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Abstract

We have studied the liquid-gas phase transition of warm strange hadronic matter
(SHM) in the extended Zimanyi-Moszkowski model. We implement the Nijmegen
soft-core potential model NSC97f of hyperon-hyperon interactions in terms of the
(hidden) strange mesons. The saturation properties of pure � and � matter by the
potential essentially determine the dependence of the critical temperature on the
strangeness fraction of SHM. We treat the liquid-gas phase transition of SHM as
the �rst-order one and employ Maxwell construction so as to calculate the phase
coexistence curves. The derived critical exponents � ' 1=3 and 
 = 1:22 are almost
independent of the strangeness fraction of SHM and almost agree with the empirical
values derived from the recent multifragmentation reactions. Consequently, we
have con�rmed the universality of the critical phenomena in the liquid-gas phase
transition of hadronic system.

1 Introduction

Recently, there are renewed interests [1,2] on the liquid-gas phase transition in nuclear

medium. The evidences of the �rst-order phase transition have been observed in the

plateau of the caloric curves [3] and the negative heat capacity [4] from nuclear multi-

fragmentation reactions. Moreover, we have the information on the critical phenomena of

the phase transition, the critical temperature TC [5-7] and the critical exponents � and 


[6,8-10]. It is generally believed that the critical phenomena are universal. We can expect

that the critical exponents are independent of the kinds of matter. In fact, their values for

nuclear matter derived from multifragmentation reactions [10] agree with their universal

values in molecular physics. This is the most prominent evidence of nuclear liquid-gas

phase transitions, and so is really surprising because the energy and length scales and

the underlying fundamental interaction in nuclear physics are essentially di¤erent from

those in molecular physics.

It is however noted [11] that in heavy-ion reactions the limit of Coulomb instability

prevents the nuclear system from reaching the critical point. Therefore, the empirical
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values of the exponents are derived in the far region from the critical point [10], where

we can expect that the mean-�eld theory of nuclear medium is still valid. In the recent

works [12,13] the author has shown that the extended Zimanyi-Moszkowski (EZM) model

[14,15] of relativistic mean-�eld theory [16] for nuclear matter can reproduce the empirical

values of the critical exponents. It has been also found that they do not depend on the

isospin asymmetry of nuclear matter.

It is a natural next step to extend the investigations of Refs. [12,13] to the liquid-gas

phase transition in strange hadronic matter (SHM) [17-19]. Are the critical phenomena

independent of the strangeness? It is the purpose of the present work to answer the

question. In the next section we will develop the EZM model to describe warm SHM. In

section 3 we perform numerical analyses of the critical phenomena in the liquid-gas phase

transition of SHM with several strangeness fractions. In section 4 our investigations are

summarized.

2 The EZM model

The EZM model for cold SHM taking into account the (hidden) strange mesons �� and

� [20] has already been developed in Ref. [21]. In the present work, we will extend it

to �nite temperature. The thermodynamic potential per volume ~
 � 
=V of SHM at

temperature T is
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where M�
B = m

�
BMB and E�kB = (k

2 +M�
B
2)
1=2 are the e¤ective mass and energy of each

baryon in the SHM. In this work we set the Boltzmann constant as a unit. The spin-

isospin degeneracy factor is de�ned as 
B = f4; 2; 6; 4g for B = fN;�;�;�g. The �B is
given by the chemical potential �B and the vector potential V0B of each baryon as

�B = �B � V0B: (2)

The scalar mean-�elds are determined [21] from the e¤ective masses of N and �:
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where �N = 1=3 and we have introduced the reduced scalar mean-�elds for each baryon,

��B �
gBB�
MB

h�i ; (5)

���Y �
gY Y ��

MY

h��i : (6)
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�
� through

m�
� =

2� 3
2
��� � 2 ���� + �������

D�

; (7)

m�
� =

2� 2 ��� � 3
2
���� + �����

�
�

D�

; (8)

where

D�(�) = 2 +
1

2

�
1� ����(�)

�
���(�); (9)

D� = 2 +
1

2
(1� ���) ����: (10)

The vector mean-�elds are determined from the vector potentials of N and �:
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The vector potentials of � and � are given by V0N and V0� as
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The e¤ective vector-meson coupling constants g�BB! and g
�
Y Y � in Eqs. (11)-(14) are also

determined [21] by m�
N and m

�
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Finally, the e¤ective masses m�
N and m

�
� and the vector potentials V0N and V0� are

determined from extremizing the thermodynamic potential ~
 by them. The results are

�bN +
X
Y=�;�

 
g�Y Y !
g�NN!

