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Abstract

We consider the polaron model of the relativistic quantum electrodynamics with a fixed
total momentum. We analyze some properties of the ground state energy of the model,
and show that the polaron model has a ground state under a condition which includes
conditions for an infrared and an ultraviolet cutoff for photon momenta. In particular,
we show that the model with zero total momentum, a nonzero mass of the electron and
an infrared cutoff has a ground state.
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1 INTRODUCTION AND MAIN RESULTS

We consider a system of an electron interacting with the quantized radiation field. In the full

quantum electrodynamics the electron is described by the Dirac field. In this paper, however,

we consider one electron case, and we suppose that the electron is described by the Dirac

operator.

The total momentum of the system conserves if there is no external potential, i.e., the

Hamiltonian of the system strongly commutes with the total momentum operator. Hence the

Hamiltonian has a direct integral decomposition with respect to the total momentum［1，2］.

We study each fibre of the total Hamiltonian, which is a model in the relativistic quantum

electrodynamics(QED) for a fixed total momentum — the polaron model of the relativistic

QED. In the previous paper［7］we showed that the Hamiltonian of the polaron model of the

relativistic QED is bounded from below under a natural condition. In this paper we analyze

some properties of the ground state energy of the polaron Hamiltonian, and show that the
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polaron Hamiltonian has a ground state if the total momentum equals zero, the electron has

a non-zero mass, and the radiation field satisfies an infrared regular condition.

1.1 Definition of the Model

In this paper we choose the Coulomb gauge for the electromagnetic field.

The Hilbert space for the photon field is the Boson Fock space over L2(R3 × {1, 2}):

Frad :=
∞⊕

n=0

[
n⊗
s

L2(R3 × {1, 2})

]
, (1)

where ⊗n
s means the n-fold symmetric tensor product (see［9］). For a closable operator T on

L2(R3 × {1, 2}), we denote by dΓ(T ), Γ(T ) the second quantization operators of T［9］. The

Hilbert space for the total system is defined by

F := H⊗Frad, (2)

where H := L2(R3; C4) is the Hilbert space of the relativistic electron. For each vector

f ∈ L2(R3 × {1, 2}), we denote by a(f), a(f)∗ the annihilation and the creation operator

respectively(see［9］). Let e(λ) : R3 7→ R3, λ = 1, 2, be polarization vectors of a photon:

e(λ)(k) · e(µ)(k) = δλ,µ, e(λ)(k) · k = 0, k ∈ R3, λ, µ ∈ {1, 2}.

We write as e(λ)(k) = (e(λ)
1 (k), e(λ)

2 (k), e(λ)
3 (k)), and we suppose that each component e

(λ)
j (k)

is a Borel measurable function of k. For three objects a1, a2, a3, we set a = (a1, a2, a3)

and a · b :=
∑3

j=1 ajbj if
∑3

j=1 ajbj is defined. For a linear object F (·) we set F (a) :=

(F (a1), F (a2), F (a3)). We choose a function ρ ∈ L2(R3)∩Dom(|k̂|−1/2), where “Dom” means

the operator domain, and |k̂| is a multiplication operator by the function |k|. We set

gj(k, λ;x) := |k|−1/2ρ(k)e(λ)
j (k)e−ik·x, x ∈ R3.

For each x ∈ R3, gj(x) := gj(· ;x) ∈ L2(R3 × {1, 2}). We define

Aj(x) :=
1√
2
[a(gj(x)) + a(gj(x))∗], j = 1, 2, 3,

the quantized vector potential, where, for a closable operator T , T̄ denotes its closure. Aj(x)

is a self-adjoint operator on Frad(see［9］). The Hilbert space F can be identified as

F = L2(R3;⊕4Frad) =
∫ ⊕

R3

⊕4Fraddx,

and we can define a self-adjoint decomposable operator on F by

A(x̂) :=
∫ ⊕

R3

A(x)dx,

2



(see［1，2］). The operator A(x̂) is also called the quantized vector potential. The photon

Hamiltonian is defined by
Hf := dΓ(ω),

where ω is a multiplication operator of the function |k| acting on L2(R3 × {1, 2}). The

Hamiltonian which describes one relativistic free electron interacting with the radiation field

is given by
H := α · (p̂ − qA(x̂)) + Mβ + Hf ,

where p̂ = −i∇ and ∇ is the gradient operator in H, α, β are 4 × 4 Dirac matrices, the

constant M ∈ R is the mass of the electron, q ∈ R is a constant proportional to the fine-

structure constant. For simplicity, we always omit the tensor product between H and Frad.

It is easy to see that H is symmetric. The essential self-adjointness of H was proven in the

paper［2］:

Proposition 1.1. Suppose that ρ ∈ Dom(|k̂|−1). Then, H̄ is a self-adjoint operator.

Remark. The Hamiltonian H̄ seems to depend on the choice of the polarization vectors e(1)(k),

e(2)(k). However, we can show that H̄ is unitarily equivalent to H̄ ′ defined by using another

polarization vectors e′(1)(k), e′(2)(k), see appendix. Therefore, all physical consequences of

the model do not depend on the choice of polarization vectors.

⋆ Throughout the paper we assume that ρ ∈ Dom(|k̂|−1).

We define the momentum operator Prad of the quantized radiation field by

Prad = dΓ(k̂).

Each component P rad
j (j = 1, 2, 3) is a self-adjoint operator on Frad. The total momentum

operator is defined by
P := p̂ + Prad.

The total momentum of the system governed by the Hamiltonian H is conserved, i.e., the

Hamiltonian H strongly commutes with P (see［2］). To find the polaron Hamiltonian, we

define a self-adjoint operator
Q := x̂ · Prad,

where x̂ = (x̂1, x̂2, x̂3) are the multiplication operators of the functions x1, x2, x3 acting on H.

Let UF be the Fourier transform on H, and we set U := UF exp(iQ). By this unitary operator

U , the Hamiltonian H̄ and total momentum operator P are transformed as follows(see［1］):

UH̄U∗ = α · [p̃ − dΓ(k̂) − qA] + Mβ + Hf ,

UPU∗ = p̃,
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where A := A(0) and p̃ is the multiplication operator by the (Fourier transformed) coordinates

(p1, p2, p3) on the Fourier transformed Hilbert space UFH. We can identify UF as

UF :=
∫ ⊕

R3

⊕4Fraddp. (3)

The Hamiltonian of the polaron model we consider is of the form

H(p) := α · p + Mβ + Hf − α · dΓ(k̂) − qα · A, (4)

which acts on each fibre ⊕4Frad and p ∈ R3 is a constant. The polaron Hamiltonian H(p) is

the fibre of UH̄U∗ in the decomposition (3)(see［1，2］):

Proposition 1.2. Assume that ρ ∈ Dom(|k̂|−1). Then H(p) is essentially self-adjoint and

UH̄U∗ =
∫ ⊕

R3

H(p)dp.

