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Abstract. We consider atoms with closed shells, i.e., the electron number

N is 2, 8, 10, ..., and weak electron-electron interaction. Then there exists

a unique solution γ of the Dirac-Fock equations [D
(γ)
g,α, γ] = 0 with the ad-

ditional property that γ is the orthogonal projector onto the first N positive

eigenvalues of the Dirac-Fock operator D
(γ)
g,α. Moreover, γ minimizes the en-

ergy of the relativistic electron-positron field in Hartree-Fock approximation,

if the splitting of H := L2(R3) ⊗ C4 into electron and positron subspace, is

chosen self-consistently, i.e., the projection onto the electron-subspace is given

by the positive spectral projection of D
(γ)
g,α. For fixed electron-nucleus coupling

constant g := αZ we give quantitative estimates on the maximal value of the
fine structure constant α for which the existence can be guaranteed.

1. Introduction

Heavy atoms should be described by relativistic quantum electrodynamics. Fol-
lowing this idea, Bach et al. [1] showed that the energy of the relativistic electron-
positron field in Hartree-Fock approximation interacting with the second quantized
Coulomb field of a nucleus is non-negative (if the quantization is chosen with re-
spect to external field) and that the vacuum is a minimizer. Moreover, they showed
that the quantization with respect to the external field is optimal in the sense that
any other quantization yields a lower ground state energy.

Barbaroux et al. [3] addressed the existence of atoms in the above model, i.e.,
they prescribed the charge of the electron-positron field and showed that the corre-
sponding functional has a minimizer which fulfills the no-pair Dirac-Fock equations.

The existence of solutions of the Dirac-Fock equations was shown by Esteban
and Séré [6] and Paturel [11]. Moreover, Esteban and Séré [5] considered the non-
relativistic limit of the Dirac-Fock equations. They showed that certain solutions of
the Dirac-Fock equations converge to the energy minimizing solutions of the non-
relativistic Hartree-Fock equations when the speed of light tends to infinity. This
allows them to define the notion of ground state solutions and ground state energy
of the Dirac-Fock equations.

In the spirit of Mittleman [9] the physical energy should be obtained by maxi-
mizing the ground state energy (as defined, e.g., in [3]) over all allowed one-particle
electron subspaces. One might conjecture that a corresponding ground state is
a solution of the Dirac-Fock equations. Moreover, such a solution of the Dirac-
Fock equations should minimize the energy among all solutions of the Dirac-Fock
equations. We call this for brevity the “Mittleman conjecture”.

The validity of Mittleman’s conjecture was already addressed by Barbaroux et al.
[2]. They confirmed it when the atomic shells are closed and the electron-electron
interaction is weak (large velocity of light). In the open shell case it was only proven
by Barbaroux et al. [4] in the case of hydrogen. All other cases are unknown.
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A stronger conjecture – for brevity called in the paper BES conjecture – would
be: the maximin pair ( maximizing Λ and minimizing γ) is a projector onto the
first N eigenfunctions of the self-consistent Dirac-Fock operator and that Λ is the
spectral projector onto the negative spectral subspace of this operator. Barbaroux
et al. [2] showed that this conjecture is incorrect in the open shell case in the
non-relativistic limit. (For N = 1 this result can be extended beyond the limiting
case (Barbaroux et al. [4]).) However, they confirm their conjecture for closed shell
atoms in the non-relativistic limit.

In this paper – following Barbaroux et al. [2] – we also consider the limit of
weak electron-electron interaction. Similarly to Barbaroux et al.[2, Proposition 8]
and Esteban and Séré [5, Theorem 5] we prove the existence of a unique solution
of the Dirac-Fock equations with the property that the eigenvalues of the solutions
are the lowest eigenvalues of the corresponding self-consistent Dirac-Fock operator
and that the next eigenvalue is strictly bigger. Again similarly to Barbaroux et al.
and Esteban and Séré [5, Theorem 6] this allows us to prove that this solution is
the minimizer of the Dirac-Fock energy on the set of all solutions of the Dirac-Fock
equations with non-negative eigenvalues. However, we can prove that this solution
minimizes the Dirac-Fock energy even on the set of all charge density matrices (see
the corresponding result of Barbaroux et al. [2, Proposition 8, Equation (15)]) if
the quantization is chosen with respect to this solution. We emphasize that we
do not only admit positrons in the charge density matrices γ; in fact we can drop
the assumption that off-diagonal elements of γ vanish, a requirement inherent in
Barbaroux et al. (Corollary 6). Eventually, we show that the minimizer is uniquely
determined and spherically symmetric in a certain sense. It has eigenfunctions
(orbitals) that respect the Aufbau principle.

The essential novelty of our result is twofold: First, our proof is sufficiently
direct and simple allowing for explicit estimates. This enables us to show not only
existence results (Esteban and Séré [6] and Paturel [11]) but also to prove important
properties of the solutions. In addition we obtain these properties not only in the
non-relativistic limit (Barbaroux et al. [2]) but we get explicit estimates on the
allowed coupling constants for which these results hold. Second, we can show the
minimization property among all density matrices of the electron-positron field in
the self-consistent quantization.

2. Definition of the Model

The notation and estimates used are mainly those of Barbaroux, Farkas, Helffer,
and Siedentop [3]. For the convenience of the reader we give here nevertheless their
main definitions and results. The technical tools from [3] are listed in an appendix.
For any further details we refer the reader to [3].

The Coulomb-Dirac operator is written as

Dg := −iα · ∇ + β − g| · |−1.

Physically g = Zα where α is the Sommerfeld fine structure constant and Z is the
atomic number of the considered element. The operator is essentially self-adjoint
on S(R3) ⊗ C

4 if g ∈ [0,
√

3/2).
It is convenient to introduce the set G := R

3 × {1, 2, 3, 4} and the measure
dx := dx ⊗ dµ, where dx is the Lebesgue measure on R

3 and dµ the counting
measure of the set {1, 2, 3, 4}. We denote the Banach space of trace class operators
on H by S1(H). Furthermore,

F := {γ ∈ S1(H)|γ = γ∗, D0γ ∈ S1(H)}.
Note that Barbaroux et al. [3] use a slightly different definition of the space F .

Moreover, F is a Banach space when equipped with the norm ‖γ‖F := ‖D0γ‖1 =
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‖|D0||γ|‖1. Finally, we note that ‖γ‖F,g := ‖Dgγ‖1 is an equivalent norm for

0 ≤ g <
√

3/2 because of Lemma 12.
We write the integral kernel of any given γ ∈ F using its eigenvalues λn and

eigenspinors ξn as

γ(x, y) =

∞∑

n=1

λnξn(x)ξn(y).

