3.8) - (3.10) and (3.12) we obtain

{(A—A?)G(A) = Op(IAI™™),
BNGA) = YauWNART + K)o(A) + Um(AN ARy, + K) W (A)eo(A) + Os(AI~M),
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where .
W(A) = 15 Hn- 1 (VIS (541N Q541 (NG5 (V)
and Ry and R;, are defined as above. As in (3.11) we find Q,,, = Q% + A71QL, such that

Um(\) ARy, + K + (ARG + K)Qm(N)] = Os(IN ™M) ,

where QF,, k = 0,1, are as above. In this way we reduce the equation 1 N G(A)v = Og(|\|=™)v
to the following one
(W) =Td)go(Nv = Os(IAI")o, (3.14)
where -
W) = QuNW () = L (511 (N) Q11 (NG5 (V) -

Set S(A) = HT:_OlGj()\). By construction G;(A) is elliptic on WF’(¢);Q,), and using Lemma A.2
we commute G;(A) with ¢;Q;. Since PDO; 2 ps—1(I'; B; A) is closed under multiplication (see
Remark A.1), we obtain another A-PDO of the same class which we commute with G;1()) and
so on. Finally, for any m > 1 we obtain

W) = ¢m(N) Q") +A7IQI (V) S(W)wo(A) +Op(A™).

Here, QY()) is a classical A-PDOs on I with a C* symbol independent of K and with principal
symbol 1 in a neighborhood of A, and @' € PDO; 2 p—1(;B;A\). By Egorov’s theorem (see
Lemma A.2) the principal symbol of Q!()) is

o0(Q! xs—%Z ””“”, (9,€7) = B(2,6),

sin @(xz7,&7)

in P(Up). The operator S(A) does not depend on K, and it is a classical A-FIO of order 0 with
a large parameter A € D. The canonical relation of S()\) is given by the graph of the map
P = B™ : Uy — Uy, and the principal symbol of S(\) equals one modulo a Maslov’s factor
times the Liouville factor exp(iAA(z,£)), (x,€&) € P(Up), where A(z,§) = E?Zol Aj(,89).

3.2 Birkhoff normal form of P.

First we find a symplectic Birkhoff normal form of P in a neighborhood A using [9], Proposition
9.13. We choose a basis of cycles v;, j = 1,...,n — 1, of the first homology group H;(A,Z),
and set 10 = (I?,..., 1% ), where I]Q = (2m)~1 f% &dx. Using Proposition 9.13, [9], we obtain
an exact symplectic transformation y mapping a neighborhood of T"~! x {I°} in T*T"! to a

neighborhood of A in é* I" such that
(i) x(T"1 > {I°}) = A,
(i) the symplectic map P° := x~! o P o x has a generating function of the form
Oz, 1) = (x,I) + L(I) + R(z,I), c e R" 1 | - Ip| < 1,
ie. PO(V;®,1)= (x,V,®), where R is 27-periodic in z,

(iii) VL(I?) = 2mw and 0% R(z,1°) = 0, z € R"" L, for each o € N1,
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In particular, we obtain
WEN, PoI) = (¢~ VLI),I) + Oy - of?). (3.15)

We choose the constant L(I°) as follows. Consider the “fow-out” 7 = T™ of A by the broken
bicharacteristic flow of h in T*X. Let p° = x(¢°,I°) € A. We denote by 7,1(p") the broken
bicharacteristic arc in 7 issuing from p" and having endpoint at P(p°), and by vu2(p°) :=
x(@ + (s — 1)27w), 1Y), s € [0, 1], the arc connecting P(p°) and p? in A. Let ~, be the union of
the two arcs. We denote by L(I°) the action along ,, i.e.

L(I% = ¢dr . (3.16)
In

Note that the integral above depends only on the homotopy class of the loop 7, in the Lagrangian
torus 7. We can give now a geometric interpretation of L which will be needed later. The

Poincaré identity gives
P*(&dx) = &dx + dA,

where ¢dz is the fundamental one form on T*T and A(p), p = x(@, 1), |I — I°| < 1, stands
for the action along the broken bicharacteristic 7,1(p). Since x is exact symplectic we have
x*(&édx) = Idp + d¥ with a suitable smooth function ¥ € C°°(T*T"!). Combining the two
equalities we obtain

(PYY*(Idp) — Idp = d((Aox) + ¥ — W o PY).

In view of (3.15) this implies
L(I) = (I, VL(I)) = A(x(0, 1)) + (0, 1) = U(P°(¢, 1)) + Op (I — I°IP) (3.17)

for any p € N modulo a constant C' € R. Notice that C should be zero since for I = I° and
w = VL(I°) /21 we obtain using (3.16)

L(I%) — (I°, VL(I%) = L(I°) — 27 (I°,w) :/ I%dy

0
nl

= [ e W) - W - 2 1) = A1)+ U T - WP T)),
Yn1(p0)

where v5; := X" (7n1(p°)).
Set o/ = PI(0") = x(¢° — 2mjw, I?). The measure du = x.(dp) on A is invariant with
respect to the map P : A — A which is ergodic since 27w is Diophantine, and we get

j—1
L(I%) = 27 (I°, w) = Jim, % D Al = (27r)1_”/AA(g) du > 0. (3.18)
k=0

3.3  Quantum Birkhoff normal form.

Using the restriction of x to T"~! x {I'}, we identify the first cohomology groups H'(A,Z) =
HY(T""1,Z) = Z"!, and we denote by 9y € Z" ! the Maslov class of the invariant torus A. As
in 3] we consider the flat Hermitian line bundle L over T"! which is associated to the class 9.
The sections f in L can be identified canonically with functions f : R*~! — C so that

flz+2mp) = €2W0P f(z) (3.19)
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for each € R"~! and p € Z"~!. An orthonormal basis of L?(T"~!, L) is given by ey, k € Z"!,
where
er(z) = exp (i(k +Jo/4,2)) .