�
g�Y Y �
g����

g���!
g�NN!

!
�bY �

�
m!

g�NN!

�2
V0N

+

 
m�

g����

!2 �
V0� � C�!V0N

�
C�! = 0; (20)

�b� +
X
Y=�;�

g�Y Y �
g����

�bY �
 
m�

g����

!2 �
V0� � C�!V0N

�
= 0; (21)

X
B=N;�;�

@m�
B

@m�
N

MB�sB +
X
Y=�;�

@V0Y
@m�

N

�bY +m
2
� h�i

@ h�i
@m�

N

+m2
�� h��i

@ h��i
@m�

N

+

�
m!

g�NN!

�2
V 20N

1

g�NN!

@g�NN!
@m�

N

+

 
m�

g����

!2 �
V0� � C�!V0N

�2 1

g����

@g����
@m�

N

+

 
m�

g����

!2 �
V0� � C�!V0N

�
V0N

1

g�NN!

�
@g���!
@m�

N

� g���!
g�NN!

@g�NN!
@m�

N

�
= 0; (22)

X
Y=�;�;�

@m�
Y

@m�
�

MY �sY +
X
Y=�;�

@V0Y
@m�

�

�bY +m
2
�� h��i

@ h��i
@m�

�

+

 
m�

g����

!2 �
V0� � C�!V0N

�
V0N

1

g�NN!

@g���!
@m�

�

+

 
m�

g����

!2 �
V0� � C�!V0N

�2 1

g����

@g����
@m�

�

= 0: (23)

The calculations of the derivatives by m�
N and m

�
� in Eqs. (22) and (23) are tedious but

straightforward tasks and so their explicit expressions are not shown here.

The baryon and scalar densities in Eqs. (20)-(23) are de�ned by
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3 Numerical analyses

Because of the chemical equilibrium condition [22]

�� = �� =
�N + ��

2
; (28)

the chemical potentials of � and � are determined by those of N and �. Under a de�nite

temperature T , the total baryon density

�T =
X

B=N;�;�;�

�bB (29)

and the strangeness fraction

fS =
�b� + �b� + 2�b�

�T
; (30)

Eqs. (20)-(23), (29) and (30) have to be solved numerically utilizing 6-dimensional

Newton-Raphson method so that the e¤ective masses m�
N and m�

�, the vector poten-

tials V0N and V0�, and the chemical potentials �N and �� are determined selfconsistently.

For the calculations we have to specify the meson-baryon coupling constants. The

gNN� and gNN! were determined [14] so as to reproduce the nuclear matter saturation

properties. Unfortunately, the meson-hyperon coupling constants are not well known at

present. In fact, the recent investigations [17-19] of liquid-gas phase transition in SHM

employed di¤erent coupling constants from each other. Here we follow the prescription

of Ref. [22]. First, the g��!, g��! and g��! are �xed by the SU(6) relations:

1

3
gNN! =

1

2
g��! =

1

2
g��! = g��!: (31)
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On the other hand, the g���, g��� and g��� are chosen so as to predict reasonable hyperon

potentials in saturated nuclear matter at �nm = 0:16 fm
�3:

U
(N)
� (�nm) = �28MeV, U

(N)
� (�nm) = 30MeV and U

(N)
� (�nm) = �18 MeV: (32)

The obtained values are

g���
gNN�

= 0:604;
g���
gNN�

= 0:461 and
g���
gNN�

= 0:309: (33)

The Y Y � coupling constants are also �xed by the SU(6) relations:

2 g��� = 2 g��� = g��� = �
2
p
2

3
gNN!: (34)

Of course gNN� = 0. On the other hand, the ���� and ���� coupling constants are

determined so as to reproduce the binding energy curves of pure � and � matter in the

Brueckner-Hartree-Fock calculation [23] using the Nijmegen soft-core potential model

NSC97f [24,25]. Although the Nijmegen potential can reproduce the recent data of 6
��He

[26] within the three-body Faddeev calculation [27], it predicts a rather deep saturation of

pure � matter [23]. If the ���� coupling constant is determined in the same way as ����

and ����, it becomes much stronger than the value derived from SU(6) symmetry. The

strong g���� predicts the �rst-order phase transition [21,22,28] from the SHM consisting

of N + � + � to the SHM with dominant abundance of � above fS = 1:0. It is however

not clear whether such a phase transition really occurs. Therefore, only for g���� we

do not follow the prescription of Ref. [22] and take the same ���� and ���� coupling

constants according to the SU(6) symmetry. Consequently, we have

g����

gNN�
=
g����

gNN�
= 0:52 and

g����

gNN�
= 1:28: (35)

Of course gNN�� = 0.

