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Abstract: We consider the (scalar) gradient fielgs- (p)—with b denoting the nearest-neighbor
edges inZ2—that are distributed according to the Gibbs measure proportionali & v (dy).

HereH = >, V () is the Hamiltoniany is a symmetric potentialf > 0 is the inverse temper-
ature, and is the Lebesgue measure on the linear space defined by imposing the loop condition
b, + b, = by + 71b, for each plaquettégby, by, bz, byg) in 72. For convexV, Funaki and
Spohn have shown that ergodic infinite-volume Gibbs measures are characterized by their tilt. We
describe a mechanism by which the gradient Gibbs measures with non-démredergo a struc-

tural, order-disorder phase transition at some intermediate value of inverse tempgraitithe
transition point, there are at least two distinct gradient measures with zero tilE jy¢ = O.

1. INTRODUCTION
1.1 Gradient fields.

One of the mathematical challenges encountered in the study of systems exhibiting phase coex-
istence is an efficient description of microscopic phase boundaries. Here various levels of detalil
are in general possible: The finest level is typically associated with a statistical-mechanical model
(e.g., a lattice gas) in which both the interface and the surrounding phases are represented micro-
scopically; at the coarsest level the interface is viewed as a macroscopic (geometrical) surface
between two structureless bulk phases. An intermediate approach is based on effective (and,
often, solid-on-solid) models, in which the interface is still microscopic—represented by a sto-
chastic field—while the structural details of the bulk phases are neglected.

A simple example of such an effective model igradient field To define this system, we
consider a finite subset of the d-dimensional hypercubic latticg? and, at each site ok and
its external boundargA, we consider the real-valued varialig representing the height of the
interface aix. The Hamiltonian is then given by

Ha@ = D Vigy—éx), (L.1)

(X, y)
XeA,ye AUOA

where the sum is over unordered nearest-neighbor paing. A standard example is the qua-
dratic potentiaV () = %myz with « > 0; in generaV is assumed to be a smooth, even function
with a sufficient (say, quadratic) growth at infinity. The Gibbs measure takes the usual form

Pa(dg) = Z7e /Ha@dg, (1.2)
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where d is the|A|-dimensional Lebesgue measure (the boundary valugsefain fixed and
implicit in the notation),# > 0 is the inverse temperature adds a normalization constant.

A natural question to ask is what are the possible thermodynamic limits of the Gibbs measures
PA(dg). Unfortunately, in dimensiond = 1, 2, the fields(¢x)xca are very “rough” no matter
how tempered the boundary conditions are assumed to be. As a consequence, the family of
measuregPx) ,z¢ IS not tight and no meaningful object is obtained by taking the litit
7Z9—i.e., the interface is delocalized. On the other hand, in dimenglons 3 the fields are
sufficiently smooth to permit a non-trivial thermodynamic limit—the interface is localized. These
facts are established by combinations of Brascamp-Lieb inequality techniques and/or random
walk representation (see, e.g., [16]) which, unfortunately, apply only for convex potentials with
uniformly positive curvature. Thus, somewhat surprisingly, evenvioy) = #* the problem of
localization in high-dimension is still open [24].

As it turns out, the thermodynamic limit of the measuRasis significantly less singular once
we restrict attention to the gradient variabkes= (y,). These are defined by, = ¢y — ¢«
whereb is the nearest-neighbor edge, y) oriented in one of the positive lattice directions.
Indeed, the;-marginal of P, (d¢) always has at least one (weak) limit “point” As— Z9. The
limit measures satisfy a natural DLR condition and are therefore ogitetient Gibbs measures
(Precise definitions will be stated below or can be found in [16,23].) One non-standard aspect of
the gradient variables is that they have to obey a host of constraints. Namely,

Moy + Mo, = b + Ny (13)

holds for each lattice plaquette,, by, bs, bs), where the edgel; are listed counterclockwise
and are assumed to be positively oriented. These constraints will be implemented at the level of
a priori measure, see Sect. 2.

It would be natural to expect that the character (and number) of gradient Gibbs measures
depends sensitively on the potential However, this is not the case for the class of uniformly
strictly-convex potentials (i.e., th€’s such thatvV”(#) > c_ > 0 for all ). Indeed, Funaki
and Spohn [17] showed that, in these cases, the translation-invariant, ergodic, gradient Gibbs
measures are completely characterized bytithef the underlying interface. Here the tilt is a
vectoru e RY such that

Emp=u-b (1.4)

for every edgdo—which we regard as a vector Rf'. Furthermore, the correspondence is one-to-
one, i.e., for each tilt there exists precisely one gradient Gibbs measure with this tilt. Alternative
proofs permitting extensions to discrete gradient models have appeared in Sheffield’s thesis [23].

It is natural to expect that a serious violation of the strict-convexity assumptiovi oray
invalidate the above results. Actually, an example of a gradient model with multiple gradient
Gibbs states of the same tilt has recently been presented [23]; unfortunately, the example is not
of the type considered above because of the lack of translation invariance and its reliance on
the discreteness of the fields. The goal of this paper is to point out a general mechanism by
which the model (1.1) with a sufficiently non-convex poten¥iaiails the conclusions of Funaki-
Spohn’s theorems.
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1.2 Potentials of interest.

The mechanism driving our example will be the occurrence of a structural surface phase tran-
sition. To motivate the forthcoming considerations, let us recall that phase transitions typically
arise via one of two mechanisms: either due to the breakdown of an internal symmetry, or via
an abrupt turnover between energetically and entropically favored states. The standard examples
of systems with these kinds of phase transitions are the Ising model agestage Potts model
with a sufficiently largey, respectively. In the former, at sufficiently low temperatures, there is a
spontaneous breaking of the symmetry between the plus and minus spin states; in the latter, there
is a first-order transition at intermediate temperatures betgaewdered, low-temperature states
and a disordered, high-temperature state.

Our goal is to come up with a potentidlthat would mimic one of the above situations. In the
present context the analogue of the Ising model appears to be a cddeawfng the shape of a
double-well potentiabf the form, e.qg.,

V() = k(i — ). (1.5)

Unfortunately, due to the underlying plaguette constraints (1.3), the symmetry between the wells
cannot be completely broken and, even at the level of ground states, the system appears to be
disordered. OrZ? this can be demonstrated explicitly by making a link to ke model which
is a special case of the six vertex model [1]. Indeed, noting the ground states of the system are
such that ally’s equal+#,, we may associate a unit flow with eadbal bond whose sign is
determined by the value of, for its direct counterparb; cf Fig. 1. The plaquette constraint
(1.3) then translates into @o-source-no-sinkondition for this flow. If we mark the flow by
arrows, the dual bonds at each plaquette are constrained to one of six zero-flux arrangements of
the six vertex model—each of these have the sameori weights, so this is actually the special
case corresponding to the ice model. This equivalence was used by van Beijeren [2] to study
a roughening transition. The ice model can be “exactly solved” [1]: The ground states have a
non-vanishing residual entropy [22] and are disordered with infinite correlation length [1, Sect.
8.10.111]. However, how much of this picture survives to positive temperatures is unclear.

The second mechanism is considerably more promising. There are two canonical examples of
interest: a potential withwo centered welland atriple-well potential see Fig. 2. Both of these
lead to a gradient model which features a phase transition, at some intermediate temperature, from
states with they’s lying (mostly) within the thinner well to states whogs fluctuate on the scale
of the thicker well(s). Our techniques apply equally to these—as well as other similar—cases
provided the widths of the wells are sufficiently distinct. Notwithstanding, the analysis becomes
significantly cleaner if we abandon temperature as our principal parameter (e.qg., fve-sk}
and consider potential that are simplydefinedby

e~V — pe—Kon2/2 +(1-p) g *on’/2. (1.6)

Herexo andxp are positive numbers arplis a parameter taking values in [0]. For appropriate
values of the constant¥, defined this way will have a graph as in Fig. 2(a). To get the graph in
part (b), we would need to considérs of the form

1-p

e Vi — pe—Konz/Z + e~ —nm%/2 4 1_2 P e_KD(’7+’7*)2/2’ (1.7)
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FIGURE 1. The six plaquette configurations of minimal energy for the potential (1.8f@nd

their equivalent ice model configurations at the corresponding vertex on the dual grid. The sign
marks represent the signsmf along the side of the plaquettb:, by, bs, bs)—with horizontal
bondsbs, bs oriented to the right and vertical bonts, b, oriented upwards. The unit flow
represented by the arrows runs upwards (downwards) through horizontal bonds with positive
(negative) sign, and to the left (right) through vertical bonds with positive (negative) sign. The
loop condition (1.3) makes the flow conserved (i.e., no sources or sinks).

where+, are the (approximate) locations of the off-center wells.

The idea underlying the expressions (1.6) and (1.7) is similar to that of the Fortuin-Kasteleyn
representation of the Potts model [12]. In the context of continuous-spin models similar to ours,
such a representation has previously been used by Zadkrg$]. Focusing on (1.6), we can
interpret the terms on the right-hand side of (1.6) as two distinct states of each bond. (We will
soon exploit this interpretation in detail.) The indexing of the coupling constants suggests the
names: “O” fororderedand “D” for disordered It is clear that the extreme values pf(near
zero or near one) will be dominated by one type of bonds; what we intend to show is that, for
andx;, sufficiently distinct from each other, the transition between the “ordered” and “disordered”
phases is (strongly) first order. Similar conclusions and proofs—albeit more complicated—apply
also to the potential (1.7). However, for clarity of exposition, we will focus on the potential (1.6)
for the rest of the paper (see, however, Sect. 2.5). In addition, we will also restrict ourselves to
two dimensions, even though the majority of our results are valid fat all2.