We quantize the canonical transformation x as in [3]. More precisely we find a classical A-FIO
T(\) : C®°(T" 1, L) — C°°(T) the canonical relation of which is just the graph of x and such
that WF'(T(\)T(\)* — Idr) N B(U,,) = 0. We suppose that the principal symbol of T'()) is
equal to one in T"! x DY modulo the Liouville factor exp(iA¥(p,I)), where D is a small
neighborhood of I°. Conjugating W ()\) with T'(\) and using Lemma A.2 and Remark A.3 we
obtain

TOPWNTR) = [T (QUN) +A71Q1) T] [T S(NT()
W) + Os(A| )

where ¥ € Z is a Maslov’s index and W7 () is a A-FIO operator of the form

n—1

Wi(\u(z) = <i> / M@= F®@D) (3 T X) (y) dIdy, (3.20)
27 R2n—2

u € C®°(T" 1, L). The symbol w(z, I, ), (z,I) € R"! x D, is 2r-periodic with respect to z

and uniformly compactly supported in I € D, where D is a small neighborhood of I°, and it is

obtained by the stationary phase method. We have w = wo+A"'w’, where wg € C®(R"~! x D),

wo(z,I) =1 for (x,1) € R"! x D DY being a neighborhood of I°, and

M—-2
w’ =" w@, AT € Sam1 (T x D;B; A).
=0
Moreover,
m—1 Ko
. . r i
o) = iuglo. )+ 20 3 (S200) (B (mo(e). 1)

7=0
where wy, is a C* real valued function independent of K and 7y : R"~ 1 — T~ is the canonical
projection. The phase function is given by ®(z,I) = L(I) + R(z,I) + C, where C is a constant,
since the canonical relation of W;()) is just the graph of P°. Comparing the Liouville factors
in the principal symbols of W1 (\) and W(A) and using (3.16) and (3.17), we obtain as in [12]
that C = 0.

The frequencies I of the quasimode we are going to construct satisfy I — I° ~ A~1, where \?
are the corresponding quasi-eigenvalues. For that reason we consider the Taylor polynomials of
the symbols at I = I° up to certain order. Let ¥ € C$°(D) and 3 = 1 in a neighborhood of I°.
For any positive integers [, 72 2, s > 2 and N > 1 such that 72 sN + 2n and for any bounded
set B C CYT') we denote by §ZS’N(’]T”_1 x D; B; \) the class of symbols

{ alp, I, = L5 aj(p, AT,
a;j(p, 1) = ¥(I) Z\a|§N_j_1(I_IO)aaj,a((P)

where a; o = 0%a;(-,1°)/a! € CZN_SJ'_W(’]I‘”_l) and the corresponding map

(3.21)

CUT,R) 5 K — a;4 € CLsi=lal(pn1)
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is continuous. We denote also by EN(']T”_l x D;B; \) a residual class of symbols

{ ”"(907 I, >‘) = Z;V:_Ol Tj(gp, [))\—j’
(0, 1) = Yjajen—; (I = I9)°rjalp, 1)

where CY(T',R) > K — r;, € C2*(T""! x D) is continuous in the sense that the support of r;
is contained in a fixed compact set in T"~! x D independent of K and the map K — Tja €
C?"(T"! x D) is continuous in C*(T, R). Note that the class gf,s,N/EN does not depend on of
1. The choice of the residual class is motivated by the proof of Proposition 3.3 below.

Denote by L, the operator defined by L,a(¢) = a(¢ — 2m1w) — a(p).

(3.22)

Proposition 3.1 Fiz [ > (M — 1)([7] + n) + 2n + 2 and suppose that K belongs to a bounded
subset B of CY(T',R). Then there exists a \-PDO A()) of order 0 acting on C®°(T" "1 1) and a
A-FIO WO(X) of the form (3.20) such that

WiNAR) = ANWO(N) +R(A) + Os(AI™Y),
the full symbols of A(\) and of WO(X) are
o(A)p, 1, A) = ao(I) + 2" (@, LX) - o(WO)(p, 1, A) = po(1) + A~ 'p (1),
with ag, po € C(D), ao(I) = po(I) = 1 in a neighborhood D° of I°, and

p° e gz,[THn,M—l(D;B; A),

~ (3.23)
a’ € 81—, 4nm—1(T" 1 x Dy B; A).
Moreover, R® is a A-FIOs of the form (3.20) with symbol
a(RO)(p, I,A) = ro(p, I) + X110, I, ),
(3.24)

r0 = Zj]\iaz r?)\_j S EM_l(T”_l x D;B,)\),

ro =0 in T" 1 x D% and
1
0 0 0
— I")dyp.
Po,0 2r) 1 /Tnl w (e, I7)dp

Proof. Given f € CN(T" ! x D) we denote by Ty f its Taylor polynomial with respect to I at
I=10ie.
N

Tnf(e, 1) = S (1= I fulp),

k=0

where fo(p) = 0% f(,I°)/al are the corresponding Taylor coefficients. We need the following

Lemma 3.2 Let A(\) and WO()\) have symbols ag(I) + X1a®(p, I, \) and po(I) + X~ 1p°(1, \)
respectively, where ag(I) = po(I) = 1 in a neighborhood D° of I°, and a° and p° satisfy (3.23)
with 1 > (M — 1)([7] +n) + 2n + 2. Set

R(\) == Wi (M)A — ANWO(N).
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Then
R(A) = A7 Ri(A) + R°(A) + Og(]A),

where R1(X\) and RO(\) are A-FIOs of order O of the form (3.20), the symbbol
M—2
Ri(p,I,M) = Y Rij(p
7=0

of R1(\) belongs to gl,[T]+n7M_1(’]I‘”_l x D; B, \) and the symbol of R°(\) satisfies (3.24). More-
over, for 0 < j < M — 2 we have

1
RU(QD, I) = ;Ew ag(% I) + TM—j—2w9(907I) - p(])(I) + h9(9071)7 (325)

hY =0, and h? = fjo—g?, forl < j < M-—2, where the Taylor coefficient fﬁa(gp), laf < M—j5-2,
of fjo at I =1° is a linear combination of

a (o — 2mw) D 0<s<j—1, |8+ <2(—s)+]al,
wls(0)0%ad (o —2mw) : 0<r+s<j—1|B+y+0d<2(—r—s—1)+]al,
(3.26)
while the Taylor coefficients gg-)’a(gp), la] < M —j5—2, of gg-) at I = I is a linear combination of

Phpaj hay(@) 0 0<k<j-1, f+y=a. (3.27)

The proof of the lemma is given in the Appendix.
Recall that for each |o| <1 — 2j the map

C'(I'\R)> K — wl, e ct-%lel(pn-1) (3.28)

is continuous.
We are going to find the Taylor coeflicients pg{a € C and

= O =lal(mr=1y o< j <M -2, |a| <M —j—2,
so that R1; = 0. Moreover, we shall prove by recurrence that the maps
K — p(])’a €C, K ajq € Cl—(j+1)([T]+n)—|a\(']rn—l) (3.29)

are continuous with respect to K € CY(I',R). For j = 0 we have hg = 0, and we put

0 1

Poa = W/Tn 1w0a( p)de, |af<N-—2.