The one-particle density associated to γ is

ργ(x) :=
4∑

s=1

∞∑

n=1

λn|ξn(x)|2.

Its electric potential operator is φ(γ) := ργ ∗ | · |−1. The exchange operator X(γ)

associated to γ is given by its integral kernel

X(γ)(x, y) := γ(x, y)/|x − y|.
The total interaction operator is defined as

W (γ) = φ(γ) − X(γ).

The Coulomb scalar product is defined as

D(ρ, σ) :=
1

2

∫

R3

dx

∫

R3

dy
ρ(x)σ(y)

|x − y|
and the exchange scalar product as

E(γ, γ′) :=
1

2

∫

G

dx

∫

G

dy
γ(x, y)γ′(x, y)

|x − y| .

The total interaction energy is defined as

Q(γ, γ′) := D(ργ , ργ′) − E(γ, γ′)

For α ≥ 0 and γ ∈ F the Dirac-Fock operator is defined as

D(γ)
g,α := Dg + αW (γ).

Some useful properties of the operators defined above are listed in Appendix B.
For N ∈ N and δ ∈ F we define

S̃(δ)
∂N :={γ ∈ F | −Λ

(δ)
− ≤ γ ≤ Λ

(δ)
+ , tr γ = N},

S̃(δ) :={γ ∈ F | −Λ
(δ)
− ≤ γ ≤ Λ

(δ)
+ },

SN :={γ ∈ F | 0 ≤ γ, tr γ ≤ N},
and

Eg,α(γ) := trDgγ + αQ(γ, γ)

where Λ
(δ)
+ = χ[0,∞)(D

(δ)
g,α) is the projector on the positive spectral subspace of D

(δ)
g,α

and Λ
(δ)
− = 1 − Λ

(δ)
+ is the projector onto the negative spectral subspace.

Moreover, we will frequently use the abbreviations

cg,α,N := (bg − 4αN)−1, c̃g,α,N := (π/4)αNcg,α,N

where bg :=
√

1 − g2(
√

4g2 + 9− 4g)/3 (see also Lemma 12). We denote by ε0j and

ε
(γ)
j (j = 1, . . .) the eigenvalues of Dg and D

(γ)
g,α respectively (ordered by size and

counting multiplicities).
We will be interested in solutions of the Dirac-Fock equations.

Definition 1. We denote the set of solutions to the Dirac-Fock equations by DF ,
i.e.,

DF := {γ ∈ F |γ = γ2, [D(γ)
g,α, γ] = 0, γΛ

(γ)
+ = γ}.
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For fixed g and small α we get: for closed shell atoms there exists a solution δ ∈
DF such δ is the projection onto the first N positive eigenvalue of D

(δ)
g,α (Theorem

1). We will prove this result using the Banach fixed point theorem yielding even
uniqueness of the solution. We also show that the fixed point (Corollary 3) and the
energy functional Eg,α (Theorem 2) are spherically symmetric in a certain sense,
and that the fixed point minimizes Eg,α on DF (Corollary 2). To this end the
uniqueness of the fixed point is crucial.

Moreover, we show (Theorem 3) that this solution minimizes Eg,α even on the

set S̃(δ)
∂q We emphasize that we do not need to require Λ

(δ)
+ γΛ

(δ)
− = 0, a fact that

had to be left open in the context of the no-pair Hartree-Fock theory discussed in
[3].

Note, that the notion of closed shells – as used in this article – refers to the
Coulomb-Dirac operator, i.e., for N ∈ N we are in the closed shell case, if ε0N+1 >

ε0N . It does not matter, if the gap is the gap between shells with different principal
quantum numbers. This means that N = 2, 8, 10, .... For brevity, we denote the set
of all such N by CS.

3. Controlling the Spectrum of Dirac-Fock Operators

The aim of this section is to derive some estimates which control the eigenvalues
of Dirac-Fock operators by the corresponding eigenvalues of Coulomb-Dirac oper-
ators. The main tool of this section is the minimax principle of Griesemer and
Siedentop [8], which is formulated in Appendix A (Theorem 4). We are going to
use the Coulomb-Dirac operator as unperturbed operator and the Dirac-Fock oper-
ator as perturbed operator. First, we check the hypotheses of the minimax theorem
(Theorem 4).

Lemma 1. Let A = D
(γ)
g,α with 0 ≤ γ ∈ F , h = L2(R3)4, Q = D(A). Let Λ+ :=

χ(0,∞)(Dg), Λ− := χ(−∞,0)(Dg), and h± := Λ±h and assume 0 /∈ σ(D
(γ)
g,α). Then

the hypotheses of Theorem 4 are fulfilled, if (π/2)α‖γ‖1 ≤ bg.

Proof. Let f ∈ Q−. Then

(f,D(γ)
g,αf) = (f,Dgf) + α(f,W (γ)f) ≤ (f,Dgf) + α(f, φ(γ)f)

≤ (f,Dgf) +
π

2
α‖γ‖1(f, |∇|f) ≤ (f,Dgf) +

π

2
α‖γ‖1

1

bg
(f, |Dg|f) ≤ 0

where we used Lemmata 8 and 12, and (17),. The condition

(f,D(γ)
g,αf) > 0

for all f ∈ Q(A)∩H+ is trivially fulfilled since W (γ) ≥ 0 (Lemma 8). It remains to

check the boundedness of (|D(γ)
g,α| + 1)

1
2 P−Λ+. To this end we proceed as follows:

As in [7, Lemma 1],

P−Λ+ = − α

2π

∫ ∞

−∞

(D(γ)
g,α − iη)−1W (γ)(Dg − iη)−1dηΛ+,

i.e., we have to estimate the expression
∫ ∞

−∞

(|D(γ)
g,α| + 1)

1
2 (D(γ)

g,α − iη)−1W (γ)(Dg − iη)−1dη.

Now, ‖(Dg − iη)−1‖ ≤ [(ε01)
2 + η2]−1/2. Moreover, we look at the function

[λ0,∞) → R, fη(λ) :=
√

(λ + 1)/(λ2 + η2)



DIRAC-FOCK EQUATIONS OF THE ELECTRON-POSITRON FIELD 5

where λ0 := inf σ(|D(γ)
g,α|) > 0 by assumption. This function has its maximum at

the point max{λ0,−1 +
√

1 + η2}, i.e.,

sup
λ

fη(λ) =





√
(λ0 + 1)/(λ2

0 + η2) |η| ≤
√

(λ0 + 1)2 − 1√
(−1+

√
1+η2)+1

(−1+
√

1+η2)2+η2
|η| >

√
(λ0 + 1)2 − 1.