2. MAIN RESULTS
2.1 Gradient Gibbs measures.

We commence with a precise definition of our model. Most of the work in this paper will be
confined to the lattice toruB_ of L x L sites inZ?, so we will start with this particular geometry.
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FIGURE 2. Two canonical examples of potentials that will lead to a structural surface phase
transition. The picture labeled (a) is obtained by superimposing—in the sense of (1.6)—two
symmetric wells of (significantly) different widths. Part (b) of the figure represents the triple-
well potential as defined in (1.7). For the application of our technique of proof, it only matters
that the widths of the wells are sufficiently different.

Choosing the natural positive direction for each lattice axidBletlenote the corresponding set
of positively oriented edges ifif.. Given a configuratiorf¢x)xer, , We introduce the gradient
field n = V¢ by assigning the variablg, = ¢, — ¢« to eachb = (x,y) € B_. The product
Lebesgue measuﬁx;éo d¢y induces adf-finite) measure on the spac®E: via

"'—(“4):/( H d¢x) 0(dgo) Lvpeays (2.1)

xeT, {0}

whered denotes the Dirac point-mass at zero.

We interpret the measung as ana priori measure orgradient configurationsy e REt.
Since they's arise as the gradients of tlyes it is easy to check that, is entirely supported
on the linear subspac¥_ c RE: of configurations determined by the condition that the sum
of signeds’'s—with positive/negative sign depending on whether the edge is traversed in the
positive/negative direction—vanishes around each closed circuit on(Note that, in addition
to (1.3), the condition includes also loops that wrap around the torus.) We will refer to such
configurations asurl-free

Next we will define gradient Gibbs measuresThn For later convenience we will proceed in
some more generality than presently needed(\g),.g, be a collection of measurable functions
Vh: R — [0, 0co) and consider the partition function

Zi = [, o9~ 3 Vetm)} . 22)

beB|

Clearly, Z, (v, > 0 and, under the condition that— e~"* is integrable with respect to the
Lebesgue measure dk alsoZ, () < oo. We may then defind®_ () to be the probability
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measure ofR®! given by
1

PL.ow)(dn) = Ze o
»\(Vb

exp|— D Vol v (). (23)
beB_

This is thegradient Gibbs measuren T corresponding to the potentialsy,). In the situations
whenV, = V for all b—which is the principal case of interest in this paper—we will denote the
corresponding gradient Gibbs measurelproy P, v .

It is not surprising thaP_ (), obeys appropriate DLR equations with respect to all connected
A c Ty containing no topologically non-trivial circuit. Explicitly, ifxc in A®is a curl-free
boundary condition, then the conditional law:gf given e is

exp|— D" V()| va (A lac). (2.4)
beA

PL vy (dnal77ac) = Z i)
Here P_ () (dnalnac) is the conditional probability with respect to the (taibplgebra.7, gen-
erated by the fields oN®, Z (n4c) is the partition function im\, andv (dna|7nac) is thea priori
measure induced hy on#, given the boundary conditiogc.

As usual, this property remains valid even in thermodynamic limit. We thus say that a measure
on u is aninfinite-volume gradient Gibbs meastuifét satisfies the DLR equations with respect
to the specification (2.4) in any finite sat ¢ Z2. (As is easy to check—e.qg., by reinterpreting
the »’s back in terms of the’'s—uv, (dna|7ac) is independent of the values gfc outside any
circuit winding aroundA, and so it is immaterial that it originated from a measure on torus.)

An important aspect of our derivations will be the fact that our potemitdkes the specific
form (1.6), which can be concisely written as

e = / o(di) e 27", (2.5)

wherep is the probability measurg = pd,, + (1— p)dy,. Itimplies that the Gibbs measuRg v
can be regarded as the projection of éx¢ended gradient Gibbs measure

Qun, dr) = = —exp[~3 " st v [Ar)on @) (26)
L.V beBL
to thes-algebra generated by thgs. Herep, is the product of measures one for each bond
in B_. As is easy to check, conditioning diy, xp)peac Yields the corresponding extension
Qa(dyadra|nac) of the finite-volume specification (2.4)—the result is independent ofcthe
outsideA because, oncg,c is fixed, these have no effect on the configurationa in

The main point of introducing the extended measure is that, if conditioned et'stitee vari-
ablesyy are distributed as gradients of a Gaussian field—albeit with a non-translation invariant
covariance matrix. As we will see, the phase transition proved in this paper is manifested by a
jump-discontinuity in the density of bonds wiky = ko which at the level ofy-marginal results
in a jump in the characteristic scale of the fluctuations.

Remark2.1 Notably, the extended measu@e plays the same role foP_ v as the so called
Edwards-Sokal coupling measure [10] does for the Potts model. Similarly as for the Edwards-
Sokal measures [3, 18], there is a one-to-one correspondence between the infinite-volume mea-
sures ony’s and the corresponding infinite-volume extended gradient Gibbs measugsols.
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Explicitly, if « is an infinite-volume gradient Gibbs measure for potenfiathen i, defined by
(extending the consistent family of measures of the form)

,Zt((r/b, Kp)ber € A X B) = / oA (dr) Eﬂ(lA He-%lcbn§+V(nb)), (2.7)
B beA
is a Gibbs measure with respect to the extended specificalQKi$nac). For the situations with
only a few distinct values ofy, it may be of independent interest to study the properties of the
x-marginal of the extended measure, e.g., using the techniques of percolation theory. However,
apart from some remarks in Sect. 2.3, we will not pursue these matters in the present paper.

2.2 Phase coexistence of gradient measures.

Now we are ready to state our main results. Throughout we will consider the poténtafls
the form (1.6) withxo > kp. As @ moment’s thought reveals, the model is invariant under the
transformation
Ko — Kkob?, ko — k0%, np — /0 (2.8)

for any fixedd = 0. In particular, without loss of generality, one could assume from the beginning
thatxoxp = 1 and regardo,, as the sole parameter of the model. However, we prefer to treat the
two terms in (1.6) on an equal footing, and so we will keep the coupling strengths independent.

Given a shift-ergodic gradient Gibbs measure, recall that its tilt is the vacach that (1.4)
holds for each bond. The principal result of the present paper is the following theorem:

Theorem 2.2 For eache > 0there exist a constant€ c(¢) > 0and, if
Ko > Ckp, (29)

a number p € (0, 1) such that, for interaction V with p= p, there are two distinct, infinite-
volume, shift-ergodic gradient Gibbs measurgg and u4is Of zero tilt for which

p 1
ﬂord<|77b| z «/K_O) <e+ 12 Vi >0, (2.10)
and ,
uas(Iml < —=) e+, viso. 2.11)
Kp

Here g is a constant of order unity.

Remark2.3 An inspection of the proof actually reveals that the above bounds are valid fer any
satisfyinge > cy(*0/,)/8, wherec, is a constant of order unity.

As already alluded to, this result is a consequence of the fact that the density of ordered bonds,
i.e., those withe, = xo, undergoes a jump gi = p;. On the torus, we can make the following
asymptotic statements:

Theorem 2.4 Let R denote the fraction of ordered bonds B, i.e.,
ord __ 1

R 1.
L {rkb=ro}
B -y

(2.12)
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For eache > Othere exists &= c(¢) > 0such that the following holds: Under the conditigh9),
and for p as in Theorem 2.2,

lim QLR < ¢) =1, p < pt (2.13)

and
lim QLR >1—¢) =1, p> pr (2.14)

The present setting actually permits us to determine the valyg wf a duality argument.
This is the only result in this paper which is intrinsically two-dimensional (and intrinsically tied
to the form (1.6) ofV). All other conclusions can be extendeddo> 2 and to more general
potentials.

Theorem 2.5 Letd= 2. If v, > 1, then pis given by

Pt Ko Ve
——=(—) . 2.15
1 —_ pt (Ko) ( )
Theorem 2.4 is proved in Sect. 4.2, Theorem 2.2 is proved in Sect. 4.3 and Theorem 2.5 is
proved in Sect. 5.3.

2.3 Discussion.

The phase transition described in the above theorems can be interpreted in several ways. First,
in terms of the extended gradient Gibbs measures on torus, it clearly corresponds to a transition
between a state with nearly all bonds ordergg£ «,) to a state with nearly all bonds disordered

(ko = xp). Second, looking back at the inequalities (2.10-2.11), most ofythevill be of

order at most 1,/xo in the ordered state while most of them will be of order at leagy,

in the disordered state. Hence, the corresponding (effective) interface is significantly rougher
atp < prthanitis atp > p; (both phases are rough according to the standard definition of
this term) and we may thus interpret the above as a kinfirstforder rougheningransition

that the interface undergoes gt Finally, since the gradient fields in the two states fluctuate

on different characteristic scales, the entropy (and hence the energy) associated with these states
is different; we can thus view this as a standard energy-entropy transition. (By the energy we
mean the expectation &f (7,); notably, the expectation af,#? is the same in both measures;

cf (4.35).) Energy-entropy transitions for spin models have been studied in [9, 20, 21] and, quite
recently, in [11].