Setting u = ag o and v = p87a — w%a we obtain from (3.25) equations of the form

Loule) = vle), [ eprde=o. (3:30)
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We are going to solve (3.30). Suppose that v € C™ (T 1) for some m > [7] +n. Comparing the
corresponding Fourier coefficients u, and vy, 0 # k € Z" 1, we get
! k#0
up = v
F 1— exp(2mi(k,w)) *’ ’

and set up = 0. Summing up and using the Diophantine condition (1.3) we get the function
u. In this way we obtain an unique solution u € C™ [7J="(T"~1) of (3.30) normalized by
an_l u(yp) dep = 0. Moreover,

[ullcm-z1-n < Cllvflom

hence, the linear map v +— u € C™[71=*(T"~1) is continuous in v € C™(T™1). In this way
using (3.28) for j = 0 and |o| < N — 2 we obtain p87a € C and ag, € O (FIHn)=lel(Tn=1) and
we prove that the corresponding maps (3.29) are continuous. Moreover,

W) = s [ wbte IO

Fix 1 < j < M — 2 and suppose that the inductive assumption holds for all indices £ < j—1.
Then the maps '
K s hj o € O =lalmn=ly o) < M —j -2,

are continuous with respect to K € CY(I', R) in view of (3.26) and (3.27). We set as above

Mo = Gt [ (hale) — hyae) de.

Obviously it depends continuously on K € CY(I',R). Setting u = ajo and v = pg-)a w ot lja,
la] < M —j—2, we solve (3.30) and prove as above that the maps (3.29) are contlnuous In this
way we obtain symbols p and a® satisfying (3.23) and such that Ryj=0for1<j<M-2.
Now Lemma 3.2 implies that R(A\) = RY(\) + Op(|]A|7M), where RO(\) satisfies (3.24). 0

We are going to write p8 in an invariant form. For j = 0 we have

m
Kornrp, .
0770 ; : 0
I°) =ic + 2i ) Bix(p,1°)d
po(l7) = ic + 2 ) im0 (B x(, I7)) de,

where ¢ is independent of K. Denote by du; the measure on A; = B/(A) = B’ (X']I‘"_l),
0 < j <'m, defined by du; = (X_IB_j)*(dgo). It is easy to see that the latter is a Leray form on
A;. Indeed, setting Q; = (x 'B77)*(dI; A --- AdI,_1) we obtain that dp; is the measure on A,

assomated with the Volume form 23V, where (n — 1)IV; A Q; = wy Yin Uj, 45 : Aj — T*T is the
embedding map, and wy is the symplectic two-form on T*T. Moreover B* (d,u]+1) dp; for any
0 < j <m—1, and since P° acts on x "' (Ag) as a rotation by 2w, we get dp,,, = P*(duo) = dpuo,
and we set dy = dug. This implies

—1 m—1 KOﬂ'F '
pO(I%) = ic + 22 Z/ oBldu.
A

Consider the A-FIOs W°()\) and R;(\) given by (3.20) with phase function ®, and ampli-
tudes po + A~1p", pO(T) = 337 PN, and v = ro + A0, ro(ip, 1) = ijo%“?( A,
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respectively, which are uniformly compactly supported with respect to I in D. We consider an
almost analytic extensions of order 3M of the phase function ® in I = £ + in given by

(o €+in) = Y O, E)in) (o).

la|<3M

It is easy to see that 0;®(z,& + in) = O(|n/*). In the same way we construct an almost
analytic extension of order M of the function 1, which was used to define the class S; s y. We
have (£ 4+ in) = 1 in a complex neighborhood of I° and ¥ (¢ +in) = 0 for ¢ ¢ D.

Proposition 3.3 We have
WONer(p) = TR (oo 1 A1) ((k + 00 /4) /A, Nex(p) + Os(IAM), (3.31)

and
R(Nex(p) = Op(AM 4+ 117 = (k+0/4) /AM), (3.32)

for any o € T""Y, X € D, and k € Z" ', such that |k| < C|\| and C > 1.

Proof. We obtain as above

WOR)er(@) = &(a) e

27

n—1
X ( A > / M=yt ®o(@ k) k) (po 4+ XT1p0) (I, \) dI dy
R2n—2

where ®(z,&,n) = fol Ve®(x, E+1n)dr, & = (k+0U0/4) /X and n, = I —(k+90/4)/A. Deforming
the contour of integration we obtain

WONer(p) = en(x) e (k+d0/9/3)

X <%> /2 e M) (po + A1) (v + (k + Po/4) /N, N) dudv + Op(IA|~M),
R2n—

which implies (3.31).
To prove (3.32) we write RO(\)ex(x) as an oscillatory integral as above, and then we change
the contour of integration with respect to y by

—_~—

y—v=y—x— Pz, (k+99/4)/\ T — (k+39/4)/N).
This implies

RONer(p) = ex(yp) er®(@tktdo//)

n—1
y < A > / e~ MOT=(k00/ /N (0 4 X71r0Y (0, I, \) dI dv
2 R2n—2
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modulo O (|A\|™™). We write now 70 in the form (3.22). Integrating N — j — 1 times by parts
with respect to v in the corresponding oscillating integral with amplitude 7’?706(@,[ Y(I — 19),
la| = M — j — 1, we replace (I — I°)® by ((k +9/4)/)\) — I°)* . Hence,

RONer(p) = ex(p)e®@(k+00/4)/2)

n—1
) < QA > / e~ MOT=(690/D/N) £ (6 T N)dT dv + Og(IA|™M),
i R2n—2

where
fr(o, LX) = |(k 4+ 00/4)/X) = I°PMro(, DT — 1°]72M

M—2
T2 AT/ I (e ).

