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Abstract

We introduce a notion of weak isospectrality for continuous deformations. Let us consider the
Laplace-Beltrami operator on a compact Riemannian manifold with boundary with Robin
boundary conditions. Given a Kronecker invariant torus Λ of the billiard ball map with a
Diophantine vector of rotation we prove that certain integrals on Λ involving the function
in the Robin boundary conditions remain constant under weak isospectral deformations. To
this end we construct continuous families of quasimodes associated with Λ. We obtain also
isospectral invariants of the Laplacian with a real-valued potential on a compact manifold
for continuous deformations of the potential. As an application we prove spectral rigidity in
the case of Liouville billiard tables of dimension two.

1 Introduction

This is a part of a series of papers (cf. [13, 14, 15]) concerned with spectral rigidity for compact
Liouville billiard tables of dimensions n ≥ 2. The general strategy is first to find a list of spectral
invariants and then to prove for certain manifolds that these invariants imply spectral rigidity.
The aim of this paper is to present a simple idea of how quasimodes can be used in inverse
spectral problems. This idea works well for isospectral deformations whenever continuous with
respect to the parameter of the deformation quasimodes can be constructed for the corresponding
eigenvalue problem. Given a compact billiard table (X, g) with a smooth Riemannian metric
g and the corresponding Laplace-Beltrami operator on it, we consider continuous deformations
either of the function K in the Robin boundary condition or of a real-valued potential V on X.
To construct quasimodes we assume that there is an exponent Bm, m ≥ 1, of the corresponding
billiard ball map B which admits an invariant Kronecker torus Λ with a Diophantine vector of
rotation. This means that Λ is a Lagrangian submanifold of the coball bundle of the boundary
which is diffeomorphic to the torus Tn−1 and invariant with respect to Bm and such that the
restriction of Bm to Λ is smoothly conjugated to a rotation with a constant Diophantine vector.
If the deformation is isospectral we prove that certain integrals on Λ of the function K or of the
potential V remain constant under the deformation. In the case of Liouville billiard tables we
treat these integrals as values of a suitable Radon transform. Then the spectral rigidity follows
from the injectivity of the Radon transform. Liouville billiard tables of dimension two have
been studied in [13]. Liouville billiard tables of dimension n ≥ 2 are introduced in [15], where
the integrability of the corresponding billiard ball map is obtained using a simple variational
principal. The injectivity of the Radon transform in higher dimensions is investigated in [14].

A billiard table (X, g) is a smooth compact Riemannian manifold of dimension dimX = n ≥
2 equipped with a smooth Riemannian metric g and with a C∞ boundary Γ := ∂X 6= ∅. The
corresponding continuous dynamical system on it is the “billiard flow” which induces a discrete
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dynamical system B on an open subset of the coball bundle of Γ called billiard ball map (see
Sect. 2.1). Let ∆ be the “positive” Laplace-Beltrami operator on (X, g). Given a real-valued
function K ∈ C(Γ,R), we consider the operator ∆ with domain

D :=

{
u ∈ H2(X) :

∂u

∂ν
|Γ = Ku|Γ

}
,

where ν(x), x ∈ Γ, is the inward unit normal to Γ with respect to the metric g. We denote this
operator by ∆g,K . It is a selfadjoint operator in L2(X) with discrete spectrum

Spec∆g,K := {λ1 ≤ λ2 ≤ · · · } ,

where each eigenvalue λ = λj is repeated according to its multiplicity, and it solves the spectral
problem 




∆u = λu in X ,
∂u

∂ν
|Γ = K u|Γ .

(1.1)

1.1 Invariants of isospectral families

Fix ` ∈ N and consider a continuous family of C` real-valued functions Kt, t ∈ [0, 1], which
means that the map [0, 1] 3 t 7→ Kt is continuous in C`(Γ,R). To simplify the notations we
denote by ∆t the corresponding operators ∆g,Kt. These operators are said to be isospectral if

∀ t ∈ [0, 1] , Spec (∆t) = Spec (∆0) . (1.2)

We are going to introduce a weaker notion of isospectrality. Fix two positive constants c and
d > 1/2, and consider the union of infinitely many disjoint intervals

(H1) I := ∪∞
k=1 [ak, bk] , 0 < a1 < b1 < · · · < ak < bk < · · · , such that

lim ak = lim bk = +∞ , lim(bk − ak) = 0 , and ak+1 − bk ≥ cb−dk for any k ≥ 1 .

We impose the following “weak isospectral assumption”:

(H2) There is a� 1 such that ∀ t ∈ [0, 1] , Spec (∆t) ∩ [a,+∞) ⊂ I .
Using the asymptotic of the eigenvalues λj as j → ∞ we shall see in Sect. 2 that the condition
(H1)-(H2) is “natural” for any d > n/2 which means that the usual isospectral assumption
implies (H1)-(H2) for any such d and any c > 0.

We suppose also that there is an integer m ≥ 1 such that the map P = Bm, B being the
billiard ball map, admits an invariant Kronecker torus with Diophantine vector of rotation,
namely,

(H3) There exists a positive integer m and an embedded submanifold Λ of B∗Γ diffeomorphic
to Tn−1 and invariant with respect to P = Bm such that the restriction of P to Λ is C∞

conjugated to the rotation R2πω(ϕ) = ϕ− 2πω (mod 2π) in Tn−1, where ω is Diophantine.

We take m ≥ 1 to be the smallest positive number with this property, then P = Bm is just the
return map along the broken bicharacteristic flow near Λ. Recall that ω ∈ Rn−1 is Diophantine
if there is κ > 0 and τ > 0 such that

∀ (k, kn) ∈ Zn, k = (k1, . . . , kn−1) 6= 0 : |〈ω, k〉 + kn| ≥ κ

(
∑n−1

j=1 |kj |)τ
. (1.3)
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Then Λ ⊂ B∗Γ is Lagrangian (see [7], Sect. I.3.2). Let πΓ : T ∗Γ → Γ be the canonical projection
and denote by dµ the measure associated to a Leray form at Λ. Given (x, ξ) ∈ B∗Γ, we denote
by ξ+ ∈ T ∗

xX the corresponding outgoing unit co-vector and by θ = θ(x, ξ) ∈ (0, π/2] the angle
between ξ+ and T ∗

xΓ in T ∗
xX (see Sect. 2.1).

Fix d > 1/2 and τ ≥ 1 and set ` = ([2d]+ 1)([τ ]+n)+2n+2, where [p] stands for the entire
part of the real number p. In what follows d will be the exponent in (H1), and τ the exponent
in the Diophantine condition (1.3). Our main result is:

Theorem 1.1 Let Λ be an invariant Kronecker torus of P = Bm with a vector of rotation 2πω
satisfying the Diophantine condition (1.3). Let

[0, 1] 3 t 7→ Kt ∈ C`(Γ,R) ,

be a continuous family of real-valued functions on Γ such that ∆t satisfy (H1) − (H2). Then

∀ t ∈ [0, 1],

m−1∑

j=0

∫

Λ

Kt ◦ πΓ

sin θ
◦Bj dµ =

m−1∑

j=0

∫

Λ

K0 ◦ πΓ

sin θ
◦Bj dµ . (1.4)

Before giving applications of the theorem we would like to make some comments on it. It is
inspired by a result of Guillemin and Melrose [5, 6]. They consider a connected clean submanifold
Λ of fixed points of P = Bm, m ≥ 2, satisfying the so called “non-coincidence” condition. Let
TΛ be the common length of the closed broken geodesics with m vertexes issuing from Λ. The
“non-coincidence” condition means that these geodesics are the only closed generalized geodesics
in X of length TΛ. Under this condition, Guillemin and Melrose prove that if Kj , j = 0, 1, are
two real-valued C∞ functions on Γ such that Spec (∆g,K1) = Spec (∆g,K0), then (1.4) holds for
t = 1. In the case when X ⊂ R2 is the interior of an ellipse Γ they obtain an infinite sequence
of confocal ellipses Γj ⊂ X tending to Γ such that the corresponding invariant circles Λj of B
satisfy the non-coincidence condition. In particular, (1.4) holds for t = 1 and m = 1 on each Λj.
As a consequence they obtain in [5] spectral rigidity of (1.1) in the case of the ellipse for C∞

functions K which are invariant with respect to the symmetries of the ellipse. The main tool in
the proof is the trace formula for the wave equation with Robin boundary conditions in X (see
[6]). This result was generalized in [13] for two-dimensional Liouville billiard tables of classical
type.

There is no hope to apply the wave-trace formula in our situation. An invariant Kronecker
torus Λ of the billiard ball map B can always be approximated with periodic points of P = Bm

using a variant of the Birkhoff-Lewis theorem and a “Birkhoff normal form” of P near Λ.
Unfortunately, we do not know if the corresponding closed broken geodesics are non-degenerated.
Moreover, it is impossible to verify in general the non-coincidence condition.

We propose a simple idea which relies on a quasimode construction. It is natural to use
quasimodes for this kind of problems since quasi-eigenvalues are close to eigenvalues and they
contain a lot of geometric information. In order to prove (1.4), we construct continuous with
respect to t ∈ [0, 1] quasimodes for ∆t of order N = [2d] + 1, [2d] being the entire part of 2d.
The quasi-eigenvalues (see Theorem 2.2) are of the form µq(t)

2, q ∈ M ⊂ Zn, where

µq(t) = µ0
q + cq,0 + cq,1(t)(µ

0
q)

−1 + · · · + cq,N (t)(µ0
q)

−N ,
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µ0
q and cq,0 are independent of t, lim|q|→∞ µ0

q = +∞, and cq,j, q ∈ M, is an uniformly bounded
sequence of continuous functions in t ∈ [0, 1]. The function cq,1 has the form

cq,1(t) = c′q,1 + c′′1

∫

Λ

m−1∑

j=0

Kt ◦ πΓ

sin θ
dµ ,

where c′q,1 and c′′1 6= 0 are independent of t and c′′1 does not depend on q either. Moreover, there
is C > 0 such that for any q ∈ M ⊂ Zn and t ∈ [0, 1], there is λq(t) ∈ Spec (∆t) such that

|λq(t) − µq(t)
2| ≤ C(µ0

q)
−[2d]−1 .

Notice that µq(t) is continuous in t ∈ [0, 1] but λq(t) is not continuous in general. Because of
(H2) the quasi-eigenvalues µq(t)

2, |q| ≥ q0 � 1, belong to the union of intervals [ak−ca−dk /4, bk+

cb−dk /4] which do not intersect in view of (H1). Since µq(t)
2 is continuous in [0, 1], it can not

jump from one interval to another. Hence, for each q ∈ M, |q| � 1, there is k = k(q) � 1 such
that

|cq,1(t) − cq,1(0)| ≤ µq(0)|µq(t) − µq(0)| +C ′(µ0
q)

−1 ≤ C ′(|µq(t)2 − µq(0)
2| + (µ0

q)
−1)

≤ C ′(bk − ak + ca−dk + (µ0
q)

−1) := εk ,

for any t ∈ [0, 1], where C ′ stands for different positive constants, and lim εk(q) = 0 as |q| → ∞
in view of (H1), which proves (1.4).

We point out that if a
p/2
k (bk−ak) → 0 as k → ∞ for some integer p ≥ 0 and if ` is sufficiently

large, one can prove also that cq,j(t) = cq,j(0) for j ≤ p+1, which would give further isospectral
invariants involving integrals of polynomials of the derivatives of Kt.

1.2 Applications and spectral rigidity

Kronecker invariant tori usually appear in Cantor families (with respect to the Diophantine
vector of rotation ω), the union of which has positive Lebesgue measure in T ∗Γ, and Theorem
1.1 applies to any single torus Λ in that family. Consider for example a strictly convex bounded
domain X ⊂ R2 with C∞ boundary Γ, and fix τ > 1. It is known from Lazutkin [9] that for any
0 < κ ≤ κ0 � 1 there is a Cantor set Ξκ ⊂ (0, ε0], ε0 � 1, of Diophantine numbers ω satisfying
(1.3) and such that for each ω ∈ Ξκ there is a KAM (Kolmogorov-Arnold-Moser) invariant circle
Λω ⊂ B∗Γ of B satisfying (H3) with m = 1 and with rotation number 2πω. Moreover, Ξκ is of
a positive Lebesgue measure in (0, ε0], the Lebesgue measure of (0, ε] \ Ξ, Ξ = ∪Ξκ, is o(ε) as
ε→ 0, and so is the Lebesgue measure of the complement to the union of the invariant circles in
an ε-neighborhood of S∗Γ in B∗Γ. More generally, the result of Lazutkin holds for any compact
billiard table (X, g), dimX = 2, with connected boundary Γ which is locally strictly geodesically
convex. Set ` = ([2d] + 1)([τ ] + 2) + 6.