Figures 1-4 calculate the pressure-density isotherms for fS = 0:5, 1:0, 1:5 and 2:0,

respectively. They behave like van der Waals equation-of-state and show the liquid-gas

phase transitions. The critical temperatures TC and the pressures PC and densities �C
at the in�ection points are summarized in Table 1. Here it is however noted that in the

above formulation of the SHM the pure � matter (fS = 2) cannot be realized physically

at �nite temperature because there are a little fractions of other baryons due to the

tails in the Fermi-Dirac distributions. Nevertheless, we can calculate the virtual pure

� matter if the densities of the other baryons in Eqs. (20)-(23) are set to zero from

the �rst. In this case there is only the chemical potential of � and so Eqs. (28) and

(30) are lost. Equations (20)-(23) and (29) are solved numerically utilizing 5-dimensional

Newton-Raphson method so that the e¤ective masses m�
N and m

�
�, the vector potentials

V0N and V0�, and the chemical potential �� are determined selfconsistently.
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The dependence of TC and �C on the strangeness fraction is shown in Fig. 5. The

critical temperature decreases in fS < 0:5 but increases in fS > 0:5. Above fS =

1 it becomes larger than 16.4MeV for normal (fS = 0) nuclear matter. The result is

essentially due to the NSC97 potential [23], by which the pure � matter has deeper

saturation at higher density than the normal nuclear matter while the pure � matter has

no saturation. In the SHM with low strangeness fraction, � is more abundant than � and

so the shallower binding due to � matter leads to lower critical temperature of the SHM

than the normal nuclear matter. On the contrary, in the SHM with high strangeness

fraction, � is dominantly abundant over the other baryons and so the deeper binding due

to � matter leads to higher critical temperature of the SHM than the normal nuclear

matter. (In the present calculation there is little � fraction to be neglected.) In contrast

to the behavior of TC , the density �C increases as the strangeness fraction increases up to

fS = 1:5 and then turns to decrease. This turning is re�ected in the moderate increase

of TC at fS > 1:5 although the rapid increase is recovered near fS = 2.

Because there are two conserved quantities, the baryon number and strangeness, or

the two independent chemical potentials, the SHM is usually regarded [17-19] as two-

component system. The situation is the same as the asymmetric nuclear matter [29], in

which the proton and neutron are independent components because their chemical poten-

tials are di¤erent from each other due to the isovector-meson mean-�elds. It is known [30]

that the phase transition in the two-component system is of second order in Ehrenfest�s

de�nition. This is however inconsistent with the analyses [6,11] of multifragmentation

reactions, in which the liquid-gas phase transition of nuclear matter is treated as the

�rst-order one.

For the comparison with the experimental analyses, in the previous work [13] we

treated the liquid-gas phase transition in asymmetric nuclear matter as the �rst-order

one. Because the main purpose of the present work is to con�rm the universality of the

critical phenomena in hadronic matter, we also treat the liquid-gas phase transition in

SHM as the �rst-order one. In other words we consider the equilibrium between the

Gibbs energy per particle ~G = (
P
�B�bB)=�T rather than each chemical potential in the

equilibrated liquid and gas phases. The phase coexistence curve is therefore determined

by the Maxwell construction. The solid, dashed, dotted and dotted-dashed curves in Fig.

6 show the results in temperature-density plain for the strangeness fraction fS = 0:5, 1.0,

1.5 and 2.0, respectively. It is seen that the coexistence regions extend over much wider

density ranges than those [12,13] in normal nuclear matter. This is also because that

the SHM with fS � 1:0 has dominant � fraction and the pure � matter by the NSC97
potential has a saturation point at much higher density than the normal nuclear matter.

We also �nd that the coexistence region for fS = 1:5 is wider than that for fS = 2:0 in

accordance with the behavior of �C in Fig. 5.

As seen above, the strangeness has large e¤ects on the liquid-gas phase transitions in

hadronic matter. Does the strangeness also a¤ect the critical phenomena in SHM? The
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upper panels in Figs. 7-10 show the di¤erences between the densities of equilibrated liquid

and gas phases on the phase coexistence curves in Fig. 6 as functions of temperature in

log scale. The lower panels show the inverses of incompressibility � on the liquid branches

of the coexistence curves:

1

�
/ �B
PC

@P

@�B
/
�
1� T

TC

�

: (36)

The circles in Fig. 7 are calculated on the solid curve in Fig. 6 at T = 5:0, 6.0 � � � 14.0,
14.2 � � � 14.8MeV. The circles in Figs. 8, 9 and 10 are calculated on the dashed curve at
T = 6:0, 7.0 � � � 16.0, 16.2 � � � 16.8MeV, on the dotted curve at T = 8:0, 9.0 � � � 18.0, 18.5,
19.0, 19.2 � � � 20.0MeV and on the dotted-dashed curve at T = 8:0, 9.0 � � � 21.0, 21.5, 22.0,
22.2 and 22.4MeV, respectively.