Remark. Physically H(p) is the Hamiltonian of the fixed total momentum p ∈ R3. We can

show that all the spectral properties of H(p) do not depend on the choice of polarization

vectors, because the Hamiltonians with different polarization vectors are unitarily equivalent

each other. See Appendix.

The polaron Hamiltonian H(p) is bounded below［7］, because we assume ρ ∈ Dom(|k̂|−1).

Therefore we can define the ground state energy of the polaron with total momentum p:

E(p) := inf σ(H(p)),

where σ(·) means the spectrum.

Let Nb := dΓ(1l) be the number operator on Frad, where 1l is the identity on L2(R3×{1, 2}).
For a constant m ≥ 0, we set

Hm(p) := H(p) + mNb, Em(p) := inf σ(Hm(p)).

The case m = 0 is the original case. For m > 0, the massive Hamiltonian Hm(p) had studied

in［1，2］.

1.2 Some Properties of the Ground State Energy Em(p)

In this subsection we assume that ρ ∈ Dom(|k̂|−1). Therefore Hm(p) is self-adjoint and

bounded from below (see［1，2，7］).

The ground state energy Em(p) depends on all the constants in Hm(p): the total momentum

p ∈ R3, the electron mass M ∈ R, the virtual photon mass m ≥ 0, the ultraviolet cutoff

function ρ, and the fine-structure constant q ∈ R. But Em(p) does not depend on the choice

of polarization vectors. When the dependence of these variables is important, we write Em(p)

as Em(p,M, · · · ), making it explicitly.
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Proposition 1.3 (Concavity of the ground state energy). Em(p) is concave function in the

variables (p,M,m, q) ∈ R3 × R × [0,∞) × R.

Proposition 1.4 (Continuity of the ground state energy). Em(p,M) is Lipschitz continuous

function of (p,M), i.e.,

|Em(p,M) − Em(p′,M ′)| ≤
√

|p − p′|2 + |M − M ′|2, p,p′ ∈ R3, M,M ′ ∈ R.

Proposition 1.5. The Hamiltonian Hm(p,M) is unitarily equivalent to Hm(p,−M). In

particular Em(p,M) = Em(p,−M), and Em(p,M) ≤ Em(p, 0) holds.

A symmetry of a cutoff function ρ leads to a symmetry of the same kind with respect to the

total momentum p of Hm(p):

Proposition 1.6 (Symmetry in the total momentum). Assume that |ρ(k)| = |ρ(Tk)| a.e.k ∈
R3 for an orthogonal matrix T ∈ O(3). Then Hm(p) is unitarily equivalent to Hm(Tp), and

Em(p) = Em(Tp). In particular, if |ρ(k)| = |ρ(−k)|, a.e.k ∈ R3, then Em(p) = Em(−p) and

Em(p) ≤ Em(0).

A function f(k) is called rotation invariant function if f(k) = f(Tk) for all T ∈ SO(3).

If the cutoff function ρ is rotation invariant, the spectral properties of Hm(p) does not

depend on the direction of p:

Proposition 1.7 (Spherical symmetry in the total momentum). Assume that ρ(k) is a rota-

tion invariant function. Then Hm(p) is unitarily equivalent to Hm(p′) for all p′ ∈ R3 with

|p| = |p′|. In particular Em(p) is rotation invariant with respect to p, and Em(p) ≥ Em(p′)

if |p| ≤ |p′|.

Proposition 1.8 (Massless limit of the ground state energy). Em(p) is monotone non-

decreasing in m ≥ 0 and
lim

m→+0
Em(p) = E0(p).

Generally, by Proposition 1.4, the following inequality holds:

0 ≤ Em(p − k) − Em(p) + |k|, p,k ∈ R3.

If the electron mass M is not zero, we can get a stronger inequality:

Proposition 1.9. In the case m > 0, the inequality Em(p − k) − Em(p) + |k| > 0 holds for

all M ̸= 0, k ∈ R3\{0} and p ∈ R3. In the massless case m = 0, for all p ∈ R3, there exists

a constant M ≥ 0 such that the inequality E(p − k) − E(p) + |k| > 0 holds for all |M | > M

and k ∈ R3\{0} .
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When ρ is rotation invariant, by Proposition 1.7, the function Em(p) − Em(0) + |p| is

monotone non-decreasing, concave with respect to |p|, and the following inequality holds

0 ≤ Em(p) − Em(0) + |p| ≤ |p|.

For C1 > 0, we set

a1(C1) := inf
0≤m≤1

(Em(p) − Em(0) + |p|)
∣∣∣
|p|=C1

The following two propositions are important to derive the existence of a ground state of

massless Hamiltonian H(0) with zero total momentum.

Proposition 1.10. Assume that |M | > M(which is a constant in Proposition 1.9) and ρ ∈
Dom(|k̂|) is a rotation invariant function. Then, for all C1 > 0, the inequality a1(C1) > 0

holds, and

inf
0≤m≤1

(Em(p) − Em(0) + |p|) ≥ a1(C1)
C1

|p|, (5)

for all |p| ≤ C1.

Proposition 1.11. Assume that M ̸= 0 and ρ ∈ Dom(|k̂) is a rotation invariant function.

Suppose that E(p) − E(0) + |p| > 0 for all p ∈ R3\{0}. Then for all C1 > 0 the inequality

a1(C1) > 0 holds, and

inf
0≤m<1

(Em(p) − Em(0) + |p|) ≥ a1(C1)
C1

|p|,

for all |p| ≤ C1.

1.3 Existence of a Ground State

In this subsection we assume that ρ ∈ Dom(|k|−1). For a bounded below self-adjoint

operator T , we say that T has a ground state if inf σ(T ) is an eigenvalue of T .

In paper［1］A. Arai studied a Hamiltonian in a class which includes Hm(p), m > 0 and

prove the existence of a ground state of Hm(p), m > 0. — more precisely speaking, his

criterion for the existence of a ground state does not include the case Hm(p), m > 0, but one

can show that Hm(p), m > 0 has a ground state in the same manner as in［1］.

In this subsection we give some criteria for the polaron Hamiltonian H(p) to have a ground

state.

Theorem 1.12. Suppose that

lim inf
m→+0

∫
R3

q2

(Em(p − k) − Em(p) + |k| + m)2
|ρ(k)|2

|k|
dk < 1. (6)

Then the polaron Hamiltonian H(p) has a ground state.
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The condition (6) has a restriction in q, and Em(p) depends on q. Therefore to check

inequality (6) is difficult. In the case p = 0, Theorem 1.12 is replaced by a somewhat simple

one:

Theorem 1.13. Assume that M ̸= 0 and ρ is rotation invariant function. If the inequality∫
R3

q2

(E(k) − E(0) + |k|)2
|ρ(k)|2

|k|
dk < 1 (7)

holds, then H(0) has a ground state.