Corollary 1.2 Let (X, g), dimX = 2, be a compact billiard table with C∞-smooth connected
and locally strictly geodesically convex boundary Γ. Let

[0, 1] 3 t 7→ Kt ∈ C`(Γ,R) ,

be a continuous family of real-valued functions on Γ such that ∆t satisfy (H1) − (H2). Then

∀ω ∈ Ξ , ∀ t ∈ [0, 1],

∫

Λω

Kt ◦ πΓ

sin θ
dµ =

∫

Λω

K0 ◦ πΓ

sin θ
dµ . (1.5)
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It will be interesting to know if the relation (1.5) implies Kt = K0 for generic Γ.
Another example can be obtained applying the KAM theorem to the Poincaré map of a

non-degenerate elliptic periodic broken geodesic with m vertexes (in any dimension n ≥ 2).
Theorem 1.1 can be applied also in the completely integrable case, for example for the

ellipse or the ellipsoid, or more generally for Liouville billiard tables of classical type [13, 14]
in any dimension n ≥ 2. We are going to prove spectral rigidity for two dimensional Liouville
billiard tables of classical type (see Sect. 5 for definition). Such billiard tables have a group
of isometries I(X) ∼= Z2 ⊕ Z2 which induces a group of isometries I(Γ) ∼= Z2 ⊕ Z2 on the
boundary. We denote by Symm`(Γ) the space of all C` real-valued functions which are invariant
with respect to I(Γ). We show next that any continuous weakly isospectral deformation of K in
Symm`(Γ), ` = 3[2d] + 9, is trivial. More precisely, we have

Corollary 1.3 Let (X, g), dimX = 2, be a Liouville billiard table of classical type. Let Kt, t ∈
[0, 1], be a continuous family of real-valued functions in C`(Γ,R) such that ∆t satisfy (H1)−(H2).
Assume that K0,K1 ∈ Symm`(Γ). Then K1 ≡ K0.

It seams that even for the ellipse this result has not been known. Using Lemma 2.1 and Corollary
1.3 we obtain that any continuous isospectral deformation ofK in the sense of (1.2) in Symm`(Γ),
` ≥ 15, is trivial. We point out that the Liouville billiard tables that we consider are not analytic
in general and the methods used in [5] and [13] can not be applied.

In the same way we treat the operator ∆t = ∆ + Vt in X with fixed Dirichlet or Robin
(Neumann) boundary conditions on Γ, where Vt ∈ C`(X), t ∈ [0, 1], is a continuous family of
real-valued potentials in X. The corresponding results are proved in Sect. 4. Injectivity of
the Radon transform and spectral rigidity of Liouville billiard tables in higher dimensions is
investigated in [14].

We point out that the method we use can be applied whenever there exists a continuous
family of quasimodes of the spectral problem and if the corresponding Radon transform is
injective. It can be used also for the Laplacian ∆K in the exterior X = Rn \ Ω of a bounded
domain in Rn with a C∞-smooth boundary with Robin boundary conditions on it. In this case
an analogue of (H1)-(H2) can be formulated for the resonances of ∆K close to the real axis
replacing the intervals in the definition of I by boxes in the complex upper half plain. Given a
Kronecker torus Λ of B we obtain quasimodes of ∆K associated to Λ. By a result of Tang and
Zworski [18] and Stefanov [16] the quasi-eigenvalues are close to resonances and one obtains an
analogue of Theorem 1.1. The corresponding results will appear elsewhere.

2 Quasimodes and spectral invariants

2.1 Billiard ball map

We recall from Birkhoff [1] the definition of the billiard ball map B associated to the billiard
table (X, g) with boundary Γ. Denote by h the Hamiltonian corresponding to the Riemannian
metric g on X via the Legendre transformation. The billiard ball map B lives in an open subset
of the coball bundle

B∗Γ = {(x, ξ) ∈ T ∗Γ : h0(x, ξ) ≤ 1} ,
where h0 is the Hamiltonian corresponding to the induced Riemannian metric on Γ via the

Legendre transformation. The map B is defined as follows. Denote by
◦

B∗ Γ the interior of B∗Γ
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and set

S∗X := {(x, ξ) ∈ T ∗X : h(x, ξ) = 1} , Σ = S∗X|Γ := {(x, ξ) ∈ S∗X : x ∈ Γ} ,

Σ± := {(x, ξ) ∈ Σ : ±〈ξ, ν(x)〉 > 0} .
The natural projection πΣ : Σ → B∗Γ assigning to each (x, η) ∈ Σ the covector (x, η|TxΓ) admits
two smooth inverses

π±Σ :
◦

B∗ Γ → Σ± , π±Σ (x, ξ) = (x, ξ±) .

Take (x, ξ) ∈
◦

B∗ Γ and consider the integral curve exp(tXh)(x, ξ
+), of the Hamiltonian vector

field Xh starting at (x, ξ+) ∈ Σ+. If it intersects transversally Σ at a time t1 > 0 and lies entirely

in the interior S∗
◦
X of S∗X for t ∈ (0, t1), we set

(y, η−) = J(x, ξ+) = exp(t1Xh)(x, ξ+) ∈ Σ− ,

and define B(x, ξ) := (y, η), where η := η−|TyΓ. We denote by B̃∗Γ the set of all such points

(x, ξ). In this way we obtain a smooth symplectic map B : B̃∗Γ → B∗Γ, B = πΣ ◦ J ◦π+
Σ . As in

[10] we can write πΣ in an invariant form as follows. Consider the pull-back ω0 in T ∗X|Γ of the
symplectic form ω in T ∗X via the inclusion map. Then the projection along the characteristics
of ω0 induces the map πΣ : Σ → B∗Γ.

Denote by πΓ : T ∗Γ → Γ the inclusion map. Given (x, ξ) ∈ B∗Γ, we denote by θ = θ(x, ξ) ∈
(0, π/2] the angle between ξ+ and T ∗

xΓ in T ∗
xX (equipped with the metric ‖ · ‖x =

√
h(x, ·)),

which is determined by sin θ =
√

1 − h0(x, ξ).

2.2 Quasimodes

First we shall show that the isospectral condition (H1)-(H2) is natural for any d > n/2. Given
c > 0 and a� 1 we consider

I0 :=
{
λ ≥ a : | Spec (∆g,K) − λ| ≤ 2cλ−d

}
.

Let us write I0 as a disjoint union of connected intervals [ak, bk], and then set ak = ak + ca−dk
and bk = bk − cb

−d
k . We have bk − ak ≥ 2c(a−dk + b

−d
k ), hence, bk − ak ≥ c(a−dk + b

−d
k ) > 0.

Denote by I = I (∆g,K) the union of the disjoint intervals [ak, bk], k ≥ 1. By construction
ak+1 − bk > ca−dk+1 since the intervals [ak, bk] are disjoint.

Lemma 2.1 The set I (∆g,K) satisfies (H1) for any d > n/2. In particular, the usual isospectral
condition (1.2) implies (H2)-(H2) for I = I (∆0) and any d > n/2.

Proof of Lemma 2.1. It remains to estimate the length of the interval [ak, bk]. Let λp ≤ · · · ≤ λr
be the eigenvalues of ∆g,K in [ak, bk]. Then

|λj − λj+1| ≤ 4cλ−dj

for p ≤ j ≤ r. On the other hand, by Weyl’s formula, λj = vj2/n(1 + o(1)) as j → +∞, where
v > 0 is a constant. Then choosing k � 1, respectively j � 1, we get λj ≥ 2−1vj2/n, and

bk − ak ≤ C

r∑

j=p

j−
2d
n ≤ C

r∫

p

s−
2d
n ds ≤ Cλ

1− 2d
n

p ≤ Ca
1− 2d

n

k ,
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where C stands for different positive constants. Hence, bk − ak < bk − ak = o(1) for d > n/2,
which proves the Lemma. 2

Fix a positive integer N . By quasimode Q of ∆g,K of order N we mean an infinite sequence
(µq, uq)q∈M, M being an index set, such that µq are positive, limµq = +∞, uq ∈ C2(X),
‖uq‖L2(X) = 1, and





∥∥∆uq − µ2
q uq

∥∥ ≤ CN µ
−N
q in L2(X) ,

‖∂uq/∂ν|Γ − K uq|Γ‖ ≤ CN µ
−N
q in L2(Γ) .

(2.6)

Denote by A(%) the action along the broken bicharacteristic starting at % ∈ Λ and with endpoint
P (%) ∈ Λ. Note that 2A(%) > 0 is just the length of the corresponding geodesic arc.

Theorem 2.2 Let Λ be a Kronecker torus satisfying (H3) with frequency given by (1.3) and
exponent τ ≥ 1. Fix two positive integers N ≥ 2 and l ≥ N([τ ] + n) + 2n + 2 and let B be a
bounded subset of C l(Γ,R). Then for any K ∈ B there is a quasimode (µq, uq)q∈M, M ⊂ Zn, of
∆g,K of order N satisfying (2.6) such that

µq = µ0
q + cq,0 + cq,1(µ

0
q)

−1 + · · · + cq,N (µ0
q)

−N

where

(i) µ0
q is independent of K and there is C0 > 0 such that µ0

q ≥ C0|q| for any q ∈ M,

(ii) the map K → cq,j ∈ R is continuous in K ∈ C l(Γ,R) and there is C = C(B) > 0 such
that |cq,j | ≤ C for any q ∈ M, 0 ≤ j ≤ N , and any K ∈ B,

(iii) cq,0 is independent of K and

cq,1 = c′q,1 + c′′1

m−1∑

j=0

∫

Λ

K ◦ πΓ

sin θ
◦Bj dµ ,

where c′q,1 is independent of K, and

c′′1 =
2(2π)n−1

∫
ΛA(%) dµ

.

Moreover, the positive constant CN in (2.6) is uniform with respect to K ∈ B.

Proof of Theorem 1.1. Denote by B the set of Kt, t ∈ [0, 1]. Take N = [2d] + 1 ≥ 2, the
smallest positive integer bigger than 2d, and consider the quasi-eigenvalues µq(t)

2, t ∈ [0, 1],
given by Theorem 2.2. It is easy to see ([9], Proposition 32.1) that there is a positive constant
C ′ depending only on CN such that for any q ∈ M ⊂ Zn and t ∈ [0, 1],

∣∣ Spec (∆t) − µq(t)
2
∣∣ ≤ C ′µq(t)

−[2d]−1 .

7



Then for any q ∈ M, |q| ≥ q0 � 1, and t ∈ [0, 1] there is λt,q ∈ Spec (∆t) such that λt,q ≥
(C ′)−1|q| and ∣∣λt,q − µq(t)

2
∣∣ ≤ C ′λ

−([2d]+1)/2
t,q

where C ′ > 0 depends only on C0 and CN . Since ([2d]+1)/2 > d, using (H2) we obtain that the
quasi-eigenvalue µq(t)

2 belongs to the union of the intervals [ak − ca−dk /4, bk + cb−dk /4] for any
q ∈ M with |q| ≥ q0 � 1 and any t ∈ [0, 1]. These intervals do not intersect each other in view of
(H1) and since µq(t)

2 is continuous in [0, 1] it can not jump from one interval to another. Hence,
for each q ∈ M with |q| ≥ q0 there is k = k(q) such that µq(t)

2 ∈ [ak − ca−dk /4, bk + cb−dk /4] for
any t ∈ [0, 1], and we obtain

|c′′1 |

∣∣∣∣∣∣

m−1∑

j=0

∫

Λ

(Kt −K0) ◦ πΓ

sin θ
◦Bj dµ

∣∣∣∣∣∣
= |cq,1(t) − cq,1(0)|

≤ µ0
q|µq(t) − µq(0)| + C ′(µ0

q)
−1 ≤ C ′

(
µq(0)√
ak

|µq(t)2 − µq(0)
2| + (µ0

q)
−1

)

≤ C ′
(
bk − ak + ca−dk + (µ0

q)
−1

)
:= εk ,

where C ′ stands for different positive constants depending only on the constants C0, C and CN
in Theorem 2.2. Hence C ′ depends neither on t nor on q and lim

q→+∞
εk(q) = 0 in view of (H1)

which proves (1.4). 2

3 Construction of continuous quasimodes

3.1 Reduction to the boundary.

We are going to use an outgoing parametrix for the Helmholtz equation with initial conditions
on Γ. In the time dependent case such a parametrix has been constructed by Guillemin and
Melrose [5].