The calculated values satisfy the so-called power law. In the upper panels of �gures

they lie on the red and blue lines in the near region to and the far region from the critical

point respectively, while in the lower panels they lie on the single blue lines over the

whole region of temperature. The inclinations of the lines in the upper and lower panels

are nothing but the critical exponents � and 
, respectively. The obtained value of �

from the red lines is 0.48 and the value of 
 is 1.22 regardless of the strangeness fraction.

They agree with the corresponding values from nonstrange isospin-symmetric [12] and

asymmetric [13] nuclear matter. It is however noted [11] that in heavy-ion reactions the

limit of Coulomb instability prevents the nuclear system from reaching the critical point

and so the critical exponents have been derived [10] in the far region from the critical

point. According to this fact, Figs. 7-10 predict � = 0:31, 0.34, 0.32 and 0.31 respectively

from the blue lines rather than � = 0:48 from the red lines. Although the values slightly

�uctuate with increasing strangeness fraction, they almost agree with each other and with

those derived from multifragmentation reactions [6,8-10] and the universal value of the

liquid-gas phase transition. We have therefore con�rmed the universality of the critical

phenomena in liquid-gas phase transition of hadronic system.

4 Summary

We have studied the thermodynamics of strange hadronic matter in the EZM model in-

cluding the (hidden) strange mesons. The equation-of-state behaves like van der Waals

one and so clearly shows the liquid-gas phase transition. For the hyperon-hyperon in-

teractions, we implement the Nijmegen soft-core potential model NSC97f by adjusting

the strange meson coupling constants. Because this potential predicts no saturation of

pure � matter but a deep saturation of pure � matter, the SHM with relatively large �

fraction has lower critical temperature than the normal nuclear matter while the SHM

with dominant � fraction has higher critical temperature.

For calculating the liquid-gas phase coexistence curve in the pressure-density plain,
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we treat the phase transition as the �rst-order one and employ the Maxwell construction.

This prescription is consistent to the experimental analyses of recent multifragmentation

reactions. Then the critical exponents � and 
 are derived for several strangeness frac-

tions. The obtained values from the near region to the critical point are independent

of the strangeness fraction. Although the values of � in the far region from the criti-

cal point slightly vary with the strangeness, our calculated exponents almost agree with

their universal values and the empirical values derived from multifragmentation reactions.

Consequently, the universality of the critical phenomena in the liquid-gas phase transition

of hadronic matter has been con�rmed.
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Table 1: The critical temperatures and the pressures and densities at in�ection points in
the pressure-density isotherm for several strangeness fractions.

fS = 0:0 fS = 0:5 fS = 1:0 fS = 1:5 fS = 2:0

TC (MeV) 16.360 14.972 16.937 20.110 22.539

PC
�
MeV=fm3

�
0.3078 0.4313 0.8072 1.221 1.032

�C (fm
�3) 0.059 0.086 0.134 0.173 0.142
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Figure 1: The pressure-density isotherms of SHM for the strangeness fraction fS = 0:5.
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Figure 2: The same as Fig. 1 but for fS = 1:0.
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Figure 3: The same as Fig. 1 but for fS = 1:5.
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Figure 4: The same as Fig.1 but for fS = 2:0.
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Figure 5: The dependence of the critical temperature TC and density �C on the strange-
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Figure 6: The liquid-gas phase coexistence curves in temperature-density plain. The
solid, dashed, dotted and dotted-dashed curves are for the strangeness fraction fS = 0:5,
1.0, 1.5 and 2.0, respectively.
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Figure 7: (a) The di¤erence between the densities of the equilibrated liquid and gas
phases and (b) the inverse of compressibility of nuclear liquid as functions of temperature
in log scale calculated on the solid curve in Fig. 6.
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Figure 8: The same as Fig. 7 but for the strangeness fraction fS = 1:0.
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Figure 9: The same as Fig. 7 but for the strangeness fraction fS = 1:5.
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Figure 10: The same as Fig. 7 but for the strangeness fraction fS = 2:0.
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