Proof of Theorems 1.12 and 1.13 are based on the photon number bound originated from

［4，5］. Therefore the inequalities (6) and (7) have restrictions on the coupling constant q. If

one use the photon derivative bound, then one can remove the restriction on q.

Theorem 1.14. Suppose that ρ is rotation invaliant and there is an open set S ⊂ R3 such

that S̄ := supp ρ and ρ is continuously differentiable function in S. Assume that for all R, the

set SR := {k ∈ S||k| < R} has the cone property, and

lim sup
m→+0

∫
S

q2

(Em(p − k) − Em(p) + |k| + m)2
|ρ(k)|2

|k|
dk < ∞, (8)

and for all p ∈ [1, 2) and R > 0, the following inequalities hold:

sup
0<m<1

∫
SR

[
(Em(p − k) − Em(p) + |k| + m)−2 |ρ(k)|

|k|1/2

]p

dk < ∞,

sup
0<m<1

∫
SR

[
(Em(p − k) − Em(p) + |k| + m)−1 |∇ρ(k)|

|k|1/2

]p

dk < ∞,

sup
0<m<1

∫
SR

[
(Em(p − k) − Em(p) + |k| + m)−1 1√

k2
1 + k2

2

|ρ(k)|
|k|1/2

]p

dk < ∞.

Then H(p) has a ground state.

Remember a property of the constant M(Propositions 1.9 and 1.10). In the case p = 0 and

M ≥ M, the conditions in Theorem 1.14 become simpler:

Theorem 1.15. Let |M | ≥ M. Suppose that ρ is rotation invariant and there is an open

set S ⊂ R3 such that S̄ := supp ρ, and ρ is continuously differentiable in S. Assume that

for all R, the set SR := {k ∈ S||k| < R} has the cone property, and ρ ∈ Dom(|k̂|−3/2),

|k|−5/2ρ(k) ∈ Lp(SR), and |k|−3/2|∇ρ(k)| ∈ Lp(SR), for all p ∈ [1, 2) and R > 0. Then, the

polaron Hamiltonian H(0) has a ground state.
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2 Proofs of Proposition 1.3-1.10

First we note that the operator Hm(p) is essentially self-adjoint on any core for Hf (m) :=

Hf + mNb, because the term −α · dΓ(k̂) − qα · A is Hf (m)-bounded with relative bound

1(see［7］) and one can apply Wüst’s theorem (see［9］). Since D := Dom(Hf ) ∩ Dom(Nb) is

a core for Hf , D is a common core for Hm(p),m ≥ 0. When we want to write the explicit

dependence of variables (p,M,m, q), we write Hm(p) as Hm(p,M, q).

Proof of Proposition 1.3. Let (p,M,m, q), (p′,M ′,m′, q′) ∈ R4 × [0,∞) × R, and t ∈ [0, 1].

Then for all Ψ ∈ D, we have

〈Ψ,Htm+(1−t)m′(tp + (1 − t)p′, tM + (1 − t)M ′, tq + (1 − t)q′)Ψ〉
= t〈Ψ,Hm(p,M, q)Ψ〉 + (1 − t)〈Ψ,Hm′(p′, M ′, q′)Ψ〉
≥ tEm(p,M, q) + (1 − t)Em′(p′,M ′, q′).

Thus we obtain

Etm+(1−t)m′(tp+(1−t)p′, tM +(1−t)M ′, tq+(1−t)q′) ≥ tEm(p, M, q)+(1−t)Em′(p′,M ′, q′),

which implies that Em(p,M, q) is a concave function.

Proof of Proposition 1.4. By the equality Hm(p,M) = Hm(p′, M ′)+α·(p−p′)+(M−M ′)β,

and variational principle, we have Em(p,M) ≤ Hm(p′, M ′)+α · (p−p′)+ (M −M ′)β, in the

sense of a quadratic form on D. Hence we have

Em(p,M) ≤ Em(p′,M ′) +
√

|p − p′|2 + (M − M ′)2.

Similarly, we have Em(p′,M ′) ≤ Em(p,M) +
√

|p − p′|2 + (M − M ′)2.

Proof of Proposition 1.5. We set γ5 := iα1α2α3. It is easy to see that γ5 is unitary operator

and γ5Hm(p,M)γ∗
5 = Hm(p,−M). Therefore Em(p, M) = Em(p,−M). By Proposition 1.3,

M 7→ Em(p,M) is concave. Hence Em(p, 0) = Em(p, 1
2M − 1

2M) ≥ Em(p,M).

Proof of Proposition 1.6. For the matrix T ∈ O(3), we define four 4×4 matrices:

β′ := β, α′
j :=

3∑
j=1

Tj,lαl, j = 1, 2, 3.

It is easy to see that {α′
j , β

′} = 0, {α′
j , α

′
l} = 2δj,l, j, l = 1, 2, 3. Then there exists a 4×4

unitary matrix uT such that (see［10，Lemma 2.25］)

uT αju
−1
T =

3∑
k=1

Tj,kαk, uT βu−1
T = β.
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Therefore uT α · pu−1
T =

∑3
k,l=1 Tl,kαkpl =

∑3
k,l=1 αk(T−1)k,lpl = α · (T−1p). Similarly, we

have

uT (α · dΓ(k̂))u−1
T = α · (T−1dΓ(k̂)), uT α · Au−1

T = α · (T−1A) = (Tα) · A.

We define 1-photon rotation operator T̂ by

(T̂ f)(k, λ) = f(T−1k, λ), (k, λ) ∈ R3 × {1, 2}, f ∈ L2(R3 × {1, 2}).

Then for all f ∈ Dom(k̂jT̂ )

T̂−1k̂jT̂ f(k, λ) = (kjT̂ f)(Tk, λ) = (Tk)j(T̂ f)(Tk, λ) = (Tk)jf(k, λ).

Hence we obtain an operator equality T̂−1k̂jT̂ = (T k̂)j , (j = 1, 2, 3), and

Γ(T̂−1)dΓ(k̂j)Γ(T̂ ) = dΓ((T k̂)j) = (T · dΓ(k̂))j ,

Γ(T̂−1)Hf (m)Γ(T̂ ) = Hf (m)

Γ(T̂−1)AjΓ(T̂ ), = ΦS(T̂−1gj), j = 1, 2, 3,

where ΦS(·) is the Segal field operator(see［9］) and gj(·) := gj(·,x = 0) ∈ L2(R3 × {1, 2}).
The operator U := uT ⊗Γ(T̂−1) is a unitary operator on ⊕4Frad = C4 ⊗Frad and

UHm(p)U−1 = (α · (T−1p) + Mβ + Hf (m) − α · dΓ(k̂) − q(Tα) · ΦS(T̂−1g)). (9)

Note that T is a 3×3-matrix and T̂ is a unitary operator on L2(R3 ×{1, 2}). Since T ∈ O(3),

we have (Tα) · ΦS(T̂−1g) = α · T−1ΦS(T̂−1g), i.e.,

(T−1ΦS(T̂−1g))j =
3∑

l=1

(T−1)j,lΦS(T̂−1gl), j = 1, 2, 3. (10)

We define a functions

e′(λ)(k) = T−1e(λ)(Tk), (k, r) ∈ R3 × {1, 2}.