Set Λj = Bj(Λ), j = 0, 1, . . . ,m, where Λm = P (Λ) = Λ, m ≥ 1. Since ω is Diophantine,
P acts transitively on each Λj, hence, Λi ∩ Λj = ∅ if 0 < |i − j| < m and m ≥ 2. Choose

neighborhoods Uj ⊂ B̃∗Γ of Λj, 0 ≤ j ≤ m, such that Uj+1 is a neighborhood of the closure
of B(Uj) for j = 0, . . . ,m − 1, m ≥ 1, and such that Ui ∩ Uj = ∅ if 0 < |i − j| < m and

m ≥ 2. We denote by (X̃, g̃) a C∞ extension of (X, g) across Γ such that any integral curve γ
of the Hamiltonian vector field Xeh

, h̃ being the corresponding Hamiltonian, starting at π+
Σ (Uj),

j = 0, . . . ,m− 1, satisfies
γ ∩ T ∗X̃|Γ ⊂ π+

Σ (Uj) ∪ π−Σ (Uj+1). (3.7)

Then γ intersects transversally T ∗X|Γ and for each % ∈ Uj there is an unique Tj(%) > 0 such
that

exp(Tj(%)Xeh
)(π+

Σ (%)) ∈ π−Σ (B(Uj)) .

Let ψj(λ), j = 0, 1, . . . ,m, be classical λ-pseudodifferential operators (λ-PDOs) of order 0 on Γ
with a large parameter λ and compactly supported amplitudes in Uj [12] such that

WF′(Id − ψj) ∩ Λj = ∅ ,
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and

WF′(ψj+1) ⊂ B(Uj) , WF′(Id − ψj+1) ∩B(WF′(ψj)) = ∅ for j = 0, . . . m− 1 . (3.8)

Hereafter WF′(ψj) stands for the frequency set of ψj [12], and by a “classical” λ-PDO we mean
that in any local coordinates the corresponding distribution kernel is of the form (A.1) where the
amplitude has an asymptotic expansion q(x, ξ, λ) ∼ ∑∞

k=0 qk(x, ξ)λ
−k and qk are C∞ smooth

and uniformly compactly supported. In particular the distribution kernel OPλ(q)(·, ·) is smooth
for each λ fixed. We take λ in a complex strip

D := {z ∈ C : |Im z| ≤ D0, Re z ≥ 1} ,

D0 > 0 being fixed.
We are looking for a microlocal outgoing parametrix Hj : L2(Γ) → C∞(X̃), of the Dirichlet

problem for the Helmholtz equation with “initial data” concentrated in Uj such that

(∆ − λ2)Hj(λ) = OM (|λ|−M ) (3.9)

in a neighborhood of X in X̃ . Hereafter,

OM (|λ|−M ) : L2(Γ) −→ L2
loc(X̃)

stands for any family of continuous operators depending on λ with norms ≤ CM,F (1 + |λ|)−M ,

CM,F > 0, on any compact F ⊂ X̃ . We shall denote also by

OM (|λ|−M ) : L2(Γ) −→ L2(Γ) ,

any family of continuous operators depending on λ with norms ≤ CM (1 + |λ|)−M , CM > 0.
The operator Hj is a Fourier integral operator of order 1/4 with a large parameter λ ∈ D

(λ-FIO) the distribution kernel of which is an oscillatory integral in the sense of Duistermaat [4]
(see also [12]). In any local coordinates its amplitude is C∞ smooth, it is uniformly compactly
supported for λ ∈ D and it has an asymptotic expansion in powers of λ up to any negative
order. In particular, Hj(λ)u is a C∞ smooth function for any fixed λ and u ∈ L2(Γ). The

corresponding canonical relation lies in T ∗Γ × T ∗X̃ and it is given by

Cj :=
{(
% ; exp(sXeh

)(π+
Σ (%))

)
: % ∈ Uj , −ε < s < Tj + ε

}
, ε > 0 .

We parameterize it by (%, s). Consider the operator of restriction ı∗Γ : C∞(X̃) → C∞(Γ),
ı∗Γ(u) = u|Γ, as a λ-FIO of order 0, the canonical relation R of which is just the inverse of the

canonical relation given by the conormal bundle of the graph of the inclusion map ı : Γ → X̃.
Notice that the composition R ◦ Cj is transversal for any j and it is a disjoint union of the
diagonal in Uj × Uj (for s = 0) and of the graph of the billiard ball map B : Uj → Uj+1 (for
s = Tj). Let Ψj(λ) be a λ-PDO of order 0 such that WF′(Ψj− Id)∩WF′(ψj) = ∅. Taking Ψj(λ)
as initial data at Γ for s = 0 and solving the corresponding transport equations, we obtain an
operator Hj(λ) satisfying (3.9) and such that

ı∗ΓHj(λ) = Ψj(λ) +Gj(λ) +OM (|λ|−M ) , (3.10)

where Gj(λ) is a λ-FIO of order 0, the canonical relation of which is the graph of the billiard ball
map B : Uj → Uj+1. Moreover, its principal symbol is equal to 1 in a neighborhood of WF′(ψj)
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modulo Maslov’s factor times the Liouville factor exp(iλAj(%)), where Aj(%) =
∫
γj(%)

ξdx is the

action along the integral curve γj(%) of the Hamiltonian vector field Xeh
starting at % ∈ Uj

and with endpoint B(%) ∈ Uj+1. In particular, the frequency set WF ′ of Gj(λ) is contained in
Uj×Uj+1 for any j = 0, . . . ,m−1. Note that 2Aj(%) is just the length Tj(%) of the corresponding
geodesic γ̃j(%) in X and we have

πΣ

(
exp(2Aj(%)Xeh

)(π+
Σ (%))

)
= B(%) , % ∈ Uj .

Fix a bounded set B in C l(Γ,R) and take K ∈ B. Consider the operator N = ∂/∂ν̃ − K̃ in a
neighborhood of Γ in X̃ , where ν̃ is a normal vector field to Γ and K̃ is a C l-smooth extension
of K with compact support contained in a small neighborhood of Γ. To construct K̃ we extend
K as a constant on the integral curves of ν̃ and then multiply it with a suitable cut-off function.
In this way we obtain a continuous map K → K̃ from C l(Γ,R) to C l0(X̃,R).

Suppose first that m = 1 and set G(λ) = H0(λ)ψ0(λ). Then (∆ − λ2)Hj(λ) = OM (|λ|−M )

in a neighborhood of X in X̃, in view of (3.9). Moreover, using the symbolic calculus and (3.8)
we obtain

ı∗Γ N G(λ) = ψ1(λ)(λR+
0 +K)ψ0(λ) + ψ1(λ)(λR−

1 +K)G0(λ)ψ0(λ) +OM (|λ|−M ) .

Here, R+
0 (λ) is a classical λ-PDO of order 0 on Γ independent of K, with a C∞

0 -symbol in any
local coordinates, and with principal symbol

σ(R+
0 )(%) = i

√
1 − h0(%) , % ∈ U0 ,

and R−
1 is a classical λ-PDO of order 0 on Γ independent of K with principal symbol

σ(R−
1 )(%) = −i

√
1 − h0(%) , % ∈ U1 .

We consider the following equation with respect to Q1

ψ1

[
λR−

1 +K + (λR+
0 +K)Q1(λ)

]
= OB(|λ|−M ) , (3.11)

which we solve using the classes PDOl,2,M−1(Γ;B;λ) defined in the Appendix. Hereafter,
OB(|λ|−M ) : L2(Γ) → L2(Γ) denotes any family of continuous operators depending on K ∈ B
and on λ ∈ D with norms uniformly bounded by CB(1 + |λ|)−M , where CB > 0 is a constant
independent of K ∈ B. We cover U1 by finitely many local charts, and in each of them we write
the complete symbol of Q1 of the form (A.2). Then using a suitable C∞ partition of the unity
in the phase space, we put them together and obtain an operator

Q1 = Q0
1 + λ−1Q1

1

which is well defined moduloOB(|λ|−M ). Here Q0
1 is a classical λ-PDOs of order 0 independent of

K and with a C∞ symbol, and Q1
1 ∈ PDOl,2,M−1(Γ;B;λ). The corresponding principal symbols

are

σ0(Q
0
1)(x, ξ) = 1 , σ0(Q

1
1)(x, ξ) =

2iK(x)√
1 − h0(x, ξ)

=
2iK(x)

sin θ(x, ξ)

in a neighborhood of WF′(ψ1) in U1. In this way the equation

ı∗Γ N G(λ)v = OM (|λ|−M )v
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reduces to (W (λ) − Id )ψ0(λ)v = OB(|λ|−M )v, where W (λ) := Q1(λ)G0(λ).
Suppose now that m ≥ 2. In order to satisfy the boundary conditions at Uj+1, 0 ≤ j ≤ m−2,

we are looking for a λ-PDO Qj+1(λ) such that

ψj+1(λ)ı∗Γ N Hj+1(λ)Qj+1(λ)Gj(λ) + ψj+1(λ)ı∗Γ N Hj(λ) = OB(|λ|−M ) . (3.12)

Using the symbolic calculus we write

ψj+1(λ)ı∗Γ N Hj+1(λ)Qj+1(λ)Gj(λ) = ψj+1(λ)(λR+
j+1(λ) +K)Qj+1(λ)Gj(λ) +OM (|λ|−M )

where R+
j+1(λ) is a classical λ-PDO of order 0 on Γ independent of K, with a C∞

0 -symbol in any
local coordinates, and with principal symbol

σ(R+
j+1)(%) = i

√
1 − h0(%) , % ∈ Uj+1 .

In the same way we obtain

ψj+1(λ)ı∗Γ N Hj(λ) = ψj+1(λ)(λR−
j+1 +K)Gj(λ) +OM (|λ|−M ),

where R−
j+1 is a classical λ-PDO of order 0 on Γ independent of K with principal symbol

σ(R−
j+1)(%) = −i

√
1 − h0(%) , % ∈ Uj+1 .

Then (3.12) reduces into the equation

ψj+1(λ)
[
(λR+

j+1 +K)Qj+1 + λR−
j+1 +K

]
= OB(|λ|−M ) (3.13)

on Uj+1, which we solve as above in the classes PDOl,2,M−1(Γ;B;λ). More precisely, we obtain
an operator

Qj+1 = Q0
j+1 + λ−1Q1

j+1

which is well defined moduloOB(|λ|−M ), whereQ0
j+1 is a classical λ-PDOs of order 0 independent

of K and with a C∞ symbol, and Q1
j+1 ∈ PDOl,2,M−1(Γ;B;λ). The corresponding principal

symbols are

σ0(Q
0
j+1)(x, ξ) = 1 , σ0(Q

1
j+1)(x, ξ) =

2iK(x)√
1 − h0(x, ξ)

=
2iK(x)

sin θ(x, ξ)

in a neighborhood of WF′(ψj+1) in Uj+1.

Consider the operator G(λ) : C∞(Γ) → C∞(X̃) defined by

G(λ) = H0(λ)ψ0(λ) +
m∑

k=2

Hk−1(λ)Πk−2
j=0 (Qj+1(λ)Gj(λ))ψ0(λ) .

Using (3.8) - (3.10) and (3.12) we obtain

{
(∆ − λ2)G(λ) = OB(|λ|−M ) ,

ı∗Γ N G(λ) = ψm(λ)(λR+
0 +K)ψ0(λ) + ψm(λ)(λR−

m +K) W̃ (λ)ψ0(λ) +OB(|λ|−M ) ,
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where
W̃ (λ) = ı∗ΓHm−1(λ)Πm−2

j=0 (ψj+1(λ)Qj+1(λ)Gj(λ)) ,

and R+
0 and R−

m are defined as above. As in (3.11) we find Qm = Q0
m + λ−1Q1

m such that

ψm(λ)
[
λR−

m +K + (λR+
0 +K)Qm(λ)

]
= OB(|λ|−M ) ,

where Qkm, k = 0, 1, are as above. In this way we reduce the equation ı∗Γ N G(λ)v = OB(|λ|−M )v
to the following one

(W (λ) − Id )ψ0(λ)v = OB(|λ|−M )v , (3.14)

where
W (λ) := Qm(λ)W̃ (λ) = Πm−1

j=0 (ψj+1(λ)Qj+1(λ)Gj(λ)) .