Next let us turn our attention to the conclusions of Theorem 2.4. We actually believe that
the dichotomy (2.13-2.14) applies (in the sense of almost-sure linf®8fasL — oo) to all
translation-invariant extended gradient Gibbs states with zero tilt. The reason is that, conditional
on thex'’s, the gradient fields are Gaussian with uniformly positive stiffness. We rest assured that
the techniques of [17] and [23] can be used to prove that the gradient Gibbs measure with zero tilt
is unique for almost every configuration of this; so the only reason for multiplicity of gradient
Gibbs measures with zero tilt is a phase transition irctimearginal. However, a detailed write-up
of this argument would require developing the precise—and somewhat subtle—correspondence
between the gradient Gibbs measures of a given tilt and the minimizers of the Gibbs variational
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principle (which we have, in full detail, only for convex periodic potentials [23]). Thus, to keep
the paper at manageable length, we limit ourselves to a weaker result.

The fact that the transition occurs @tsatisfying (2.15) is a consequence afuality between
thex-marginals atp and 1— p. More generally, the duality links the marginal law of the config-
uration (k) with the law of (1/xy); see Theorem 5.3 and Remark 5.4. [At the level of gradient
fields, the duality provides only a vague link between the flow of the weighted gradigigg,)
along a given curve and its flux through this curve. Unfortunately, this link does not seem to be
particularly useful.] The poinp = p is self-dual which makes it the most natural candidate
for a transition point. It is interesting to ponder about what happens whemlecreases to one.
Presumably, the first-order transition (for states at zero tilt) disappears befgneaches one
and is replaced by some sort of critical behavior. Here the first problem to tackle is to establish
the absenceof first-order phase transition for sma#l,, — 1. Via a standard duality argument
(see [8]) this would yield a power-law lower bound for bond connectivitigs.at

Another interesting problem is to determine what happens with measures of non-zero tilt.
We expect that, at least for moderate values of theutilthe first-order transition persists but
shifts to lower values op. Thus, one could envision a whole phase diagram inpgheplane.
Unfortunately, we are unable to make any statements of this kind because the standard ways to
induce a tilt on the torus (cf [17]) lead to measures that are not reflection positive.

2.4 Outline of the proof.

We proceed by an outline of the principal steps of the proof to which the remainder of this paper
is devoted. The arguments are close in spirit to those in [9, 20, 21]; the differences arise from the
subtleties in the setup due to the gradient nature of the fields.

The main line of reasoning is basically thermodynamical: Considet-imarginal of the ex-
tended torus stat®, which we will regard as a measure on configurations of ordered and disor-
dered bonds. Let (p) denote (thee — oo limit of) the expected fraction of ordered bonds in the
torus state at parameter Clearly y (p) increases from zero to one assweeps through [A].

The principal observation is that, under the assumptign>> 1, the quantityy (1 — ) is small,
uniformly in p. Hence,p — x(p) must undergo a jump from values near zero to values near
one at somegx € (0, 1). By usual weak-limiting arguments we construct two distinct gradient
Gibbs measures a;, one with high density of ordered bonds and the other with high density of
disordered bonds.

The crux of the matter is thus to justify the uniform smallnesg ¢t — y). This will be
a consequence of the fact that the simultaneous occurrence of ordered and disordered bonds at
any two given locations is (uniformly) unlikely. For instance, let us estimate the probability that
a particular plaquette has two ordered bonds emanating out of one corner and two disordered
bonds emanating out of the other. Here the technique of chessboard estimates [13—-15] allows
us to disseminate this pattern all over the torus via successive reflections (cf Theorem 4.2 in
Sect. 4.1). This bounds the quantity of interest by thke?power of the probability that every
other horizontal (and vertical) line is entirely ordered and the remaining lines are disordered. The
resulting “spin-wave calculation’—i.e., diagonalization of a period-2 covariance matrix in the
Fourier basis and taking its determinant—is performed (for all needed patterns) in Sect. 3.

Once the occurrence of “bad pattern” is estimated by means of various spin-wave free energies,
we need to prove that these “bad-pattern” spin-wave free energies are always worse off than
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those of the homogeneous patterns (i.e., all ordered or all disordered)—this is the content of
Theorem 3.3. Then we run a standard Peierls’ contour estimate whereby the smaljn@ss pf
follows. Extracting two distinct, infinite-volume, ergodic gradient Gibbs statgs and u qis

atp = py, itremains to show that these are both of zero tilt. Here we use the fact that, conditional
on thex’s, the torus measure is Gaussian with uniformly positive stiffness. Hence, we can use
standard Gaussian (Brascamp-Lieb type) inequalities to show exponential tightness of the tilt,
uniformly in thex’s; cf Lemma 4.8. Duality calculations (see Sect. 5) then ygeld py.

2.5 Generalizations.

Our proof of phase coexistence applies to any potential of the form shown in Fig. 2—even if we
return to the parametrization ;. The difference with respect to the present setup is that in the
general case we would have to approximate the potentials by a quadratic well at each local mini-
mum and, before performing the requisite Gaussian calculations, estimate the resulting errors.
Here is a sketch of the main ideas: We fix a seakend regardy, to be in a well if it is withinA
of the corresponding local minimum. Then the requisite quadratic approximatigrtiofes
energy is good up to errors of ordén3. The rest of the potential “landscape” lies at energies at
least orderA? and so it will be only “rarely visited” by the’s provided thaif A2 > 1. On the
other hand, the same condition ensures that the spin-wave integrals are essentially not influenced
by the restriction thaty, be within A of the local minimum. Thus, to make all approximations
work we need that

LA <1< fA? (2.16)

which is achieved fop > 1 by, e.g.. A = ﬁ—l%. This approach has recently been used to prove
phase transitions in classical [4, 5] as well as quantum [6] systems with highly degenerate ground
states. We refer the reader to these references for further details.

A somewhat more delicate issue is the proof that both coexisting states are of zero tilt. Here
the existing techniques require that we have some sort of uniform convexity. This more or less
forces us to use the’s of the form

V(p) =— Iog(Ze‘Vi <'7>), (2.17)
j

where theV;'s are uniformly convex functions. Clearly, our choice (1.6) is the simplest potential
of this type; the question is how general the potentials obtained this way can be. We hope to
return to this question in a future publication.

3. SPIN-WAVE CALCULATIONS

As was just mentioned, the core of our proofs are estimates of the spin-wave free energy for
various regular patterns of ordered and disordered bonds on the torus. These estimates are rather
technical and so we prefer to clear them out of the way before we get to the main line of the proof.
The readers wishing to follow the proof in linear order may consider skipping this section and
returning to it only while reading the arguments in Sect. 4.2. Throughout this and the forthcoming
sections we assume thiatis an even integer.
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FIGURE 3. Six possible arrangements of “ordered” and “disordered” bonds around a lattice
plaquette. Here the “ordered” bonds are represented by solid lines and the “disordered” bonds
by wavy lines. Each inhomogeneous pattern admits other rotations which are not depicted.

3.1 Constrained partition functions.

We will consider six partition function& o, Z| p, ZL.uo, ZL.up, ZLmp and Z ya on T
that correspond to six regular configurations each of which is obtained by reflecting one of six
possible arrangements of “ordered” and “disordered” bonds around a lattice plaquette to the entire
torus. These quantities will be the “building blocks” of our analysis in Sect. 4. The six plaquette
configurations are depicted in Fig. 3.

We begin by considering the homogeneous configurations. Beggis the partition func-
tion Z (v, for all edges of the “ordered” type:

1
Vo(n) = —log p + éxo;yz, beB,.. (3.1)

Similarly, Z, p is the quantityZ, (v, for

1
Vb(7) = —log(1— p) + Eanz, beB., (3.2)

i.e., with all edges “disordered.”

Next we will define the partition function&, yo andZ, yp which are obtained by reflecting
a plaquette with three bonds of one type and the remaining bond of the other type. LetBg split
into the everB®®"and oddB?% horizontal and vertical edges—uwith the even edges on the lines
of sites in thex direction with eveny coordinates and lines of sites yndirection with everx
coordinates. Similarly, we will also consider the decompositiolointo the set of horizontal
edgesB®" and vertical edgeB\®". Letting

—log p + 3x0n?, if b e B[ U B,

3.3
—log(1 — p) + 3xon?, otherwise (3.3)

Vo(n) = [
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the partition functiorZ _ yo then corresponds to the quantity (). The partition functior? . up
is obtained similarly; with the roles of “ordered” and “disordered” interchanged. Note that, since
we are working on a square torus, the orientation of the pattern we choose does not matter.

It remains to define the partition functior§ vp and Z; ma corresponding to the patterns
with two “ordered” and two “disordered” bonds. For the former, we simply takey,, with the
potential

—log p + ixon?, if b e BT,
Vo(n) = 9P aron 1 2 ; \I;ert

—log(1 — p) + 3xo0n°, if b e B*".
Note that the two types of bonds are arranged in a “mixed periodic” pattern; hence the index MP.
As to the quantityZ, ua, here we will consider a “mixed aperiodic” pattern. Explicitly, we define

=1 log p + 3xon?, if b e B
T ] = log(d - p) + Lo, if b e BOdd,

(3.4)

(3.5)

The “mixed aperiodic” partition functio_ wa is the quantityZ, (, for this choice of(\Vy).
Again, on a square torus it is immaterial for the valueZpfup andZ ya which orientation of
the initial plaquette we start with.
As usual, associated with these partition functions are the corresponding free energies. In finite
volume, these quantities can be defined in all cases by the formula

ZL,a

1,2 a0 a = O, D, UO, UD, MP, MA, (36)
(2m) 33D

1
log

FL,(x(p) = _F

where the facto(Zn)%(Lz—l) has been added for later convenience and wherg-tiependence
arises via the corresponding formulas Y6rin each particular case.