It is easy to see that e′(1), e′(2) are a polarization vectors: k · e′(λ)(k) = 0, e′(λ)(k) · e′(µ)(k) =

δλ,µ. Since |ρ(k)| = |ρ(Tk)|, there exists a Borel measurable function k 7→ κ(k) ∈ R such that

ρ(Tk) = eiκ(k)ρ(k), a.e.k ∈ R3. Therefore, we have

3∑
l=1

(T−1)j,lgl(Tk, λ) =
eiκ(k)ρ(k)
|k|1/2

e
′(λ)
j (k). (11)

Let H ′
m(p) be Hm(p) with replacing e(λ) to e′(λ). By (9),(10) and (11), we have

UHm(p)U∗ = V H ′
m(T−1p)V ∗,
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where V := Γ(eiκ(·)). By Theorem 4.2, H ′
m(T−1p) is unitarily equivalent to Hm(T−1p).

Therefore, H(p) is unitarily equivalent to Hm(T−1p). Since p ∈ R3 is arbitrary in the

above argument, Hm(p) is unitarily equivalent to Hm(Tp), and Em(p) = Em(Tp). When

ρ(k) = ρ(−k), a.e.k ∈ R3, we have

Em(0) = Em(1
2p − 1

2p) ≥ 1
2
Em(p) +

1
2
Em(−p) = Em(p),

for all p ∈ R3.

Proof of Proposition 1.7. The first half of Proposition 1.7 is a direct consequence of Propo-

sition 1.6. We show that Em(p) is non-increasing in |p|. Temporally we assume that there

exist vectors p,p′ ∈ R3 such that |p| ≤ |p′| and Em(p) < Em(p′). Without loss of generality,

we can assume that p′ = tp for a t ≥ 1, because Em(p) does not depend on p/|p|. Since

Em(sp) → Em(0), (s → 0), and the map R : s 7→ Em(sp) is continuous, there exists a constant

s′ ∈ [0, 1) such that Em(s′p) = Em(p′). We set r := (t − 1)/(t − s′) ∈ [0, 1). Then we get a

contradiction

Em(p) = Em(r(s′p) + (1 − r)p′) ≥ rEm(s′p) + (1 − r)Em(p′) = Em(p′).

Therefore Em(p) is a non-increasing function of |p|.

Proof of Proposition 1.8. Let m ≥ m′ ≥ 0. Then we have Hm(p) ≥ Hm′(p) in the sense of

quadratic form on D. Therefore m 7→ Em(p) is monotone non-decreasing: Em(p) ≥ Em′(p).

It is easy to see that for all Ψ ∈ D, Hm(p)Ψ → H(p)Ψ as m → 0. Since D is a common core for

all Hm(p), Hm(p) → H(p) in the strong resolvent sense (see［8，Theorem VIII. 25］). Using

a fact about a strongly convergent operators［8，Theorem VIII. 24］, we have Em(p) → E(p)

as m → +0.

Proof of Proposition 1.9. We prove this proposition by absurd. First we prove it in the

massive case m > 0. We fix a mass M ̸= 0 and p ∈ R3. Assume that

Em(p − k) − Em(p) + |k| = 0, (12)

for a vector k ∈ R3 \ {0}. Let Φm(p − k) be a normalized ground state of Hm(p − k) — see

the first six lines of Subsection 1.3. Then

Em(p − k) = 〈Φm(p − k), Hm(p − k)Φm(p − k)〉

= 〈Φm(p − k), Hm(p)Φm(p − k)〉 + 〈Φm(p − k), α · kΦm(p − k)〉
≥ Em(p) − |k|.

Hence, by assumption (12) we have 〈Φm(p − k), Hm(p)Φm(p − k)〉 = Em(p) and 〈Φm(p −
k), α · kΦm(p − k)〉 = −|k|, which imply that Φm(p − k) is a ground state of both Hm(p)
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and α · k. Since k is a non-zero vector, we have 〈Φm(p − k), βΦm(p − k)〉 = 0, because

α · kβ = −βα · k. In what follows, to emphasise M -dependence, we write Hm(p − k) and

Φm(p − k) as Hm(p − k,M) and Φm(p − k,M) respectively. Using the above facts, we have

Em(p,M) = 〈Φm(p − k,M), Hm(p, 0)Φm(p − k,M)〉 ≥ Em(p, 0).

However, Em(p,M) ≤ Em(p, 0) (Proposition 1.5). Hence we obtain Em(p,M) = Em(p, 0).

Therefore Φm(p − k,M) is a ground state of Hm(p, 0), and

Em(p,M)Φm(p − k,M) = Hm(p,M)Φm(p − k,M)

= MβΦm(p − k,M) + Em(p, 0)Φm(p − k,M).

Since Em(p,M) = Em(p, 0), we have MβΦm(p,M) = 0. Therefore we get a contradiction:

Φm(p,M) = β2Φm(p,M) = 0.

Next, we consider the case m = 0. Suppose that there existed a vector p ∈ R3 such that for

all M ∈ R+ the inequality E(p−k,M)−E(p,M)+ |k| = 0 holds for a constant |M | ≥ M and a

vector k ∈ R3\{0}. It is easy to see that limm→+0〈Φm(p−k,M), H(p − k,M)Φm(p−k,M)〉 =

E(p − k,M). By the above assumption, we have

lim
m→+0

〈Φm(p − k,M), α · kΦm(p − k,M)〉 = −|k|

lim
m→+0

〈Φm(p − k,M), H(p,M)Φm(p − k,M)〉 = E(p,M).

Therefore limm→+0〈Φm(p−k,M), βΦm(p−k,M)〉 = 0. This means that E(p, M) = E(p, 0).

Since M ∈ R+ is arbitrary and does not depend on p, and E(p,M) is concave, we have that

E(p,M) does not depend on M . On the other hand, one can easily show that E(p,M) → −∞
as |M | → ∞. Therefore we get a contradiction.