§=0 |a|l=M—j-1

Since 7¥ , € C?"(T"~! x D) is continuous with respect to K € B and B is bounded in C',

]7a

integrating n times by parts with respect to I in the last integral we gain Op((1+ |Av|)~™), and
we obtain (3.32). 0

3.4  Construction of quasimodes.

The index set M of the quasimode Q we are going to construct is defined as follows. We say
that the pair ¢ = (k,£) € Z"! x Z belongs to M if there exists ,ug > 0 such that the following
quantization conditions hold:

pg(I°, L(I°) = (k+9o/4,2n0 — m9/4) + O(1), (3.33)

as |q| = |k| + [¢] — oo. We have (I°, L(I°)) # (0,0) in view of (3.18), hence, there is C' > 0 such
that ,ug > Clq|. Note that (3.33) still holds if we replace ,ug by

AEB(u)) ={ e C: |A—pu)| < Co},

where Cp > 1 is fixed, and the estimate O(1) in (3.33) remains uniform with respect to ¢ € M
and X € B(u). Using (3.31) for ¢ € M and X € B(u)) we obtain

Wo(Ner = Zg(A) ex + Os(A" ey,
where
Zy(N) = P00/ )/N+im0/4 (1 4 \=Lp0((k 4 milg /4) /A, \))
= exp [IAL((k 4+ 9o/4)/A) +im¥/4+ Log (1 4+ A"'p°((k + do/4) /X, N))]
where Log z = In |z| + iarg z, —7 < argz < m. On the other hand, (3.32) and (3.33) imply
RNer = Os(IN ™) e .
Hence,

Wi (NANer, = (eiw/‘lzq(AHoB(\ArM)) er . (3.34)
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We are going to solve the equation
e™MZ,(\) = 1, XeBi(u)),
modulo Og(|A|="). To this end we are looking for a perturbation A = yiq of u) such that

pgL((k +Vo/4)/pg) + 70 /4

1 _ _
+=Log (14 pg " ((k + V0/4) /g, 1q)) = 270+ Op (g ~).
Introduce a small parameter e, = (,ug)_l. We are looking for

1 M+1

_ 0 M- _ 10 M
fg = Mg+ Cq0F Cqieq o Com-1Eg 5 Gq = I A bgogq + b m18g" + by, meg

such that

Mqu = k—|-190/4

pel(¢q) = 2nl —7mid/4 — %Log (1+ uq_lpo(gqa q)) + OB(EéV[) .
Recall that
P (Cqr 11g) = P9(Cg) + -+ +p(1)\4—2(<q)ut1_M+2 y Pm(Ce) = Z p(r]n,a(gq - 19"
lo| <M —m—2

Then

M-—1 '
Log (1+ 4y 'p"(Cg 1tg)) = D uqeh + Onleg"),

7=1

where u, ; are polynomials of ¢, ., and by ,,, 0 < m < j —2, the coefficients of which polynomials
of pgwl, m + |a| < j — 1. Moreover, ug1 = —p870. Using the Taylor expansion of L(I) at I° up
to order M as well as (3.33) we obtain for 0 < j < M — 1 the following linear system

bg,; + Cq,jIO = Wy,
L(IO)Cq,j + 27T<W’bq,j> = Vo,

where V, ; and W, ; are polynomials of ¢, and bg.,, 0 < m < j, the coefficients of which are
polynomials of pg%a, m+ |a] < j. It is easy to see that the corresponding determinant is

L) = 2m(1%,w) = 2™ [ Alg)d> 0,
A
in view of (3.18), and we obtain an unique solution (¢4 j,bq), 0 < j < M — 1. More precisely,
Cqg = (L(I°) = 2 (1% w)) ™ (Vg — 2m(w, We ) 4

and by ; = W, j — ¢ ;1°. We choose by s so that p14¢, = k + 99/4.
We have

Wao=k+00/4— pgl® =0(1), Voo =2ml —79/4 — p)L(I°) = O(1), ¢ € M,
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in view of (3.33). Hence, by and ¢4 are uniformly bounded and they do not depend on
K. By recurrence we prove that b, ; and ¢, ; are continuous with respect to K and uniformly
bounded with respect to ¢ € M and K € B. For j = 1 we obtain W1 = —cg0bs0 and
Vo1 = —2m(w, bgo) — 5(V2L(I%)bg0,bg0) + 10 o, and we get

m—1

2(27)" 1 Komp .
_— B’d
S\ A(o)dpu ]Z::O -1 sin@ ° o

_ /
Cq1 = Cg1 T
where c’q 1 does not depend on K.

For each ¢ = (k,¢) € M we set

7)2 i= T(nq)Aug)er and Ug = G(Nq)vg = G(pqg)T (1q)Alpg)er -

Then using (3.34), we obtain

(W (uq) — 1d)vg = Op(IAI ™M) vg (3.35)
and we get
(A —p2)u) = OB(\,uq\_M)ug in X,
Nugle = Op(lpgl ™) ug

Lemma 3.4 There is C' > 0 such that
CH1+ |pg) ™! < llugllp2x) < €
for any q € M.

Proof. Since T'()\), A()\) and G(\) are uniformly bounded in the corresponding L? norms, we
obtain
Vg e M, ||u2||L2(X) <C,

where C' > 0 is a constant. We have
luglell 2wy < Cllugllacx) (3.36)

for some C' > 0 and any ¢ € M, where H'(X) is the corresponding Sobolev space. We are going
to show that

gl x) < O+ gD lluglzex) + Olugl ™Dlluglrll 2y, g€ M. (3.37)

Let x1 € C§°(X) have its support in the interior of X and x2 = 1 — x;. Denote by ¥(\) a
A-PDO with WF/(¥) contained in the interior of 7*X and such that

WEF (¥ —1d) N {(x,£) € T*X : h(z,§) <2, x €supp(x1)} =0.