Set S(λ) := Πm−1
j=0 Gj(λ). By construction Gj(λ) is elliptic on WF′(ψjQj), and using Lemma A.2

we commute Gj(λ) with ψjQj. Since PDOl,2,M−1(Γ;B;λ) is closed under multiplication (see
Remark A.1), we obtain another λ-PDO of the same class which we commute with Gj+1(λ) and
so on. Finally, for any m ≥ 1 we obtain

W (λ) = ψm(λ)
(
Q0(λ) + λ−1Q1(λ)

)
S(λ)ψ0(λ) +OB(λ−M ) .

Here, Q0(λ) is a classical λ-PDOs on Γ with a C∞ symbol independent of K and with principal
symbol 1 in a neighborhood of Λ, and Q1 ∈ PDOl,2,M−1(Γ;B;λ). By Egorov’s theorem (see
Lemma A.2) the principal symbol of Q1(λ) is

σ0(Q
1)(x, ξ) = 2i

m−1∑

j=0

K(πΓ(xj , ξj))

sin θ(xj, ξj)
, (xj , ξj) = B−j(x, ξ) ,

in P (U0). The operator S(λ) does not depend on K, and it is a classical λ-FIO of order 0 with
a large parameter λ ∈ D. The canonical relation of S(λ) is given by the graph of the map
P = Bm : U0 → Um, and the principal symbol of S(λ) equals one modulo a Maslov’s factor
times the Liouville factor exp(iλA(x, ξ)), (x, ξ) ∈ P (U0), where A(x, ξ) =

∑m−1
j=0 Aj(x

j , ξj).

3.2 Birkhoff normal form of P .

First we find a symplectic Birkhoff normal form of P in a neighborhood Λ using [9], Proposition
9.13. We choose a basis of cycles γj, j = 1, . . . , n − 1, of the first homology group H1(Λ,Z),
and set I0 = (I0

1 , . . . , I
0
n−1), where I0

j = (2π)−1
∫
γj
ξdx. Using Proposition 9.13, [9], we obtain

an exact symplectic transformation χ mapping a neighborhood of Tn−1 × {I0} in T ∗Tn−1 to a

neighborhood of Λ in
◦

B∗ Γ such that

(i) χ(Tn−1 × {I0}) = Λ,

(ii) the symplectic map P 0 := χ−1 ◦ P ◦ χ has a generating function of the form

Φ(x, I) = 〈x, I〉 + L(I) +R(x, I) , x ∈ Rn−1 , |I − I0| � 1 ,

i.e. P 0(∇IΦ, I) = (x,∇xΦ), where R is 2π-periodic in x,

(iii) ∇L(I0) = 2πω and ∂αI R(x, I0) = 0, x ∈ Rn−1, for each α ∈ Nn−1.
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In particular, we obtain

∀p ∈ N , P 0(ϕ, I) = (ϕ−∇L(I), I) +Op(|I − I0|p) . (3.15)

We choose the constant L(I0) as follows. Consider the “flow-out” T ∼= Tn of Λ by the broken
bicharacteristic flow of h in T ∗X. Let ρ0 = χ(ϕ0, I0) ∈ Λ. We denote by γn1(ρ

0) the broken
bicharacteristic arc in T issuing from ρ0 and having endpoint at P (ρ0), and by γn2(ρ

0) :=
χ(ϕ0 + (s− 1)2πω), I0), s ∈ [0, 1], the arc connecting P (ρ0) and ρ0 in Λ. Let γn be the union of
the two arcs. We denote by L(I0) the action along γn, i.e.

L(I0) =

∫

γn

ξdx . (3.16)

Note that the integral above depends only on the homotopy class of the loop γn in the Lagrangian
torus T . We can give now a geometric interpretation of L which will be needed later. The
Poincaré identity gives

P ∗(ξdx) = ξdx+ dA,

where ξdx is the fundamental one form on T ∗Γ and A(ρ), ρ = χ(ϕ, I), |I − I0| � 1, stands
for the action along the broken bicharacteristic γn1(ρ). Since χ is exact symplectic we have
χ∗(ξdx) = Idϕ + dΨ with a suitable smooth function Ψ ∈ C∞(T ∗Tn−1). Combining the two
equalities we obtain

(P 0)∗(Idϕ) − Idϕ = d((A ◦ χ) + Ψ − Ψ ◦ P 0).

In view of (3.15) this implies

L(I) − 〈I,∇L(I)〉 = A(χ(ϕ, I)) + Ψ(ϕ, I) − Ψ(P 0(ϕ, I)) +Op(|I − I0|p) (3.17)

for any p ∈ N modulo a constant C ∈ R. Notice that C should be zero since for I = I0 and
ω = ∇L(I0)/2π we obtain using (3.16)

L(I0) − 〈I0,∇L(I0)〉 = L(I0) − 2π〈I0, ω〉 =

∫

γ0
n1

I0dϕ

=

∫

γn1(ρ0)
ξdx+ Ψ(ϕ0, I0) − Ψ(ϕ0 − 2πω, I0) = A(χ(ϕ0, I0)) + Ψ(ϕ0, I0) − Ψ(P 0(ϕ0, I0)) ,

where γ0
n1 := χ−1(γn1(ρ

0)).
Set %j = P j(%0) = χ(ϕ0 − 2πjω, I0). The measure dµ = χ∗(dϕ) on Λ is invariant with

respect to the map P : Λ → Λ which is ergodic since 2πω is Diophantine, and we get

L(I0) − 2π〈I0, ω〉 = lim
j→∞

1

j

j−1∑

k=0

A(%k) = (2π)1−n
∫

Λ
A(%) dµ > 0 . (3.18)

3.3 Quantum Birkhoff normal form.

Using the restriction of χ to Tn−1 × {I0}, we identify the first cohomology groups H1(Λ,Z) =
H1(Tn−1,Z) = Zn−1, and we denote by ϑ0 ∈ Zn−1 the Maslov class of the invariant torus Λ. As
in [3] we consider the flat Hermitian line bundle L over Tn−1 which is associated to the class ϑ0.
The sections f in L can be identified canonically with functions f̃ : Rn−1 → C so that

f̃(x+ 2πp) = ei
π
2
〈ϑ0,p〉f̃(x) (3.19)
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for each x ∈ Rn−1 and p ∈ Zn−1. An orthonormal basis of L2(Tn−1,L) is given by ek, k ∈ Zn−1,
where

ẽk(x) = exp (i〈k + ϑ0/4, x〉) .
We quantize the canonical transformation χ as in [3]. More precisely we find a classical λ-FIO
T (λ) : C∞(Tn−1,L) → C∞(Γ) the canonical relation of which is just the graph of χ and such
that WF′(T (λ)T (λ)∗ − IdΓ) ∩ B(Um) = ∅. We suppose that the principal symbol of T (λ) is
equal to one in Tn−1 × D0 modulo the Liouville factor exp(iλΨ(ϕ, I)), where D0 is a small
neighborhood of I0. Conjugating W (λ) with T (λ) and using Lemma A.2 and Remark A.3 we
obtain

T (λ)∗W (λ)T (λ) =
[
T (λ)∗

(
Q0(λ) + λ−1Q1(λ)

)
T (λ)

]
[T (λ)∗S(λ)T (λ)]

= eiπϑ/4W1(λ) +OB(|λ|−M )

where ϑ ∈ Z is a Maslov’s index and W1(λ) is a λ-FIO operator of the form

W̃1(λ)u(x) =

(
λ

2π

)n−1 ∫

R2n−2

eiλ(〈x−y,I〉+Φ(x,I)) w(x, I, λ) ũ(y) dIdy , (3.20)

u ∈ C∞(Tn−1,L). The symbol w(x, I, λ), (x, I) ∈ Rn−1 × D, is 2π-periodic with respect to x
and uniformly compactly supported in I ∈ D, where D is a small neighborhood of I0, and it is
obtained by the stationary phase method. We have w = w0+λ−1w0, where w0 ∈ C∞(Rn−1×D),
w0(x, I) = 1 for (x, I) ∈ Rn−1 ×D0, D0 being a neighborhood of I0, and

w0 =
M−2∑

j=0

w0
j (x, I)λ

−j ∈ Sl,2,M−1(T
n−1 ×D;B;λ) .

Moreover,

w0
0(x, I) = iw′

0(x, I) + 2i

m−1∑

j=0

(
K ◦ πΓ

sin θ

)(
B−jχ(π0(x), I))

)
,

where w′
0 is a C∞ real valued function independent of K and π0 : Rn−1 → Tn−1 is the canonical

projection. The phase function is given by Φ(x, I) = L(I) +R(x, I) +C, where C is a constant,
since the canonical relation of W1(λ) is just the graph of P 0. Comparing the Liouville factors
in the principal symbols of W1(λ) and W (λ) and using (3.16) and (3.17), we obtain as in [12]
that C = 0.

The frequencies I of the quasimode we are going to construct satisfy I − I0 ∼ λ−1, where λ2

are the corresponding quasi-eigenvalues. For that reason we consider the Taylor polynomials of
the symbols at I = I0 up to certain order. Let ψ ∈ C∞

0 (D) and ψ = 1 in a neighborhood of I0.

For any positive integers l, l̃ ≥ 2, s ≥ 2 and N ≥ 1 such that l̃ ≥ sN + 2n and for any bounded
set B ⊂ C l(Γ) we denote by S̃el,s,N

(Tn−1 ×D;B;λ) the class of symbols

{
a(ϕ, I, λ) =

∑N−1
j=0 aj(ϕ, I)λ

−j ,

aj(ϕ, I) = ψ(I)
∑

|α|≤N−j−1(I − I0)αaj,α(ϕ)
(3.21)

where aj,α = ∂αI aj(·, I0)/α! ∈ C
el−sj−|α|(Tn−1) and the corresponding map

C l(Γ,R) 3 K → aj,α ∈ C
el−sj−|α|(Tn−1)
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is continuous. We denote also by R̃N (Tn−1 ×D;B;λ) a residual class of symbols

{
r(ϕ, I, λ) =

∑N−1
j=0 rj(ϕ, I)λ

−j ,

rj(ϕ, I) =
∑

|α|=N−j(I − I0)αrj,α(ϕ, I)
(3.22)

where C l(Γ,R) 3 K → rj,α ∈ C2n
0 (Tn−1 ×D) is continuous in the sense that the support of rj,α

is contained in a fixed compact set in Tn−1 × D independent of K and the map K → rj,α ∈
C2n(Tn−1 ×D) is continuous in C l(Γ,R). Note that the class S̃el,s,N

/R̃N does not depend on of
ψ. The choice of the residual class is motivated by the proof of Proposition 3.3 below.

Denote by Lω the operator defined by Lωa(ϕ) = a(ϕ− 2πω) − a(ϕ).

Proposition 3.1 Fix l ≥ (M − 1)([τ ] + n) + 2n + 2 and suppose that K belongs to a bounded
subset B of C l(Γ,R). Then there exists a λ-PDO A(λ) of order 0 acting on C∞(Tn−1,L) and a
λ-FIO W 0(λ) of the form (3.20) such that

W1(λ)A(λ) = A(λ)W 0(λ) +R0(λ) + OB(|λ|−M ) ,

the full symbols of A(λ) and of W 0(λ) are

σ(A)(ϕ, I, λ) = a0(I) + λ−1a0(ϕ, I, λ) , σ(W 0)(ϕ, I, λ) = p0(I) + λ−1p0(I, λ) ,

with a0, p0 ∈ C∞
0 (D), a0(I) = p0(I) = 1 in a neighborhood D0 of I0, and

p0 ∈ S̃l,[τ ]+n,M−1(D;B;λ) ,

a0 ∈ S̃l−[τ ]−n,[τ ]+n,M−1(T
n−1 ×D;B;λ) .

