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Abstract. In the framework of the orbital determination methods, we study some
properties related to the algorithms developed by Gauss, Laplace and Mossotti.
In particular, we investigate the dependence of such methods upon the size of the
intervals between successive observations, encompassing also the case of two nearby
observations performed within the same night. Moreover we study the convergence
of Gauss algorithm by computing the maximal eigenvalue of the jacobian matrix
associated to the Gauss map. Applications to asteroids and Kuiper belt objects are
considered.
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1. Introduction

The determination of the orbital motion of a celestial body can be
obtained through the celebrated methods of Gauss or Laplace, once a
certain number (at least 3) of astronomical observations are available.
An alternative technique was developed by O.F. Mossotti in the XIX
century. The three methods (Gauss, Laplace and Mossotti) have been
extensively reviewed and compared in (Celletti and Pinzari, 2005). In
this work we want to explore the dependence of the three techniques
upon the observational time intervals. Let ¢1, to, t3 be the times of the
three observations; having fixed the intermediate time t2, we vary the
time intervals to — ¢1 and t3 — t9, ranging from a few hours (whenever
two observations are performed on the same night) to several days. Two
sets of data are investigated: the first 10000 numbered asteroids and
615 Kuiper belt objects. While in the first case Gauss method provides
the best results, the orbital determination of Kuiper belt objects seems
to privilege Laplace method, being Mossotti’s technique intermediate
in all cases. Moreover the recovery of the orbits of the asteroidal belt
improves as the time intervals decrease, while it improves within the
Kuiper belt objects whenever the time intervals increase. A statistic
of the successful results in terms of the elliptic elements (semimajor
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2 A. Celletti and G. Pinzari

axis, eccentricity and inclination) is also performed. In the second part
of the paper we concentrate on Gauss algorithm to investigate the
stability domain of such method, by looking at the eigenvalues of the
jacobian matrix associated to the Gauss map. We provide a numerical
investigation performed on asteroids and Kuiper belt objects. We also
develop an analytical estimate of the first order computation of the
largest eigenvalue; we prove a proposition ensuring the convergence
of Gauss method, which is related to the contractive character of the
Gauss map, at least for small values of the observational times.

2. Implementation of Gauss, Laplace and Mossotti methods

2.1. BASICS OF THE METHODS

With reference to a heliocentric frame let us denote the unknown el-
ements of the asteroid as follows: a is the semi—major axis, e is the
eccentricity, 7 denotes the inclination, w is the argument of perihelion,
2 is the longitude of the ascending node and M is the mean anomaly at
a fixed epoch T'. We assume that the ecliptic geocentric longitudes and
latitudes, say A\; and 8;,% =1,---, N, are given through NV observations
at times t; referred to the epoch T'. Moreover, let ¢ — @(t) denote the
Sun-Earth vector, ¢ — 7(¢) is the Sun-asteroid vector, while t — p(t)
is the geocentric distance and t — b(t) with |b(t)] = 1 denotes the
Earth—object direction.

We assume to perform three observations at times ¢, to, t3. The time
intervals t;; = t; —t;, 4,5 = 1,2,3, are regarded as small quantities of
order ¢; for some positive constants yi2, yo3, with 19 + 23 = 1, we set

€ =1t3 t19 = Y12 € to3 = Y23 € . (21)

Let k be the unit vector perpendicular to the plane of the orbit; the

=

coplanarity condition of the vectors 7; = @; + p;b;, i = 1,2, 3, reads as
ngg 71 —n13 T2 +n12 73 =0,

where n;; = 7; A7 -k is twice the oriented area of the triangle spanned
by 7 and 7. If 51, 52, by are linearly independent, one can express
pi as linear functions (with coefficients of O(¢72)) of the ratios %ﬁlj
with 4 # [ # k. The first goal of Gauss method is to find a good
approximation of p;, say up to terms of O(e). To this end, let S;; be
the areas of the elliptic sectors spanned between #; and t;, and let
Nij = E—Z, fi; be half the angle between 7, 7;. Denote by z = (P, Q) a
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Dependence on the observational time intervals and domain of convergence 3

new set of quantities, called Gauss parameters, defined as

712 12
p="12 _ T2 (112,m23) (2.2)
n23 Y23
ni2 +n ry T
Q =2r} <712 < 1) = Y2723 €29 (7712 93 > — 5 —  f1a ,f23> ,
n13 re T3

where f and g are suitable functions differing from one up to O(g?),
O(e) respectively (see Celletti and Pinzari, 2005). The quantities p; can
be expressed in terms of P, () as

92:G2(P,Q,PZ) ) plZGI(PaQaIOZ) ’ p3:G3(PaQ?p2)

for suitable functions G;, i = 1,2,3 (see Appendix B for explicit ex-
pressions of the G;). In particular py = p2(P, Q) is a solution of an
implicit equation, from which we derive p; = p1(P,Q), p3 = p3(P, Q).
Finally, setting

Py=mi2/v23, Qo=i2723 €%, (2.3)

one finds that G;(P, Q, p2) = G;i(Po, Qo, p2) + O(e), namely p; = p; o +
O(e), where p; o = p;(Po, Qo)-

Gauss Algorithm is inductively based on the following steps:

i) start from zg = (P, Qo);

i) given z, = (P,,Qy), compute p, = p2(P,,Qy) trying to solve
the implicit equation py, = G2(P,, Qn,p2,,) and let, for i = 1,3,
pin = pi(Pn,Qn). The three vectors 75, = a; + piyngi, 1 =1,2,3 are
shown to be coplanar;

iii) if the endpoints of 7 5, 72,n, 73, are not on a straight line, there
exists a unique conic C, through 7 ,,, 7 5, 73 »; compute the quantities
Nijmns fijn, Tin on Cp;

iv) determine the new parameters z,1 = (Py41, Qn+1) through (2.2),
where the r.h.s. are computed with 7;;, fijn, 7in replacing n;;, fij,
r;. Such procedure defines the Gauss map F(C,t2,v12,723,€) = Fi as
Zn+l = fG(zn);

v) look for a fixed point of the Gauss map, motivated by the fact that a
conic section C (on which a Keplerian motion takes place) is a solution
of Gauss problem if and only if it corresponds to a fixed point of Fg.