3.2 Limiting free energies.

The goal of this section is to compute the thermodynamic limit offhg’s. For homogeneous

and isotropic configurations, an important role will be played by the momentum representation
of the lattice LaplaciarD(k) = |1 — €2 + |1 — €*|2 defined for allk = (k;, ko) in the
corresponding Brillouin zon& € [—z, z]x[—=, z]. Using this quantity, the “ordered” free
energy will be simply

1 ~
Fo(p) = —2l0gp+5 | 5 100(xaB ). @)
while the disordered free energy boils down to
1 dk ~
Fo(p) = —2logL—p)+5 [ logfxo B} (38)

It is easy to check that, despite the logarithmic singularity &t0, both integrals converge. The
bond pattern underlying the quantify vp lacks rotation invariance and so a different propagator

appears inside the momentum integral:
_ 1 dk iki12 ko212
Fue(p) = —oalp(L=p)] + 5 [ togfrolt ¢ ol @9

Again, the integral converges as long as (at least) omg ahdx; is strictly positive.
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The remaining partition functions come from configurations that lack translation invariance
and are “only” periodic with period two. Consequently, the Fourier transform of the correspond-
ing propagator is only block diagonal, with two or four differées “mixed” inside each block.

In the UO cases we will get the function

Foolp) = —5loalp’ A= p)] + 5 [ o bgldetluo®),  (310)
wherellyo(K) is the 2x 2-matrix
Mool — (xo|eLl|2 + 3 (ko +x02)|b_|2 %2(xo - o) lb_ |2 2) 310)
5 (ko — xp)|b-| Kolay |“ + 5 (ko + ko) [b-|
with a,. andb.. defined by
a.=1+€e% and by =1+¢€' (3.12)

The extra factof/,—on top of the usual>—in front of the integral arises because tigio (k)
combines the contributions of two Fourier models; nankedyndk + 7 &;. A calculation shows

detMyo(K) > xo?la|?la.|? + xoxplb-|*, (3.13)

implying that the integral in (3.10) converges. The free enétgyis obtained by interchanging
the roles ok, andxp and ofp and(1 — p).

In the MA-cases we will assume that # xy—otherwise there is no distinction between any
of the four cases. The corresponding free energy is then given by

1 dk Ko — Kp
Fua(p) = —log[p(l - p)] + 2 /[_M]z (21)? © l( i 2

)4detHMAk)]. (3.14)

HerelIlya (K) is the 4x 4-matrix

r(ja_?+|b_|% Ib_|2 la_|? 0
Ib_|2 r(ja|? + [b-|?) 0 |a|?
a0 =1" 4 0 r(aP+b b (3:15)
0 lag |? lb > r(ac®+1bs )
with the abbreviation
ro ot (3.16)
Ko — Kp

Note thatr > 1 in the cases of our interest. Observe thatl@igt (k) is a quadratic polynomial
inr?,i.e., detllya = Ar4 Br2+C. Moreover,ITIya (k) annihilateg1, —1, —1, 1) whenr =1,
and sar? = 1is aroot ofAr4 + Br? 4 C. Hence deflya (k) = (r> — 1)(Ar? — C), i.e.,

detllya (k) = (2 = 1) { —(las a2 = Ib. Plb_|*)?

+ (1 2+ by P (a2 + by A (Jas  + - (a2 + b-r2).  (3.17)
Settingr = 1 inside the large braces yields
detlTva (k) > 4(r* — D]a_|?|a; [*[b_|?|by |, (3.18)

implying that the integral in (3.14) is well defined and finite.
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Remark3.1 The fact thallya (k) has zero eigenvalue at= 1 is not surprising. Indeed,= 1
corresponds ta, = 0 in which case a quarter of all sites in the MA-pattern get decoupled from
the rest. This indicates that the partition function blows up (at least) as1)~'Tt//* asr | 1
implying that there should be a zero eigenvalue at 1 per each 4 4-blockITya (K).

A formal connection between the quantities in (3.6) and those in (3.7-3.14) is guaranteed by
the following result:

Theorem 3.2 Forall a = O, D, UO, UD, MP, MA and uniformly in pe (0, 1),
lim F.(p) = F.(p). (3.19)
L—>oo

Proof. This is a result of standard calculations of Gaussian integrals in momentum representation.
We begin by noting that the Lebesgue meadqurgd$, can be regarded as the productvef

acting only on the gradients gf, and db, for some fixedz € T, . Neglecting temporarily tha

priori bond weightsp and (1 — p), the partition functionZ, ,, « = O, D, UO, UD, MP, MA,

is thus the integral of the Gaussian weig®t | T [)~Y/2e~2(#-C"#) against the measuid, dg,,

where the covariance matrx, is defined by the quadratic form

@, C) = > (v ¢)Z+W(Z b (3:20)

beB. xeT

Here (zct(,“)) are the bond weights of patteecn Indeed, the integral overgd with the gradient
variables fixed yield$2z | T, [)*? which cancels the term in front of the Gaussian weight. The
purpose of the above rewrite was to reinsert the “zero maige= |T,|~Y/2 > . &« into the
partition function;$0 was hot subject to integration due to the restriction to gradient variables.

To compute the Gaussian integral, we need to diagon@lizeFor that we will pass to the
Fourier componenigy = [Ty |"Y2 >, . ¢«€** with the result

¢.Cle) = > Zskg?:/(ak,oék/,w >, Aﬁ”ﬁ(l—e‘ika)(l—eik’ﬂ)), (3.21)

k,k'eT, 0=12

whereTL = {ZT”(nl, nz): 0 < ng, Ny < L} is the reciprocal torusy, 4 is the Kronecker delta and

1 L
(0 _ 2 : (@) K —k)-
Ak’k/ a |T_|_| Kxxte) e, (3.22)

XETL

Now if the horizontal part otzc(“)) is translation invariant in the-th direction, thenAf( =

wheneverk, # k|, while if it is “only” 2-periodic, thenAl'), = 0 unles(fky =k or ky -
)

ki, + = mod 2r. Similar statements apply to the vertical pari(qjﬂ)) andA/, . Since all of our
partition functions come from 2-periodic configurations, the covariance matrix can be cast into
a block-diagonal form, with 4« 4 blocks®, (k) collecting all matrix elements that involve the
momenta(k,k + z&,k + 7&,k + 7& + 7&). Due to the reinsertion of the “zero mode"—

cf (3.20)—all of these blocks are non-singular (see also the explicit calculations below).
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Hence we get that, for all = O, D, UO, UD, MP, MA,

ZLa _ = 1 No(1 — pyNo H —1 K (3.23)
@r)pn P P o Ldet®u (k) | '
eTL

whereNg and Np denote the numbers of ordered and disordered bonds in the underlying bond
configuration and where the exponégtakes care of the fact that in the product, ekdets in-
volved infour distinct terms. Taking logarithms and dividing (¥ |, the sum over the reciprocal
torus converges to a Riemann integral over the Brillouin zere, [z] x[—=z, =] (the integrand
has only logarithmic singularities in all cases, which are harmless for this limit).

It remains to justify the explicit form of the free energies in all cases under considerations.
Here the situationa = O, D, MP are fairly standard, so we will focus en= UO anda = MA
for which some non-trivial calculations are needed. In the former case we get that
Ko + kp Ko — Kp

@ _ 2 _ —
Ak = Koak,k’a k= 2 > Kktrl — 2 D

K

(3.24)

with Aﬁ"f(, = 0 for all values that are not of this type. Plugging into (3.21) we find that the
(k, k + m &)-subblock of® (k) reduces essentially to thex22-matrix in (3.11). Explicitly,

. ITyok 0
Ouo(k) = diag(d,0, o zer» Sk rers Orerrres) + ( U8( ) Muo(k + néz)) ) (3.25)

Sincek! = k, WheneverA(k")k, # 0, the block matrix®yo(K) will only be a function of moduli-
squared o&. andb_. Using (3.25) in (3.23) we get (3.10).
As to the MA-case the only non-zero elementsﬁéf)k, are
@ _ Kotkp Ko — Kp

1 1 2
AL = AL = 5 and AD, o =AZ, .= — (3.26)

So, againk = K, wheneverAI((”Ii, # 0 and so®ya (k) depends only offia.|? and|b.|?. An
explicit calculation shows that

Ko — Kp

Owma (K) = diag(dk.0, o ze;> O xers O nr4ner) + ( ) My (), (3.27)
wherellya (K) is as in (3.15). Plugging into (3.23), we get (3.14). g

3.3 Optimal patterns.

Next we establish the crucial fact that the spin-wave free energies corresponding to inhomoge-
neous patterns UQJD, MP, MA exceed the smaller ofFo and Fp by a quantity that is large,
independent of), oncexo > kp.