(3.23)

Moreover, R0 is a λ-FIOs of the form (3.20) with symbol

σ(R0)(ϕ, I, λ) = r0(ϕ, I) + λ−1r0(ϕ, I, λ) ,

r0 =
∑M−2

j=0 r0jλ
−j ∈ R̃M−1(T

n−1 ×D;B, λ) ,

(3.24)

r0 = 0 in Tn−1 ×D0 and

p0
0,0 =

1

(2π)n−1

∫

Tn−1

w0
0(ϕ, I

0)dϕ .

Proof. Given f ∈ CN (Tn−1 ×D) we denote by TNf its Taylor polynomial with respect to I at
I = I0, i.e.

TNf(ϕ, I) =

N∑

k=0

(I − I0)α fα(ϕ) ,

where fα(ϕ) = ∂αI f(ϕ, I0)/α! are the corresponding Taylor coefficients. We need the following

Lemma 3.2 Let A(λ) and W 0(λ) have symbols a0(I) + λ−1a0(ϕ, I, λ) and p0(I) + λ−1p0(I, λ)
respectively, where a0(I) = p0(I) = 1 in a neighborhood D0 of I0, and a0 and p0 satisfy (3.23)
with l ≥ (M − 1)([τ ] + n) + 2n+ 2. Set

R(λ) := W1(λ)A(λ) −A(λ)W 0(λ).
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Then
R(λ) = λ−1R1(λ) +R0(λ) +OB(|λ|−M ) ,

where R1(λ) and R0(λ) are λ-FIOs of order 0 of the form (3.20), the symbbol

R1(ϕ, I, λ) =

M−2∑

j=0

R1j(ϕ, I)λ
−j

of R1(λ) belongs to S̃l,[τ ]+n,M−1(T
n−1 ×D;B, λ) and the symbol of R0(λ) satisfies (3.24). More-

over, for 0 ≤ j ≤M − 2 we have

R1j(ϕ, I) =
1

i
Lω a0

j (ϕ, I) + TM−j−2w
0
j (ϕ, I) − p0

j (I) + h0
j (ϕ, I) , (3.25)

h0
0 = 0, and h0

j = f0
j −g0

j , for 1 ≤ j ≤M−2, where the Taylor coefficient f0
j,α(ϕ), |α| ≤M−j−2,

of f0
j at I = I0 is a linear combination of

{
∂βϕas,γ(ϕ− 2πω) : 0 ≤ s ≤ j − 1, |β + γ| ≤ 2(j − s) + |α| ,
w0
r,δ(ϕ)∂βϕa0

s,γ(ϕ− 2πω) : 0 ≤ r + s ≤ j − 1, |β + γ + δ| ≤ 2(j − r − s− 1) + |α| ,
(3.26)

while the Taylor coefficients g0
j,α(ϕ), |α| ≤M − j − 2, of g0

j at I = I0 is a linear combination of

p0
k,β a

0
j−k−1,γ(ϕ) : 0 ≤ k ≤ j − 1 , β + γ = α . (3.27)

The proof of the lemma is given in the Appendix.
Recall that for each |α| ≤ l − 2j the map

C l(Γ,R) 3 K → w0
j,α ∈ C l−2j−|α|(Tn−1) (3.28)

is continuous.
We are going to find the Taylor coefficients p0

j,α ∈ C and

aj,α ∈ C l−(j+1)([τ ]+n)−|α|(Tn−1) , 0 ≤ j ≤M − 2 , |α| ≤M − j − 2 ,

so that R1j = 0. Moreover, we shall prove by recurrence that the maps

K 7→ p0
j,α ∈ C , K 7→ aj,α ∈ C l−(j+1)([τ ]+n)−|α|(Tn−1) (3.29)

are continuous with respect to K ∈ C l(Γ,R). For j = 0 we have h0 = 0, and we put

p0
0,α =

1

(2π)n−1

∫

Tn−1

w0
0,α(ϕ) dϕ , |α| ≤ N − 2 .

Setting u = a0,α and v = p0
0,α − w0

j,α we obtain from (3.25) equations of the form

1

i
Lω u(ϕ) = v(ϕ) ,

∫

Tn−1

v(ϕ) dϕ = 0 . (3.30)
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We are going to solve (3.30). Suppose that v ∈ Cm(Tn−1) for some m ≥ [τ ]+n. Comparing the
corresponding Fourier coefficients uk and vk, 0 6= k ∈ Zn−1, we get

uk =
i

1 − exp(2πi〈k, ω〉) vk , k 6= 0 ,

and set u0 = 0. Summing up and using the Diophantine condition (1.3) we get the function
u. In this way we obtain an unique solution u ∈ Cm−[τ ]−n(Tn−1) of (3.30) normalized by∫

Tn−1 u(ϕ) dϕ = 0. Moreover,
‖u‖Cm−[τ ]−n ≤ C‖v‖Cm ,

hence, the linear map v 7→ u ∈ Cm−[τ ]−n(Tn−1) is continuous in v ∈ Cm(Tn−1). In this way
using (3.28) for j = 0 and |α| ≤ N − 2 we obtain p0

0,α ∈ C and a0,α ∈ C l−([τ ]+n)−|α|(Tn−1) and
we prove that the corresponding maps (3.29) are continuous. Moreover,

p0
0(I

0) =
1

(2π)n−1

∫

Tn−1

w0
0(ϕ, I

0)dϕ .

Fix 1 ≤ j ≤M −2 and suppose that the inductive assumption holds for all indices k ≤ j−1.
Then the maps

K 7→ hj,α ∈ C l−j([τ ]+n)−|α|(Tn−1) , |α| ≤M − j − 2 ,

are continuous with respect to K ∈ C l(Γ,R) in view of (3.26) and (3.27). We set as above

p0
j,α =

1

(2π)n−1

∫

Tn−1

(w0
j,α(ϕ) − hj,α(ϕ)) dϕ .

Obviously it depends continuously on K ∈ C l(Γ,R). Setting u = aj,α and v = p0
j,α−w0

j,α+hj,α,
|α| ≤M − j−2, we solve (3.30) and prove as above that the maps (3.29) are continuous. In this
way we obtain symbols p0 and a0 satisfying (3.23) and such that R1j = 0 for 1 ≤ j ≤ M − 2.
Now Lemma 3.2 implies that R(λ) = R0(λ) +OB(|λ|−M ), where R0(λ) satisfies (3.24). 2

We are going to write p0
0 in an invariant form. For j = 0 we have

p0
0(I

0) = ic + 2i

m−1∑

j=0

∫

Tn−1

K ◦ πΓ

sin θ
(Bjχ(ϕ, I0)) dϕ ,

where c is independent of K. Denote by dµj the measure on Λj = Bj(Λ) = Bj
(
χTn−1

)
,

0 ≤ j ≤ m, defined by dµj = (χ−1B−j)∗(dϕ). It is easy to see that the latter is a Leray form on
Λj . Indeed, setting Ωj = (χ−1B−j)∗(dI1 ∧ · · · ∧ dIn−1) we obtain that dµj is the measure on Λj
associated with the volume form ı∗jVj, where (n− 1)!Vj ∧Ωj = ωn−1

0 in Uj , ıj : Λj → T ∗Γ is the
embedding map, and ω0 is the symplectic two-form on T ∗Γ. Moreover, B∗(dµj+1) = dµj for any
0 ≤ j ≤ m−1, and since P 0 acts on χ−1(Λ0) as a rotation by 2πω, we get dµm = P ∗(dµ0) = dµ0,
and we set dµ = dµ0. This implies

p0
0(I

0) = ic + 2i
(2π)n−1

vol (Λ)

m−1∑

j=0

∫

Λ

K ◦ πΓ

sin θ
◦Bj dµ .

Consider the λ-FIOs W 0(λ) and R1(λ) given by (3.20) with phase function Φ, and ampli-
tudes p0 + λ−1p0, p0(I) =

∑M−2
j=0 p0

j(I)λ
−j , and r = r0 + λ−1r0, r0(ϕ, I) =

∑M−2
j=0 r0j (ϕ, I)λ

−j ,
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respectively, which are uniformly compactly supported with respect to I in D. We consider an
almost analytic extensions of order 3M of the phase function Φ in I = ξ + iη given by

Φ(x, ξ + iη) =
∑

|α|≤3M

∂αξ Φ(x, ξ)(iη)α(α!)−1 .

It is easy to see that ∂IΦ(x, ξ + iη) = O(|η|3M ). In the same way we construct an almost
analytic extension of order M of the function ψ, which was used to define the class S̃l,s,N . We
have ψ(ξ + iη) = 1 in a complex neighborhood of I0 and ψ(ξ + iη) = 0 for ξ /∈ D.

Proposition 3.3 We have

W 0(λ)ek(ϕ) = eiλΦ(ϕ,(k+ϑ0/4)/λ)(p0 + λ−1p0)((k + ϑ0/4)/λ, λ)ek(ϕ) + OB(|λ|−M ) , (3.31)

and
R(λ)ek(ϕ) = OB(|λ|−M + |I0 − (k + ϑ/4)/λ|M ) , (3.32)

for any ϕ ∈ Tn−1, λ ∈ D, and k ∈ Zn−1, such that |k| ≤ C|λ| and C � 1.

Proof. We obtain as above

W̃ 0(λ)ek(x) = ẽk(x) e
iλΦ(x,ξk)

×
(
λ

2π

)n−1 ∫

R2n−2

eiλ〈x−y+Φ0(x,ξk,ηk),ηk〉 (p0 + λ−1p0)(I, λ) dI dy ,

where Φ0(x, ξ, η) =
∫ 1
0 ∇ξΦ(x, ξ+τη)dτ , ξk = (k+ϑ0/4)/λ and ηk = I−(k+ϑ0/4)/λ. Deforming

the contour of integration we obtain

W 0(λ)ek(ϕ) = ek(x) e
iλΦ(ϕ,(k+ϑ0/4)/λ)

×
(
λ

2π

)n−1 ∫

R2n−2

e−iλ〈u,v〉 (p0 + λ−1p0)(v + (k + ϑ0/4)/λ, λ) du dv + OB(|λ|−M ) ,

which implies (3.31).

To prove (3.32) we write ˜R0(λ)ek(x) as an oscillatory integral as above, and then we change
the contour of integration with respect to y by

y → v = y − x− Φ0(x, (k + ϑ0/4)/λ, I − (k + ϑ0/4)/λ) .

This implies

R0(λ)ek(ϕ) = ek(ϕ) eiλΦ(ϕ,(k+ϑ0/4)/λ)

×
(
λ

2π

)n−1 ∫

R2n−2

e−iλ〈v,I−(k+ϑ0/4)/λ〉 (r0 + λ−1r0)(ϕ, I, λ) dI dv
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modulo OB(|λ|−M ). We write now r0 in the form (3.22). Integrating N − j − 1 times by parts
with respect to v in the corresponding oscillating integral with amplitude r0j,α(ϕ, I)(I − I0)α,

|α| = M − j − 1, we replace (I − I0)α by ((k + ϑ0/4)/λ) − I0)α . Hence,

R0(λ)ek(ϕ) = ek(ϕ)eiλΦ(ϕ,(k+ϑ0/4)/λ)

×
(
λ

2π

)n−1 ∫

R2n−2

e−iλ〈v,I−(k+ϑ0/4)/λ〉 fk(ϕ, I, λ) dI dv + OB(|λ|−M ) ,

where
fk(ϕ, I, λ) = |(k + ϑ0/4)/λ) − I0|2Mr0(ϕ, I)|I − I0|−2M

+

M−2∑

j=0

∑

|α|=M−j−1

λ−j ((k + ϑ0/4)/λ) − I0)α r0j,α(ϕ, I) .