We can finally summarize Gauss method (Gauss, 1963, see also Gallavotti,
1980) with the following

THEOREM 2.1. LetC, to, 712, Y23, € be such that 31, 52, 53 are linearly
independent, and 0,G2(P,Q,p)|,, # 1, where z = (P,Q) is the fized

Lyapunovl2.tex; 14/11/2005; 12:32; p.3



4 A. Celletti and G. Pinzari

point of Fg, defined in (2.2). Let D be the domain of definition of F¢,
U C D a neighborhood of z, V a neighborhood of p2, p: 2" = (P, Q') €
U — p(P',Q") € V be the smooth solution of p = Go(P',Q’,p) such
that p(P,Q) = ps. If z9 € U, the associated conic section Cy verifies:
C — Cy = Ole). Finally, if z, € U, the associated conic section Cp,
verifies: C — Cp, = O(e" ).

A different approach is provided by Laplace method, whose aim is
to find an approximation of the position 7 and the velocity ¥, so to
determine the unknown orbit. Let r = r(p) = |a@+pb| be the heliocentric
distance; using the equations of motion, one gets an implicit equation

in the unknowns A, 3, A, 3:

_4

o= (5 - 25) = Llar/dop) (2.4)

Moreover, one finds that p = %2 (r% — a—lg), with d = d(A,B,)\,B, A,ﬁ),
di = di(\ B, A, B), do = da(N, B, N, B) (see Celletti and Pinzari, 2005
for the explicit expressions of d, dy, d3). Given the N observations
(A1, B81), (A2,B2), -+, (AN, Bn), Laplace method (Laplace, 1780) con-
sists in replacing A, A (equivalently 3 , /) by the derivatives of some
interpolating polynomials of degree N — 1 obtained through the ob-

served data (tla >‘1)7 (t27 >‘2)7 T (tNa >‘N) (equivalently (tlwﬁl)a (t2762)7

An alternative technique was developed by Mossotti (Mossotti, 1942)
and it is based on the following procedure. Writing the coplanarity
condition among 7(t), 72, U2 as

F(t) = Tt + V(1) (2.5)

and developing the equation of motion F= —:—; in Taylor series with

initial data 7(ts) = 7, 7(t2) = U2, one obtains

(t — t2)?

Tt)=1-—
() 27“%’

ht), V() = (t—t2) k(t) ,

where h(t) and k(¢) are suitable functions; if h; and k; denote their
values at times t;, one can show that h; and k; differ from one up to
O(e). Using (2.5) computed at #; and ¢3, one can express pz and U2 as

P2 = M(h17h37k17k37p2) = M(17 ]-7 ]-7 1792) + 0(5)
172 = ﬁ(hlahi’nklak?np?) = ]\7(1’ 1? 13 1,92) + 0(6) ’
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Dependence on the observational time intervals and domain of convergence 5

for suitable (vector) functions M, N. In conclusion, it turns out that
p2 is a solution of an implicit equation, which can be solved in analogy
to Gauss method.

2.2. ITERATION OF THE METHODS

A major advantage of Gauss method with respect to the others is that
it provides an iterative procedure to find better approximations of the
solution. On the contrary, the methods of Laplace (implemented over
3 observations) and Mossotti were originally limited to the first order
approximation. However, an iterative scheme can be implemented along
the following lines.

Let us consider first the method of Laplace. Let R(t) denote the re-
mainder function of order 3 of the series expansion of A(¢) around ¢,

namely \(t) = P(t)+ R(t), with P(t) = Xo+ A(t2) (t — o) + @(t—tg)2
(obviously R(ty) = 0). In other words, Ao = A(t2), A2 = A(t2) are
the derivatives of the interpolating polynomial ¢ — P(t) of degree 2
through )\1 - Rl’ )\2.2 )\3 - R3 (here, Rz = R(tl)), at times tl, t2, t3.
Similarly for §(t2), B(t2), where the remainder functions are denoted
as Si, S3. When Ao, B2, Ao, B2 are expressed as functions of R;, Rs,
Si1, S3, equation (2.4), with ¢ = ¢, takes the form (without changing
the symbol for L) po = L(Ry,R3,S1,S3,p2); the first approximation
(N = 3) of Laplace corresponds to take R; = S; =0 (i = 1,3). We are
therefore led to define a sequence of remainder functions R;;, S;, as
follows.

7,) Start with RI,O = R3,0 =0 (51,0 = 53,0 = 0).

i) Given Ry p, R3p (Sipn, S3p), let Ay An (Bn, ﬁn) be defined as the
derivatives of the interpolating polynomial t — P, (t) (t — Qu(t)) of
degree 2 through A\; — Ry, Ao, A3 — Rz (B1 — Sin, B2, B3 — S3,) at
times tq, to, t3, respectively. Let d,, = d()\Z,IBQ,}\n,Bn,S\n,Bn), diy =
d1(>\27/627>‘n7/6n)7 d2,n = d2(>‘27627>‘naﬁn)- If dn 7é 07 Compute the
position 75, and the velocity ¥5,. Let C, be the conic describing
a Keplerian motion with initial data 7%, v2, (whenever the latter
vectors are not parallel), and let ¢ — A, (t), t — B, (¢) be the motion of
the angles.

iii) Define R; 41, Sint1 as the remainder functions of order 3 of the
Taylor expansion of ¢t — A\, (t), t = B, (t) around ¢ = t9. Introduce the
Laplace map Fy, as

(Rin+1, R3nt1, Stn+1, S3n41) = FL(Ripn, Ra3m, Sin, S3,0) -

Like for Gauss, all fixed points of Fy, provide a solution of the problem,
while the n'” iteration of F;, gives an approximation of the unknown or-
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bit up to terms of order O (&™), provided that d # 0, 0, L(Ry, R3, S1, S3,p)lp, #

L and (Ry 5, R3.1,51,n, S3,,) belongs to a suitable neighborhood of (R;, R3, S1, S3).
Let us now present an iterative scheme for the method developed by
Mossotti. Define the sequence h;,, kipn (4 =1,3) as follows.