Theorem 3.3 There existsce R such that if«p < & xo with & € (0, 1), then for all pe (0, 1),

: . 1 x 1
oMo Fe(P) = Min Fa(p) = glog-~+ Zlogl — &)+ (3.28)

Proof. Let us usd andJ to denote the integrals

1 dk ~ dk
| == — Dk = — . 2
2/[_”’71]2 on)? og{D(k)}, and J /[_M]Z on)? ogla_| (3.29)
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We will prove (3.28) withc;, = J — I.
First, we have

Fo(p) = —2logp + % logxo + | (3.30)
and 1
Fo(p) = —2log(1 — p) + > logxp + 1, (3.31)
while an inspection of (3.14) yields
Fua (p) = —log[p(1 - p)] + % /[ o (Zdi)z log{koko(ko — ko)?aa-byb- [}
> —log[p(1- p)]+ glogxo + % logxp + %Iog(l -5+ J (3.32)
Using that
min{ Fo, Fo} < %(FQ + Fo), (3.33)
we thus get
Fua (p) — min{Fo(p), Fo(p)} > %Iog’t—z + %log(l —H+I-1, (3.34)

which agrees with (3.28) for our choice of.
Coming to the free energlyyo, using (3.13) we evaluate

L
detlluo(k) 2 ko?la-Pla. 2 = (£2) “xo'o™2la Pla, (3.35)
Kp
yielding
1 1 x5 3 1
F —Zlog[p3(1 - “log =2 + 2 i . .
uo(P) = =3 og[ p*( p)]+8 ogKD+809xo+809xo+J (3.36)
Bounding
. 3 1
mln{Fo, FD} < ZFO + ZFD (3.37)
we thus get
. 1 K
Fuo(p) — min{Fo(p). Fo(p)} > glog— +J — I, (3.38)
D

in agreement with (3.28). The computation fajp is completely analogous, interchanging only
the roles ofc, andxp as well asp and(1 — p). From the lower bound

Ko\ 1/2
detITyo(K) > Koko|b_|* = (K_O) KoY %2 |4 (3.39)
D
and the inequality
. 1 3
mln{ Fo, FD} < ZFO + ZFD, (340)
we get again
. 1 Ko
Fup(p) —min{Fo(p), Fo(p)} = glog—+J -1, (3.41)
D

which is identical to (3.38).
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Finally, for the free energ¥yp, we first note that

1
Fup(p) = —log[p(1 — p)] + Slogro + J, (3.42)
which yields
1 - p 1 Ko
Fup(p) — Fo(p) > log + > IogK— +J-1. (3.43)
D

Under the condition that Ioé;—p > —g log z—g we again get (3.28). For the complementary values
of p, we will compareFyp with Fg:

p
1-p

Fump(p) — Fo(p) = log +J—1, (3.44)

Since we now have Ioé;—p < —g log ’;—g this yields (3.28) with the above choiceaf a

4. PROOF OF PHASE COEXISTENCE

In this section we will apply the calculations from the previous section to the proof of Theo-
rems 2.2 and 2.4. Throughout this section we assumexghatxy and thatL is even. We begin

with a review of the technique of chessboard estimates which, for later convenience, we formulate
directly in terms of extended configuratiofs, #p).

4.1 Review of RP/CE technology.

Our principal tool will be chessboard estimates, based on reflection positivity. To define these
concepts, let us consider the tofilis, with L even, and let us splif, into two symmetric halves,

T, andT, sharing a “plane of sites” on their boundary. We will refer to thel§en T} asplane

of reflectionand denote it byP. The half-toriT{ inherit the nearest-neighbor structure fréhn

we will use]B%f to denote the corresponding sets of edges. On the extended configuration space,
there is a canonical majp : RBL x {xo, 1p)B — REL x {0, xp) B —induced by the reflection

of Tf into T, throughP—which is defined as follows: Ib, b’ € B, are related vid' = 6p(b),

then we put

— 1y ifbl P

(epl’])b = [ﬂbfl,b ’ |f b ” P,’ (41)
and

(OpK)p = K. (4.2)

Hereb L P denotes thab is orthogonal top while b || P indicates thab is parallel toP. The
minus sign in the case whdn_L P is fairly natural if we recall thaty, represents the difference
of ¢4 between the endpoints @®. This difference changes sign under reflection throégh
if b L Panddoesnotib| P.

Let #5 be thes-algebras of events that depend only on the portiotyefxy)-configuration
on BY; explicitly .75 = (i, k0; b € BY). Reflection positivity is, in its essence, a bound on
the correlation between events (and random variables) f/gfrand.# . The precise definition
is as follows:
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Definition 4.1 Let P be a probability measure on configurations (1, kp)hep, and let E be the
corresponding expectation. We say that IP is reflection positiveif for any plane of reflection P
and any two bounded .7} -measurable random variables X and Y the following inequalities hold:

E(X0p(Y)) = E(Y0p (X)) (4.3)

and
E(X8p(X)) > 0. (4.4)
Here, 0p(X) denotes the random variable X o 6p.

Next we will discuss how reflection positivity underlines our principal technical tool: chess-
board estimates. Consider an evehthat depends only on they,, x,)-configurations on the
plaquette with the lower-left corner at the torus origin. We will call suchdamplaquette event
For eachx € T\, we defined,(A) to be the event depending only on the configuration on the
plagquette with the lower-left corner atwhich is obtained frond as follows: If both components
of x are even, thed«(A) is simply the translate ofl by x. In the remaining cases we first reflect
A along the side(s) of the plaquette in the direction(s) where the componei ofid, and then
translate the resulting event appropriately. (Thus, there are four possible “versiofg A,
depending on the parity of.)

Here is the desired consequence of reflection positivity:

Theorem 4.2(Chesshoard estimate).et P be a reflection-positive measure on configurations

(v, kp)ber, - Then for any plaquette events, .. ., Ay, and any distinct sitesix. .., Xm € T,
m 1
()0 Ap) < [TP( N oxan)™, (4.5)
j=1 j=1 xeT
Proof. See [15, Theorem 2.2]. O

The moral of this result—whose proof boils down to the Cauchy-Schwarz inequality for the
inner productX,Y — E(X0p(Y))—is that the probability of any number of plaquette events
factorizes, as a bound, into the product of probabilities. This is particularly useful for contour
estimates (of course, provided that the word contour refers to a collection of plaquettes on each of
which some “bad” event occurs). Indeed, by (4.5) the probability of a contour will be suppressed
exponentially in the number of constituting plagquettes.

In light of (4.5), our estimates will require good bounds on probabilities of the so adied
seminated events),_r 9x(A). Unfortunately, the eventl is often a conglomerate of several,
more elementary events which makes a direct estimaraxggrL ¥x(A) complicated. Here the
following subadditivity property will turn out to be useful.

Lemma 4.3(Subadditivity) Suppose thaP is a reflection-positive measure and Jét, A, . ..
and.A be plaguette events such thatc |J; A;. Then

1 1

() )™ < () oxan) ™. (4.6)
j

xeTL xeT

Proof. This is Lemma 6.3 of [5]. g



GRADIENT GIBBS STATES 19

Apart from the above reflections, which we will cdirect, one estimate—namely (4.39)—in
the proof of Theorem 2.2 requires the use of so caliegonal reflectionsAssumingL is even,
these are reflections in the planeof sites of the form

Po={yeTi:& (y—X)F& (y—x {0} (4.7)

Herex is a site that the plane passes through @ndndé, are the unit vectors in the andy-
coordinate directions. As before, the plane has two components—one corresporéingyte-

X) = £& - (y — X) and the other correspondingég- (y — X) = & - (y — X) + L—and it
dividesT | into two equal parts. This puts us into the setting assumed in Definition 4.1. Some care
is needed in the definition of reflected configurationd' lis the bond obtained by reflectirig
throughP, then

N » If P= P—‘r’
0 = 4.8
Op )y |—77b/, if P=P_. 48)
This is different compared to (4.1) because the reflectioR inpreserves orientations of the
edges, while that ifP_ reverses them.

Remark4.4 While we will only apply these reflections éh= 2, we note that the generalization

to higher dimensions is straightforward; just consider all planes as abovdééyj#) replaced

by various pairg&, &) of distinct coordinate vectors. These reflections will of course preserve
the orientations of all edges in directions distinct frénandg; .

4.2 Phase transitions on tori.

Here we will provide the proof of phase transition in the form stated in Theorem 2.4. We follow
pretty much the standard approach to proofs of order-disorder transitions which dates all the way
back to [9, 20, 21]. A somewhat different approach—motivated by another perspective—to this
proof can be found in [7].

In order to use the techniques decribed in the previous section, we have to determine when the
extended gradient Gibbs meas@e on T, obeys the conditions of reflection positivity.

Proposition 4.5 LetV be of the fornf2.5)with any probability measure for which 7, v < oo.
Then Q is reflection positive for both direct and diagonal reflection.