Since r0j,α ∈ C2n(Tn−1 × D) is continuous with respect to K ∈ B and B is bounded in C l,
integrating n times by parts with respect to I in the last integral we gain OB((1 + |λv|)−n), and
we obtain (3.32). 2

3.4 Construction of quasimodes.

The index set M of the quasimode Q we are going to construct is defined as follows. We say
that the pair q = (k, `) ∈ Zn−1 × Z belongs to M if there exists µ0

q > 0 such that the following
quantization conditions hold:

µ0
q(I

0, L(I0)) = (k + ϑ0/4, 2π` − πϑ/4) + O(1) , (3.33)

as |q| = |k|+ |`| → ∞. We have (I0, L(I0)) 6= (0, 0) in view of (3.18), hence, there is C > 0 such
that µ0

q ≥ C|q|. Note that (3.33) still holds if we replace µ0
q by

λ ∈ B(µ0
q) := {λ ∈ C : |λ− µ0

q| ≤ C0} ,

where C0 � 1 is fixed, and the estimate O(1) in (3.33) remains uniform with respect to q ∈ M
and λ ∈ B(µ0

q). Using (3.31) for q ∈ M and λ ∈ B(µ0
q) we obtain

W0(λ)ek = Zq(λ) ek + OB(|λ|−M )ek ,

where

Zq(λ) = eiλL((k+ϑ0/4)/λ)+iπϑ/4
(
1 + λ−1p0((k + πϑ0/4)/λ, λ)

)

= exp
[
iλL((k + ϑ0/4)/λ) + iπϑ/4 + Log

(
1 + λ−1p0((k + ϑ0/4)/λ, λ)

)]
,

where Log z = ln |z| + i arg z, −π < arg z < π. On the other hand, (3.32) and (3.33) imply

R(λ)ek = OB(|λ|−M ) ek .

Hence,

W1(λ)A(λ)ek =
(
eiπϑ/4Zq(λ) +OB(|λ|−M )

)
ek . (3.34)
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We are going to solve the equation

eiπϑ/4Zq(λ) = 1 , λ ∈ B1(µ
0
q) ,

modulo OB(|λ|−M ). To this end we are looking for a perturbation λ = µq of µ0
q such that

µqL((k + ϑ0/4)/µq) + πϑ/4

+
1

i
Log

(
1 + µ−1

q p0((k + ϑ0/4)/µq, µq)
)

= 2π`+OB(|µq|−M ) .

Introduce a small parameter εq = (µ0
q)

−1. We are looking for

µq = µ0
q + cq,0 + cq,1εq + · · · cq,M−1ε

M−1
q , ζq = I0 + bq,0εq + · · · bq,M−1ε

M
q + bq,Mε

M+1
q

such that




µqζq = k + ϑ0/4

µqL(ζq) = 2π`− πϑ/4 − 1
i Log (1 + µ−1

q p0(ζq, µq)) +OB(εMq ) .

Recall that

p0(ζq, µq) = p0
0(ζq) + · · · + p0

M−2(ζq)µ
−M+2
q , p0

m(ζq) =
∑

|α|≤M−m−2

p0
m,α(ζq − I0)α .

Then

Log
(
1 + µ−1

q p0(ζq, µq)
)

=
M−1∑

j=1

uq,jε
j
q +OB(εMq ) ,

where uq,j are polynomials of cq,m and bq,m, 0 ≤ m ≤ j−2, the coefficients of which polynomials
of p0

m,α, m+ |α| ≤ j − 1. Moreover, uq,1 = −p0
0,0. Using the Taylor expansion of L(I) at I0 up

to order M as well as (3.33) we obtain for 0 ≤ j ≤M − 1 the following linear system

{
bq,j + cq,jI

0 = Wq,j

L(I0)cq,j + 2π〈ω, bq,j〉 = Vq,j ,

where Vq,j and Wq,j are polynomials of cq,m and bq,m, 0 ≤ m < j, the coefficients of which are
polynomials of p0

m,α, m+ |α| < j. It is easy to see that the corresponding determinant is

L(I0) − 2π〈I0, ω〉 = (2π)1−n
∫

Λ
A(%) dµ > 0 ,

in view of (3.18), and we obtain an unique solution (cq,j , bq,j), 0 ≤ j ≤M − 1. More precisely,

cq,j = (L(I0) − 2π〈I0, ω〉)−1(Vq,j − 2π〈ω,Wq,j〉) ,

and bq,j = Wq,j − cq,jI
0. We choose bq,M so that µqζq = k + ϑ0/4.

We have

Wq,0 = k + ϑ0/4 − µ0
qI

0 = O(1) , Vq,0 = 2π`− πϑ/4 − µ0
qL(I0) = O(1) , q ∈ M ,
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in view of (3.33). Hence, bq,0 and cq,0 are uniformly bounded and they do not depend on
K. By recurrence we prove that bq,j and cq,j are continuous with respect to K and uniformly
bounded with respect to q ∈ M and K ∈ B. For j = 1 we obtain Wq,1 = −cq,0bq,0 and
Vq,1 = −2π〈ω, bq,0〉 − 1

2 〈∇2L(I0)bq,0, bq,0〉 + 1
i p

0
0,0, and we get

cq,1 = c′q,1 +
2(2π)n−1

∫
ΛA(%)dµ

m−1∑

j=0

∫

Tn−1

K ◦ πΓ

sin θ
◦Bj dµ ,

where c′q,1 does not depend on K.
For each q = (k, `) ∈ M we set

v0
q := T (µq)A(µq)ek and u0

q := G(µq)v
0
q = G(µq)T (µq)A(µq)ek .

Then using (3.34), we obtain

(W (µq) − Id )v0
q = OB(|λ|−M ) v0

q , (3.35)

and we get ∣∣∣∣∣

(
∆ − µ2

q

)
u0
q = OB(|µq|−M )u0

q in X ,

Nu0
q |Γ = OB(|µq|−M )u0

q

Lemma 3.4 There is C > 0 such that

C−1(1 + |µq|)−1 ≤ ‖u0
q‖L2(X) ≤ C

for any q ∈ M.

Proof. Since T (λ), A(λ) and G(λ) are uniformly bounded in the corresponding L2 norms, we
obtain

∀q ∈ M , ‖u0
q‖L2(X) ≤ C ,

where C > 0 is a constant. We have

‖u0
q |Γ‖L2(Γ) ≤ C‖u0

q‖H1(X) (3.36)

for some C > 0 and any q ∈ M, where H1(X) is the corresponding Sobolev space. We are going
to show that

‖u0
q‖H1(X) ≤ C(1 + |µq|)‖u0

q‖L2(X) +O(|µq|−1)‖u0
q |Γ‖L2(Γ) , q ∈ M . (3.37)

Let χ1 ∈ C∞
0 (X) have its support in the interior of X and χ2 = 1 − χ1. Denote by Ψ(λ) a

λ-PDO with WF′(Ψ) contained in the interior of T ∗X and such that

WF′(Ψ − Id) ∩ {(x, ξ) ∈ T ∗X : h(x, ξ) < 2 , x ∈ supp (χ1)} = ∅ .

Then for any first order differential operator V in X the operator λ−1VΨ(λ) : L2(X) → L2(X)
is uniformly bounded and we have

‖χ1G(λ)v‖H1(X) ≤ C(1 + |λ|)‖G(λ)v‖L2(X) +O(|λ|−1)‖v‖L2(Γ) ,

21



λ ∈ D, v ∈ L2(X). Near the boundary we choose local coordinates so that X = {x1 ≥ 0} and
suppose that 0 ≤ x1 ≤ ε and ε � 1 on the support of χ2. Now we write Hj(λ) in these local
coordinates with a phase function φ(x, ξ′) + 〈y′, ξ′〉, ξ′ = (ξ2, . . . , ξn), y

′ = (y2, . . . , yn), where
φ(0, x′, ξ′) = 〈x′, ξ′〉 and with a C∞ compactly supported amplitude a(x, ξ′, λ) of order 0. Then
χ2(∂/∂xk)Hj(λ)u = λχ2Bk(λ)Hj(λ)u+ O(|λ|−1)u, where Bk stands for a continuous family of
λ-PDOs of order 0 on the boundary x1 7→ Bk(x1, x

′,D′). This implies

‖χ2G(λ)v‖H1(X) ≤ C(1 + |λ|)‖G(λ)v‖L2(X) +O(|λ|−1)‖v‖L2(Γ) ,

λ ∈ D, v ∈ L2(X), and we obtain (3.37).

Since i∗ΓG(λ) = ψ(λ) + W̃ (λ)ψ(λ) +OB(|λ|−M ), using (3.35) we obtain

u0
q|Γ = i∗ΓG(µq)v

0
q = v0

q + W̃ (µq)v
0
q = v0

q +Q−1
m (µq)W (µq)v

0
q = 2v0

q +O(|µq|−1)v0
q .

This estimate combined with (3.36) and (3.37) implies the lemma. 2

Normalizing uq = u0
q‖u0

q‖−1 we obtain a quasimode (µq, uq) of order N = M − 1. Next we
show that µq can be chosen real-valued. Applying Green’s formula we get

|µ2
q − µq

2| ≤ |〈µ2
quq, uq〉 − 〈uq, µ2

quq〉| = OB(|µq|−N ) ,

which allows us to take µq in R. Choosing |q| � 1 we can suppose that µq is positive. Notice
that K should be in Ck(Γ,R) with k ≥ (M − 1)([τ ] + n) + 2n+ 2 = N([τ ] + n) + 2n+ 2.

4 Spectral invariants for continuous deformations of the poten-

tial

Let Vt, t ∈ [0, 1], be a continuous family of C` real-valued potentials in X, ` ∈ N, which means
that the map [0, 1] 3 t 7→ Vt is continuous in C`(X,R). Denote by ∆t the selfadjoint operators
∆ + Vt in L2(X) with Dirichlet or Robin (Neumann) boundary conditions on Γ. We consider
the corresponding spectral problem

{
∆u + Vtu = λu in X ,

Bu = 0 in Γ ,

where Bu = u|Γ or Bu = ∂u
∂ν |Γ−K u|Γ, K being a smooth real valued function on Γ independent

of t. As above we suppose that there exists a Kronecker torus Λ of P = Bm satisfying (H3) and
we set

Wt(x, ξ) =

∫ T (x,ξ)

0
Vt

(
πX(exp(sXg)(x, ξ

+))
)
ds , (x, ξ) ∈ Λ ,

where T (x, ξ) is the return time function and πX : T ∗X → X is the natural projection. Set
` = ([2d] + 1)([τ ] + n) + 2n+ 2, where τ is the exponent in the Diophantine condition.

Theorem 4.1 Let Λ be a Kronecker torus of the billiard ball map with a Diophantine vector of
rotation. Let Vt, t ∈ [0, 1], be a continuous family of real-valued potentials in C`(X,R) such that
∆t satisfy the isospectral condition (H1) − (H2). Then

∀ t ∈ [0, 1],

m−1∑

j=0

∫

Λ

Wt ◦ πΓ

sin θ
◦Bj dµ =

m−1∑

j=0

∫

Λ

W0 ◦ πΓ

sin θ
◦Bj dµ .
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To prove the theorem we construct as in Theorem 2.2 a continuous family of quasimodes

(µq(t), uq(t))q∈M , M ⊂ Zn ,

of ∆t of order N such that

µq(t) = µ0
q + cq,0 + cq,1(t)(µ

0
q)

−1 + · · · + cq,N (t)(µ0
q)

−N

where µ0
q and cq,0 are independent of t, µ0

q ≥ C|q|, C > 0, and cq,j(t) is continuous in t ∈ [0, 1].
Moreover,

cq,1(t) = c′q,1 + c′′1

m−1∑

j=0

∫

Λ

Wt ◦ πΓ

sin θ
◦Bj dµ ,

c′q,1 is independent of t, and

c′′1(t) = 2(2π)n−1

(∫

Λ
A(%) dµ

)−1

.