We conclude that∫ ∞

−∞

‖(|D(γ)
g,α| + 1)1/2(D(γ)

g,α − iη)−1‖‖W (γ)‖‖(Dg − iη)−1‖dη

is finite, which implies the boundedness of (|D(γ)
g,α| + 1)

1
2 P−Λ+. ¤ ¤

Lemma 12 shows that the condition 0 ∈ ρ(D
(γ)
g,α) in Lemma 1 is fulfilled, if

bg > 4α‖γ‖1. One can relax this condition adapting an argument of Barbaroux et
al. ([4]); but since it is not the most restrictive condition, we refrain from doing so.

Lemma 1 enables us to control the eigenvalues of the Dirac-Fock operator by the
eigenvalues of the Coulomb-Dirac operator. Since the minimax principle yields the
eigenvalues ordered by size and counting multiplicities, we do not only get some
information on the localization of the eigenvalues but also on the dimension of
the projector onto a given part of the discrete spectrum. Note that the estimate
depends only on ‖γ‖1 but not on γ itself.

Lemma 2. Let 0 ≤ γ ∈ F and let the hypotheses of Lemma 1 be fulfilled. Then,
for all n ∈ N

ε0n ≤ ε(γ)
n ≤ (1 + (π/2)α‖γ‖1b

−1
g )ε0n.

Proof. Since 0 ≤ X(γ), 0 ≤ φ(γ) and 0 ≤ W (γ) (Lemma 8), we have using (17) and
Lemma 12

Dg ≤ Dg + αW (γ) ≤ Dg + αφ(γ) ≤ Dg + π
2 α‖γ‖1|∇|

≤ Dg + π
2 α‖γ‖1b

−1
g |Dg| ≤ (1 + π

2 α‖γ‖1b
−1
g )(Dg)+ + (1 − π

2 α‖γ‖1b
−1
g )(Dg)−

where (Dg)+ and (Dg)− denote the positive and negative part of the Coulomb-
Dirac operator respectively. We choose now h± := Λ±h. Then the above operator

inequality yields immediately for all n ∈ N the inequality λn(Dg) ≤ λn(D
(γ)
g,α) ≤ (1+

(π/2)α‖γ‖1b
−1
g )λn(Dg), where the λn are the minimax values defined in Theorem

4. Now, by Lemma 1 the hypotheses of Theorem 4 are fulfilled for D
(γ)
g,α. For Dg

the hypotheses are trivially fulfilled by the choice of h± := Λ±h. For the operator
(1 + (π/2)α‖γ‖1/dg)(Dg)+ + (1 − (π/2)α‖γ‖1/dg)(Dg)− the hypotheses are also
fulfilled, since it has got the same positive and negative spectral subspaces as the
operator Dg. Thus Theorem 4 immediately yields the claimed inequality. ¤ ¤

Lemma 3. Let 0 ≤ γ ∈ F with ργ spherically symmetric and let the hypotheses of
Lemma 1 be fulfilled. Then, for all n ∈ N

ε0n ≤ ε(γ)
n ≤ ε(g − α‖γ‖1)

0
n,

where ε(g − α‖γ‖1)
0
n denote the eigenvalues of the Coulomb-Dirac operator with g

replaced by g − α‖γ‖1.

Proof. The first inequality is the same as in Lemma 2. For the second inequality
note that φ(γ) ≤ ‖γ‖1| · |−1 by Newton’s inequality. Thus, by Lemma 8

D(γ)
g,α = Dg + αφ(γ) − αX(γ) ≤ Dg + α‖γ‖1| · |−1.

Since
(f, (D0 − g| · |−1 + α‖γ‖1| · |−1)f) = (f,Dg−α‖γ‖1

f) ≤ 0
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by Kato’s inequality and Lemma 12 for all f ∈ Q−, we get by the Minimax Theorem
4

λn(Dg−α‖γ‖1
) ≤ ε(g − α‖γ‖1)

0
n.

Using Lemma 1, this implies the claim. ¤ ¤

We define now c := (1 + (π/2)αN/bg)ε
0
N and η := ε0N+1 − c = ε0N+1 − (1 +

(π/2)αN/bg)ε
0
N . Let

α0 := sup{α ∈ R|ε0N+1 − (1 + π
2 αN/bg)ε

0
N > 0} = 2(ε0N+1 − ε0N )bg/(πNε0N ).

To simplify the notation, the dependence of these quantities on g and α is sup-
pressed. Eventually, we set

gg,N (α) := (ε0N )2π2N3α3 + [−6πN2ε0N ε0N+1 +
(
4π − 1/4π2

)
N2(ε0N )2]bgα

2

+ [(π − 12)Nε0N ε0N+1 − 4Nε01ε
0
N + 12n(ε0N+1)

2 + (4 − π) N(ε0N )2]bg
2α

− bg
3(ε0N + ε0N+1)

2

and define α′
0 be the smallest root of the cubic equation gg,N (α) = 0. Furthermore,

Z ≤ α−1
phys

√
1 − (1 +

√
33)/16)2 ≈ 124.23 implies ε01 ≥ ε03 − ε01 holds, so that ε01 ≥ η

is fulfilled for these values of Z.

Theorem 1. Assume N ∈ CS and α < min{α0, α
′
0, bg/(4N)}. We pick a path C

as

C(t) :=





ε01 − η
2 + t(c + η

2 − (ε01 − η
2 )) − iη

2 0 ≤ t ≤ 1

c + η
2 − iη

2 + (t − 1)η 1 ≤ t ≤ 2

c + η
2 + (t − 2)(ε01 − η

2 − (c + η
2 )) + iη

2 2 ≤ t ≤ 3

ε01 − η
2 + iη

2 − i(t − 3)η 3 ≤ t ≤ 4.

Then the mapping

T : SN → SN , γ 7→ −(2πi)−1

∫

C

(D(γ)
g,α − z)−1dz

has a unique fixed point.

We remark that our bound on the range of allowed fine structure constants α
in the hypothesis tends to zero as 1/N . This has one main technical reason: the
control on eigenvalues of the Dirac-Fock operator in terms of the Coulomb-Dirac
operator becomes worse as the particle number grows, since the gap between the
eigenvalues becomes smaller for larger eigenvalues (see Lemma 2). This is also the
reason why our estimates on the contraction properties of the map T becomes worse
as N growths.