Proof. The proof is the same for both types of reflection so we we proceed fairly generally. Pick
a plane of reflectiorP. Let z be a site orP and let us reexpress thg’s back in terms of the's
with the convention thap, = 0. Then

v (dnp) = 5(dgsy) | | ceix. (4.9)

X#Z

Next, let us introduce the quantity

1 1
WOk =5 X molly+ 5 D Korl. (4.10)
beB, P beP
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(We note in passing that the removal Bffrom the first sum is non-trivial even for diagonal
reflections oncel > 3.) Clearly,W is %7 -measurable and the full, x)-interaction is sim-
ply W(n, ) + (@pW)(, k). The Gibbs measur®,_ can then be written

Qud. do) = 5 e 05y ([Tas) [T o) (410)

X#£2Z beB|

Now pick a boundedZ 2 -measurable functioX = X (1, x) and integrate the functioX 0p X
with respect to the torus measutk . If 4 is thegs-algebra generated by random variahlgs
andx, with x andb “on” P, we have

2
Eq. (X0pX|%p) ( / X(Vg,x)e V¥ TT do [] Q(dkb)) >0, (4.12)
XETE'\P beBt’\P

where the values dfxp, ¢x) on P are implicit in the integral. This proves the property in (4.4);
the identity (4.3) follows by the reflection symmetry Qf . O

Let us consider two good plaquette everllsy and Ggis, that all edges on the plaquette are
ordered and disordered, respectively. Bet (Gorg U Guis)© denote the corresponding bad event.
Given a plaquette evet, let

1
[l
3Lp(A) = |:QL( N ﬂx(A)):| (4.13)
xeT
abbreviate the quantity on the right-hand side of (4.5) and define
3(A) = limsup sup 3., p(A). (4.14)

L—oo 0O<p<l

The calculations from Sect. 3 then permit us to draw the following conclusion:

Lemma 4.6 For eachd > 0 there exists - 0 such that ifxg > cxp, then

3(B) <. (4.15)
Moreover, there existg p1 € (0, 1) such that
Ilm SupaL,p(gdiS) < 5’ p < pO, (416)
L—oo
and
Iian sup3i,p(Gord) < 9, p> p1. (4.17)

Proof. The event can be decomposed into a disjoint union of evdsiteach of which admits
exactly one arrangement of ordered and disordered bonds around the plaquette; see Fig. 3 for the
relevant patterns. IB; is an event of type € {O, D, UO, UD, MP, MA}, then

lim supsLp(5) < exp{~[FL.(p) — min Fa(p)l}. (4.18)
By Theorem 3.3, the right-hand side is bounded, uniformlyp,by O(1) (<, )~Y8. Applying

Lemma 4.3, we conclude that ,(B) is small uniformly inp e [0, 1] onceL > 1. (The
valuesp = 0, 1 are handled by a limiting argument.)
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The bounds (4.16—4.17) follow by the fact that

Fo(p) — Fo(p) = —2log 1 P + log @, (4.19)
—_ p KD
which is (large) negative fop close to one and (large) positive fprclose to zero. O

From 3(B) « 1 we immediately infer that the bad events occur with very low frequency.
Moreover, a standard argument shows that the two good events do not like to occur in the same
configuration. An explicit form of this statement is as follows:

Lemma 4.7 Let R be the random variable frorf2.12) There exists a constant € oo such
that for all (even) L> 1and all pe [0, 1],

Eq. (R™(1 - RY™)) < C3 ,(B). (4.20)
Proof. The claim follows from the fact that, for some const@nit< oo,

QL (9x(Gord) N Yy (Gais)) < C'3.p(B)*, (4.21)

uniformly in x,y € T_. Indeed, the expectation in (4.20) is the average of the probabili-
ties QL (xp = Ko, kK = Kp) Over allb,b € B,. If x andy denotes the plaquettes containing
the bondsb and b, respectively, then this probability is bounded &y (9y(Gorg) N Vy(G5a))-

But G¢, = B U Ggis and so by (4.21) this probability is bounded iy, (B) + C'31.p(B)* <
(C"+ D3, p(B), where we useg (B) < 1.

It remains to prove (4.21). Consider the eveq(Gorg) N Yy (Gais) Where, without loss of
generality,x # y. We claim that on this event, the good plaquettex andy are separated
from each other by a-connected circuit of bad plaquettes. To see this, consider the largest
connected component of good plaguettes contairimgnd note that no plaquette neighboring
on this component can be good, because (by definition) the egggtandGyis cannot occur at
neighboring plaquettes (we are assuming tha¥ «p). By chessboard estimates, the probability
in Q. of any such (given) circuit is bounded By ,(B) to its size; a standard Peierls’ argument
in toroidal geometry (cf the proof of [5, Lemma 3.2]) now shows that the probability in (4.21) is
dominated by the probability of the shortest possible contour—whigh j€3)*. (The contour
argument requires that ,(B) be smaller than some constant, but this we may assume to be
automatically satisfied because the left-hand side of (4.20) is less than one.) O

Now we are in a position to prove our claims concerning the torus state:

Proof of Theorem 2.4 et Rﬁ“’ be the fraction of ordered bonds @h (cf. (2.12)) and lety, (p)
be the expectation d®°"in the extended torus sta@_with parametep. Since(1—p)~ Bz v
is log-convex in the variable = log %5, and

olog((1— p)~BlZL v)
oh ’

we can conclude that the functign— y, (p) is hon-decreasing. Moreover, as the thermody-

namic limit of the torus free energy exists (cf Proposition 5.5 in Sect. 5.3), the Jitp} =

lim_ . xL(p) exists at all but perhaps a countable numbep’sf—namely the seb c [0, 1] of

points where the limiting free energy is not differentiable.

BLlyxL(p) = (4.22)
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Next we claim thatQ|_(|RErd — x(p)| > €o) tends to zero a& — oo for all ¢ > 0 and
all p € D. Indeed, if this probability stays uniformly positive along some subsequentés of
for someeg > 0, then the boundedness f“‘ ensures that for some> 0 and some > 0 we
have QL (R > x(p) +¢) > ¢ and Q (R < y(p) —¢) > ¢ for all L in this subsequence.
Vaguely speaking, this impliep € D because one is then able to extract two infinite-volume
Gibbs states with distinct densities of ordered bonds. A formal proof goes as follows: Consider
the cumulant generating functioi_(h) = |B,|~*log Eq, (e"BLIR) and note that its thermody-
namic limit, ¥ (h) = lim__,, ¥ (h), is convex inh and differentiable a = 0 whenevemp ¢ D.
But QL(R > y(p)+e€) > ¢ in conjunction with the exponential Chebyshev inequality implies

lo

PL() — h(x(p) +€) = ok,

By |
which by takingL — oo andh | 0 yieldsﬁ‘lf(h) > x(p) + €. By the same toke@, (R <
x(p)—¢€)>¢ impliesdr%‘l’(h) < x(p) — ¢, and so both probabilities can be uniformly positive
onlyif p e D.

To prove the desired claim it remains to show thajumps from values near zero to values
near one at somp; € (0, 1). To this end we first observe that

lim Eq, (RE“(L—RM) = x(P[1-2(P].  P#D. (4.24)

This follows by the fact that on the eveipt(p)—e < R < yx(p)+e}—whose probability tends
to one ad. — oo—the quantityR™%(1 — R is bounded betweery[p) + €](L — x(p) + €)
and [y (p) — €](1 — x(p) — ¢) providede < min{y(p), 1 — y(p)}. Lemma 4.7 now implies

(4.23)

x(P[1-x(p)] < C3(B), (4.25)
with 3(B) defined in (4.14). By Lemma 4.6, for eaéh- O there is a constat> O such that

oncexo/,, > c. But the bounds (4.16—4.17) ensure thap) € [0,0] for p < 1 andy(p) €
[1—-6,1]for1— p « 1. Hence, by the monotonicity g — y(p), there exists a unique
value p; € (0, 1) such thaty (p) < ¢ for p < p; while y(p) > 1— 6 for p > p;. In light of our
previous reasoning, this proves (2.13-2.14). d

4.3 Phase coexistence in infinite volume.

In order to prove Theorem 2.2, we will need to derive a concentration bound on the tilt of the
torus states. This is the content of the following lemma:

Lemma 4.8 LetA c T, and letB, be the set of bonds with both endsAn Given a configu-
ration (7p)per, ,» We use Y| = U, () to denote the vector

1 1
Up = (— z Mo> — E 77b) (4.27)
”BAI beRho" ”BAI vert
BB, beBYeNB A

of empirical tilt of the configuratiomy, in A. Suppose thaty,i, = infsuppe > 0. Then
PL(IUAl 2 ) < 4 Brmn?*IEal (4.28)
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for eacho > 0, eachA c T| and each L.

Proof. We will derive a bound on the exponential momentgf. Let us fix(vp)bep, € RIBL and
let QL ., be the conditional law of thg’s given a configuration of the’s. Let Q. min be the
corresponding law when att, = xmin. In view of the fact thaQy ) and Q. min are Gaussian
measures angd, > xmin, We have

VarQL.(Kb)( z Ub’?b) < VarQL,min( Z Ub’?b)- (4.29)
beBL beB,

(Note that both measures enforce the same loop conditions.) The right-hand side is best calculated
in terms of the gradients. The result is

2
VarQL,(Kb)( Z Ubﬂb) < ” Z p.- (4.30)

beB, min p B,

1

The fact thatEq, ., () = 0 and the identityE(eX) = eEX+3Va(X) valid for any Gaussian
random variable, now allow us to conclude

Eo, (exp{ > Dbnb}) < exp{ 2K1 > ug}. (4.31)

beB, min pop,

Choosingyy, = 1 - b/|BA| onB, and zero otherwise, we get
|42 }
2Kmin |BA| '

Noting that|U,| > ¢ implies that at least one of the componentdJgf is larger (in absolute
value) tharv/,, the desired bound follows by a standard exponetial-Chebyshev estimate []

Eq (€794) < exp{ (4.32)

Proof of Theorem 2.2With Theorem 2.4 in the hand, the argument is fairly straightforward.
Consider a weak (subsequential) limit of the torus statgs at p; and then consider another
weak limit of these states gs|, p;. Denote the result byiog. Next let us perform a similar limit
asp T prand let us denote the resulting measuregigy. As is easy to check, both measures are
extended gradient Gibbs measures at paranpgter