Proof of Proposition 1.10. Note that [0, 1] ∋ m 7→ Em(p) is a continuous function. If

a1(C1) = 0 for a positive value C1 > 0, then there exist a constant m1 ∈ [0, 1] such

that Em1(p) − Em1(0) + |p| = 0 with |p| = C1. However, by Proposition 1.9, we have

Em(p)−Em(0)+ |p| > 0 for all |p| > 0. Hence we obtain a1(C1) > 0 for all C1 > 0. Note that

0 = (Em(p) − Em(0) + |p|)|p=0 and (Em(p) − Em(0) + |p|)||p|=C1
≥ a1(C1) for all m ∈ [0, 1],

and Em(p) − Em(0) + |p| is a concave function of |p|. Therefore inequality (5) holds.

Proof of Proposition 1.11. Similar to the proof of Proposition 1.10

3 Proofs of Theorem 1.12-1.15

In the massive case m > 0, Hm(p) has a normalized ground state Φm(p). There exists

a sequence {Φmj (p)}∞j=1, mj → 0(j → ∞) such that {Φmj} has a weak limit Φ0(p). If

Φ0(p) ̸= 0, then the massless Hamiltonian H(p) has a ground state(see［4，Lemma 4.9］).
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In this section, we sometimes use the following identification

⊕4Frad =
∞⊕

n=0

C4 ⊗F (n), F (n) := ⊗n
s L2(R3 × {1, 2}),

and
C4 ⊗F (n) ⊂ L2(R3 × {1, 2}; C4 ⊗F (n−1)), n = 1, 2, 3, . . . .

where all vector Ψ(n) ∈ C4⊗F (n) is identified with a Hilbert space valued function Ψ(n)(k, λ; ·) :

R3 × {1, 2} 7→ C4 ⊗F (n−1).

For a vector Ψ ∈ ⊕4Frad, we define an object

aλ(k)Ψ := (Ψ(1)(k, λ),
√

2Ψ(2)(k, λ; ·), . . . ,
√

nΨ(n)(k, λ; ·), . . .) ∈
∞
×

n=0
C4 ⊗F (n),

where the symbol “×” means the direct product. In general, aλ(k)Ψ /∈ ⊕4Frad, but we

can show that aλ(k)Ψ ∈ ⊕4Frad for a class of vectors Ψ ∈ ⊕4Frad. Let w : R3 → [0,∞)

be an almost positive Borel measurable function, and we denote its multiplication operator

on L2(R3 × {1, 2}) by the same symbol. For Ψ = (Ψ(n))∞n=1 ∈ Dom(dΓ(w)1/2), the object

aλ(k)Ψ is a ⊕4Frad-valued function: aλ(k)Ψ ∈ ⊕4Frad, a.e.k ∈ R3, λ = 1, 2. Because, if

Ψ ∈ Dom(dΓ(w)1/2), then

∥dΓ(w)1/2Ψ∥2 =
∞∑

n=1

∑
λ=1,2

∫
R3

nw(k)∥Ψ(n)(k, λ; ·)∥2
C4⊗F(n−1) dk < ∞,

which implies aλ(k)Ψ ∈ ⊕4Frad for almost every k ∈ R3 and λ = 1, 2. Hence, for all Ψ ∈
Dom(N1/2

b ), aλ(k)Ψ is a ⊕4Frad-valued function. For a self-adjoint operator T , we denote by

Q(T ) the form domain of T . Note that Q(Hm(p)) ⊂ Dom(N1/2
b ), m > 0, because Hm(p) −

E(p) ≥ mNb in the sense of quadratic form on D.

We set g(k, λ) := g(k, λ; 0).

Proposition 3.1. Let m > 0. Then aλ(k)Φm(p) ∈ Dom(Hm(p)), a.e.k ∈ R3, λ = 1, 2 and

aλ(k)Φm(p) =
q√
2
(Hm(p − k)−Em(p)+ωm(k))−1α·g(k, λ)Φm(p), a.e. (k, λ) ∈ R3×{1, 2}.

(13)

Proof. Let ωm(k) := ω(k) + m = |k| + m. For all f ∈ Dom(ωm) and Ψ ∈ D, we have

〈(Hm(p) − Em(p))Ψ, a(f)Φm(p)〉 = 〈Ψ,
{
− a(ωmf) + α · a(k̂f) + q√

2
〈f,g〉

}
Φm(p)〉.

Therefore,∑
λ=1,2

∫
R3

f(k, λ)∗〈(Hm(p) − Em(p))Ψ, aλ(k)Φm(p)〉 =

∑
λ=1,2

∫
R3

f(k, λ)∗
〈
Ψ,−ωm(k)aλ(k)Φm(p) + α · kaλ(k)Φm(p) + qα · g(k, λ)Φm(p)

〉
.

12



Since the subspace Dom(ωm) is dense in L2(R3) × {1, 2}, we obtain

〈(Hm(p) − Em(p))Ψ, aλ(k)Φm(p)〉 =
〈
Ψ, (−ωm(k)aλ(k) + α · kaλ(k) + qα · g(k, λ))Φm(p)

〉
,

for almost every k ∈ R3, λ = 1, 2, and all Ψ ∈ D. This means that aλ(k)Φm(p) ∈ D(Hm(p))

and
(Hm(p) − Em(p) + ωm(k) − α · k)aλ(k)Φm(p) =

q√
2
α · g(k, λ)Φm(p).

Hence (13) follows.

Proof of Theorem 1.12. By Proposition 3.1 and the present assumption, we have

lim inf
m→+0

∥N1/2
b Φm(p)∥2 ≤ lim inf

m→+0

2∑
λ=1

∫
R3

q2

2
|α · g(k, λ)|2

(Em(p − k) − Em(p) + |k| + m)2
dk < 1.

Each component of the massive ground state Φmj (p)(n) converges to Φ0(p)(n) weakly as j →
∞, and limj→∞ ∥N1/2

b Φmj∥ < 1. Since ⊕4C is a finite dimensional space, Φmj (p)(0) →
Φ0(p)(0) strongly. It is easy to see that

∥Φ0(p)∥2 ≥ ∥Φ0(p)(0)∥2 = lim
j→∞

∥Φmj (p)(0)∥2 = lim
j→∞

〈Φmj (p), PΩΦmj (p)〉,

where PΩ is the orthogonal projection in the Fock vacuum (1, 0, 0, . . .) ∈ Frad. Hence we have

∥Φ0(p)∥2 ≥ 1 − ∥N1/2
b Φmj (p)∥2 > 0.

This means that Φ0(p)(̸= 0) is a ground state of H(p).

