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This paper deals with Hamiltonians of the form H = −∇2 + v(r), with v(r) periodic along the
z direction, v(x, y, z + b) = v(x, y, z). The wavefunctions of H are the well known Bloch functions
ψn,λ(r), with the fundamental property ψn,λ(x, y, z + b) = λψn,λ(x, y, z) and ∂zψn,λ(x, y, z + b) =
λ∂zψn,λ(x, y, z). We give the generic analytic structure (i.e. the Riemann surface) of ψn,λ(r)
and their corresponding energy, En(λ), as functions of λ. We show that En(λ) and ψn,λ(x, y, z)
are different branches of two multi-valued analytic functions, E(λ) and ψλ(x, y, z), with an essential
singularity at λ = 0 and additional branch points, which are generically of order 1 and 3, respectively.
We show where these branch points come from, how they move when we change the potential
and how to estimate their location. Based on these results, we give two applications: a compact
expression of the Green’s function and a discussion of the asymptotic behavior of the density matrix
for insulating molecular chains.

PACS numbers: 71.10.-w, 71.15.-m

I. INTRODUCTION

The analytic structure of the Bloch functions for 1D
crystals with inversion symmetry was investigated in
Ref. 1. Among the major conclusions of this paper, is
the fact that the entire band structure can be character-
ized by a single, though multi-valued, analytic function
E(λ)[λ = eikb], with branch points that occur at com-
plex k. A similar conclusion holds also for the Bloch
functions. The positions of the branch points determine
the exponential decay of the Wannier functions. For insu-
lators, they also determine the exponential decay of the
density matrix and other correlation functions. It was
recently shown that the order of the branch points de-
termines the additional inverse power law decay of these
functions.2 We can say that, although the branch points
occur at complex k, their existence and location have very
important implications on the properties and dynamics
of the physical states. The complex k wavefunctions are
also important when describing surface and defect states,
metal-insulator junctions and electrical transport across
finite crystals and linear molecular chains.3–6

The methods developed in Ref. 1 could not be ex-
tended to higher dimensions, where the results are much
more limited. The first major step here was made by
Des Cloizeaux, who studied the analytic structure near
real k′s, for crystals with a center of inversion.7,8 His
conclusion was that the Bloch functions and energies of
an isolated simple band are analytic (and periodic) in
a complex strip around the real k′s. The restriction to
crystals with center of symmetry was later removed.9 The
analytic structure has been reconsidered in a study by
Avron and Simon,10 who gave answers to some impor-
tant, tough qualitative questions. For example, one of
their conclusion was that all isolated singularities of the
band energy are algebraic branch points. The topology
of the Riemann surface of the Bloch functions for finite
gap potentials in two dimensions has been investigated
in a series of studies by Novikov et al.11 The analytic
structure has been also investigated by purely numerical

methods. Since it is impossible to explore numerically the
entire complex plane, numerical methods cannot provide
the global structure. Even so, they can provide valuable
information. For example, in the complex band calcu-
lations for Si,12 or linear molecular chains,13,14 one can
clearly see how the bands are connected, even though
these studies explored only the real axis of the complex
energy plane.

In this paper we consider linear molecular chains, de-
scribed by a Hamiltonian of the form

H = −∇+ v(r), (1)

with v(r) periodic with respect to one of the cartesian
coordinates of R3, let us say z:

v(x, y, z + b) = v(x, y, z). (2)

The wavefunctions of H are Bloch waves, ψn,λ(r), with
the fundamental property

ψn,λ(x, y, z + b) = λψn,λ(x, y, z), (3)
∂zψn,λ(x, y, z + b) = λ∂zψn,λ(x, y, z).

We derive the generic analytic structure (the Riemann
surface) of ψn,λ(r) and of the corresponding energy En(λ)
as functions of complex λ. We shall see that they are
different branches of two analytic functions, ψλ(r) and
E(λ), with an essential singularity at λ = 0 and addi-
tional branch points which, generically, are of order 3,
respectively 1. We show where this branch points come
from, how they move when the potential is changed and,
in some cases, how to estimate their location.