Z) Start with hi,O = ki,g =1.

i) Given hjp, k;p, let 7 5, U2, be the vectors obtained replacing h;, k;

with h; ., k. If 7, U2, are not parallel, let C,, be the corresponding

conic. Finally, let 77 ,, 73, denote the positions of the same body at

times t1, t3, respectively.

iii) Define hj 41, kipt1 by means of the relations

(ti — t2)*

2r3 him+1 5 Vinsr = (ti —t2) ki1, =13,
TZ,n

T'z',nJrl =1-

where T 5,41, Vi nt+1 are the coefficients of the linear relations providing
Tlns T3, as a combination of 7%, U2, in analogy to (2.5). Let the
Mossotti map Fjs be defined as

(M t1s PR3t kins1s k1) = Far(Bin, han, ki, k3p)-

As for the previous methods, all fixed points of Fjs define a solution
of the problem, and the n' iteration of Fj; provides an approxi-
mation of the unknown orbit up to terms of order O(e™), whenever
8p M(hl, h3, kl, k‘g, p)|p2 ;lé 1, glAgg-gg 7é 0 and for (hl,na hgyn, kl,na kg,n)
in a suitable neighborhood of (hy, hs, k1, k3).

3. Dependence on the times of observations

In order to study the dependence on the intervals among the times of
observations, we consider two samples given by the first 10000 num-
bered asteroids and by 615 Kuiper belt objects'. We apply Gauss,
Mossotti and Laplace methods for different time intervals ¢15 and ¢o3,
where the central time %5 is the real observational time as provided by
the astronomical data (see footnote n. 1). Starting from the elements
(a,e,i,w, 2, M) at the epoch to, and given the time intervals ¢;9 and
to3, we compute the geocentric longitude and latitude at times %1, to,
t3 by means of the coordinates of the object and that of the Earth (see
Appendix A). Finally, we apply Gauss, Mossotti and Laplace methods,

! The astronomical data of the asteroids can be found on the web site “Astdys”
at http : //hamilton.dm.unipi.it/cgi — bin/astdys/astibo; the astronomical data of
the Kuiper belt objects can be found at the ephemerides page by D. Jewitt at
http : //www.ifa.hawaii.edu/faculty /jewitt/kb.html.
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Dependence on the observational time intervals and domain of convergence 7

iterating the procedure as described in the previous section until con-
vergence is reached. In order to be sure that a given method converges
in a significant range around the given time ¢, (and not only for the
specific time t5), we proceed as follows. Define bty = tij + n/2, where
n = 0,%£1,£2; if the method converges for the above time lapses t7,
and t4; (n = 0,%£1,£2), then we say that the method is successful,
otherwise we decide that the method fails.

We consider several choices of the time intervals ¢;; from 3 to 90 days.
Moreover, to cover the case of two observations performed within the
same night, we selected ¢;5 of the order of some hours and 23 ranging
from 5 to 30 days. The results are summarized in Table 1, where the
first percentage refers to the asteroids, while the second number of each
method refers to Kuiper belt objects. Concerning the main belt, one
concludes that Gauss method provides the best result, while Mossotti
is more successful than Laplace; the opposite conclusion holds for the
Kuiper belt objects. Moreover, the number of successful cases within
the asteroidal belt increases as the time interval decreases, while (again)
the opposite conclusion can be drawn for the Kuiper belt objects. As
discussed in the following section, one might expect that whenever the
time interval ¢ among the observations is sufficiently small (say € < ¢),
Gauss method (as well as the other techniques) converges. Of course
¢ depends on C, 712, 723 (and t2), implying that smaller is ¢, greater
is the number of converging orbits for fixed values of 72, 723. On the
other hand, the dependence of € on 719, 93 implies that ¢, t23 cannot
be chosen too small, otherwise C (as well as its approximants C,) is
badly determined. The latter effect is particularly relevant when the
semimajor axis is large as it happens for the Kuiper’s belt (notice that
the mean anomalies between two observations differ by M;; = tz-ja_3/ 2
and that the difference v;; between the true anomalies, and henceforth
between the t;;, goes to zero with M;;).

In order to see the distribution of the previous results as functions of
the semimajor axis, eccentricity and inclination, we compute the per-
centages of successful results of the first 10000 numbered asteroids by
considering four different regions in a, e, ¢, each one being composed by
2500 objects. The results are provided in Table 2 for the time intervals
tio = 1" and t93 = 5% and in Table 3 for t19 = t93 = 10%. We conclude
that the success of all methods (slightly) grows if the semimajor axis
increases. On the other hand, all methods seem to be independent on
the value of the inclination, while only Laplace method is affected by
the value of the eccentricity, performing better for lower eccentricities.
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8 A. Celletti and G. Pinzari

Table I. Percentage of successful results for Gauss,
Mossotti and Laplace methods; the first number refers
to the asteroids (e.g. 99.86, first line of Gauss method),
while the second to Kuiper’s objects (e.g. 79.67, same
line).

ti2  t23 Gauss Mossotti Laplace

3¢ 3% 99.86/79.67 99.55/92.03  99.00/93.33
59 57 99.87/93.33 99.45/93.98  98.90/93.98
107 107 99.78/93.98  99.23/94.30  98.73/94.63
154 15 99.58/94.47 99.27/94.47  98.54/94.63
307 307 99.45/94.63  99.36/94.47  98.17/94.63
604 60¢ 98.77/94.63 98.41/94.63  96.00/94.63
90¢ 90¢ 96.80/94.63 96.73/94.63  94.32/94.63
104 307  99.60/94.63 99.45/94.63  98.01/94.63
57 107 99.82/94.47  99.56/94.63  98.63/94.63
1h 54 99.77/7.32  99.72/54.79  98.82/93.17
5" 5% 99.87/17.40 99.77/78.53  98.86/93.66
1" 107  99.80/17.40 99.66/79.84  98.60/94.31
5" 107 99.81/53.17  99.67/88.62  98.55/94.30
1" 307 99.68/63.25 99.62/90.24  97.59/94.63
5" 30¢ 99.70/83.85 99.64/92.84 97.61/94.63