Proof of Theorem 1.13. By the assumption of Theorem 1.13, qρ = 0 or E(k)−E(0)+ |k| > 0

for almost every k ∈ R3. In the case qρ = 0, the Theorem 1.13 is trivial. Therefore we consider

only the second case. Hence Proposition 1.11 holds. Note that E(k)−E(0) + |k| > 0 and (7)

yield that |k̂|−3/2ρ ∈ L2(R3). The right hand side of the inequality

(Em(k) − Em(0) + |k| + m)−2 |ρ(k)|2

|k|
≤ C2

1

a1(C1)2
|ρ(k)|2

|k|3
+

1
a(C1)2

|ρ(k)|2

|k|

is integrable and does not depend on m > 0. By the Lebesgue dominated convergence theorem,

we obtain

lim
m→+0

∫
R3

(Em(k) − Em(0) + |k| + m)−2 |ρ(k)|2

|k|
dk =

∫
R3

(E(k) − E(0) + |k|)−2 |ρ(k)|2

|k|
dk < 1.

Hence the condition of Theorem 1.12 holds and H(0) has a ground state.

For a Hilbert space K, we denote by B(K) the set of bounded operators on K.

One can easily prove the following proposition:
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Lemma 3.2. For each direction j ∈ R3, |j| = 1, the operator valued function R3\{0} : k →
(Hm(p − k) − Em(p) + |k| + m)−1 ∈ B(⊕4Frad) is differentiable in the norm resolvent sense,

and

∂j(Hm(p − k) − Em(p) + |k| + m)−1

= (Hm(p − k) − Em(p) + |k| + m)−1

(
α · j +

k · j
|k|

)
(Hm(p − k) − Em(p) + |k| + m)−1,

where ∂j means the differential for the j-direction.

We fix the following polarization vectors in the rest of this section.

e(1)(k) =
(k2,−k1, 0)√

k2
1 + k2

2

, e(2)(k) :=
k
|k|

∧ e(1)(k). (14)

For the set S in the Theorem 1.14, 1.15, we define Ω := S\{k ∈ R3|k1 = k2 = 0}, ΩR := SR∩Ω.

By Proposition 3.2, we get the following proposition.

Lemma 3.3. Assume the assumptions in Theorem 1.14. Then aλ(k)Φm(p) is strongly con-

tinuously differentiable in Ω and

∂jaλ(k)Φm(p)

=
q√
2
(Hm(p − k) − Em(p) + |k| + m)−1

(
αj +

kj

|k|

)
× (Hm(p − k) − Em(p) + |k| + m)−1α · g(k, λ)Φm(p)

+
q√
2
(Hm(p − k) − Em(p) + |k| + m)−1α · (∂jg(k, λ))Φm(p),

where ∂j is a differential operator in kj , (j = 1, 2, 3).

We set
Ψj(k, λ) = (Ψ(n)

j (k, λ; ·))∞n=0 := ∂jaλ(k)Φm(p).

Lemma 3.4. Assume the assumptions in Theorem 1.14. Then

∂jΦ(n)
m (p)(k, λ; k2, . . . , kn) =

1√
n

Ψ(n−1)
j (k, λ; k2, . . . , kn), kℓ = (kℓ, λℓ),

for all k,kℓ ∈ Ω, n ∈ N, λ, λℓ = 1, 2, j = 1, 2, 3, where ∂j is the distributional derivative in kj.

Proof. In this proof, we omit the polarization coordinates λ, λℓ and the total momentum p.

By the definition, for all ψ(k,k2, . . . ,kn) ∈ C∞
0 (Ωn+1), we have

−
∫

R3n

(∂jψ)(k,K)Φ(n)
m (k,K) = lim

h→0

∫
R3n

ψ(k,K)
1
|h|

[Ψ(n)
m (k + hj,K) − Ψ(n)

m (k, K)]dkdK,
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where K = (k2, . . . ,kn) and j is the unit vector of j-th axis. Hence we obtain∣∣∣∣∫
R3

dk
[∫

R3(n−1)

dKψ(k,K)
{

1
|h|

[Φ(n)
m (k + hj,K) − Φ(n)

m (k, K)] − 1√
n

Ψ(n−1)(k,K)
}]∣∣∣∣∫

R3

dk∥ψ(k, ·)∥L2(R3(n−1))

∥∥∥∆h

|h|
Φ(n)

m (k, ·) − 1√
n

Ψ(n−1)(k, ·)
∥∥∥

L2(R3(n−1))
, (15)

where the operator ∆h is defined by ∆hf(k) := f(k + hj) − f(k) for all functions f . Note

that |h|−1∆hΦ(n)
m (k, ·) converges to 1√

n
Ψ(n−1)(k, ·) strongly in L2(Ω3(n−1)) by Proposition 3.3.

Since the function k → Ψ(n−1)(k, ·) is strongly continuous in Ω, we have

∆h

|h|
Φ(n)

m (k, ·) = s-
∫ 1

0

1√
n

Ψ(n−1)(k + thj, ·)dt,

where s-
∫

means the strong integral. By Proposition 3.3, ∥Ψ(n−1)(k, ·)∥L2(R3(n−1)) is continuous

in Ω, and therefore bounded in {k ∈ R3|∥ψ(k, ·)∥L2(R3(n−1)) ̸= 0}. Hence∥∥∥∆h

|h|
Φ(n)

m (k, ·) − 1√
n

Ψ(n−1)(k, ·)
∥∥∥

L2(R3(n−1))

≤ sup
|t|≤1

1√
n
∥Ψ(n−1)(k + thj, ·)∥L2(R3(n−1)) +

1√
n
∥Ψ(n−1)(k, ·)∥L2(R3(n−1))

≤ const.

Therefore, we can apply the Lebesgue dominated convergence theorem, and the right hand

side of (15) converges to zero as |h| → 0.

By Proposition 3.2 and direct calculations, we obtain the following lemma:

Lemma 3.5. Suppose that the assumption of Theorem 1.14 holds. Then

∥∂(k)j
Φ(n)

m (p;k, λ; ·)∥ ≤∥∂jaλ(k)Φm(p)∥

≤
√

2|q|(Em(p − k) − Em(p) + |k| + m)−2 |ρ(k)|
|k|1/2

+
|q|√

2
(Em(p − k) − Em(p) + |k| + m)−1 |∂jρ(k)|

|k|1/2

+
|q|√

2
(Em(p − k) − Em(p) + |k| + m)−1 |ρ(k)|

|k|3/2

+
|q|√

2
(Em(p − k) − Em(p) + |k| + m)−1 |ρ(k)|

|k|1/2
|∂je(λ)(k)|

for all k ∈ Ω, λ = 1, 2, j = 1, 2, 3.

Our polarization vectors (14) satisfy

|∂je(λ)(k)| ≤ 2√
k2

1 + k2
2

, k ∈ R3\{k′ ∈ R3|k′
1 = k′

2 = 0}.
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Lemma 3.6. Suppose that the assumption of Theorem 1.14 holds. Then each component

of the massive ground state is in a Sobolev space: Φ(n)
m ∈ ⊕4W 1,p((ΩR × {1, 2})n) for all

p ∈ [1, 2), R > 0 and
sup

0<m<1
∥Φ(n)

m (p)∥⊕4W 1,p((ΩR×{1,2})n) < ∞.