Our strategy is as follows. According to Bloch theo-
rem, we can restrict z to z ∈ [0, b] and study the following
class of Hamiltonians, which will be called Bloch Hamil-
tonians:

Hλ = −∇+ v(r), z ∈ [0, b], (4)

with λ referring to the following boundary conditions:{
ψ(x, y, b) = λψ(x, y, 0),
∂zψ(x, y, b) = λ∂zψ(x, y, 0), (5)
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which define the domain of Hλ. For z ∈ [0, b], the eigen-
vectors of Hλ and their corresponding energies coincide
with ψn,λ(r) and En(λ). Now, it was long known that
the Green’s function, (z −Hλ)−1, evaluated at some ar-
bitrary point z in the complex energy plane that is not
an eigenvalue of Hλ, is analytic of λ, for any λ in the
complex plane.17 In Section II, we derive the local an-
alytic structure of the eigenvectors and eigenvalues as
functions of λ, starting from this observation alone. To
obtain the global analytic structure, we start with a sim-
ple v(r), with known global analytic structure, and then
study how this structure changes when v(r) is modified.

When this formalism is applied to 1D periodic sys-
tems, all the conclusions (and a few additional ones) of
Ref. 1 follow with no extra effort. This is done in Sec-
tion III. Section IV presents the results for linear chains.
We have two applications: a compact expression for the
Green’s function, which is developed in Section V, and
the computation of the asymptotic behavior of the den-
sity matrix for insulating linear molecular chains, which
is done in Section VI. We conclude with remarks on how
to calculate the analytic structure for real systems. We
also have two Appendices with mathematical details.

II. GENERAL FORMALISM

We consider here, at a general and abstract level, an
analytic family, {Hλ}λ∈C, of closed, possibly non selfad-
joint operators. The analyticity is considered in the sense
of Kato,15 which means that for any z ∈ C that is not an
eigenvalue of Hλ, the Green’s function can be expanded
as

(z −Hλ′)−1 =
∞∑

n=0

(λ′ − λ)nRn(z), (6)

with the power series converging in the norm topology,
for any λ′ in a finite vicinity of λ. We have already men-
tioned that the Bloch Hamiltonians form an analytic fam-
ily.

In this section, we discuss the analytic structure of
the eigenvalues and the associated eigenvectors of Hλ,
as functions of λ, based solely on the analyticity of the
Green’s function. For this, we need to find ways of ex-
pressing the eigenvalues and eigenvectors using only the
Green’s function. The major challenge will be posed by
the degeneracies.

SupposeHλ has an isolated, non-degenerate eigenvalue
Eλ, for λ near λ0. Then there exists a closed contour Γ
separating Eλ0 from the rest of the spectrum. For λ in
a sufficiently small vicinity of λ0, Eλ remains the only
eigenvalue inside Γ and we can express Eλ as

Eλ = Tr

∫
Γ

z(z −Hλ)−1 dz

2πi
. (7)

As shown in Appendix A, Eqs. (6) and (7) automatically
imply that Eλ is analytic at λ0. Since λ0 was chosen ar-

FIG. 1: The figure shows two isolated eigenvalues of Hλ, Eλ

and E′
λ, that become equal for λ = λc. The figure also shows

the contours of integration, Γ, γ and γ′ used in the text.

bitrarily, we can conclude that the non-degenerate eigen-
values are analytic functions of λ, as long as they stay
isolated from the rest of the spectrum.

Suppose now that Hλ has two isolated, non-degenerate
eigenvalues, Eλ and E′λ, which become equal at some λc

(see Fig. 1):

Eλc
= E′λc

= Ec. (8)

We are interested in the analytic structure of these eigen-
values and the associated eigenvectors, for λ in a vicinity
of λc.

Eq. (7) is no longer useful, since there is no such λ-
independent contour Γ that isolates one eigenvalue from
the rest of the spectrum, for all λ in a vicinity of λc. The
key is to work with both eigenvalues, since we can still
find a λ-independent contour Γ, separating Eλ and E′λ
from the rest of the spectrum (see Fig. 1), as long as λ
stays in a sufficiently small vicinity of λc. We define,

Fm(λ) = (Eλ)m + (E′λ)m, m = 1, 2, . . . . (9)

The main observation is that we can use the Green’s func-
tion to express Fm(λ):

Fm(λ) = Tr

∫
Γ

zm(z −Hλ)−1 dz

2πi
. (10)

Then, as shown in Appendix A, it follows from Eqs. (6)
and (10) that Fm(λ) are analytic functions near and at
λc.

The functions introduced in Eq. (9) provide the follow-
ing representation:

Eλ =
1
2

[
F1(λ) +

√
2F2(λ)− F1(λ)2

]
(11)

E′λ =
1
2

[
F1(λ)−

√
2F2(λ)− F1(λ)2

]
.