4. Convergence of Gauss algorithm: computation of the

eigenvalues of the jacobian matrix
In the framework of theorem 2.1, we investigate whether Fgn : 2/ =
(C1,¢2) = Fal(2') = (FL(2'), F&(7')) can be indefinitely iterated from
the initial point zy and, eventually, if the n—th iterate 2z, = F(z) tends
to its fixed point z = 2(C, t2, 12, Y23,€). Let W C U be a closed convex
neighborhood of z; by Lagrange’s theorem, if z;, zo € W, there exists
27, 25 belonging to the interval (z1,22), such that Fg(z1) — Fa(z2) =
O0FG(21,23) (21 — 22), where 0F (27, 25) has entries 9, Fi(z}), for 2/ =
(C1,(2). Let us assume that the complex eigenvalues \i(x,y), A2(z,y)
of 0Fq(x,y) verify, for z, y € W

A(z,y) # Xa(z,y) , [Ailz,y)[ <0 <1, (4.6)
For z; # zp € W, let ¥} € C? denote the eigenvector corresponding

to AF = Ai(27,25); we define d(z1, 22) = |a1] + |az|, where oy, ay € C
are such that z; — 2o = a1 U] + a2¥;. Otherwise, for z; = 22 we set
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Dependence on the observational time intervals and domain of convergence 9

Table II. Percentage of successful results for Gauss,
Mossotti and Laplace methods in terms of semimajor axis
a (in AU), eccentricity e, inclination ¢ (in degrees). Each
parameter region is composed by 2500 objects belonging to
the first 10000 numbered asteroids. The time intervals are
t12 = lh and t23 = 5d.

Gauss Mossotti  Laplace

0<a<2341 99.56  99.04 97.36
2341 <a < 2.6144 99.96  99.96 98.48
2.6144 < a < 3.0053 99.80  99.96 99.52
3.0053 < a < 100 99.76  99.92 99.92
0 <e < 0.094 99.68  99.92 99.60
0.094 < e < 0.140244 99.92  99.92 99.56
0.140244 <e < 0.187321 99.84  99.64 98.52
0.187321 <e<'1 99.64  99.40 97.60
0<14<3.2185 99.72  99.76 98.68
3.2185 < ¢ < 6.0218 99.84  99.56 98.36
6.0218 < ¢ < 10.918 99.72  99.80 99.08
10.918 <4 < 360 99.80  99.76 99.16

d(z1,22) = 0. With this choice of the metric, F becomes a contraction
on W, being Fg(z1) — Fa(2z2) = Aja10] + Asaevs. On the other hand,
one can conclude by continuity that setting x = y = 2(C, t2, 12,723, €),
if X\i(z,2) = A\i(2) verify

Ai(2) # Aa(2) (4.7)

and
1(Cyta,v12,723,€) = Max j—12|Ai(2)| < 1, (4.8)

then, there exists a suitable closed convex set W containing z where
(4.6) holds, namely, F¢ is a contraction. As a consequence, its unique
fixed point z in W can be obtained as the limit z = lim,,_,+ 2, starting
from any zyp € W. We will see (proposition 4.1 below) that, under
slightly stronger assumptions than in theorem 2.1 (see (4.9), (4.10)
below), condition (4.8) is always satisfied, provided ¢ is small enough.
The assumptions we malie areﬂthe fgllowing:

i) the vectors by = b(ts), by = b(ts), by = b(ts) are linearly independent:

EQAEQ-EQ#O; (4.9)
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Table III. Percentage of successful results for Gauss,
Mossotti and Laplace methods in terms of semimajor axis
a (in AU), eccentricity e, inclination ¢ (in degrees). Each
parameter region is composed by 2500 objects belonging to
the first 10000 numbered asteroids. The time intervals are
t12 = 10d and t23 = 10d.

Gauss Mossotti  Laplace

0<a<2341 99.56  97.28 96.88
2341 <a < 2.6144 99.80  99.68 98.40
2.6144 < a < 3.0053 99.88  99.96 99.72
3.0053 < a < 100 99.88 100 99.92
0<e<0.094 99.92  99.80 99.56
0.094 < e < 0.140244 99.84  99.84 99.48
0.140244 <e < 0.187321  99.80  99.40 98.92
0.187321 <e<'1 99.56  97.88 96.96
0<14<3.2185 99.84  99.60 99.08
3.2185 < ¢ < 6.0218 99.76  98.68 97.92
6.0218 < ¢ < 10.918 99.76  99.56 98.84
10.918 <4 < 360 99.76  99.08 99.08

i1) setting d@s = d@(t2), one has

52/\(;2'672 p2 + G - b
2% 2 (4.10)

D - g g
by A by - by 2

3

REMARK 4.1. The independence of the I;l ’s is required by Gauss al-
gorithm. Indeed, for e < 1 let us expand in Taylor series as

- -

e 2
b1 = b2 — b2 Y12€ + b2 %62 + 0(53)

- 2 A2
b3 = by + by Y23€ + by %62 + 0(63) ; (411)

then, by (4.9) for € small one finds that |by A by - bs| = E; by A by -

by 12723 €3 + o(e?)| > 0. With a similar argument, one finds that
condition (4.10) implies that for € small 0,,G2(P,Q, p2) # 1 allowing
to solve Gauss equation.
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Dependence on the observational time intervals and domain of convergence 11

PROPOSITION 4.1. For any C, to such that conditions (4.9), (4.10)
are satisfied, one has p(C,ty,v12,v23,€) — 0 as € — 0.

The proof is given in Appendix B.