Proof. Similar to the proof of［5，page 557, Step 2.］.

Proof of Theorem 1.14. By the assumption of Theorem 1.14 and Proposition 3.1 , there exists

a sequence {mj}∞j=1 such that the subsequence {Φmj (p)}∞j=1 and {N1/2
b Φmj (p)}∞j=1 have weak

limits as mj → 0(j → ∞). We denote by Φ0(p) the weak limit of {Φmj (p)}∞j=1. If Φ0(p) ̸= 0,

when Φ0(p) is a ground state of H(p) (see［4］).

Any vector Ψ ∈ ⊕4Fn = C4⊗Fn is a function of the particle spin coordinate X ∈ {1, 2, 3, 4},
the n-photon wave number argument (k1, . . . ,kn) ∈ R3n, and the photon helicity arguments

λ1, . . . , λn ∈ {1, 2}. For simplicity, we set

Φ(n)
j (k1, . . . ,kn) := Φmj (p)(n)(X;k1, λ1; · · · ;kn, λn),

Φ(n)
0 (k1, . . . ,kn) := Φ0(p)(n)(X;k1, λ1; . . . ;kn, λn).

for X ∈ {1, 2, 3, 4} and λ1, . . . , λn ∈ {1, 2}. Note that Φ(n)
j , Φ(n)

0 ∈ L2(R3n). We show that

s-limj→∞ Φ(n)
j = Φ(n)

0 for all n ∈ N, X ∈ {1, 2, 3, 4} and λ1, . . . , λn ∈ {1, 2}.
Since |SR| < ∞ for all R > 0, Ls(SR) ⊂ L2(SR) for s ≥ 2 for all R > 0. By this fact,

for all p ∈ [1, 2), {Φ(n)
j }j weakly converges to Φ(n)

0 in the sense of Lp(S3n
R ). By Lemma 3.6,

supj ∥Φj∥W 1,p(Ωn
R) < ∞ therefore, a subsequence of {Φ(n)

j }j converges to a vector Φ̃(n)
0,R ∈

W 1,p(Ωn
R) in the sense of the dual Sobolev space W 1,p(Ωn

R)∗, i.e., for all linear functionals

f ∈ W 1,p(Ωn
R)∗, f(Φ(n)

j − Φ̃(n)
0,R) → 0 as j → ∞. By a general fact of the dual of W 1,p(e.g.

［6］), for all f0, f1, . . . , f3n ∈ Lp(Ωn
R)∗ = Ls(Ωn

R), (p−1 + s−1 = 1), we have∫
Ωn

R

f0(Φ
(n)
j − Φ̃(n)

0,R) +
3n∑
i=1

∫
Ωn

R

fi∂i(Φ
(n)
j − Φ̃(n)

0,R) → 0, (j → ∞).

Therefore we have for all R > 0

Φ(n)
0 (k1, . . . ,kn) = Φ̃(n)

0,R(k1, . . . ,kn), (k1, . . . ,kn) ∈ Ωn
R.

Hence for all p ∈ [1, 2), we have Φ(n)
j → Φ(n)

0 , (j → ∞) in the weak sense of W 1,p(Ωn
R). Now we

assume that ρ is rotation invariant. Then SR is a spherically symmetric region in R3, and ΩR

is a SR without the k3-axis. By the assumption of Theorem 1.14, ΩR has the cone property.

By using the Rellich-Kondrashov theorem(［6，Theorem 8.9］), we have

lim
j→∞

∥Φ(n)
j − Φ(n)

0 ∥Ls(Ωn
R) = 0,
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for all s < 3np
3n−p . Since p ∈ [1, 2) is arbitrary, we choose p = 6n/(3n + 2) ∈ [1, 2), and we get

limj→∞ ∥Φ(n)
j − Φ(n)

0 ∥L2(Ωn
R) = 0, for all R > 0. We set Φj := (Φ(n)

j )∞n=0, Φ0 := (Φ(n)
0 )∞n=0 ∈

⊕4Frad. Let χR be the characteristic function of the ball {k ∈ R3||k| < R}. We denote by Pn

the orthogonal projection to the n-photon subspace C4 ⊗Fn. Then we have

∥Γ(χR)(Φj − Φ0)∥2 = ∥PnΓ(χR)(Φj − Φ0)∥2 + ∥(1 − Pn)Γ(χR)(Φj − Φ0)∥2

≤ ∥PnΓ(χR)(Φj − Φ0)∥2 +
1
n
∥N1/2

b Γ(χR)(Φj − Φ0)∥2.

Since each component (Γ(χR)Φj)(n) converges to (Γ(χR)Φ0)(n) strongly as j → ∞, we have

lim
j→∞

∥Γ(χR)(Φj − Φ0)∥2 ≤ 1
n

lim sup
j→∞

∥Γ(χR)N1/2
b (Φj − Φ0)∥2,

for all n ∈ N. Therefore we obtain

s-lim
j→∞

Γ(χR)Φj = Γ(χR)Φ0. (16)

On the other hand, by Proposition 3.1 we have

∥H1/2
f Φj∥2 =

∑
λ=1,2

∫
R3

|k|∥aλ(k)Φj∥2dk ≤
∫

R3

q2|ρ(k)|2

(Emj (p − k) − Emj (p) + |k| + mj)2
dk < ∞.

Note that a singular point of k → (Em(p − k) − Em(p) + |k|)−1 is only k = 0(Proposition

1.9), lim|k|→∞(Em(p− k) − Em(p) + |k|) = ∞ and the map k 7→ (Em(p− k) − Em(p) + |k|)
is continuous. By the assumption of the theorem, we have

lim
j→∞

∥H1/2
f Φj∥2 ≤ lim sup

j→∞

∫
R3

q2|ρ(k)|2

(Emj (p − k) − Emj (p) + |k| + mj)2
dk < ∞.

Therefore

∥Φj − Φ0∥2 = ∥Γ(χR)(Φj − Φ0)∥2 + ∥(Γ(χR) − 1)(Φj − Φ0)∥2

≤ ∥Γ(χR)(Φj − Φ0)∥2 +
1
R
∥(1 − P0)Γ(χR)H1/2

f (Φj − Φ0)∥2 + ∥P0Γ(χR)(Φj − Φ0)∥2

≤ ∥Γ(χR)(Φj − Φ0)∥2 +
const.

R
+ ∥P0Γ(χR)(Φj − Φ0)∥2,

where “const.” means the constant independent of R > 0. By (16), we have

s-lim
j→∞

Φj = Φ0.

This means the Φ0 is a normalized ground state of H(p).