Proof. Step 1: Note that SN is a closed subset of F . Pick γ ∈ SN . Because of the
inequalities (Lemma 2)

ε01 ≤ ε0k ≤ ε
(γ)
k ≤ (1 + π

2 αNb−1
g )ε0k ≤ (1 + π

2 αNb−1
g )ε0N < ε0N+1

for k = 1, . . . , N and because T (γ) is the projector onto the spectral subspace

of D
(γ)
g,α corresponding to the N lowest eigenvalues of D

(γ)
g,α (Reed and Simon [12,

Theorem XII.6]) we have γ ∈ F , tr T (γ) = N and γ ≥ 0. Thus, T is well defined.
Step 2: We show that the mapping T is a contraction: pick γ, γ′ ∈ SN . Let P be

the projector on range(|Dg|(T (γ) − T (γ′)). Since dim range((T (γ) − T (γ′)) ≤ 2N ,
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we have dim range(|Dg|(T (γ) − T (γ′)) ≤ 2N , implying ‖P‖1 ≤ 2N . Thus,

‖T (γ) − T (γ′)‖F,g = ‖|Dg|(T (γ) − T (γ′))‖1 = ‖P |Dg|(T (γ) − T (γ′))‖1

≤ ‖P‖1‖|Dg|(T (γ) − T (γ′))‖ ≤ 2N

1 − 4αN/bg
‖|D(γ)

g,α|(T (γ) − T (γ′))‖

≤ 2Ncg,α,Nbg‖|D(γ)
g,α|(T (γ) − T (γ′))‖

≤ π−1cg,α,NbgN‖|D(γ)
g,α|

∫

C

(D(γ)
g,α − z)−1 − (D(γ′)

g,α − z)−1dz‖

≤ αcg,α,NNbg

π
‖
∫

C

|D(γ)
g,α|(D(γ)

g,α − z)−1W (γ−γ′)(D(γ′)
g,α − z)−1dz‖

≤ αcg,α,NN(2η + (c − ε01))×
max

z∈C([0,4)]
(‖|D(γ)

g,α|(D(γ)
g,α − z)−1‖) max

z∈C([0,4)]
‖(D(γ′)

g,α − z)−1‖‖γ − γ′‖F,g

where we used Lemma 12, the resolvent identity, Lemma 7 and (16).

Pick an arbitrary z = x+iy ∈ C (x, y ∈ R). We derive estimates for ‖|D(γ)
g,α|(D(γ)

g,α−
z)−1‖. Let A := R \ [(0, ε01) ∪ (c, ε0N+1)] and E the spectral resolution of D

(γ)
g,α. Be-

cause E[(0, ε01) ∪ (c, ε0N+1)] = 0, it follows that

‖|D(γ)
g,α|(D(γ)

g,α − z)−1‖ ≤ sup
λ∈A

|λ|/|λ − z| = sup
λ∈A

fx,y(λ)

where

fx,y(λ) := |λ|/|λ − z| = |λ|((λ − x)2 + y2)−1/2.

First assume x = c + η/2 and y arbitrary. Since fx,y(λ) ≤ |λ|/|λ − x|, we get

sup
λ∈A

fx,y(λ) ≤ |ε0N+1|/|ε0N+1 − x| = 2ε0N+1/η.

Similarly for x = ε01 − η/2 and arbitrary y, we get

‖|D(γ)
g,α|(D(γ)

g,α − z)−1‖ ≤ 2ε01/η.

Now let y = ±η/2 and x ∈ [ε01−η/2, c+η/2]. Obviously with B := [ε01, c]∪[ε0n+1,∞),

sup
λ∈A

fx,y(λ) = sup
λ∈B

fx,y(λ).

A little calculation shows that fx,y attains its maximum on [0,∞) at λ0 = (x2 +
y2)/x. Moreover, fx,y(λ) ≤ |λ|/|y| for all λ ∈ R, implying

‖|D(γ)
g,α|(D(γ)

g,α − z)−1‖ ≤ fx,y(λ0) ≤ (x2 + y2)/(x|y|).
Since the function hy(b) := (b2 +y2)/(b|y|) attains its minimum on (0,∞) at b = |y|
and is monotonously increasing for b > |y|, we get

‖|D(γ)
g,α|(D(γ)

g,α − z)−1‖ ≤ [(c + η/2)2 + η2/4]/[(c + η/2)η/2],

because x > y by the remark before the theorem. Now a little calculation shows
that

(c + η/2)2 + (η/2)2

(c + η/2)η/2
≤ 2ε0N+1

η

implying ‖|D(γ)
g,α|(D(γ)

g,α − z)−1‖ ≤ 2ε0N+1/η for all z ∈ C([0, 4]). We also use

‖(D(γ′)
g,α − z)−1‖ ≤ 1/dist(z, σ(D(γ′)

g,α )) = 2/η

for z ∈ ρ(D
(γ′)
g,α ) yielding altogether

‖T (γ) − T (γ′)‖F,g ≤αcg,α,NN · (2η + (c − ε01))2ε
0
N+1η

−12η−1‖γ − γ′‖F,g

=α[4Ncg,α,N ε0n+1(2η + (c − ε01))]η
−2‖γ − γ′‖F,g.
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Now the condition 4αNcg,α,N ε0N+1(2η + (c − ε01))η
−2 < 1 leads to the inequality

gg,N (α) < 0 which proves the claim. ¤ ¤

Note that the set of density matrices γ ∈ F with spherical density ργ is closed
in the F -norm: taking a F -convergent sequence γn of such density matrices we
merely have to show that the limiting density matrix has spherical density, too.
However, convergence in F implies convergence of the corresponding densities ρn

in L1. Suppose that R is a rotation, then ρn,R(x) := ρn(Rx)
a.e.
= ρn(x). Thus, also

L1−limn→∞ ρn = L1−limn→∞ ρn,R. Thus we may apply the fixed point theorem to
this smaller set. This improves the estimates in the proof Theorem 1 slightly using
Lemma 3. We display the result of a numerical evaluation of the corresponding –
more complicated condition – in Figure 1.

100806040

0.0015

0.001

200

0.0005

0.002

0

with sph. symmetry      

without sph. symmetry   

Figure 1. The maximal value of α, for which the contraction
property of T can be guaranteed, in dependence on the nuclear
charge Z = 137g for N = 2 with and without assuming spherical
symmetry. (Note: in our proves we use – because of theoretical
reasons – two independent parameters, namely g and α. Physically,
one would choose: (i) g = αphysZ where Z is the atomic number
of the considered element. (ii) α = αphys where αphys ≈ 1/137.
To make contact with the physics, we make this first choice and
plot the maximal value of α fulfilling our hypotheses. The plot
shows that we do not reach αphys; however, our result is on the
right order of magnitude for highly ionized medium sized atoms.)