In order to prove the contractive character of F¢g for 0 < ¢ < € for a
suitable £ (and, consequently, the convergence of Gauss algorithm for
0 < e < &, at least if £ is so small that the initial point zy = (P, Qo),
defined in (2.3), belongs to W), we still need the assumption (4.7). In
this context we provide in Appendix B a sufficient condition (corollary
B.1), based on the computation of Ai(z), A2(z) at the first order in .

4.1. EIGENVALUES OF 0F¢(z)

Motivated by the previous discussion and by the fact that the explicit
computation of p is extremely long, we determine numerically the
elements of the jacobian matrix 0Fg(z), which yield the eigenvalues
IAL(2)], |A2(2)|. We let t19, tog vary, while t5 is fixed equal to a given
epoch (MJD 53450 for the asteroids, while it changes for Kuiper belt
objects according to the astronomical data of footnote n. 1). More
precisely, for each C (with related set of elements (a,e,i,w,Q, M) at
time t2) and for each choice of t19, t93, we compute the three vectors
71, 79, 73. Together with the three Sun Earth vectors ay, do, d3, We
obtain the Earth—object directions bl, b2, b3, which provide the Gauss
map F¢ and its fixed point z.

The jacobian 0F;(z) is computed through a polynomial interpolation.
Let us consider, for example, the computation of the first element
dpP'(P,Q) (for the other derivatives, the computation is quite similar),
where Fi = (P, Q"). Having fixed @, we choose an odd number (say,
2n + 1) of points P; = P +ih, i = —n,-- -, n, equally spaced and sym-
metrically distributed around P with constant step—size h, such that
2nh = 0.1. Denoting by F; the value of P' at z; = (P;,Q), we approx-

i+1 2

imate 0p P'(P, Q) with the quantity =<, io (_z'l h+ (n—z’()?!znﬂ)! F;.
The overall number of nodes is such that the difference between the
values of the derivatives is smaller than 0.001 as n increases to n + 1.

The computational details are provided in Appendix C.

4.2. EIGENVALUES OF ASTEROIDS AND KUIPER BELT OBJECTS

We compute the eigenvalues of the jacobian matrix of the Gauss map,
following the algorithm outlined in the previous sections. Over a sample
of 100 asteroids of the main belt we found 20 objects with at least
one eigenvalue greater than one. Typically the graph of the maximum
eigenvalue versus the time intervals 12 or to3 is provided in Figure 1
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maximum eigenvalue + maximum eigenvalue
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Figure 1. Maximum eigenvalue of the jacobian matrix versus the time intervals t12
and t23. Left: asteroid number 8; Right: Kuiper belt object number 12.

(left panel), where ¢;2 and to3 are taken between 0 and 90 days with
a time-step equal to 5 days. This example refers to the asteroid nr.
8, whose elements are a = 0.2012 AU, e = 0.1563, i = 5.8869%, w =
284.9649, Q = 111.0326, M = 81.1258 at epoch MJD 53450. A similar
procedure was adopted for the 615 objects of the Kuiper belt; however,
contrary to the main belt objects we have not found any sample showing
an eigenvalue greater than one. A typical picture of the first eigenvalue
of a Kuiper belt object is provided in Figure 1 (right panel), which
corresponds to the Kuiper belt object nr. 12, whose elements are a =
42.3035 AU, e = 0.2174, 1 = 14.0299°, w = 236.5808, 2 = 56.2982,
M = 336.4332 at epoch MJD 53400.5. We remark that in both cases
the graph of |A{] versus t;9, to3 is roughly symmetric with respect to the
line 15 = to3, where the eigenvalue approximately attains its minimum.

Appendix

A. Computation of the longitude and latitude from the
elliptic elements

We derive the ecliptic geocentric longitude and latitude from the el-
liptic elements, without taking into account topocentric corrections or
aberrational effects. We restrict to consider e < 1. Let a, e, i, w, €,
M be the elliptic elements at a fixed reference epoch T' = 0; let %1, to,
t3 be the times of observations with t1o = to — t1, t93 = t3 — t2. The
mean anomaly at time ty is given by My = M (t3) = M + nty, where
n = ka=3/? is the mean motion with k = 0.985608° /day. Similarly one
has My = My — nt12, M3 = My + ntoz. The eccentric anomalies &1, &9,
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Dependence on the observational time intervals and domain of convergence 13

&3 at ty, 1o, t3 are obtained solving Kepler’s equation &; — esiné; = M;
(1 =1,2,3). Let §= (z,y,2) be the coordinates of the asteroid in the
orbital frame with the z axis coinciding with the perihelion line, i.e.
z=a(cosé—e), y = a(l—e?)/2sin¢, z = 0. Replacing ¢ with &;, &, &3,
one obtains the position vectors 57, S9, 53, which must be transformed
in the ecliptic frame by means of the following three rotations:

a) a rotation of angle w around the z-axis;

b) a rotation of angle 7 around the z—axis;

¢) a rotation of angle Q around the z—axis.

Let the resulting vectors in the ecliptic frame be denoted as E'Ee) (1 =
1,2, 3); with a similar procedure one obtains the Earth’s coordinates

~(¢)

a,’ (i =1,2,3). Defining the generic geocentric vectors as R=30 -

a® = (X,Y,Z), the longitude of R is given by the expression \ =
g g y

tan 1(Y/X) if X > 0 and XA = tan }(Y/X) + 7 if X < 0, while the

latitude is given by 8 = sin~!(Z/(X? + Y2 + Z2)!/2).