To construct the quasimodes we consider for each j = 0, . . . ,m − 1 the microlocal outgoing
parametrix H̃j : C∞(Γ) → C∞(X̃), of the Dirichlet problem for ∆− λ2 − V which is defined as
follows 




(∆ − λ2 − Vt)H̃j(λ) = OM (|λ|−N−1) in X̃ ,

WF′(ı∗ΓHj(λ)) ⊂ Uj ∪ Uj+1 ,

WF′(ı∗Γ H̃j(λ) − Id) ∩ WF′(ψj(λ)) = ∅ ,

WF′(H̃j(λ)) ∩ (Uj × π−1
Σ (Uj)) ⊂ Uj × π+

Σ (Uj) ,

We are looking for H̃j(λ) of the form H̃j(λ) = Hj(λ)+λ−1H0
j (λ), where H0

j (λ) is a FIO of order
1/4 having the same canonical relation as Hj(λ). It satisfies the equation

(∆ − λ2 − Vt)H
0
j (λ) − VtHj(λ) = ON (|λ|−N−1) in X̃ ,

hence, its principal symbol p0
j(x, ξ) satisfies the equation {g, p0

j} = iVt. Taking into account the
boundary values at Uj we get

p0
j(%, s) = i

∫ s

0
Vt(exp(uXg)(%)) du , % ∈ Uj .

Then
G̃j(λ) := Gj(λ) + λ−1G0

j (λ)

is a λ-FIO the canonical relation of which is just the graph of the restriction of the billiard ball
map B : Uj → Uj+1. Moreover, the principal symbol of G0

j (λ) is equal to p0
j(%, Tj(%)). Arguing

as in Sect. 3 we complete the construction of the quasimodes.
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5 Spectral rigidity for Liouville billiard tables

We recall from [13] the definition of Liouville billiard tables of dimension two. We consider two
even functions f ∈ C∞(R), f(x+ 2π) = f(x), and q ∈ C∞([−N,N ]), N > 0, such that

• f > 0 if x /∈ πZ, and f(0) = f(π) = 0, f ′′(0) > 0;

• q < 0 if y 6= 0, q(0) = 0 and q
′′
(0) < 0;

• f (2k)(πl) = (−1)kq(2k)(0), l = 0, 1, for every natural k ∈ N.

Consider the quadratic forms

dg2 = (f(x) − q(y))(dx2 + dy2)

dI2 = (f(x) − q(y))(q(y)dx2 + f(x)dy2)

defined on the cylinder C = T1 × [−N,N ].
The involution σ0 : (x, y) 7→ (−x,−y) induces an involution of the cylinder C, that will

be denoted by σ0 as well. We identify the points m and σ0(m) on the cylinder and denote by
C̃ := C/σ0 the topological quotient space. Let σ : C → C̃ be the corresponding projection. A
point x ∈ C is called singular if σ−1(σ(x)) = x, otherwise it is a regular point of σ. Obviously,
the singular points are F1 = σ(0, 0) and F1 = σ(1/2, 0). It is shown in [13] that the quotient
space C̃ is homeomorphic to the unit disk D2 in R2 and that there exist an unique differential
structure on C such that the projection σ : C → C̃ is a smooth map, σ is a local diffeomorphism
in the regular points, and the push-forward σ∗g gives a smooth Riemannian metric while σ∗I is
a smooth integral of the corresponding billiard flow on it. We denote by X the space C̃ provided
with that differentiable structure and call (X,σ∗g) a Liouville billiard table. Any Liouville
billiard table possesses the string property which means that any broken geodesic starting from
the singular point F1 (F2) passes through F2 (F1) after the first reflection at the boundary and
the sum of distances from any point of Γ to F1 and F2 is constant.

We impose the following additional conditions:

• the boundary Γ of X is locally geodesically convex which amounts to q′(N) < 0;

• f(x) = f(π − x) for any x and f is strictly monotone on the interval [0, π];

Liouville billiard tables satisfying the conditions above will be said to be of classical type. One
of the consequences of the last condition is that there is a group I(X) ∼= Z2 × Z2 acting on
(X, g) by isometries. It is generated by the involutions σ1 and σ2 defined by σ1(x, y) = (x,−y)
and σ2(x, y) = (π− x, y). We point out that in contrast to [13] we do not assume f and q to be
analytic. Examples of Liouville billiard tables of classical type on surfaces of constant curvature
and quadrics are provided in [13]. The only Liouville billiard table in R2 is the interior of the
ellipse because of the string property.

Proof of Corollary 1.3. A first integral of B in B∗Γ is the function I(x, ξ) = f(x) − ξ2 the
regular values h of which belong to (q(N), 0)∪ (0, f(π/2)) (see [13], Lemma 4.1 and Proposition
4.2). Each regular level set Lh consists of two connected circles Λ±(h) which are invariant with
respect to B for h ∈ (q(N), 0) and to B2 for h ∈ (0, f(1/4)). The Leray form on Lh is

λh =





dx√
f(x)−h

, ξ > 0 ,

− dx√
f(x)−h

, ξ < 0 .
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Given a continuous function G on Γ we consider the corresponding Radon transform assigning
to each circle Λ±(h) the integral

RG(Λ±(h)) =

∫

Λ±(h)
(G ◦ πΓ)λh .

We take the exponent in the Diophantine condition to be τ = 3/2. Then ` = 3[2d] + 9. Set
Gt(x) = Kt(x)/ sin θ(x, h), t = 1, 2. Since G0, G1 ∈ Symm`(Γ), using Theorem 1.1 we obtain
that RG0(Λ

±(h)) = RG1(Λ
±(h)) for each regular value h such that the corresponding frequency

ω is Diophantine with exponent τ = 3/2. On the other hand, the set of all Diophantine numbers
with a fixed exponent τ > 1 is dense in R and by continuity we get it for any regular value. It
is easy to see that

sin θ =

√
h− q(N)

f(x) − q(N)
,

hence,

RGt(Λ
±(h)) = ± 1√

h− q(N)

2π∫

0

Kt(x)√
f(x) − h

√
f(x) − q(N) dx , h ∈ (q(N), 0) ∪ (0, f(π/2)) ,

does not depend on t ∈ [0, 1]. Since Kt, t = 0, 1, are invariant with respect to the action of
I(X), this implies K0 ≡ K1 as in [13]. 2

Spectral rigidity for higher dimensional Liouville billiard tables will be obtained in [14]. We
point out that we do not need analyticity and the billiard tables we consider are supposed to be
smooth only.

Appendix

We consider families of λ-PDOs with symbols of finite smoothness which depend continuously
on K ∈ C l(Γ). Given four positive integers l, l̃, N ≥ 1 and m ≥ 2 such that l̃ ≥ mN +2n, and a
bounded subset B of C l(Γ,R), we say that a family of operators Q depending on K ∈ B belongs
to PDOel,m,N

(Γ;B;λ) if in any local coordinates it can be written in the form OPλ(q)+OB(|λ|−N ),

where the distribution kernel of OPλ(q) is

OPλ(q)(x, y) := (λ/2π)n−1

∫
eiλ〈x−y,ξ〉q(x, ξ, λ) dξ , (A.1)

with amplitude

q(x, ξ, λ) =
N−1∑

k=0

qk(x, ξ)λ
−k , (A.2)

and qk ∈ C
el−mk
0 (T ∗Rn−1), 0 ≤ k ≤ N − 1, depends continuously in K ∈ C l(Γ,R) in the sense

that the support of qk is contained in a fixed compact set independent of K and the map

C l(Γ,R) 3 K → qk ∈ C
el−mk(T ∗Rn−1)

25



is continuous. Hereafter, OB(|λ|−N ) : L2(Γ) → L2(Γ) stands for a family of operators depending
on K ∈ B, the norm of which is uniformly bounded by CB(1 + |λ|)−N , and λ belongs to
the complex strip D. We denote the class of symbols q by Sel,m,N

(T ∗Rn−1;B;λ). Using the

L2-continuity theorem, [8], Theorem 18.1.11′ , it is easy to see that the operators of the class
PDOel,m,N

(Γ;B;λ) are uniformly bounded in L2 with respect to K ∈ B ( it suffices l̃ ≥ mN +n).

Moreover, the class PDOel,m,N
(Γ;B;λ) is closed under multiplication and transposition and it

does not depend on the choice of the local coordinates modulo OB(|λ|−N ) (see Remark A.1).
Consider now a λ-FIO Aλ acting on C∞

0 (Rn−1) with distribution kernel

KAλ
(x, y) = (λ/2π)n−1

∫
eiλ(〈x−y,ξ〉+ψ(x,ξ))q(x, ξ, λ) dξ , (A.3)

where qλ = q(·, ·, λ) ∈ Cn0 (Rn−1 × Rn−1), its support is contained in a fixed compact F for each
λ, and supλ ‖qλ‖Cn < ∞. We suppose that the phase function S(x, ξ) = 〈x, ξ〉 + ψ(x, ξ) is C∞

and non-degenerate in a neighborhood U of F , which amounts to |det ∂x∂ξS| ≥ δ > 0 in U .
Using a result of Boulkhemair [2], Corollary 1, we obtain

‖Aλ‖L(L2) ≤ C sup
λ

‖qλ‖Cn , (A.4)

where C = C(S,F ) > 0 does not depend on qλ. Indeed, if F ⊂ Bε(%
0) := {% : |%−%0| < ε} ⊂ U ,

where %0 ∈ F and ε > 0 is sufficiently small we can extend S to a globally defined smooth
function S̃ in T ∗Rn−1 which coincides with S in Bε(%

0) and equals the Taylor polynomial of
degree 2 of S at %0 outside B2ε(%

0) and such that |det ∂x∂ξS̃| ≥ δ/2 in T ∗Rn−1. Then applying

[2], Corollary 1, to the oscillatory integral with phase function S̃ and amplitude q we obtain
(A.4). In the general case we use a suitable partition of the unity of F .

We are going to estimate the following integral for suitable functions a and b

qλ(z) = λn−1

∫

R2n−2

e−iλ〈y,η〉a(z, y, η, λ)b(z, y, η, λ)dydη , z = (x, ξ) ∈ T ∗Rn−1 , λ ∈ D .

Lemma A. 1 Suppose that aλ = a(·, λ) and bλ = b(·, λ), λ ∈ D, are C2n-smooth and uniformly
compactly supported functions, i.e. suppaλ ⊂ F1, supp bλ ⊂ F2, for all λ, where F1 and F2 are
compact. Then

sup
λ

‖qλ‖Cn ≤ C sup
λ

‖aλ‖C2n × sup
λ

‖bλ‖C2n .

where C = C(F1, F2) > 0. In particular the FIO Aλ with amplitude qλ(x, ξ) satisfies (A.4).

Proof. We have

qλ(z) = λ2n−2

∫

Rn−1

∫

Rn−1

â(z, λξ, η, λ)̂b(z, λ(η − ξ), η, λ)dξdη ,

where â(z, λξ, η, λ) stands for the partial Fourier transform (y → λξ) of a(z, y, η, λ). Integrating
n times by parts with respect to y we get

‖qλ‖Cn ≤ C‖aλ‖C2n‖bλ‖C2nλ2n−2

∫

R2n−2

(1 + |λ||ξ|)−n(1 + |λ||η − ξ|)−ndξdη ,

which implies the lemma. 2
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The frequency set WF′(Qλ) (modulo O(|λ|−N )) of a λ-PDO Qλ with symbol q locally given
by (A.2) is

WF′ (Qλ) := ∪N−1
j=0 supp (qj)

in each local chard.
Using Lemma A.1 one can commute λ-PDOs in PDOel,s,N

(Γ,B;λ) with a classical λ-FIOs

G(λ) associated to a smooth canonical transformation κ : T ∗Γ → T ∗Γ and having a C∞
0 ampli-

tude in each local cart. More precisely, we have

Lemma A. 2 Let Q(λ) ∈ PDOel,m,N
(Γ;B;λ), l̃ ≥ mM+2n, and let G(λ) be elliptic on WF′(Q).

Then there exists Q′(λ) ∈ PDOel,m,N
(Γ;B;λ) such that

Q(λ)G(λ) −G(λ)Q′(λ) = OB(|λ|−N ) : L2(Γ) −→ L2(Γ) (A.5)

and wise versa. The principal symbol of Q′(λ) is given by the Egorov’s theorem, σ(Q′) = σ(Q)◦κ.

Proof. We define Q′ = BQA, where WF′(AB − I) ∩ WF′(Q) = ∅. To prove that Q′(λ) ∈
PDOel,m,N

(Γ;B;λ), we choose local coordinates x in Γ and write the distribution kernel of Q(λ)

in the form (A.1) with symbol q ∈ Sel,m,N
(T ∗Rn−1;B;λ). We can suppose that distribution kernel

of G(λ) is given by (A.3) with a smooth compactly supported amplitude a. More generally,
we suppose that a ∈ Sel,m,N

(T ∗Rn−1;B;λ). Then the distribution kernel of Q(λ)G(λ) modulo

OB(|λ|−N ) is given by the oscillatory integral (A.3) with amplitude

K1(x, ξ, λ)

=

N−1∑

j=0

∑

r+s=j

λ−j
(
λ

2π

)n−1 ∫

R2n−2

eiλ(〈x−z,η−ξ〉+ψ(z,ξ)−ψ(x,ξ)) qr(x, η)as(z, ξ) dηdz .