Corollary 1. If N ∈ CS and α fulfills the hypotheses of Theorem 1, then there
exists a unique δ ∈ F which is the projector onto the eigenspace of the N lowest

eigenvalues of D
(δ)
g,α.

Proof. Theorem 1 ensures the existence of such a δ. On the other hand, any

projector γ onto the N lowest positive eigenvalues of D
(γ)
g,α, fulfills the equation

T (γ) = γ which has the unique solution δ. ¤ ¤

We set

EN := ε01 + . . . + ε0N−1 a := 2πN2(EN + ε0N )
b := [− 3

4πEN − (4 + π
4 )ε0N+1 + (4 − π

2 ) ε0N ]bgN c := (−ε0N + ε0N+1)b
2
g

ag,N := (−b −
√

b2 − 4ac)/(2a).



DIRAC-FOCK EQUATIONS OF THE ELECTRON-POSITRON FIELD 9

Corollary 2. If N ∈ CS and there is a unique solution δ of the equation T (γ) = γ,
then it minimizes the energy among all Dirac-Fock solutions, i.e., this solution
fulfills

Eg,α(δ) = min{Eg,α(γ)|γ ∈ DF, tr γ = N},
if α ≤ min{ag,N , bg/(4N), α0}.
Proof. Because of Lemma 9 we have for all γ ≥ 0

(1) Eg,α(γ) = trD(γ)
g,αγ − αQ(γ, γ) ≤ trD(γ)

g,αγ.

We pick an arbitrary solution γ of (DF) with tr γ = N . With Lemma 9 and 12 we
get

(2) Eg,α(γ) = tr D(γ)
g,αγ − αQ(γ, γ) ≥ trD(γ)

g,αγ − αD(ργ , ργ)

≥ trD(γ)
g,αγ − π

4 αN tr |∇||γ| ≥ tr D(γ)
g,αγ − π

4 αNcg,α,N tr |D(γ)
g,α||γ|

= (1 − c̃g,α,N ) tr D(γ)
g,αγ.

We denote by εk, k = 1, . . . , N, the eigenvalues (ordered by size and counting

multiplicities) of D
(γ)
g,α whose eigenvectors are in the range of γ. If the εk, k =

1, . . . , N, fulfill the inequality

ε01 ≤ εk ≤
(
1 + π

2 αNb−1
g

)
ε0N

for k = 1, . . . , N , the γ is a projector onto the eigenspace of the N lowest eigenvalues

of D
(γ)
g,α and hence equal to the unique fixed point δ of T . By equation (1) and

Lemma 2, we get for the energy of the fixed point

Eg,α(δ) ≤
N∑

m=1

ε(δ)m ≤ (1 + π
2 αNb−1

g )

N∑

m=1

ε0m.

If, on the other hand, there is a l ∈ {1, . . . , N} such that εj ≥ ε
(0)
N+1 for all j ≥ l

and εj ≤ (1 + π
2 αNb−1

g )ε
(0)
n for all j ≤ l − 1, then, by (2), we get

Eg,α(γ) ≥ (1 − c̃g,α,N ) tr D(γ)
g,αγ = (1 − c̃g,α,N )

N∑

m=1

εm

≥ (1 − c̃g,α,N )
( l−1∑

m=1

ε0m +

N∑

m=l

εm

)
≥ (1 − c̃g,α,N )

( N−1∑

m=1

ε0m + ε0N+1

)
.

Now, because εm ≥ ε
(0)
N+1 > ε

(0)
N for m ≥ l, it follows that

Eg,α(γ) − Eg,α(δ)

= (1 − c̃g,α,N )

N−1∑

m=1

ε0m + (1 − c̃g,α,N )ε0N+1 − (1 + π
2 α N

bg
)

N∑

m=1

ε0m

= −α(π
4 Ncg,α,N + πN

2bg
)

N−1∑

m=1

ε0m + (1 − π
4 αNcg,α,N )ε0N+1 − (1 + π

2 α N
bg

)ε0N .

The condition Eg,α(γ) − Eg,α(δ) ≥ 0 yields the quadratic equation in α

2πN2(EN + ε0N )α2 +
[
− 3π

4 EN −
(
4 + π

4

)
ε0n+1 + (4 − π

2 )ε0N
]
bgNα

+
(
−ε0N + ε0N+1

)
b2
g = 0,

whose smallest root ag,N is relevant. ¤ ¤
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Figure 2. The constant min{ag,n, bg/(4N), α0} in dependence on
the nuclear charge Z = 137g for N = 2.

4. Spherical Symmetry

As a next step – following [2] – we show that the fixed point of T is spherically
symmetric in a certain sense: For any R ∈ SO(3) there is a UR ∈ SU(2) such that
(Rx) ·~σ = UR(x ·~σ)U−1

R for all x ∈ R
3. Note that UR is not unique; the two possible

choices differ only by −1. Since we are only interested in eigenvectors, we do not
care about this ambiguity. Pick

f =

(
f (u)

f (l)

)
∈ L2(R3; C4).

We define

fR(x) =

(
URf (u)(R−1x)
URf (l)(R−1x)

)
.

Obviously, fR ∈ L2(R3; C4). For γ =
∑∞

n=1 λn|ξn〉〈ξn| ∈ F we define

γR :=

∞∑

n=1

λn|(ξn)R〉〈(ξn)R|.

We first show the following

Lemma 4. If f ∈ L2(R3; C4) is an eigenfunction of D
(γ)
g,α with eigenvalue ε, then

fR ∈ L2(R3; C4) is eigenfunction of D
(γR)
g,α with eigenvalue ε.

Proof. We treat the Dirac-Fock operator term by term.
Step 1: Let Q = R−1. We have

(3) (−iα · ∇fR)(x) = VR(−iα · ∇f)(Qx)

where

VR =

(
UR 0
0 UR

)
.

Proof of Step 1: We denote by ∂ the total derivative and by ∂j the respective
partial derivatives.