Then for any first order differential operator V in X the operator A™'VW¥(\) : L?(X) — L?(X)
is uniformly bounded and we have

iGN vllmxy < CA+ ADIGAN V] 2 x) + OUADlvllz2ry »
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A€ D, v e L*X). Near the boundary we choose local coordinates so that X = {x; > 0} and
suppose that 0 < 2; < ¢ and € < 1 on the support of x2. Now we write H;()) in these local
coordinates with a phase function ¢(z,&’) + (v, &), & = (&,...,&), ¥ = (y2,...,Yn), where
¢(0,2', &) = (2, &) and with a C* compactly supported amplitude a(z,£’, \) of order 0. Then
x2(0/0x)Hj(AN)u = Ax2Br(A\) H;(N)u + O(J]A|"1)u, where By, stands for a continuous family of
A-PDOs of order 0 on the boundary x1 — Bg(z1,2’, D"). This implies

IX2GN)ollx) < CA+ADIGN ol 2 (x) + OUN D vllz2(ry

A €D, ve L*X), and we obtain (3.37).
Since itG(A) = ¥ (A) + W(A)Y(X) + Op(|]A|~M), using (3.35) we obtain
US‘F = Z'1*“G(Mq)vg = 7)2 + W(Mq)vg = 7)2 + Qﬁl(ﬂq)w(ﬂq)vg = 2”2 + O(|Nq‘_1)vg
This estimate combined with (3.36) and (3.37) implies the lemma. 0
Normalizing v, = ugH’ugH_l we obtain a quasimode (i, uq) of order N = M — 1. Next we
show that p, can be chosen real-valued. Applying Green’s formula we get
g = Tig?l < [pgug,ug) — (ug, pgug)l = Os(|pgl™)

which allows us to take p, in R. Choosing |g| > 1 we can suppose that p, is positive. Notice
that K should be in C*(T',R) with k > (M — 1)([r] +n) +2n +2 = N([7] +n) + 2n + 2.

4 Spectral invariants for continuous deformations of the poten-
tial

Let Vi, t € [0, 1], be a continuous family of C* real-valued potentials in X, ¢ € N, which means
that the map [0,1] > t — V; is continuous in C*(X,R). Denote by A; the selfadjoint operators
A +V; in L*(X) with Dirichlet or Robin (Neumann) boundary conditions on I'. We consider
the corresponding spectral problem

Au + Viu = Au inX,
Bu = 0 inl,
where Bu = u|p or Bu = % Ir — K u|p, K being a smooth real valued function on I independent

of t. As above we suppose that there exists a Kronecker torus A of P = B satisfying (H3) and
we set

T(x,8)
Wi, €) = /0 Vi (mx (exp(sX,) (2. 61))) ds . (2,€) € A

where T'(x,§) is the return time function and 7x : 7*X — X is the natural projection. Set
¢ = ([2d] + 1)([7] +n) + 2n + 2, where 7 is the exponent in the Diophantine condition.

Theorem 4.1 Let A be a Kronecker torus of the billiard ball map with a Diophantine vector of
rotation. Let Vi, t € [0, 1], be a continuous family of real-valued potentials in C’Z(X, R) such that
Ay satisfy the isospectral condition (Hy) — (Hs). Then

m—1

m—1
vt e[o,1], /Wt”F oBldy = Z/W9°”FoBﬂ'du.
= sin 6

7=0
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To prove the theorem we construct as in Theorem 2.2 a continuous family of quasimodes

(NQ(t)7UQ(t))q€M , MCZ",

of A; of order N such that

pe(t) = ,ug + cq0 + Cq,l(t)(ug)_l 4t Cq,N(t)(,ug)_N
where ) and ¢, are independent of ¢, u) > Clg|, C > 0, and ¢,,;(t) is continuous in ¢ € [0,1].
Moreover,

Wt.OﬂT ijd,u,
sin 6

m—1
o 1"
cg1(t) =cy1 +cf /
j=0 70

/

q.1 1s independent of ¢, and

C

I(t) = 2(2m) ( J At du) o

To construct the quasimodes we consider for each j = 0,...,m — 1 the microlocal outgoing
parametrix H; : C°°(I') — C*°(X), of the Dirichlet problem for A — A? — V' which is defined as

follows B B
(A =2 = V) H;(\) = Oas (N¥1) i X,

WE' (o H;(N)) C Uj UUjp1

W' (4 Hj(\) — 1d) N WF'(1;(\) = 0,

WE'(H;(\) N (U x 75" (U;)) € Uy x 7w, (U;),

We are looking for ﬁj()\) of the form ﬁj()\) = H;(\) +)\_1HJQ()\), where HJQ()\) is a FIO of order
1/4 having the same canonical relation as H;(\). It satisfies the equation

(A =N = VH)(\) = ViH;(A) = On (A 7V in X,

hence, its principal symbol p?(:z:, €) satisfies the equation {g, pg-)} = ¢V;. Taking into account the
boundary values at U; we get

o) =i [ Vilexp(uX,) (@) du, 2eU;.
Then _
Gi(A) = G;(\) + 271G

is a A-FIO the canonical relation of which is just the graph of the restriction of the billiard ball
map B : U; — Uj41. Moreover, the principal symbol of Gg()\) is equal to p?(g,Tj(g)). Arguing
as in Sect. 3 we complete the construction of the quasimodes.
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5 Spectral rigidity for Liouville billiard tables

We recall from [13] the definition of Liouville billiard tables of dimension two. We consider two
even functions f € C®(R), f(z + 27) = f(x), and ¢ € C*°([-N, N]), N > 0, such that

e [>0ifx ¢ nZ,and f(0) = f(r) =0, f”(0) > 0;
e ¢<0ify+#0,q0)=0andq (0)<0;
o fCR(xl) = (—=1)k¢R(0), 1 = 0,1, for every natural k € N.