B. Proof of proposition 4.1

In this appendix we give a proof of proposition 4.1 as a byproduct
of proposition B.1 below. Moreover (see corollary B.1), we provide a
sufficient condition to ensure that F¢ is a contraction for ¢ small. Let
C be a conic, and let Z = (P, Q) be its Gauss parameters?. We recall
that we keep to fixed, while ¢, t3 are varied; let £ be the time interval
between the first and the third observation and, as in (2.1), let ¢; =
ta — Y12€, t3 = to + y23e. Denote by Fg : z = (P,Q) — 2/ = (P, Q')
the Gauss map, defined in a suitable neighborhood of zZ. We want to
compute the eigenvalues of the jacobian matrix of Fg, which we denote

as J = J(C,t2,v12,723,€) = {Tij }ij=1,2-

PROPOSITION B.1. Fiz to and C such that conditions (4.9), (4.10)

are satisfied. Then, there exist Ji1, Ji2, Jo1, Joo depending on C, ta,
Y12, Y23, such that

Ji1 = 0p P'(P,Q) = Ji1e + o(?) Ji2 =0g P'(P,Q) = Ji2 + o(e)

Jo1 = 0p Q'(P,Q) = Jare® + o(e)  Joa = 9g Q'(P,Q) = Jaze + 0(£?) .
REMARK B.1. The eigenvalues A1, Ao € C of J can be written as
Aj —2]5—1—0(2) (_]—]_2)U}ZthLJ—T:|:\/ — 5, where T = (J11 +
Jgg)/2 and § = Ji1Jos — Jo1J1o are the semi—trace and determinant of
J = {._723}2,3 1,2. Moreover, if C, ta, Y12, Y23 are such that A = 72 —§ #
0, then, A\1(2) 7é Xo(2) for € > 0 sufficiently small.

2 Barred quantities will refer to C.
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14 A. Celletti and G. Pinzari

COROLLARY B.1. Let C, to verify (4.9), (4.10) and let vy2, 23 be
chosen such that A # 0. Then, there exists € > 0 such that, if 0 < ¢ < €,
the mapping Fg : (W,d) — R? is a contraction.

Let us first recall the definition of the Gauss map, referring to (Celletti
and Pinzari, 2005), for details. Let po(P, Q) be the solution of Gauss
equation:

o o 52'51+52'53P< Q)
= G Pa ) = — . 1 — s
P2 2(P,Q, p2) Co - diy + Pl + 27
o biAb o > e (g e
where ¢; = m Ejkis T2 = |d2 + pabe| and ejp; = 1 if {j,k,i} is an

even permutation of {1,2,3}, €z = —1 otherwise. Let p; = p1(P, Q),
p3 = p3(P, Q) be defined as

o o P+1 - o - o
pl:—Cl'a1+—ch'a2_Pcl'a3EGI(PaQaPQ(PaQ))a
1 + 27"292(P,Q)3
1 P+1
pr =~ 1+ Gyl — B @ = Ga(P.Qupa(P,Q))

(1+ 2r2p2(P,Q)3
Let 7;(P,Q), i = 1,2, 3, be written as

7 = 7(P,Q) = @ + pi(P,Q)b; . (B.12)

It can be shown (Celletti and Pinzari, 2005) that 7, 7, 73 are coplanar
and define a unique conic C = C(P, Q) with a focus in their common
origin. We also recall that the eccentricity e = e(P,Q) of C and the
argument of perihelion g = ¢g(P, Q) are given by

VA? + B?
[n12 +n23 — nigl

B A

08§ = ———— 5, sing=-———o—3s, (B.13
g VA% 4+ B? g VA? + B? (B.13)

where n;; = n;j(P,Q) is the oriented area of the triangle formed by
i, 75, s = sgn(ni2 + ne3 — ni13) and, denoting by v;; = 2f;; the angle
formed by 7, 7, one has

A = ro(rg —r1) +r1(re — 73) cosvia + r3(ry — ro) cos vog

B = —ri(ry — r3)sinvig + r3(ry — ro) sinveg . (B.14)

Moreover, let P, (Q be expressed by

p =2 : Q=23 <w_1> (B.15)
n23 ni3
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Dependence on the observational time intervals and domain of convergence 15

and let 7;; = 7;;(P, Q) denote the ratio of the area of the triangle
formed by 75 and 7; with the corresponding conic sector. The Gauss
map Fg is finally defined by 2z’ = Fg(2), where 2/ = (P',Q’) takes the
form

2
12 712 T 12723
Pl — Yi2 N : Ql _ 52 V127723 2 m2mn ) (B16)
Y23 123 r173 cos f12 cos fa3 cos fi3

The proof of proposition B.1 is obtained through some technical lemmas
which provide estimates of the derivatives of n;;, 7;/r;, fi; appearing
n (B.16) (assumptions (4.9), (4.10) are assumed throughout all this
appendix).

LEMMA B.1. There ezist two constants Rp, R¢q depending on C, to,
Y12, Y23, such that for i =1,2,3 one has

Op 6pi(P, Q) =Rp+o(e) , Jg EZ,Oi(P, Q) =Rg+ o(e) . (B.17)

Proof: Using (4.11), (4 9) and @ — @ = as € + o(e2), denoting for

short B = —2% and recalling that & = =248 one has
baAb2-bay12723€2 b1Abz-bs’
Gy =B+o(e™"), @&-(@—a)=B-ae+o(l). (B.18)

The implicit function theorem shows that po (P, Q) is a smooth function
of (P, Q), such that

p2) i
, Q) :52) 1+3¢c - ang (,02 + dy - bg)

b~

Ga-(d3—a1)

‘—E‘wl

3PG2( ,Q,
P

Opp2(P,Q) = = 0,,Gal
p2

[Co-(@z—a1)]* Q
3 SRR g (P2 a2 b2)

— ——— +o(e) - (B.19)
[1 + 3¢ - d35% 273 (,02 + ay - bg)]

An explicit expression up to o(1) is obtained usmg (B.18), (B 19) and
the estimates for P, Q given by P = 12 +o(e 3, Q = v1272382 +0(3):

2 byAby-d R
2 /\ D2 - a2 Y23 —i—o(l)E—P—i—o(l).

Oppa(P,Q) = — =
Pp2(P, Q) 1=Dj, rp 1, N -

Similar computations allow to conclude that dpp; (P, Q) = % +0o(1)
and that dpp3(P,Q) = % + o(1). Concerning the derivative with
respect to (), one finds that

anQ(pa Q) =
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16 A. Celletti and G. Pinzari

and one easily finds that Rg in (B.17) takes the expression Rg =
1 B
2(1-D) 73 -

As a corollary of the previous lemma we have the following result.