∂jfR =

(
UR∂jf

(u)
R

UR∂jf
(d)
R

)
=

(
UR[(∂f (u))◦Q]Qej

UR[(∂f (l))◦Q]Qej

)
=




UR

3∑
k=1

[(∂kf (u))◦Q]Qkj

UR

3∑
k=1

[(∂kf (l))◦Q]Qkj



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It follows that

α · ∇fR =

3∑

j=1

3∑

k=1

(
σjUR[(∂kf (l))◦Q]Qkj

σjUR[(∂kf (u))◦Q]Qkj

)

=

3∑

k=1

(
URU−1

R (~σ · Rek)UR(∂kf (l))◦Q
URU−1

R (~σ · Rek)UR(∂kf (u))◦Q

)
=

3∑

k=1

(
URσk(∂kf (l)) ◦ Q
URσk(∂kf (u)) ◦ Q

)

= VR(α · ∇f) ◦ Q

Second term: We have

(4) βfR = β

(
UR 0
0 UR

) (
f (u) ◦ Q
f (l) ◦ Q

)
= VR(βf) ◦ Q

Third term:

(5) | · |−1fR = VR|Q · |−1f ◦ Q = VR| · |−1f ◦ Q

Fourth term:

(6) φ(γR)fR = VR

[ ∑

n

λn

〈
(

UR[ξ
(u)
n ◦ Q]

UR[ξ
(l)
n ◦ Q]

)
,

(
UR[ξ

(u)
n ◦ Q]

UR[ξ
(l)
n ◦ Q]

)
〉

C4 ∗
1

| · |
]
(f ◦ Q)

= VR

∫ ∑

n

λn

〈
(

ξ
(u)
n (y)

ξ
(l)
n (y)

)
,

(
ξ
(u)
n (y)

ξ
(l)
n (y)

)
〉

C4

dy

| · −Ry|f ◦ Q

= VR[(φ(γ) ◦ Q)(f ◦ Q)] = VR[(φ(γ)f) ◦ Q]

Fifth term:

(7) (X(γR)fR)(x)

=

∫ ∑

n

λn

(
URξ

(u)
n (Qx)

URξ
(l)
n (Qx)

)
〈
(

URξ
(u)
n (Qy)

URξ
(l)
n (Qy)

)
,

(
URf (u)(Qy)
URf (l)(Qy)

)〉
C4

dy

|x − y|

= VR

∫
dy

∑

n

λn

(
ξ
(u)
n (Qx)

ξ
(l)
n (Qx)

)
〈
(

ξ
(u)
n (y)

ξ
(l)
n (y)

)
,

(
f (u)(y)
f (l)(y)

)〉
C4

|x − Ry|

= VR(X(γ)f)(Qx)

Thus,

(D(γR)fR)(x) = VR(D(γ)
g,αf)(Qx) = εVRf(Qx) = εfR(x)

which proves the claim. ¤ ¤

Corollary 3. If α < α0 and if T has a unique fixed point δ, then

δR = δ

for all R ∈ SO(3) i.e., δ is spherically symmetric.

Proof. Because of the preceding Lemma the claim follows from the uniqueness of
the fixed point of T . ¤ ¤

The following is indicated in [2, p. 4].

Theorem 2. The energy functional Eg,α is invariant under rotations of the density
matrices, i.e., for all γ ∈ F and all R ∈ SO(3) we have

Eg,α(γ) = Eg,α(γR).
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Proof. We remark that 2E(γ, γ) = tr X(γ)γ and 2D(ργ , ργ) = tr φ(γ)γ. But for any
f ∈ H1(R3)4, any γ ∈ F and any R ∈ SO(3) we get, using (3), (4), (5)(6), and (7),

(fR,DgfR) =

∫

G

VRf(Qx)
t
VR(Dgf)(Qx)dx = (f,Dgf)(8)

(fR,X(γR)fR) =

∫

G

VRf(Qx)
t
VR(X(γ)f)(Qx)dx = (f,X(γ)f)(9)

(fR, φ(γR)fR) =

∫

G

VRf(Qx)
t
VR(φ(γ)f)(Qx)dx = (f, φ(γ)f)(10)

This proves the claim. ¤ ¤

5. Solutions of the Dirac-Fock Equations Minimize the Energy of

Electron-Positron Field

In this section we show that the solution of the Dirac-Fock equations, which we
constructed above, yields a minimizer of the Dirac-Fock functional on the set of
all density matrices, if the quantization is chosen with respect to this solution. To
prove this, we need a technical remark:

Definition 2. Let γ ∈ F and P− an orthogonal projector. γ is called density matrix
with respect to P−, if and only if the operator inequality

0 ≤ γ + P− ≤ 1

is fulfilled.

For density matrices with respect to P− the following lemma is valid:

Lemma 5. Let γ be a density matrix with respect to P− and let P+ := 1 − P−.
Then the following operator inequalities hold:

P−γP−P−γP− + P−γP+P+γP− ≤ −P−γP−

P+γP+P+γP+ + P+γP−P−γP+ ≤ P+γP+.

Proof. The proof is a consequence of the fact that from 0 ≤ γ + P− ≤ 1 it follows
that (γ + P−)2 ≤ γ + P− (see [1], Equations (18) and (19)). ¤ ¤

With these preparations the main result of this section is a corollary of the
following theorem:

Theorem 3. Assume δ = χ
[0,ε

(δ)
N

]
(D

(δ)
g,α) and N = tr δ. Let γ ∈ S̃(δ), and γ′ := γ−δ

Moreover, assume 0 < π
4 cg,α,Nα < 1. Then

(11) Eg,α(γ) ≥ Eg,α(δ),

if one of the following conditions is fulfilled:

(1) The density matrix γ′ is an orthogonal perturbation of δ, i.e., δγ′δ = 0.

(2) γ ∈ S̃(δ)
∂N , and the difference ε

(δ)
N+1 − ε

(δ)
N is so big that

(12) (1 − π
4 cg,α,Nα)ε

(δ)
N+1 − (1 + π

4 cg,α,Nα)ε
(δ)
N ≥ 0.

Proof. First of all we note that the hypothesis implies ε
(δ)
N+1 > ε

(δ)
N . We set P− :=

χ
(−∞,ε

(δ)
N

]
(D

(δ)
g,α) and P+ := 1 − P−. This choice of the projectors means shifting

the Dirac sea in such a way that the eigenfunctions of the occupied orbitals belong
to the Dirac sea.

We now choose the density matrix γ ∈ S̃(δ) arbitrarily. We have

0 ≤ γ + Λ− = γ′ + δ + Λ− = γ′ + P− ≤ 1,
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i.e., γ′ is a density matrix with respect to P−, where Λ+ := Λ
(δ)
+ and Λ− := Λ

(δ)
− .

We now plug γ into the functional and get

Eg,α(γ) = tr (Dg (γ′ + δ)) + αQ (γ′ + δ, γ′ + δ)

= tr (Dgδ) + αQ (δ, δ) + tr (Dgγ
′) + 2αQ (δ, γ′) + αQ (γ′, γ′)

= Eg,α (δ) + tr D(δ)
g,αγ′ + αQ (γ′, γ′) ≥ Eg,α (δ) + trD(δ)

g,αγ′ − αE(γ′, γ′).