Proof of Theorem 1.15. We check the condition of Theorem 1.14. As in the proof of Theorem

1.13, the condition ρ ∈ Dom(|k̂|−3/2) and Proposition 1.10 imply that

lim sup
m→+0

∫
S

q2

(Em(k) − Em(0) + |k| + m)2
|ρ(k)|2

|k|
dk < ∞.
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By Proposition 1.10, for all R > 0 we have that a1(R) > 0 and

sup
0≤m≤1

(Em(k) − Em(0) + |k|)−1 ≤ R

a1(R)|k|
, |k| ≤ R.

Hence we have

sup
0<m<1

∫
SR

[
(Em(k) − Em(0) + |k| + m)−2 |ρ(k)|

|k|1/2

]p

dk ≤
∫

SR

[
R2

a1(R)2
|ρ(k)|
|k|5/2

]p

dk < ∞,

sup
0<m<1

∫
SR

[
(Em(k) − Em(0) + |k| + m)−1 |∇ρ(k)|

|k|1/2

]p

dk ≤
∫

SR

[
R

a1(R)
|ρ(k)|
|k|3/2

]p

dk < ∞,

sup
0<m<1

∫
SR

[
(Em(k) − Em(0) + |k| + m)−1 1√

k2
1 + k2

2

|ρ(k)|
|k|1/2

]p

dk

≤
∫

SR

[
R

a1(R)
1√

k2
1 + k2

2

|ρ(k)|
|k|3/2

]p

dk

= 4π
[

R

a1(R)

]p ∫
[0,π]

sin θdθ

[
1

sin θ

]p ∫
[0,R)

|k|2d|k|
[
|ρ(k)|
|k|5/2

]p

< ∞.

Here we use the fact that ρ is rotation invariant. Therefore the condition of Theorem 1.14

holds.

4 APPENDIX: A REMARK ON THE POLARIZATION VECTORS

In this appendix, we show that the quantum electrodynamics does not depend on the choice

of polarization vectors, i.e., the Hamiltonians defined by different polarization vectors are

unitarily equivalent each other. We show the equivalence only for the Hamiltonians H and

H(p), but one can apply our proof to the Pauli-Fierz model and various QED models. In the

proof, we do not use the form of the cutoff function ρ and dispersion ω, and use only the facts

that ρ and ω do not depend on the helicity argument λ.

We assume that the polarization vectors e(1)(k), e(2)(k) and k are a right-handed system;

k · e(1)(k) = 0, ∥e(1)(k)∥R3 = 1, e(2)(k) =
k
|k|

∧ e(1)(k), k ∈ R3.

Next, we take any polarization vectors e′(1), e′(2):

k · e′(λ)(k) = 0, e′(λ)(k) · e′(µ)(k) = δλ,µ, k ∈ R3, λ, µ ∈ {1, 2}.

Let H ′ and H ′(p) be the Hamiltonians H and H(p) with e(λ) replaced e′(λ), λ = 1, 2, respec-

tively.

The essential self-adjointness of Hamiltonians H and H(p) does not depend on a choice of a

polarization vectors, and H̄ and H(p) are unitarily equivalent to H̄ ′ and H ′(p), respectively:
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Theorem 4.1. Assume that H is essentially self-adjoint. Then H ′ is essentially self-adjoint

and H̄ is unitarily equivalent to H̄ ′.

Theorem 4.2. Assume that H(p) is essentially self-adjoint. Then H ′(p) is essentially self-

adjoint and H(p) is unitarily equivalent to H ′(p).

Proofs of Theorems 4.1 and 4.2. By the definition of polarization vectors, for each k ∈ R3 it

holds that e′(2)(k) = k
|k| ∧ e′(1)(k) or e′(2)(k) = − k

|k| ∧ e′(1)(k). Let O ⊂ R3 be a set such that

e′(2)(k) = − k
|k| ∧ e′(1)(k), k ∈ O holds. We define a polarization vectors e′′(λ), λ = 1, 2,

e′′(1)(k) := e′(1)(k), e′′(2)(k) :=

{
e′(2)(k), k ∈ R3\O,

−e′(2)(k), k ∈ O.

We define an operator H ′′ which is H with e(λ) replacing e′′(λ), λ = 1, 2. Let

g′(k, λ;x) :=
ρ(k)
|k|1/2

e′(λ)(k)e−ik·x, g′′(k, λ;x) :=
ρ(k)
|k|1/2

e′′(λ)(k)e−ik·x,

and we set

A′(x̂) :=
1√
2

∫ ⊕

R3

[a(g′(·,x)) + a(g′(·,x))∗]dx, A′′(x̂) :=
1√
2

∫ ⊕

R3

[a(g′′(·,x)) + a(g′′(·,x))∗]dx,

self-adjoint operators on F . Since e′′(1)(k), e′′(2)(k), k are a right-handed system: k·e′′(1)(k) =

0, e′′(2)(k) = k
|k| ∧ e′′(1)(k), for all k ∈ R there exists θ(k) ∈ [0, 2π) such that[

e(1)(k)
e(2)(k)

]
=

[
cos θ(k) − sin θ(k)
sin θ(k) cos θ(k)

] [
e′′(1)(k)
e′′(2)(k)

]
.

We define a unitary operator u1 on L2(R3 × {1, 2}) by[
(u1f)(k, 1)
(u1f)(k, 2)

]
:=

[
cos θ(k) − sin θ(k)
sin θ(k) cos θ(k)

] [
f(k, 1)
f(k, 2)

]
, k ∈ R3.

The operator U1 := Γ(u1) is a unitary operator on Frad and U1dΓ(ω)U∗
1 = dΓ(ω). By the

equality u1g′′(·,x) = g(·,x), we have U1A′′(x̂)U∗
1 = A(x̂). Therefore we get

U1H ′′U∗
1 = U1H ′′U∗

1 = H.

This means that the operator H ′′ is essentially self-adjoint and H ′′ is unitarily equivalent to

H̄. Next we show that H ′′ is unitarily equivalent to H ′. Let u2 be a unitary operator on

L2(R3 × {1, 2}) such that

(u2f)(k, λ) :=

{
−f(k, 2), k ∈ S,

f(k, λ), otherwise.
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It is easy to see that u1g
′
j(·,x) = g′′j (·,x), j = 1, 2, 3. Then U2 := Γ(u2) is a unitary transfor-

mation on Frad, and
U2dΓ(ω)U∗

2 = dΓ(ω).

By the definition of u2, the equality U2A′(x̂)U∗
2 = A′′(x̂) holds. Therefore we have

U2H ′U∗
2 = U2H ′U∗

2 = H ′′,

which implies that H ′ is essentially self-adjoint and H ′ is unitarily equivalent to H ′′. Hence

Theorem 4.1 is proved. The proof of Theorem 4.2 is similar to the proof of Theorem 4.1.
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