Consider the quadratic forms

dg? = (f(2) = q(y))(da® + dy?)
dar* = (f(z) —q())(q(y)da® + f(x)dy?)

defined on the cylinder C' = T! x [N, N].

The involution o¢ : (x,y) — (—x,—y) induces an involution of the cylinder C, that will
be denoted by o¢ as well. We identify the points m and o¢(m) on the cylinder and denote by
C := C/oy the topological quotient space. Let o : C' — C be the corresponding projection. A
point x € C is called singular if c~!(o(z)) = z, otherwise it is a regular point of o. Obviously,
the singular points are I} = ¢(0,0) and I} = 0(1/2,0). It is shown in [13] that the quotient
space C' is homeomorphic to the unit disk D? in~]R2 and that there exist an unique differential
structure on C' such that the projection o : C' — C'is a smooth map, o is a local diffeomorphism
in the regular points, and the push-forward o.g gives a smooth Riemannian metric while 0,1 is
a smooth integral of the corresponding billiard flow on it. We denote by X the space C provided
with that differentiable structure and call (X,o0.g) a Liouville billiard table. Any Liouville
billiard table possesses the string property which means that any broken geodesic starting from
the singular point Fj (F») passes through Fy (Fy) after the first reflection at the boundary and
the sum of distances from any point of I' to F} and F5 is constant.

We impose the following additional conditions:

e the boundary I" of X is locally geodesically convex which amounts to ¢'(IN) < 0;

e f(x) = f(m—x) for any z and f is strictly monotone on the interval [0, 7];

Liouville billiard tables satisfying the conditions above will be said to be of classical type. One
of the consequences of the last condition is that there is a group I(X) = Zg X Zg acting on
(X, g) by isometries. It is generated by the involutions o1 and o9 defined by o1 (z,y) = (z, —y)
and og(z,y) = (7 —z,y). We point out that in contrast to [13] we do not assume f and ¢ to be
analytic. Examples of Liouville billiard tables of classical type on surfaces of constant curvature
and quadrics are provided in [13]. The only Liouville billiard table in R? is the interior of the
ellipse because of the string property.

Proof of Corollary 1.3. A first integral of B in B*I is the function Z(z,¢) = f(x) — £2 the
regular values h of which belong to (¢(N),0)U (0, f(7/2)) (see [13], Lemma 4.1 and Proposition
4.2). Each regular level set L, consists of two connected circles A*(h) which are invariant with
respect to B for h € (¢(N),0) and to B? for h € (0, f(1/4)). The Leray form on Ly, is
dx
Y > 0 Y
)\h — vV f(@)—h 6

S £<0.

Vf(@)—h’
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Given a continuous function G on I'" we consider the corresponding Radon transform assigning
to each circle A*(h) the integral

Ra(h¥(0) = [ (Gomn.
A£(h)

We take the exponent in the Diophantine condition to be 7 = 3/2. Then ¢ = 3[2d] + 9. Set
Gi(z) = Ky(z)/sinf(zx,h), t = 1,2. Since Gy, G; € Symm*(I"), using Theorem 1.1 we obtain
that Rg,(A*(h)) = Rg, (A*(h)) for each regular value h such that the corresponding frequency
w is Diophantine with exponent 7 = 3/2. On the other hand, the set of all Diophantine numbers
with a fixed exponent 7 > 1 is dense in R and by continuity we get it for any regular value. It
is easy to see that

) h—q(N
0= F@) —(q< )
hence,
2
Ry (£ (h)) = & —— Blw) /7@ = o) de , he (a(N),0) U (0, f(r/2))

+
Vi=aN) | @ =k

does not depend on ¢ € [0,1]. Since Ky, t = 0,1, are invariant with respect to the action of
I(X), this implies Ky = K; as in [13]. O

Spectral rigidity for higher dimensional Liouville billiard tables will be obtained in [14]. We
point out that we do not need analyticity and the billiard tables we consider are supposed to be
smooth only.

Appendix

We consider families of A-PDOs with symbols of finite smoothness which depend continuously
on K € C’Z(F). Given four positive integers [, Z N > 1 and m > 2 such that 72 mN +2n, and a
bounded subset B of C!(I',R), we say that a family of operators @ depending on K € B belongs
to PDOZm,N(F; B; \) if in any local coordinates it can be written in the form OP)(¢)+Og(|A|~Y),
where the distribution kernel of OP,(q) is

OP (@)(a.9) i= (\/2m)"" [ e (a0 e (A1)
with amplitude
N—-1
q(z,&,0) = ) gz, A, (A.2)
k=0

and q € C’(l)_mk(T*R”_l), 0 < k < N — 1, depends continuously in K € C!(I',R) in the sense
that the support of ¢, is contained in a fixed compact set independent of K and the map

CUT,R)> K — g € Cmk(T* R
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is continuous. Hereafter, Og(|A\|~") : L?(I') — L?(T") stands for a family of operators depending
on K € B, the norm of which is uniformly bounded by Cs(1 + |A])™", and A belongs to
the complex strip D. We denote the class of symbols ¢ by STmN(T*R”_l;B; A). Using the

L2-continuity theorem, [8], Theorem 18.1.11', it is easy to see that the operators of the class
PDO;, = (I'; B; A) are uniformly bounded in L? with respect to K € B ( it suffices | > mN +n).
Moreover, the class PDO;,(I'; B; A) is closed under multiplication and transposition and it

does not depend on the choice of the local coordinates modulo Og(|A\|~") (see Remark A.1).
Consider now a A-FIO A, acting on C§°(R"!) with distribution kernel

Ka,(z,y) = (\/2m)" ! / M= OFV@O) g (2 € N) de, (A.3)

where ¢\ = q(-,-,\) € C(R"™! x R"~1)  its support is contained in a fixed compact F for each
A, and sup, ||gr|lcn < co. We suppose that the phase function S(z,§) = (x,&) + ¢(z,§) is C
and non-degenerate in a neighborhood U of F', which amounts to |det 9,0:S| > ¢ > 0 in U.
Using a result of Boulkhemair [2], Corollary 1, we obtain

1AMy < € supflarlicn, (A4)

where C' = C(S, F) > 0 does not depend on ¢y. Indeed, if F C B.(0") :={o: |[o—0°| < e} C U,
where ¢ € F and € > 0 is sufficiently small we can extend S to a globally defined smooth
function S in T*R"! which coincides with S in B-(0") and equals the Taylor polynomial of
degree 2 of S at o” outside Ba.(0°) and such that | det 8m8§§| > §/2 in T*R™" 1. Then applying
[2], Corollary 1, to the oscillatory integral with phase function S and amplitude ¢ we obtain
(A.4). In the general case we use a suitable partition of the unity of F.