Thus, we managed to express the eigenvalues in terms of
the Green’s function alone. The analytic function,

G(λ) ≡ 2F2(λ)− F1(λ)2, (12)
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must have a zero at λc, so its generic behavior near λc is

G(λ) = (λ− λc)Kg(λ), (13)

with K an integer larger or equal to 1 and g(λ) analytic
and non-zero at λc. The cases when K > 2 are very spe-
cial and will not be considered here. Only the following
two possibilities are relevant to us:

G(λ) =
{

(λ− λc)g(λ) (type I)
(λ− λc)2g(λ) (type II), (14)

where g(λ) is analytic and has no zeros in a vicinity of
λc.

For a type I degeneracy, as λ loops around λc, Eλ

becomes E′λ and vice versa. The two eigenvalues are
different branches of a double-valued analytic function,
with a branch point of order 1 at λc:

Eλ = Ec + α(λ− λc)1/2 + . . . . (15)

For a type II degeneracy, both Eλ and E′λ are analytic
near λc.

We consieder now the spectral projectors, Pλ and P ′λ,
associated with Eλ and E′λ, respectively. For λ 6= λc,
they have the following representation:

Pλ =
∫

γ

(z −Hλ)−1 dz

2πi
, (16)

where γ is defined by |z − Eλ| = d, with d small enough
(thus λ dependent) so E′λ lies outside γ (see Fig. 1). P ′λ
has a completely analog representation. We list the fol-
lowing properties:

P 2
λ = Pλ, P ′2λ = P ′λ
PλP

′
λ = P ′λPλ = 0. (17)

For a type I degeneracy, as λ loops around λc, Pλ be-
comes P ′λ and vice versa. Thus, Pλ and P ′λ are differ-
ent branches of a double-valued analytic function, with
branch point of order 1 at λc. Moreover, Pλ must diverge
at λc, for otherwise

lim
λ→λc

Pλ = lim
λ→λc

P ′λ, (18)

which will contradict, for example, PλP
′
λ = 0. To find

out the form of the singularity, we observe that, if ∆Eλ

denotes the difference Eλ − E′λ, then ∆EλPλ has a well
defined limit at λc, which can be seen from the following
representation:

∆EλPλ =
∫

Γ

(z − E′λ)(z −Hλ)−1 dz

2πi
. (19)

Since ∆Eλ ∝ (λ−λc)1/2, we can conclude that the singu-
larity of Pλ is of the form (λ−λc)−1/2. As a parenthesis,
we mention that the total spectral projector,

P (λ) = Pλ + P ′λ, (20)

is analytic near λc, as it can be seen from the represen-
tation

P (λ) =
∫

Γ

(z −Hλ)−1 dz

2πi
, (21)

and that the Green function for λ = λc and z near Ec

has the following structure:

(z −Hλc
)−1 = (z − Ec)−2 lim

λ→λc

∆EλPλ

+(z − Ec)−1P (λc) +R(z), (22)

with R(z) analytic near Ec.
We now turn our attention to the eigenvectors. Since,

for λ 6= λc, Pλ is rank one, it can be written as

Pλ = |ψλ〉〈ψ̄λ|, (23)

with ψλ (ψ̄λ) the eigenvector to the left (right), normal-
ized as

〈ψ̄λ, ψλ〉 = 1. (24)

As explained in Ref. 16, passing from the projector to
the eigenvectors is not a trivial matter, since these vec-
tors are defined up to a phase factor. The question is,
can we choose or define these phases so that no additional
singularities are introduced? We can give a positive an-
swer when there is an anti-unitary transformation, Q,
such that:

H†
λ = QHλQ

−1. (25)

As we shall later see, such Q exists, for example, when
v(x, y, z) = v(x, y,−z). Now fix an arbitrary ψ and ob-
serve that

Pλ =
Pλ|ψ〉〈Qψ|Pλ

〈P †λQψ,Pλψ〉
. (26)

Then, it is natural to think that we can define the left
and right eigenvectors of Hλ as:

|ψλ〉 =
Pλ|ψ〉

〈P †λQψ,Pλψ〉1/2
(27)

and

|ψ̄λ〉 =
P †λQ|ψ〉

〈P †λQψ,Pλψ〉1/2
(28)

Using the properties of Q, we can equivalently write:

|ψλ〉 =
Pλ|ψ〉

〈QPλψ, Pλψ〉1/2
, |ψ̄λ〉 = Q|ψλ〉. (29)