Moreover,

γ′γ′ = P+γ′P+γ′P+ + P+γ′P+γ′P− + P+γ′P−γ′P+ + P+γ′P−γ′P−

+ P−γ′P−γ′P− + P−γ′P−γ′P+ + P−γ′P+γ′P− + P−γ′P+γ′P+.

Using Lemma 10 and Lemma 12 we calculate E(γ′, γ′) because of the inequalities
of Lemma 5. Also all terms of the form

tr(|D(δ)
g,α|

1
2 P−γ′P+P+γ′P+|D(δ)

g,α|
1
2 )

vanish, since the spectral projectors commute with D
(δ)
g,α.

E(γ′, γ′) ≤ π
4 tr (γ′|∇|γ′) ≤ π

4 cg,α,N tr(γ′
∣∣∣D(δ)

g,α

∣∣∣ γ′)

≤ π
4 cg,α,N tr

(
|D(δ)

g,α|
1
2 (P+γ′P+ − P−γ′P−)‖D(δ)

g,α|
1
2

)

= π
4 cg,α,N tr

(
D(δ)

g,α(P+γ′P+ + Λ−γ′Λ− − δγ′δ)
)

Moreover,

trD(δ)
g,αγ′ = tr

(
D(δ)

g,α(P+γ′P+ + Λ−γ′Λ− + δγ′δ
)

,

i.e., we get altogether

Eg,α(γ) = Eg,α (δ) + trD(δ)
g,αγ′ + αQ(γ′, γ′)

≥ Eg,α (δ) +
(
1 − π

4 cg,α,Nα
)
trD(δ)

g,αP+γ′P+

+
(
1 + π

4 cg,α,Nα
)
tr D(δ)

g,αδγ′δ +
(
1 − π

4 cg,α,Nα
)
tr D(δ)

g,αΛ−γ′Λ−.

We see that the energy grows, if γ′ is an orthogonal perturbation of δ, because in
this case δγ′δ = δ(γ − δ)δ = 0. This shows the first part of the claim.

We prove now the second claim: from now assume γ ∈ S̃(δ)
∂N . Since tr γ = tr δ,

we have tr γ′ = 0. Moreover,

tr γ′ = tr Λ−γ′Λ− + tr δγ′δ + trP+γ′P+,

such that

0 ≤ − tr Λ−γ′Λ− = tr δγ′δ + tr P+γ′P+,

because Λ−γ′Λ− = Λ−γΛ− is a negative operator. It follows

tr δγ′δ ≥ − tr P+γ′P+.

Note that tr δγ′δ ≤ 0 holds. We even have −1 ≤ δγ′δ ≤ 0, since

(f, δγ′δf) = (fDF , δγ′δfDF )

= (fDF , δγδfDF ) − (fDF , δfDF ) ≤ (fDF ,Λ+fDF ) − (fDF , fDF ) = 0

and

(f, δγ′δf) = (fDF , δγ′δfDF ) = (fDF , δγδfDF ) − (fDF , δfDF )

≥ −(fDF ,Λ−fDF ) − (fDF , fDF ) = −(fDF , fDF ) ≥ −(f, f),

where we set fDF := δf .
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Let now λi, i = 1, . . . , N , and fi, i = 1, . . . , N , eigenvalues and the corresponding
eigenvectors of δγ′δ, and λi, i > N , and fi, i > N , eigenvalues and corresponding
eigenvectors of P+γ′P+. Then

trD(δ)
g,αδγ′δ =

N∑

i=1

λi

(
fi,D

(δ)
g,αfi

)
≥ ε

(δ)
N tr δγ′δ ≥ −ε

(δ)
N tr P+γ′P+

and

tr D(δ)
g,αP+γ′P+ =

∞∑

i=N+1

λi

(
fi,D

(δ)
g,αfi

)
≥ ε

(δ)
N+1 trP+γ′P+

hold. It follows that

(13) Eg,α(γ) − Eg,α(δ) ≥ (1 − π
4 cg,α,Nα) tr D(δ)

g,αP+γ′P+

+ (1 + π
4 cg,α,Nα) tr D(δ)

g,αδγ′δ

≥ (1 − π
4 cg,α,Nα)ε

(δ)
N+1 trP+γ′P+ − (1 + π

4 cg,α,Nα)ε
(δ)
N tr P+γ′P+

= [(1 − π
4 cg,α,Nα)ε

(δ)
N+1 − (1 + π

4 cg,α,Nα)ε
(δ)
N ] tr P+γ′P+

Since tr P+γ′P+ = trP+γP+ ≥ 0, this shows the claim. ¤ ¤

Setting a := (2πN2 − 1/8π2N)ε0N , b := ((4N − 1/4π − 1/2πN)ε0N − (4N +
1/4π)ε0N+1) bg and c := (ε0N+1 − ε0N )(bg)

2 we define

kg,N := (−b −
√

b2 − 4ac)(2a)−1.

Corollary 4. Assume N ∈ CS, δ as in Theorem 3, and α ≤ min{kg,N ,
bg

4N }. Then

(14) Eg,α(δ) = EDF
N := inf{Eg,α(γ)|γ ∈ S̃(δ)

∂N}.
Proof. It suffices to verify (12) of Theorem 3. By Lemma 2 it suffices to show

(
1 − π

4 cg,α,Nα
)
ε0N+1 −

(
1 + π

4 cg,α,Nα
)
· (1 + π

2 αNb−1
g )ε0N ≥ 0

in order to fulfill inequality (12) of Theorem 3. This condition leads to the quadratic
equation

(
2πN2− 1

8π2N
)
ε0Nα2+

((
4N− 1

4π− 1
2πN

)
ε0N−

(
4N+ 1

4π
)
ε0N+1

)
bgα

+
(
ε0N+1 − ε0N

)
(bg)

2 = 0

whose relevant smaller solution is given by kg,N . ¤ ¤

We close with some remarks:

(1) In the spirit of Mittleman the ground state energy EM
N of N relativistic

electrons in the field of a nucleus with coupling constant g in Hartree-Fock
approximation is defined asGe”andert

(15) EM
N = sup{inf{Eg,α(γ)|γ ∈ S̃(δ)

∂N}|δ ∈ F, δ = δ2, tr δ = N}.
Corollary 4 together with Equation (11) shows – under the hypotheses made
there – that EM

N ≥ EDF
N . The reverse inequality is valid – without restric-

tion to closed shells – for α small enough (Barbaroux et al. [2, Formula
(13)]), thus confirming that these different definitions of the ground state
energies for closed shell atoms agree in the non-relativistic limit. In fact
this shows even the BES conjecture in this case. (See Barbaroux et al. [2,
Theorem 5]).