LEMMA B.2. For any i # j, there exist constants R*Z’J R Y depend-
ing on C, ta, Y12, Y23, such that Op(ri—rj) = R’;’]+0( ), Og € (ri—rj) =
Rg’] +o(e) (a similar expression is valid also for r;/r;).

Next we have the following

LEMMA B.3. There exist two constants Np, N depending on C, to,
Y125 Y23, such that

8]3 nlg(P, Q) = NP + 0(6) , 8@ 6’/L13(P, Q) = NQ + O(E) . (BQO)

Proof: Let k(P,Q) = % be a unit vector normal to the

plane formed by 7, 7, 3. Then, ni3(P,Q) = 71 A 73 - k and
8pn13(P, Q) = (8PF1 A ’?3 k4 ’I?l A 8p?3 k4 ’7_"1 A ?3 . apE) |(15,Q)

Last term is zero, since BPE (P, Q) is perpendicular to l? and therefore it
is linearly dependent with 71, 73. For the remaining terms, using (B.12)
we have

((9PF1 A?g];})|(pQ) (bl/\ag k-l—pgbl/\bg k) appl( ,Q)
(7?1 A OpfTs3 - ];7)|(}3 Q) = (a1 A bg k + plbl A b3 k) appg(p, Q) .

By (4.11) the two terms in parenthesis are both equal to pzbz A bz ke
up to o(e ) while for the first term we remark that by A @ + @; A by =

(@2 A by — Gz Abo)e + o(c2). Casting together the previous formulae and
using lemma B.1, we conclude that

=3

dpnis(P,Q) = <62/\l}2-k—c'?Q/\EZ-E+2p252/\l}2-l§>73p+o(5),

which can be written as dpni3(P, Q) = Np+o(e) for a suitable constant
Np. In a similar way one obtains the second of (B.20).
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Dependence on the observational time intervals and domain of convergence 17

REMARK B.2. Similar results hold for 5n12(15, Q), 5n23(15, Q). More
precisely, for (i,7) = (1,2),(2,3), one has Opni; = Np vij + ole),
dg enij = Ng vij +o(e). As a consequence of lemmas B.1, B.8 and
of the previous remark, a similar estimate holds for v;;, being sinv;; =

i/ (rir)-

LEMMA B.4. There ezist two constants Sp, Sg depending on C, t2,
Y12, Vo3, such that

) =8p 2 +o(et)

Op (sinvyg + sinveg — sinvy3) (P,
P,Q)=S8g e+o(e*) .

Q
Q

Jg (sinvg + sinvpg — sinvyz)(

Next step is to evaluate the derivatives of the eccentricity e(P, @) of

C(P,Q).

LEMMA B.5. There exist two constants Ep, Eqg depending on C, to,
Y12, Vo3, such that Op ee(P,Q) = Ep +o(e), dg 2e(P,Q) = Eg + o(e).

Proof: From (B.13), we obtain (J = (Op,0q)):

J VA2 + B2(P,Q) s d (n12 + mag — n13) (P, Q) .

|12 + no3 — M3 ni2 + N2g — N3

Je(P,Q) =

therefore, we can take Ep = £ — e€3, Eo = 5&2 — éé'%, where Sfp, S(f?
are such that

ap\/ A2 + BQ(P Q)

=E&h+o(e )
12 + Mlog — g Pl
A? + B2(P,
2 0gVA? + B*(P,Q) — el + ofe) (B.21)
|12 + Ti3 — T3]
and
9 —m3)(P, @
. P(nlf + n23 nlf)( Q) =E%2 +0(e) ,
(n12 + no3 — n13)
22 BQ(nlg + TL2£’, - ’flli’))(Pa Q) — 522 + 0(6) . (B.22)
(n12 + no3 — n13)

To prove (B.21) we proceed as follows. From the second of (B.15) with
(P,Q) = (P,Q), one has

|12 + fioz — fn3] = n13 \/_712723 0(54) ) (B.23)

Lyapunovl2.tex; 14/11/2005; 12:32; p.17



18 A. Celletti and G. Pinzari

where p is the parameter of C and 713 = /p € + o(e?). Using (B.13)
one has

dVAZ+ B2(P,Q)=§-0R", (B.24)

where RE = (s B, —s A). Therefore we need to evaluate JA(P,Q),
OB(P,Q). To this end, rewrite (B.14) as

A = —ri(rg —r3)(1 —cosviz) — r3(r1 —ra)(1 — cosvas)
B = T1T3(Sin V1o + sin V93 — sin 1/13) - (n12 + nog — TL13) ,(B.25)

where we used n;; = r;rjsiny;;. From (B.25) one has
o 3 o 3
AP,Q) =" 4, B(P,Q) =Y B;,
=1 =1

where

Ay == r(P,Q) (7o — 73)(1 — cos o) — 8 r3(P, Q) (71 — 72)(1 — cos iia3)

Ay = =m0 (ry —3)(P, Q) (1 — costz) — 739 (r1 —12)(P, Q) (1 — cosg) ,
A’g = —7 (7o — 73)0 (1 — cosvi2) (P, Q) — 73(Fy — 72)d (1 — cosvas)(P, Q) ,

e

B =0 T3(sin 19 + sin y3 — sining) + 70 r3 (sinys + sining — sining)

B2 =773 0 (sinvye + sinvys — sinvyg)

ool

B3 = =3 (n12 4 ng3 — ni3) .