Next we will show that the two measures are distinct measures of zero tilt. To this end we
recall that, by (2.14) and the invariance@f under rotations, liminf_ ., Q (kp = ko) > 1—¢€
when p > p; while (2.13) implies that limsup, ., QL(xp = ko) < € whenp < p. But
{kn = Ko} is a local event and so

Hord(kb = ko) > 1 —¢€ (4.33)
while
fdis(kp = Ko) < €, (4.34)

for all b; i.e., fiorg # figiss Moreover, the bound (4.28)—being uniform pmand L—survives
the above limits unscathed and so the tilt is exponentially tight in volume for faggrand i gis.
It follows thatU, — 0 asA 1 Z2? almost surely with respect to bofivq and figis; i.€., both
measures are supported entirely on configurations with zero tilt.
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It remains to prove the inequalities (2.10-2.11) and thereby ensure thedniaeginalsiorg
anduqis Of fiorg aNd i gis, respectively, are distinct as claimed in the statement of the theorem. The
first bound is a consequence of the identity

. 2 _ =
Jim Eq (k) = 7. (4.35)
which extends via the aforementioned limitsitgq (as well asigis). Indeed, using Chebyshev's
inequality and the fact thatqg(ky, = kp) < € we get

flord(konE = 22) — € < Jiora(ion? > A2, Kb = Ko)

_ Ejga(kord) 1 (4.36)
2 2 Hord b/ _
< Hord(kpng > A°) < — 2 T az
To prove (4.35), the translation and rotation invarianc@ofgives us
1
Eo, (kor?) = Eo, (EQL)%)(m > Kbng)). (4.37)
beB_

Let Z, () denote the integral of e*p% >h Kbng} with respect to, . Since we have, (fdy) =

BTL=1y (dn), simple scaling of all fields yieldZ, g = f~20T-DZ, (.. Intepreting the
inner expectation above as the (negatjgelerivative of|B. |t log Z| (s, atp = 1, we get

1 2\ ITef—-1
EQLW»(—BH bZB:Kbnb) TR (4.38)
SR

From here (4.35) follows by taking — oo on the right-hand side.

As to the inequality (2.11) for the disordered state, here we first use that the diagonal reflection
allows us to disseminate the everty2 < A2} around any plaquette containithg Explicitly,
if (by, by, b3, by) is a plaquette, then

1/4
Quiktnfy == Qu( [t < 23) " (439)
b=by,...,bs
(We are using that the event in question is even and so the changes of sign qf are imma-
terial.) Direct reflections now permit us to disseminate the resulting plaquette event all over the
torus:

_1
Quikwr? < %) = Qu( ) trgn? = 241) ™. (4.40)
beB.
Bounding the indicator of the giant intersection by
1
g2
beB_
for § > 1, and invoking the scaling of the partition functidn 4., we deduce
, ef—D22(BLI Y 7
Qukony < A°) < | —1 (4.42)
BE(TLI=D
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Choosings = 172, lettingL — oo andp 1 p, we thus conclude
faisont < 4%) < cia’™. (4.43)
Noting thatiigis(kpn2 < 4%) > fidis(konz < A?) — €, the bound (2.11) is also proved. O

5. DUALITY ARGUMENTS

The goal of this section is to prove Theorem 2.5. For that we will establish an interesting duality
that relates the model with parameteto the same model with parameter1p.

5.1 Preliminary considerations.

The duality relation that our model (1.6) satisfies boils down, more or less, to an algebraic fact
that the plaquette condition (1.3), represented by the delta fundtign+ #7b, — #7b; — 7b,), €an
formally be written as

do* . .. o
O(nby + Mo, — Moy — Mby) = %ew (b 11y =113 —71by) (5.1)

We interpret the variablg* as thedual fieldassociated with the plaquett@y,,, 7n,, 7bs, 710,)- AS
it turns out (see Theorem 5.3), by integrating #® with the ¢*'s fixed a gradient measure is
produced whose interaction is the same as fortheexcept that they,’s get replaced by /f«yp’s.
This means that if we assume that

Kokp = 1, (5.2)
which is permissible in light of the remarks at the beginning of Section 2.2, then the duality
simply exchanges, andxp! We will assume that (5.2) holds throughout this entire section.

The aforementioned transformation works nicely for the plaguette conditions which guarantee
that they’s canlocally be integrated back to thg’s. However, in two-dimensional torus ge-
ometry, two additional global constraints are also required to ensurgdbal correspondence
between the gradienisand the fieldgs. These constraints, which are by definition built into the
a priori measurey, from Sect. 2, do not transform as nicely as the local plaquette conditions. To
capture these subtleties, we will now define anothpriori measure that differs fromy_ in that
it disregards these global constraints.

Consider the linear subspadg O & of RB that is characterized by the equatiops +
b, — Mbs — M, = O for each plaquettéb;, by, bs, bs). This space inherits the Euclidean metric
from RBL; we definev; as the corresponding Lebesgue measur&’pscaled by a constai@,
which will be determined momentarily. In order to make the link with we define

Nvert = Z Nx+& and Mhor = Z Nx+8&- (5-3)
xeTL xeTL
Clearly,
X= {’7 € A mvert = 0, fihor = 0}- (5.4)

Consider also the projectidi, : X — & which is defined, for any e REt, by

1 i vert

b — 5 ivert if b e B

(Tin)p =1 L2 Mver . - (5.5)
nb - ?’/Ihor, If b (S BL .
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Then we have:

Lemmab5.1 There exist constants Guch that, in the sense of distributions,

vi(dy) = ('—2/]R d0 [T Gy + mo, = 116y = 10s = 6)) [T dm. (5.6)

(by,b2,b3,b4) beT,
Moreover, we have

vL(dy) = Vt (dn)o(1hor) O (vert) (5.7)
and

v (dy) = v o I (dn) Apr, (drp). (5.8)

Here, A1, (d7) is a multiple of the Lebesgue measure on the two-dimensional ﬂ{aﬂc{@) NAY,
which can be formally identified witttynod7vert.

Proof. We begin with (5.6). Consider the orthogonal decomposifidft! = & @ (X)*.
Clearly, dimX} = L2 + 1. Choosing an orthonormal basis, . .., wn in (X})* (wheren =
dim(x;)* = L? — 1) the measure; can be written as

vi @) = Co([Totw;-m) TT dn. (59)
j=1

beB|

Let¢, denote the vectors iRI®t! such thatift = (by, by, bz, by) thent, -n = o, 416, — 1oy — 1o, -
Then¢, e (X})* with all but one of these vectors linearly independent. This means that we
can replace the linear functionajs— w; - n by the plaquette conditions. Fixing a particular
plaquetteso, we find that

v (dn) = ( [T s -n)) [T dm (5.10)

T#7o beT

provided that
CL = |det(w; - £,)| = Vdett, - ). (5.11)

The expression (5.10) is now easily checked to be equivalent to (5.6): Applying the constraints
from the plaquettes distinct from, we find thatyy, + b, — 7o, — 70, = (1 — L?)@. The
corresponding-function become&(L29), and so we can sét= 0 in the remaining-functions.
Integration ovep yields an overall multiplierf, 5(L26)do = 1/L2.

In order to prove (5.7), pick a subtr@eof T as follows:7 contains the horizontal bonds in
{by+¢&:¢=0,...,L—2}and the vertical bonds ifb, + ¢& + m&: ¢, m=0,...,L — 2}.
As is easy to checKJ is a spanning tree. Denoting by the measure on the right-hand side
of (5.7) pick a bounded, continuous functién R®t! — R with bounded support and consider
the integral f ()y_(dn). The complement of contains exactly.? + 1 edges and there are
as many-functions in (5.10) and (5.7), in which ajl,, b ¢ 7', appear with coefficient1l. We
may thus resolve these constraints and substitute fgygllb ¢ 7} into f—call the result of
this substitutionf (7). Then we can integrate all of these variables which reduces our attention to

the integral/ f (1) [1per Ao
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As is easy to check, the transformatign = ¢, — ¢« for b = (X, y) with the convention

¢o = 0 turns the measurg,. drp, into 5(deo) [ [, depx and makesd () into f (V). We have
thus deduced

/R RACIE /]R . f(n)bgdnb: /R 19 [[dhe  (612)

x£0

From here we get (5.7) by noting that the latter integral can also be wifitfey)v, (dz).

To derive thatv| = v o IT| dyphod7ver, We note thatt” = A @ (H[l(O) N &). Sincev;
is theC_-multiple of the Lebesgue measure a1 and sinceyner and et represent orthogonal
coordinates i1 *(0) N A}, we have

VE (dﬂ) = CLiXL o HL(dn) L_zd”hor L_Zdnverta (5-13)

where/ y, is the Lebesgue measure dfi. Plugging into (5.7) we find that, = C L %Ay,
which in turn implies (5.8). O

Remarks.2 Itis of some interest to note that the measyjres also reflection positive for direct
reflections. One proof of this fact goes by replacingdffanctions in (5.6) by Gaussian kernels
and noting that the linear term th (in the exponent) exactly cancels. The status of reflection
positivity for the diagonal reflections is unclear.