The only problem is that the denominator in Eq. (29)
can be zero. This can happen only for isolated values
of λ for, otherwise, the denominator will be identically
zero. Let λ0 be such value, assumed different from the
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branch point (we can always choose a ψ satisfying this
condition):

〈QPλ0ψ, Pλ0ψ〉 = 0, (30)

and let

Pλ =
∞∑

i=0

(λ− λ0)iPi (31)

be the expansion of Pλ near λ0. Since Pλ is analytic
at λ0, the nominator of Eq. (26) must cancel at λ0. An
expansion of this nominator in powers of λ will show that
this cancelation is equivalent to:

Pi|ψ〉 = 0, for all i < K, (32)

with K an integer larger or equal to 1. Let us assume,
for the beginning, that K = 1, in which case P1|ψ〉 6= 0.
The nominator of Eq. (26) becomes

|Pλψ〉〈Pλψ|Q = (λ−λ0)2|P1ψ〉〈P1ψ|Q+o(λ−λ0)3 (33)

and the denominator

〈QPλψ, Pλψ〉 = (λ−λ0)2〈QP1ψ, P1ψ〉+o(λ−λ0)3. (34)

Although P1|ψ〉 6= 0, we are not automatically guaran-
teed that 〈QP1ψ, P1ψ〉 6= 0. However, for Pλ to be finite
at λ0, this must be so. We can repeat the same arguments
for arbitrary K and the conclusion will be the same:

〈QPλψ, Pλψ〉 = (λ− λ0)2Kg(λ), (35)

with g(λ) analytic and non-zero near λ0. Thus, we can
take the square root in Eq. (29) without introducing a
branch point. We can also see that the denominator and
nominator in Eq. (29) cancel at λ0 with the same power,
so there is no pole at λ0. The conclusion is that ψλ is
analytic at λ0.

There will be, inherently, a branch point at λc, where
ψλ and ψ̄∗λ behave as

ψλ(r) =
c(r)

(λ− λc)1/4
+ d(r) + . . . , (36)

ψ̄∗λ(r) =
c̄(r)

(λ− λc)1/4
+ d̄(r) + . . . (37)

i.e. ψλ and ψ̄∗λ have a branch point of order 3 at λc. If the
operator Q with the above mentioned properties exists,
this is their only singularity near λc.

For a type II degeneracy, Pλ and P ′λ are analytic near
λc. The eigenvectors can be introduce in the same way
as above and, if Q exists, they are analytic functions of
λ.

Analytic deformations. We analyze now what happens
when an analytic potential w is added:

Hλ,γ = Hλ + γw. (38)

By analytic potential we mean that {Hλ,γ}λ,γ∈C is an
analytic family in the sense of Kato, in both λ and γ (see
Appendix B).

For any fixed γ, the isolated, non-degenerate eigenval-
ues ofHλ,γ remain analytic of λ. The interesting question
is what happens with the degeneracies. Suppose that,
at some fixed γ0, there are two isolated, non-degenerate
eigenvalues, Eλ,γ0 and E′λ,γ0

, which become equal at λc.
For λ in a small vicinity of λc and γ in a small vicinity
of γ0, we can define the functions F1,2(λ, γ) and G(λ, γ)
as before, which are now analytic functions in both ar-
guments, (λ, γ), near (λc, γ0).

If at γ0, λc is a type I degeneracy, the only effect of a
variation in γ is a shift of λc. Indeed, since

G(λc, γ0) = 0, ∂λG(λc, γ0) 6= 0, (39)

the analytic implicit function theorem assures us that
there is a unique λc(γ) such that

G(λc(γ), γ) = 0. (40)

Moreover, the zero is simple, i.e. λc(γ) remains a type I
degeneracy. For γ near γ0,

λc(γ) = λc −
∂γG(λc, γ0)
∂λG(λc, γ0)

(γ − γ0) + . . . , (41)

where the dots indicate higher order terms in γ − γ0.
From Eqs. (15) and (36) we readily find:

λc(γ) = λc

[
1− γ − γ0

α

∫
c̄(x)w(x)c(x)dx+ . . .