Using Taylor formula for 71, 73, 1, 3 and recalling lemmas B.1, B.2,
B.4, we find that for suitable constants Ap, Ag, Bp, Bg, one has

A(
ap B(

) =Ap e® +o(e®), g A(l5
) = Bp €2+ o(e?) , dg B(P

) = Ag £+ o(¢?)
) =Bg e+ o0(e?) .
(B.26)

P,Q Q
P,Q ,Q

The proof of (B.21) is obtained casting together (B.26), (B.24) and
(B.23). The proof of (B.22) is quite similar: using (B.15) we have

5[”12 + n93 — ny3) (P, Q) _ 5”13(157@) I 5Q(P7 Q) dr 2(P, Q)

~ ~ - = -3
ni2 + N3 — N3 ni3 T2

Qi

Therefore, by lemmas B.1, B.3, we obtain (B.22).

We remark that (B.26) allows to evaluate the derivatives of the true
anomaly v, = —g; indeed, taking the gradient of tanvy = A/B (see
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Dependence on the observational time intervals and domain of convergence 19

(B.13)), one has:

I (P,Q) = cos® i

. cosg 2., = = R, = =
vy [JAP, Q) + tangdB(P, Q)] ,
where VA2 + B2 = é|fijo + Moz — 13| = VA e3+0(e*) (see (B.13),

=3
27

(B.23)). Therefore we obtain the following

LEMMA B.6. There exist two constants N3, N(% depending on C, to,
Y12, Y3, such that

e Opva(P,Q) = Np +o(e) , & dga(P,Q) = /\fé +o(g) .

Finally we are able to compute the lowest orders of the quantities 7;; =
nij(P, Q) = n;;/S;; appearing in the definition of F¢ (see (B.16)). For
simplicity we assume to deal with an elliptic trajectory, i.e. e < 1,
though the results can be extended to any value of the eccentricity. Let
z = (P,@Q) vary in a small neighborhood of z = (P, Q). If & = &(P, Q)
denotes the eccentric anomaly and if M; = M;(P,Q) = & — esing; is
the mean anomaly, the quantity 733 can be expressed as

- sin (§ — &) —e(singy —sindy) _ | {23 —sindy
Mos Mos ’

where &;; = §; — &, M;; = M; — M;. Therefore we have

~ - = 5(523 — sin 523) (523 — Singgg) 5M23
9 ms(P,Q) = — s + -

(P, Q) Mo M2,
£,

= — <2M23 + o0 (5_;13/M23)> 5523(pa Q)

v (bjj v o(fSS/MZ%,)) 5 Moy (P, Q)

= [e & +0(e%)] 0&as(P, Q) + [e &2+ o(*)] IMas(P, Q) (B.27)
where we used M;; = ’yijd*?’/%, &ij = M;j/(1—&cos&;)+o(e?), with &,

&> being two suitable constants. We proceed to compute £3(P,Q),
0 Ma3(P, Q). Using the classical relations

& = 2tan ! <f(e)tan%> . fle)= Hilz
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and recalling lemmas B.5 and B.6, one finds that

p Ea3(P
Op Ma3 (P

)=XF +o(e), 0o elos(P,Q) 53 +o(e)
)=MPB +ole), g eM(P,Q)=ME +o(e) ,
(B.28)

Q
Q

for some quantities X53, Xé‘o’, ME, Mg depending only on C, 12, Yo3.
Inserting (B.28) in (B.27), we obtain the following

LEMMA B.7. Leti # j € {1,2,3}. There exist two constants Eligj, Ségj
depending on C, to, Y12, Y3, such that

Opnij(P,Q) = Efe+o(e?) , dgnii(P,Q) = 525 +o(e) .

We are finally ready to complete the

Proof of proposition B.1. From the definition of the Gauss map
(B.16), one has

7723 M2 123
5 Q'(P, Q) = 71277239 [52 0 7"2;;7(:1:, Q) + 2 6 TQZ;S: Q)]
+7127239 [62 M £ i 3P, Q) ] — V127239
112 123

[E tan f12 8 f12(P Q) + E tan f23 8 f23 P + 62 tan f13 5f13(P,Q)] ,

— Q . 2 _ 1 . .
where g = 7127232 T ﬁ M2 723 cos fi2 cos fa3 cosf13 For i # j, let
nij = 1+ o(e?), =14+ o(e), cos fij = 1+ o(g?); therefore ¢ =

1+ o(e) and using lemma B.7 to evaluate 0 ni; (P, Q), lemma B.2 to
evaluate 0 [r;/r;](P, Q) and the remark B.2 to evaluate 0 f;;(P, Q) =

d vi;(P,Q)/2, we find the result of proposition B.1.

C. Computation of the derivatives by polynomial
interpolation

Suppose we want to compute the derivative at some point z of the
function z — f(x), using a polynomial interpolation. Let z; = & + ih,

Lyapunovl2.tex; 14/11/2005; 12:32; p.20



Dependence on the observational time intervals and domain of convergence 21

i = —n,...,n be the nodes around z and let y; = f(z;); we define the
interpolating Laplace polynomial P, of degree 2n as

Z H#Z ) Y;
i=—n HJ7£Z ) l
After the change of variable s = (x — z)/h, one obtains
zn: Hj;éi(s )

The derivative df (z)/dx is approximated by dP,,(zZ)/dx = h~1dQ,(0)/ds.
Let us consider first the term with ¢ = 0O:

Po(Z + sh) = yi = Qn(s) -

Mol =) (s=mls—ntD)(s=D(st1)-(stn-1Dis+n)
- 0= . 0 -
[1j20(=7) (=1)™(5!)2

This term is an even function of s, so that its derivative at s = 0 is

zero. On the other hand, deriving (through Leibnitz rule) with respect
to s the remaining terms of the sum, for any 7 # 0 one has:

(s =) fs = i+ Dlfs = (i = D]+ () (s + )

(i—mn)---(=1)(1)--- (i +n) Yi
_(s=mn)-[s—(i+1)]ls - (i_1)]...()...(8+n)y”
(~)"=i(n —0)! (n +19)! i

computing these terms at s = 0, the only one which survives is given
by .
AN
i (m=i)!(n+1

Finally, one concludes that

5 Y (¢ #0) .

dPn 1dQ, (1)t (n!)?
@) =7—"0)= ) : . ~ Yi -
dx h ds i<mizo h  (n—19)! (n+1i)!
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