We are going to estimate the following integral for suitable functions a and b

aa(z) = A" /R2 e P alz,yn, bz, g0, Ndydn -z = (2,6) € T'R™!, A€ D.

Lemma A. 1 Suppose that ay = a(-,\) and by = b(-,\), A € D, are C*"-smooth and uniformly
compactly supported functions, i.e. suppay C Fi, suppby C Fs, for all A\, where Fy and Fy are
compact. Then

sgpllcullcn < ngp lax|can < SliPHbAHC?n-

where C' = C(Fy, Fy) > 0. In particular the FIO Ay with amplitude qx(x,&) satisfies (A.4).
Proof. We have

@) =37 [ a6 B A - €. Adgan,

where a(z, \{,n, \) stands for the partial Fourier transform (y — A\) of a(z,y,n, \). Integrating
n times by parts with respect to y we get

lasllen < Cllarlleanliballcan =2 [ (14 €)™ (1+ Nl = ) "ded.

which implies the lemma. g

26



The frequency set WEF'(Q)) (modulo O(J]A|™Y)) of a A-PDO @, with symbol ¢ locally given
by (A.2) is
WF' (Q») := U} supp (q5)
in each local chard.
Using Lemma A.1 one can commute A\-PDOs in PDOT,S,N(RB; A) with a classical A-FIOs
G()) associated to a smooth canonical transformation x : T*I' — T"*I" and having a C§° ampli-
tude in each local cart. More precisely, we have

Lemma A. 2 Let Q(\) € PDO; (I B; A, 1> mM+2n, and let G(\) be elliptic on WF(Q).
Then there exists Q'(A) € PDO; . (T'; B; A) such that

QMG() = GNQ'(N) = Os(IA[7Y) = L*(T) — L*(T) (A.5)

and wise versa. The principal symbol of Q'(X) is given by the Egorov’s theorem, o(Q') = o(Q)ok.

Proof. We define Q' = BQA, where WF'(AB — I) N WF'(Q) = 0. To prove that Q'(\) €
PDO;, (T B;A), we choose local coordinates = in I' and write the distribution kernel of Q())
in the form (A.1) with symbol ¢ € S; N(T*R”_l; B; \). We can suppose that distribution kernel

of G(A) is given by (A.3) with a smooth compactly supported amplitude a. More generally,
we suppose that a € Sy (T*R™ 1 B; X). Then the distribution kernel of Q(X\)G(A) modulo

Op(|A|7V) is given by the oscillatory integral (A.3) with amplitude

Kl(xaga >\)

R2n—2

o
=0 r

Set
1
(e, 2, ) = / Vodb(a + 72,)dr
0

Changing the variables we get

n—1
(z,&,\) Z > oA <2w> /R2M e~ MM g (2, + €+ (2, 2,€))as(z + x,€) dndz .

7=0 r+s=j

We develop g, in Taylor polynomials with respect to 1 at n = 0 up to order O(|n|N=7). On the
other hand 85% e cl=mr=IBl(T*R"=1), and

l—mr—2|8]>1—mr—2(N—r)>1—mN >2n (A.6)

for || < N —j < N —r, and integrating [ times by parts with respect to n we obtain



where

Fi(z,&) = > A [Dﬁ <8ﬁ (0 + &+ iz, 2,8 as(z + =, O)L:o,nzo (A7)

r+s+|8|=j

for j < N — 1. Moreover, using (A.6) and Lemma A.1 we estimate

IFnllen <C Y sup flge(s s Ml prome xsupnas(, Al G ms -
r+s=j

In the same way, we write G(A\)Q'(\) modulo Og(|A|~") as a A-FIO with distribution kerlel
(A.3) with amplitude given by the oscillatory integral

N Z 2 < > Ry /R N 0y (@, + €)ap (= + @ + Y, &, m), E)dndz

=0 s+r=j5

where ¥9(x,&,n) = fol Vep(x,§ 4+ mn)dr. We get as above

Ka(z,€,\) ZH:::&

where
||HN||Cn < C Z Sup ||a7‘() 9 )Hcl mr X Suqus(v )>\||Cl ms
r4+s=j
and
L 1ps 3
Hiw&) = 3 5 D7 (e + 022G retiaen )| 0 (as)
r+s+|8|=j o

for 0 < j < N — 1. Note that 9 (2,0,§) = Vo9(x,§), ¥2(x,£,0) = Veo(z, ), and that locally
graph k = {(z,§+Va(z,€), x4+ Veh(z, ), §)}. Since G(A) is elliptic on WF'(Q) we can assume
that ap(x,&) # 0 on the support of (z,&) — ¢r(x,& + Vop(z,€)) for any r, and we determine
q;- by recurrence from the equations Hj(z,&) = Fj(x,§), j =0,...,N — 1. It is easy to see by

recurrence that ¢; € cl-mi (T*R™!) is continuous with respect to K € C!(T). 0

Remark A. 1 We have proved that if Q(\) is a family of \-PDOs in R"™1 the distribution
kernels of which have the form (A.1) with symbol q € STmN(T*R”_l;B; A) and if the dis-
tribution kernels of G(\) are given by (A.3) with amplituc’ie’a € Sp, y(TR"™L B X), then
QNG(N) and G(N)Q(N) are A-FIOs in R with distribution kernels (A.3) and amplitudes
in Sy (T*R"™1B;X). By the same argument, the class PDOy (T3 B; ) is closed under

7 7

multiplication cmd transposition and it does not depend on the chozce of the local coordinates
modulo Og(|A\|~N).