5.2 Duality for inhomogeneous Gaussian measures.

Now we can state the principal duality relation. For thatTgtdenote the dual torus which is
simply a copy ofT', shifted by half lattice spacing in each direction. [Et denote the set of
dual edges. We will adopt the convention th&b is a direct edge, then its dual—i.e., the unique
edge inB;] that cuts througt—will be denoted byo*. Then we have:

Theorem 5.3 Given two collectiongxy)ner, and (x})nep, Of positive weights o, , consider

the partition functions
1
2wy = /VL(d'I) eXP{—E bZB: Kbnﬁ} (5.14)
elb

and
* * 1 *, 2
Zi ) = /VL(dﬂ) eXp{—E Z Kbﬂb}- (5.15)
beB

If (xb)ber, and (x})ver, are dual in the sense that

K==, beB, (5.16)
Kp
then
Zf,(xg) =2 |—2|: H \/K_b]ZL,(Kb)- (5.17)

beB_
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Proof. We will cast the partition functioZ} ) into the form on the right-hand side of (5.17).

Let us regard this partition function as deflned on the dual t@ijusThe proof commences by
rewriting the definition (5.6) with the help of (5.1) as

i = (12 o [ NIE- el X bt =0]) [T dwr (518

xeT| b*eB}
where#,+(x is the plaquette curl for the dual plaquette(x) with the center ak. Rearranging
terms and multiplying by the exponential (Gaussian) weight from (5.15), we are thus supposed to
integrate the function

L2/ de/RTL H d¢x p{—% > (enge — 2iny Vop) —i0 D ¢X} (5.19)

b*eBy xeTL

against the (unconstrained) Lebesgue meaflyg, dny. HereVop = ¢y — ¢« if b = (X, y) is
dual to the bond*. Completing the squares and integrating overtegroduces the function

A1 ) o Moo 2

Invoking (5.16), we can replace al/d. by x,. The integral ovep then yields 2 times the
o-function of ) ¢x which—by the substitutiogy — ¢y + ﬁqﬁo that has no effect on the rest
of the integral—can be converted te &¢g). Invoking the definition (2.1) of, , this leads to the
partition function (5.14). O

] (5.20)

XETL

Remarks.4 LetQ , be the extended gradient Gibbs meas@refor ¢ = pd, +(1— p)dy, wWith
parameterp and letQy , be the corresponding measure with theriori measurey, replaced
by v{. Then the above duallty shows that the law(mf) governed byQ, , is the same as the law
of its dual(x;)—defined via (5.16)—in measuf@; ,, , oncep and p, are related by

PP _ /o (5.21)
l_pl_p* Ko

Indeed, the probability in measu€g , of seeing the configuratiofx;) with N5 ordered bonds

andNg disordered bonds is proportional FD (1 — p)Noz* L) Considering the dual config-

uration (xp) and lettingNp = N& denote the number of dlsordered bonds &= N the
number of ordered bonds {@&y), we thus have

PO = PN Z ) = 20L2(Pv/io) P (A= PIV) 2Ly (5.22)

For p and p, related as in (5.21), the right-hand side is proportional to the probabilityf

in measureQ, ,. We believe that the difference between the two measures disappears in the
limit L — oo and so thec.-marginals of the states,q and i gis at p; can be considered to be dual

to each other. However, we will not pursue this detail at any level of rigor.
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5.3 Computing the transition point.

In order to use effectively the duality relation from Theorem 5.3, we have to show that the dif-
ference in thea priori measure can be neglected. We will do this by showing that both partition
functions lead to the same free energy. This is somewhat subtle due to the presence (and absence)
of various constraints, so we will carry out the proof in detail.

Proposition 5.5 Letoy (dx) = [[pep, [ Pdx, (drn)+(1— P)dy, (drp)] and recall that Z v denotes
the integral of Z () with respect tap. Similarly, let Z ,, denote the integral of Z | with
respect tap, . Then (the following limits exist as & oo and)

1 1
lim —logZ, v = I|m ——logZ} 5.23
L T | g4 v = N 1T | g ( )
forall p € [0, 1].
Before we commence with the proof, let us establish the following variance bounds for homo-
geneous Gaussian measures relative tatpgori measurey. andv; :

Lemma 5.6 Letu be the (standard) Gaussian gradient measure

@) o exp{~> > g} ) (524)

beB,

and x4} be the measure obtained by replacingbyv;. Form=1,..., L, let

m—1
Ym = Z N(cey,(t+1)8y)- (5.25)
=0
There exists an absolute constaptc0such thatforall L> 1andallm=1,...,L,
Var,, (Ym) < Var,: (Ym) < c3(1 + logm). (5.26)

Proof. In measure: , we can reintroduce back the fiel@s,) andYy, then equalgm, . Discrete
Fourier transform implies that

elx-k|2

_ 11—
Var,, () = Z T (5.27)

whereT, is the reciprocal torus arid (k) = |1—e'k1|2+|1—e”<2|2 is the discrete (torus) Laplacian.
Simple estimates show that the sum is bounded by a constant timésglix|, uniformly in L.
Hence, Vay, (Ym) < C3(1+ logm) for some absolute constaiy.

As for the other measure, we recall the definitions (5.3) and use these toweteV,¢ +
énhor if b is horizontal (andy, = Vpe + énven if b is vertical). The fact that the Gaussian
field is homogeneous implies—via (5.8)—that the fieldg) and the variableger and oy are
independent with(¢y) distributed according te. and et and npor Gaussian with mean zero
and variancé?,. In this casefy, = Pme, + %nhor and so we get

m2
Var,: (Ym) = Var, (Ym) + TR (5.28)



30 M. BISKUP AND R. KOTECKY

Butm < L and so the correction is bounded for &ll O

Proof of Proposition 5.5.The proof follows the expected line: To compensate for the lack of
obvious subadditivity of the torus partition function, we will first relate the periodic boundary
condition to a “fixed” boundary condition. Then we will establish subadditivity—and hence the
existence of the free energy—for the latter boundary condition.

Fix M > 0 and consider the partition functla‘q M) defined as follows. Lef, be a box of
L x L sites and consider the sBf of edges withbothends inA . LetvL " (d#) be as in (2.1)
subject to the restriction thigs| < M for all x on theinternalboundary ofA | . Let

20 = [ @) [ @pexpf-3 3wt (5.29)

beB

We will now provide upper and lower bounds between the partition functions (resp.Z; )
andz"), for a well defined range of values .
Comparing explicit expressions fai v andZ(M) and usinge, < ko, We get

Ziy = Z™) exp{—1ko(2M)?(2L)}. (5.30)

To derive an opposite inequality, we note that#pr> x, we get Vag, ., (¢x) > Var,, (¢x)/xo,
whereu, is as in (5.24). Invoking the “Gaussian” identiE(eX) = eE*+3V&X) in conjunction

with Lemma 5.6, yields

QL(¢x > M) < ex

M } (5.31)

1
" 2xpC3(1+logL) )
Hence, ifM > logL we have that with probability at least in measureQ, , all variablespy

are in the intervalf+ M, M]. Since the interaction that wraps_ into the torus is of definite sign,
it follows that

Zuy <2z (5.32)

forall L and allM > log L.

Concerning the star-partition function, Lemma 5.6 makes the proof of (5.32) exactly the same.
As for the alternative of (5.30), we invoke (5.8) and restrici@l| on the internal boundary of
to values less thakl and|#no,| and|#ver] to values less thakl L2. Since|sp,| = IVb¢+é71venl <
2M + M = 3M for every vertical bond that wrap4, into the torus (and similarly for the
horizontal bonds), we now get

Zt v = ZM) @M L) exp{— ko (3M)?(2L)}, (5.33)

where the facto(2ML)? comes from the integration oveger and 7no. We conclude that,
for logL « M = o(+/L), the partition function&Z, v, Z} ,, and Z{") lead to the same free
energy, provided at least one of these exists.

It remains to establish that the partition functidrﬁ“,"\} is (approximately) submultiplicative
for some choice oM = M_. Choose, e.gM, = (logL)? and letp > 1 be an integer. If two
neighbors have theif’s between-M_ andM_, the energy across the bond is at n%)s;(4M L)
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Splitting ApL into p? boxes of sizeL, and restricting thep’s to [-M_, M_] on the internal
boundaries of these boxes, we thus get

Zor) = (217 exp{—Lko(2ML)22(p — D)L} (5.34)

The exponent can be bounded below(py.)*2— p2L %2 = —(p2— p’2)L*2 for L sufficiently large
which implies thatp — [Z( P expi—(pL)*2)]¥(PY? is increasing for alp > 1 and allL > 1.
This proves the claim for I|m|ts along multiples of any fixedto get the values “in-between” we
just need to realize that, as befol; ' > Z")eO LMD, for any fixedk. O

Now we finally prove our claim concerning the value of the transitignal
Proof of Theorem 2.9.et Z(Lp{, denote the integral of | (., with respect to tha priori measure

o1 (dx) with parameteip and IetZ* “(P denote the analogous quantity #8f , . The arguments
leading up to (5.22) then yield

Zr$Y = 2%, 22 L2) (puv/ro + (1= po)/is )™ (5.35)

wheneverp, is dual top in the sense of (5.21). Thus, usig p) to denote the limit in (5.23)
with the negative sign, we have

F(p.) = F(p) — 2log(p.v/xo + (1 = p.)v/%o ). (5.36)

Now, as a glance at the proof of Theorem 2.4 reveals, the \@lisedefined as the unique point
where the derivative oF (p), which at the continuity points op — y(p) is simply F'(p) =
2y (p) — 1, jumps from values nearl to values nea#-1. Eq. (5.36) then forces the jump to
occur at the self-dual poim, = p. In light of (5.21), this proves (2.15). O
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