(2) Since the BES conjecture is false in the open shell case [2, 4], the previousEingef”ugt
remark shows also that the restriction to the closed shell case is not of mere
technical nature.
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(3) Under the assumption that δ has a spherically symmetric density ρδ, one
can show the assertion of Corollary 4 even for bigger α, using Lemma 3
instead of Lemma 2. The results of this (numerical) computation are shown
additionally in Figure 3.

0.01

0.008

0.006

60
0

10020

0.012

0.004

0.002

80400

with sph. symmetry      

without sph. symmetry   

fine structure const.   

Figure 3. The maximal value of α for which we can guarantee
that a projection δ ∈ DF onto the lowest eigenvalues of D(δ) min-
imizes the energy in dependence on the nuclear charge Z = 137g
and N = 2.

Appendix A. The Minimax Principle of Griesemer and Siedentop

In [8] the following minimax principle for eigenvalues of self-adjoint operators in
spectral gaps was proven:

Theorem 4. Suppose that A is a self-adjoint operator in a Hilbert space h =
h+ ⊕ h− where h+ ⊥ h−. Let Λ± be the orthogonal projectors onto h± and let
Q be a subspace with D(A) ⊂ Q ⊂ Q(A) and Λ±h ⊂ Q, where D(A) and Q(A)
denote operator domain and form domain of A respectively. Let P+ := χ(0,∞)(A),
P− := χ(−∞,0)(A), Q± := Q ∩ h±, and

λn(A) := inf
M+⊂Q+

dim(M+)=n

sup
φ∈M+⊕Q−

‖φ‖=1

(φ,Aφ).

(1) If (φ,Aφ) ≤ 0 for all φ ∈ Q−, then

λn(A) ≤ µn(A|P+h)

(2) If (φ,Aφ) > 0 for all non-vanishing φ ∈ Q(A)∩ h+ and (|A|+ 1)
1
2 P−Λ+ is

bounded, then

λn(A) ≥ µn(A|P+h).

Here the µn denote the standard (Courant) minimax values of an operator bounded
from below.
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Appendix B. Properties of Dirac-Fock Operators

We list some useful inequalities from [1] and [3] and some slight improvements
of these.

Lemma 6. For any γ ∈ F we have

φ(γ) ≤ π
2 ‖|∇|γ‖1 ≤ π

2 ‖|D0|γ‖1 = π
2 ‖γ‖F ,(16)

φ(γ) ≤ π
2 ‖γ‖1|∇| ≤ π

2 ‖γ‖1|D0|.(17)

Lemma 7. If γ ∈ F , then

X(γ) ≤ φ(|γ|), ‖X(γ)‖ ≤ ‖φ(|γ|)‖, and ‖W (γ)‖ ≤ ‖φ(|γ|)‖.
Proof. We prove only the third statement. Let γ = γ+ − γ−, i.e., γ+ and γ− are
the positive and negative parts of γ respectively. Then

W (γ) = φ(γ+) − φ(γ−) − X(γ+) + X(γ−) ≤ φ(γ+) + X(γ−) ≤ φ(γ+) + φ(γ−) = φ(|γ|),

where we used Lemmata 8 and 7. In the same way we get W (γ) ≥ −φ(γ−) −
X(γ+) ≥ −φ(γ−) − φ(γ+) = −φ(|γ|), so |(f,W (γ)f) ≤ (f, φ(|γ|)f) for all f ∈ H. This
immediately implies the claim. ¤ ¤

Lemma 8. Let 0 ≤ γ ∈ F , then 0 ≤ X(γ) ≤ φ(γ); in particular 0 ≤ W (γ).

An immediate consequence of the preceding lemmata is

Lemma 9. If γ = γ∗ ∈ S1(H) and γ′ ∈ F , then

|D(ργ , ργ′)| ≤π
4 ‖γ‖1 tr(|∇||γ|),

E(γ, γ′) ≤D(ρ|γ|, ρ|γ′|).

We also need

Lemma 10 (Bach et al. [1]). For all γ ∈ F we have E(γ, γ) ≤ π
4 tr(γ|∇|γ).

Lemma 11. Pick γ ∈ F , g ∈ (−
√

3/2,
√

3/2), α ∈ R. W (γ) is relatively compact

with respect to D0. The operator D
(γ)
g,α is self-adjoint with D(D

(γ)
g,α) = D(Dg) =

H1(R3)4 and

σess(D
(γ)
g,α) = σess(Dg) = (−∞,−1] ∪ [1,∞).

Lemma 12. (1) Set Cg := (
√

4g2 + 9 − 4g)/3 and, for 0 ≤ g <
√

3/2,

dg := (1 + C2
g −

√
(1 − C2

g )2 + 4g2C2
g )/2.

Then, we for g ∈ [0,
√

3/2] according to Morozov ([10])

|Dg|2 ≥ d2
g|D0|2.

If we assume in addition γ ∈ F and dg − 4|α|‖γ‖1 > 0, then

|D(γ)
g,α|2 ≥ (dg − 4|α|‖γ‖1)

2|D0|2

(2) Setting bg :=
√

1 − g2(
√

4g2 + 9 − 4g)/3 and g ∈ (0,
√

3/2) we have

|Dg|2 ≥ b2
g|∇|2.

Assuming in addition bg − 4|α|‖γ‖1 > 0 implies the inequalities

|D(γ)
g,α|2 ≥ (bg − 4|α|‖γ‖1)

2|∇|2,
|D(γ)

g,α|2 ≥ (1 − 4|α|‖γ‖1b
−1
g )2|Dg|2.
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[6] Maria J. Esteban and Eric Séré. Solutions of the Dirac-Fock equations for atoms and

molecules. Comm. Math. Phys., 203(3):499–530, 1999.

[7] Marcel Griesemer, Roger T. Lewis, and Heinz Siedentop. A minimax principle for eigenvalues

in spectral gaps: Dirac operators with Coulomb potential. Doc. Math., 4:275–283, 1999.

[8] Marcel Griesemer and Heinz Siedentop. A minimax principle for the eigenvalues in spectral

gaps. J. London Math. Soc. (2), 60(2):490–500, 1999.

[9] Marvin H. Mittleman. Theory of relativistic effects on atoms: Configuration-space Hamilton-

ian. Phys. Rev. A, 24(3):1167–1175, September 1981.
[10] Sergey Morozov. Extension of a minimax principle for Coulomb-Dirac operators. Master’s

thesis, Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333
München, Germany, August 2004.

[11] Eric Paturel. Solutions of the Dirac-Fock equations without projector. Ann. Henri Poincaré,
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