]
. (42)

If Hλ,γ and Hλ∗,γ have complex conjugate eigenvalues,
then:

G(λ, γ) = G(λ∗, γ)∗. (43)

In this case, if λc is located on the real axis, so it is λc(γ).
If not, then

G(λc(γ), γ) = G(λc(γ)∗, γ) = 0, (44)

which contradicts the uniqueness of λc(γ).
Generically, a type II degeneracy splits into a pair of

type I degeneracies when γ is varied. Indeed, since

G(λc, γ0) = ∂λG(λc, γ0) = ∂γG(λc, γ0) = 0, (45)

the generic structure of G(λ, γ) near (λc, γ0) is:

G(λ, γ) = a(λ−λc)2 +b(λ−λc)(γ−γ0)+c(γ−γ0)2 + . . . .
(46)

Thus, for γ 6= γ0, G(λ, γ) will have, generically, two sim-
ple zeros (type I degeneracies) at:

λ±c (γ) = λc +
γ − γ0

2a

[
−b±

√
b2 − 4ac

]
+ . . . . (47)
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FIG. 2: a) The Riemann surface of E0(λ) is a spiral, which
have been cut along the dotted lines in individual sheets, in-
dexed by n = 0,±1, . . .. The solid dots indicate the type II
degeneracies and the arrows indicate how they pair. b) The
Riemann surface of E(λ) at γ > 0. The empty dots represent
the branch points and the arrows indicate how the Riemann
sheets are connected. In both panels, the thick line shows the
trajectory on the Riemann surface, when λ moves on the unit
circle.

The coefficients a, b and c can be derived from a pertur-
bation expansion of Eqs. (9) and (12), leading to

λ±c (γ) = λc −
γ − γ0

∂λ∆Eλc

×[
Tr

{
(Pλc

− P ′λc
)w

}
±

√
−Tr{Pλc

wP ′λc
w}

]
, (48)

plus higher orders in γ − γ0.
If a type II degeneracy does not split, it remains a type

II degeneracy for all values of γ. This is a consequence
of the fact that, if two analytic functions are equal on an
interval, they are equal on their entire domain.

We now summarize the findings of this Section. The
isolated, non-degenerate eigenvalues of Hλ are analytic of
λ. Double degeneracies can be of different kinds. Type I
degeneracies are equivalent to branch points. Near such
degeneracies, Eλ behaves as a square root. Type I de-
generacies are robust to analytic perturbations: as long
as they stay isolated, variations of the periodic poten-
tial cannot destroy or create but only shift them. At
type II degeneracies, the eigenvalues are analytic. Type
II degeneracies are unstable to analytic perturbations:
generically, they split into two type I degeneracies. The
other types of degeneracies were considered rare and not
discussed here. The analytic structure of the spectral
projectors can be automatically deduced from the ana-
lytic structure of E(λ). If there exists an anti-unitary
transformation, Q, such that H†

λ = QHλQ
−1, then the

phase of the eigenvectors can be chosen in a canonical
way and their analytic structure follows automatically
from the analytic structure of E(λ). If such Q does not

3
4

4n

1

1 2

23
3n

2n

1n

FIG. 3: An equivalent representation of the Riemann surface
of Fig. 2b. Each sheet corresponds now to one energy band.
The thick line shows the trajectory on the Riemann surface
when λ encircles the origin at a small radius.

exists, the eigenvectors will still have singularities of the
type (λ − λc)−1/4 at the branch points of Eλ but the
present analysis does not rule the existence of additional
singularities.

A similar analysis can be developed for higher degen-
eracies. For a triple degeneracy, for example, we will
have to consider the functions Fm(λ), with m = 1, 2, 3.
However, we regard higher degeneracies as non-generic,
i.e. more rare than simple degeneracies and will not be
considered in this paper.

III. STRICTLY 1D SYSTEMS

We apply here the abstract formalism to an already
well studied problem: the analytic structure of Bloch
functions in 1D, i.e the wave functions of the following
Hamiltonian:

H = −∂2
x + v(x), v(x+ b) = v(x), x ∈ R. (49)

According to Bloch theorem, finding the wave functions
and their corresponding energies is equivalent to studying
the following analytic family of Hamiltonians:17

Hλ = −
(
∂2

x

)
λ

+ v(x), x ∈ [0, b], (50)

defined in the Hilbert space of square integrable functions
over the interval [0, b]. The index λ refers to the boundary
conditions

ψ(b) = λψ(0), ψ′(b) = λψ′(0), (51)

which define the domain of Hλ. The energy spectrum
of H consists of all eigenvalues of Hλ, when λ sweeps
continuously the unit circle. If ψn,λ(x) is the normalized
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FIG. 4: µ(E − Ej) and µ(E − Ei) as functions of E, for a
typical Krammers function µ. The solutions to Eq. (69) are
given by the intersection points A, B, C, . . . .