Set

ψ1(x, z, ξ) =

∫ 1

0
∇xψ(x+ τz, ξ)dτ .

Changing the variables we get

K1(x, ξ, λ) =
N−1∑

j=0

∑

r+s=j

λ−j
(
λ

2π

)n−1 ∫

R2n−2

e−iλ〈z,η〉 qr(x, η+ ξ+ψ1(x, z, ξ))as(z+ x, ξ) dηdz .

We develop qr in Taylor polynomials with respect to η at η = 0 up to order O(|η|N−j). On the

other hand ∂βη qr ∈ C l̃−mr−|β|(T ∗Rn−1), and

l̃ −mr − 2|β| ≥ l̃ −mr − 2(N − r) ≥ l̃ −mN ≥ 2n (A.6)

for |β| ≤ N − j ≤ N − r, and integrating β times by parts with respect to η we obtain

K1(x, ξ, λ) =
N∑

j=0

Fj(x, ξ)λ
−j ,
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where

Fj(x, ξ) =
∑

r+s+|β|=j

1

β!

[
Dβ
z

(
∂βη qr(x, η + ξ + ψ1(x, z, ξ) as(z + x, ξ)

)]
|z=0,η=0 (A.7)

for j ≤ N − 1. Moreover, using (A.6) and Lemma A.1 we estimate

‖FN‖Cn ≤ C
∑

r+s=j

sup
λ

‖qr(·, ·, λ)‖
C l̃−mr × sup

λ
‖as(·, ·, λ‖C l̃−ms .

In the same way, we write G(λ)Q′(λ) modulo OB(|λ|−N ) as a λ-FIO with distribution kerlel
(A.3) with amplitude given by the oscillatory integral

K2(x, ξ, λ) =
N−1∑

j=0

∑

s+r=j

(
λ

2π

)n−1

λ−j
∫

R2n−2

e−iλ〈z,η〉 as(x, η + ξ)q′r(z + x+ ψ2(x, ξ, η), ξ)dηdz ,

where ψ2(x, ξ, η) =
∫ 1
0 ∇ξψ(x, ξ + τη)dτ . We get as above

K2(x, ξ, λ) =

N∑

j=0

Hj(x, ξ)λ
−j

where
‖HN‖Cn ≤ C

∑

r+s=j

sup
λ

‖ar(·, ·, λ)‖
C l̃−mr × sup

λ
‖q′s(·, ·, λ‖C l̃−ms

and

Hj(x, ξ) =
∑

r+s+|β|=j

1

β!

[
Dβ
η

(
as(x, η + ξ)∂βz q

′
r(z + x+ ψ2(x, ξ, η), ξ)

)]
|η=0,z=0 (A.8)

for 0 ≤ j ≤ N − 1. Note that ψ1(x, 0, ξ) = ∇xψ(x, ξ), ψ2(x, ξ, 0) = ∇ξψ(x, ξ), and that locally
graphκ = {(x, ξ+∇xψ(x, ξ), x+∇ξψ(x, ξ), ξ)}. Since G(λ) is elliptic on WF′(Q) we can assume
that a0(x, ξ) 6= 0 on the support of (x, ξ) → qr(x, ξ + ∇xψ(x, ξ)) for any r, and we determine
q′j by recurrence from the equations Hj(x, ξ) = Fj(x, ξ), j = 0, . . . , N − 1. It is easy to see by

recurrence that q′j ∈ C l̃−mj(T ∗Rn−1) is continuous with respect to K ∈ C l(Γ). 2

Remark A. 1 We have proved that if Q(λ) is a family of λ-PDOs in Rn−1 the distribution
kernels of which have the form (A.1) with symbol q ∈ Sel,m,N

(T ∗Rn−1;B;λ) and if the dis-

tribution kernels of G(λ) are given by (A.3) with amplitude a ∈ Sel,m,N
(T ∗Rn−1;B;λ), then

Q(λ)G(λ) and G(λ)Q(λ) are λ-FIOs in Rn−1 with distribution kernels (A.3) and amplitudes
in Sel,m,N

(T ∗Rn−1;B;λ). By the same argument, the class PDOel,m,N
(Γ;B;λ) is closed under

multiplication and transposition and it does not depend on the choice of the local coordinates
modulo OB(|λ|−N ).

Proof of Lemma 3.2. First we write the operator W1(λ)A(λ) in the form (3.20) with amplitude
given by the oscillatory integral

F (x, I, λ) =

(
λ

2π

)n−1 ∫

R2n−2

eiλ(〈x−z,ξ−I〉+Φ(x,ξ)−Φ(x,I))w(x, ξ, λ)a(z, I, λ) dξdz
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modulo OB(|λ|−N ). Set Φ0(x, I, η) = L0(I, η) +H0(x, I, η), where

L0(I, η) =

∫ 1

0
∇IL(I + τη)dτ , H0(x, I, η) =

∫ 1

0
∇IR(x, I + τη)dτ .

Changing the variables and using (3.21) we obtain as above modulo OB(|λ|−N )

F (x, I, λ) =

(
λ

2π

)n−1 ∫

R2n−2

e−iλ〈v,η〉


c0 +

M−2∑

j=0

λ−j−1c0j


 (x, I, v, η) dηdv ,

where c0(x, I, v, η) = w0(x, I + η)a0(v + x+ Φ0(x, I, η), I), and

c0j(x, I, v, η) = w0
j (x, I + η)a0(v + x+ Φ0(x, I, η), I)

+ψ(I)w0(x, I + η)
∑

|α|≤M−j−2

a0
j,α(v + x+ Φ0(x, I, η), I) (I − I0)α

+
∑

r+s=j−1

∑

|α|≤M−s−2

ψ(I)w0
r (x, I + η)a0

s,α(v + x+ Φ0(x, I, η), I) (I − I0)α .

We develop a0
j,α(v + x + Φ0, I) in Taylor polynomials with respect to v at v = 0 up to order

O(|v|M−j−1−|α|). Since a0 ∈ S̃l−[τ ]−n,[τ ]+n,M−1(T
n−1 × D;B;λ) and Φ0 is a smooth function

independent of K, we obtain ∂βxa0
j,α ∈ Cp for |α+ β| ≤M − j − 1, where

p = l − (j + 1)([τ ] + n) − |α+ β| ≥ |β| + l − (j + 1)([τ ] + n) − 2|α+ β|
≥ |β| + l − (j + 1)([τ ] + n− 2) − 2M ≥ |β| + l − (M − 1)([τ ] + n) − 2 ≥ |β| + 2n .

(A.9)

In particular, ∂βxa0
j,α ∈ C |β|+2n(Tn−1), |α + β| ≤ M − j − 1, j ≤ M − 2, depends continuously

on K ∈ B. Integrating β times by parts with respect to η we gain λ−|β|. Notice that all the
derivatives of H0 vanish for (η, I) = (0, I0), and we have ∂γηH0(x, I, 0) = O(|I − I0|M ) for any
γ. In this way we get

F (x, I, λ) = F0(x, I) + λ−1
M−2∑

j=0

F 0
j (x, I)λ−j + λ−1F 1(x, I, λ) + λ−MFM ,

where F0 = 1 in Tn−1 ×D0,

F 0
j (ϕ, I) = a0

j(ϕ−∇L(I), I) +w0
j (ϕ, I) + f0

j (ϕ, I) ,

f0
0 = 0, and for j ≥ 1 we have

f0
j (ϕ, I) =

j−1∑

s=0

∑

|β|=j−s

∑

|γ|≤M−j−2

1

β!

[
Dβ
η ∂

β
x a

0
s,γ(ϕ− L0(I, η))

]
|η=0

(I − I0)γ

+
∑

r+s+|β|=j−1

∑

|γ|≤M−j−2

1

β!

[
Dβ
η

(
w0
r(ϕ, I + η) ∂βx a

0
s,γ(ϕ− L0(I, η))

)]
|η=0

(I − I0)γ .

(A.10)
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We have also F 1 ∈ R̃M−1(T
n−1 ×D;B, λ) in view of (A.9). Moreover, using (A.9) and Lemma

A.1 we obtain

‖FM‖Cn ≤ C


 ∑

j≤M−2

sup
λ

‖w0
j (·, ·, λ)‖Cl−2j





 ∑

j+|γ|≤M−2

sup
λ

‖a0
j,γ(·, λ‖Cl−(j+1)([τ ]+n)−|γ|


 ,

hence, the corresponding λ-FIO is uniformly bounded with respect to K ∈ B in L2. In the same
way we write A(λ)W0(λ) in the form (3.20) with amplitude G(x, I, λ) given by the oscillatory
integral

(
λ

2π

)n−1

(p0 + λ−1p0)(I, λ)

∫

R2n−2

eiλ(〈x−z,ξ−I〉+Φ(z,I)−Φ(x,I)) a(x, ξ, λ)dξdz .

Changing the variables we obtain G = a(p0 + λ−1p0) + u, where u is given by

(
λ

2π

)n−1

(p0 + λ−1p0(I, λ))

∫

R2n−2

e−iλ〈v,η〉[a(x, η + I +H1(x, v, I), λ) − a(x, η + I, λ)] dηdv ,

and H1(x, v, I) =
∫ 1
0 ∇xR(x+ τv, I)dτ . Notice that H1 and all its derivatives vanish at I = I0.

Then u satisfies (3.24) and we get

G(ϕ, I, λ) = G0(ϕ, I) + λ−1
M−2∑

j=0

G0
j (ϕ, I)λ

−j + λ−1G1(ϕ, I, λ) + λ−MFM (ϕ, I, λ) ,

where G0 = 1 in Tn−1 × D0, G1 ∈ R̃M−1(T
n−1 × D;B, λ), the λ-FIO corresponding to FM is

OB(|λ|−M ), and
G0
j (ϕ, I) = a0

j(ϕ, I) + p0
j(I) + g0

j (ϕ, I) .

Moreover, g0
0 = 0 and for j ≥ 1 we have

g0
j (ϕ, I) =

j−1∑

k=0

a0
k(ϕ, I)p

0
j−k−1(I) . (A.11)

Taking into account (A.10) and (A.11) we obtain

R1(ϕ, I, λ) =

M−2∑

j=0

TM−j−2(F
0
j −G0

j )(ϕ, I)λ
−j ∈ S̃l−[τ ]−n,[τ ]+n,M−1(T

n−1 ×D;B, λ)

and we denote by R1(λ) the corresponding FIO. Moreover, the symbol of the reminder term
R0(λ) satisfies (3.24).

We are going to show that the coefficient f0
j,α(ϕ) of (I − I0)α in the Taylor series of (A.10)

at I = I0 is a linear combination of functions given by (3.26). First note that (∂kηL0)(I, 0) =

(1 + |k|)−1∂kI∇IL(I) for any k ∈ Nn−1 and that ∇IL(I0) = 2πω. Expand ∂kI∇IL(I), in Taylor
series at I = I0 up to order O(|I − I0|M ), k ∈ Nn−1. Then use the Taylor expansions of

∂βxa
0
s,γ


ϕ− 2πω +

∑

1≤|k|≤M

Lk(I − I0)k


 (A.12)

30



at ϕ− 2πω up to order O(|I − I0||α|−|γ|+1). Hence, the corresponding terms in the first sum of

(A.10) are linear combinations of ∂β+k
x a0

s,γ(ϕ − 2πω), where 0 ≤ s ≤ j − 1 and |β| ≤ 2(j − s),
|k| + |γ| ≤ |α|. In the second sum of (A.10) write

Dβ′

I w
0
r(ϕ, I) =

∑

β′≤δ,|δ|≤M−r−1

w0
r,δ(ϕ) (I − I0)δ−β

′
δ!/(δ − β′)! , β′ ≤ β ,

and expand (A.12) in Taylor series up to order O(|I−I0||α|−|γ|−|δ−β′|+1). Then the corresponding

terms in the second sum are linear combinations of w0
r,δ(ϕ)∂β+k

x a0
s,γ(ϕ−2πω), where 0 ≤ r+s ≤

j − 1, |β + β′| ≤ 2(j − s − r − 1), and k + |δ − β′| + |γ| ≤ |α| for some β′ ≤ β, β′ ≤ δ, and we
prove the assertion. In the same way we prove that g0

j,α(ϕ) is a linear combination of functions
in (3.27). 2
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