Proof of Lemma 3.2. First we write the operator Wj(A)A(A) in the form (3.20) with amplitude
given by the oscillatory integral

Fz,I,)\) = (i

n—1
> / eMe—2 D) +2(@)~2@.0) (3 ¢ Na(z, I, \) dédz
2 R2n—2
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modulo Op(|A\|™Y). Set ®¢(z,I,n) = Lo(I,n) + Ho(x,I,n), where
1 1
Lo(1,n) :/ ViL(I+71n)dr, Hy(x,I,n) :/ ViR(xz, I+ mn)dr.
0 0

Changing the variables and using (3.21) we obtain as above modulo Og(|A|~V)

A n—1
Fx,I,\) = (%) /R2n2 —iAv Co+z>\] 10 (x,I,v,n)dndv,

where co(z,1,v,1) = wo(x, I +n)ao(v + x + $o(x,1,7),I), and
09(51371,11777) = wg(aj>1 + 77)610(“ +x+ @O(ZL‘vIa 77)7[)

+o(Dwolz, I+n) > af,(v+a+Do(z,I,n), 1) (I —1°)"
la|<M—j—2

+ S Dl I+ n)al v+ 3+ Bo, L), ) (I = 1°)°

r+s=j—1 |a|<M-—s—2
We develop aaa(v + z + ®g, 1) in Taylor polynomials with respect to v at v = 0 up to order

O(|v|M=3=1=laly, Since a® € gl_[T}_n,[T]+n7M_1(T”_l x D;B;\) and ®( is a smooth function
independent of K, we obtain &fa?ﬂ € CP for |a+ 3| < M — j — 1, where

p=1=0G+D(r]+n) —la+ =[] +1- G+ 1)(7] +n) - 2la+ f]
2Bl +1=G+ D] +n—=2)=2M 2 [B| +1 - (M = 1)([7] +n) =2 = [B] + 2n.

In particular, 85&9@ e 2T o+ 8] < M —j —1, j < M — 2, depends continuously
on K € B. Integrating 3 times by parts with respect to n we gain A~1%l. Notice that all the
derivatives of Hy vanish for (n,I) = (0,1°), and we have 8, Ho(z,1,0) = O(|I — I°|™) for any
~. In this way we get

M-2
Fz,I,A) = Fo(e, 1) + A1 Y F(a, DA + A F (2, ILA) + A M Fy,
§=0

where Fy =1 in T ! x DO,
0 _ 0 0 0
f9 =0, and for j > 1 we have

Pen =Y Y % 5 [Pl o - tot)] -1y

=0
5=0 |B|l=j— SM<M j—2 ! (A.10)

Y Y G Di(eerenold, - Lotm)] 11

. . n=0
r4s+|8l=j—1 [7|<M—j—2
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We have also F' € Ry_1(T" ! x D; B, ) in view of (A.9). Moreover, using (A.9) and Lemma
A.1 we obtain

IFarllen <C 1 >0 sup (o Allei-zs > suplad, (Ml e G- |
j<M—2 X JHI<M -2

hence, the corresponding A-FIO is uniformly bounded with respect to K € B in L?. In the same
way we write A(A)Wp(A) in the form (3.20) with amplitude G(x, I, \) given by the oscillatory
integral

n—1
<i> (po + )\—lp())([7 )\) / 62)\(<IE—Z,£—1>+‘I>(Z,I)—‘b(r,[)) a(m7 57 )\)dé‘dz .
R

27T 2n—2
Changing the variables we obtain G = a(pp + A~'p") + u, where u is given by

n—1
(i) ot AN [ O a4+ o, ),0) ~ ol + 1N dndo
R

2 2n—2

and Hy(z,v,I) = fol V.R(z + v, I)dr. Notice that H; and all its derivatives vanish at I = I°.
Then u satisfies (3.24) and we get

M—2
G(QO, -[7 )‘) = G0(907I) + )‘_1 Z G?(QO, I))‘_] + )‘_lGl(@w[a )‘) + )\_MFM(QO, -[7 )‘) )
§=0
where G = 1 in T" ! x DY, G! € EM_l(T”_l x D; B, \), the A\-FIO corresponding to Fj; is
Op(|]A|=), and
G I) = af(p, 1) +p)(I) + gj(p, 1) .

Moreover, 98 = 0 and for j > 1 we have

<.
|
—_

g0, 1) =) ak(e, D)p§ 1 (1) (A.11)
0

e
Il

Taking into account (A.10) and (A.11) we obtain

=

Ry (907 I, )‘) = TM—j—Q(F]O - G?)(va I) A € gl—[ﬂ—n,[T]—i-n,M—l(Tn_l x D; B, >‘)

I
o

j
and we denote by Rj()A) the corresponding FIO. Moreover, the symbol of the reminder term
RO()) satisfies (3.24).

We are going to show that the coefficient fﬁa(gp) of (I —I%) in the Taylor series of (A.10)
at I = I° is a linear combination of functions given by (3.26). First note that (8,];’L0)(I ,0) =
(1+ |k|)~t0kVL(I) for any k € N*~1 and that V;L(I°) = 2rw. Expand 0¥V L(I), in Taylor
series at I = I up to order O(|I — I°|M), k € N*~!. Then use the Taylor expansions of

Bad | o—2mw+ D LI -1 (A.12)
1<|k|<M
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at ¢ — 27w up to order O(|I — I°/l®I=17+1) Hence, the corresponding terms in the first sum of
(A.10) are linear combinations of 8£+kagﬁ(g0 — 27w), where 0 < s < j — 1 and |5]| < 2(j — s),
|k| + 7| < |e|. In the second sum of (A.10) write

DYl )= Y wl(e) (I - IS0 - A, B <5,
B'<6,|6|<M—r—1

and expand (A.12) in Taylor series up to order O (|1 —I°[l¢1=1"1=10=F"1+1) " Then the corresponding
terms in the second sum are linear combinations of wg 5(@)85 +ka877(gp —27w), where 0 < r+s <
=L+ <2(j—s—r—1),and k+ |5 — |+ |7| < |a| for some 5’ < 3, #' <4, and we
prove the assertion. In the same way we prove that g;{ o() is a linear combination of functions
in (3.27). 0
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