eigenvector of Hλ corresponding to the eigenvalue En(λ),
then ψn,λ(x) coincides on [0, b] with the Bloch wave of the
same energy. If we extend these functions to the entire
real axis by using

ψn,λ(x+mb) = λmψn,λ(x), x ∈ [0, b], (52)

they will automatically satisfy the standard normaliza-
tion, ∫ ∞

−∞
ψn,1/λ(x)ψn,λ′(x)dx = 2πiλδ(λ− λ′). (53)

Here are a few elementary properties of Hλ. Hλ is an
analytic family in the sense of Kato, for all λ ∈ C. Hλ

is self-adjoint if and only if λ is on the unit circle. In
general, H1/λ∗ is the adjoint of Hλ. If C is the com-
plex conjugation, CHλC = Hλ∗ . Thus, Hλ and Hλ∗

have complex conjugated eigenvalues and Hλ and H1/λ

have identical eigenvalues. This tells us that the analytic
structure is invariant to λ → 1/λ and λ → λ∗. Because
of these symmetries, it is sufficient to consider only the
domain |λ| ≤ 1. For λ not necessarily on the unit circle,
the spectral projector on En,λ is given by

Pn,λ(x, y) = ψn,λ(x)ψn,1/λ(y). (54)

We consider now the following class of Hamiltonians

Hλ,γ = −
(
∂2

x

)
λ

+ γv(x), v(x+ b) = v(x), (55)

and we adiabatically switch γ from zero to one. As it
is shown in Appendix B, potentials v(x) with square in-
tegrable singularities18 are analytic. Thus, the theory
developed in the previous Section can be applied to a
large class of potentials.

The eigenvalues and the associated eigenvectors of
Hλ,0 are given by:

E0
n(λ) = b−2 (2nπi+ lnλ)2 ,

ψ0
n,λ(x) = b−1/2e(2nπi+ln λ)x/b. (56)

They are the different branches of the following multi-
valued analytic functions:

E0(λ) = b−2 (lnλ)2 , ψ0
λ(x) = b−1/2λx/b. (57)

The Riemann surface of E0(λ) is shown in Fig. 2a. There
are only type II degeneracies and they occur at λ = ±1:

E0
n(λ = 1) = E0

−n(λ = 1),

E0
n(λ = −1) = E0

−n+1(λ = −1). (58)

If we assume that all the gaps open when the periodic po-
tential is turned on, then all type II degeneracies split into
pairs of type I degeneracies, λc(γ) and 1/λc(γ), located
on the real axis. λc(γ) and 1/λc(γ) are branch points
for E(λ), which connect different sheets of the original
Riemann surface (see Fig. 2b). Since they are constraint
on the real axis, the trajectory of different branch points
cannot intersect (they stay on the same Riemann sheet),
i.e. the branch points remain isolated as γ is increased.
Thus, as the previous Section showed, they move ana-
lytically as we increase the coupling constant and we can
conclude that the analytic structure cannot change, qual-
itatively, as we increase γ.

For γ = 0, we move from one sheet to another as λ
moves continuously on the unit circle, as Fig. 2a shows.
The situation is different for γ 6= 0 (see Fig. 2b): when λ
completes one loop on the unit circle, we end up on the
same point of the Riemann surface as where we started.
We can then re-cut the Riemann surface, so that we stay
on the same sheet when λ moves on the unit circle (see
Fig. 3).

Thus, we rediscovered one of the main conclusions of
Ref. 1. The eigenvalues En(λ) are different branches of
a multi-valued analytic function E(λ) with a Riemann
surface shown in Fig. 3: there are branch points or order
1 at λ1, λ2, . . ., and an essential singularity at 0. For γ
small, Eq. (48) leads to

λn = (−1)n−1

[
1− b∆n

4
√
εn

]
, (59)

where ∆n is the n-th energy gap and εn is the energy in
the middle of the gap.

If v(x) = v(−x), we can construct Q as Q = CS,
where C is the complex conjugation and S is the inver-
sion relative to x = 0. Thus, for systems with inver-
sion symmetry, we can also conclude at once that the
only branch points of the Bloch functions are λ1, λ2, . . . ,
which are of order 3 (see Eqs. (36)). The present analy-
sis actually adds something new to the results of Ref. 1,
where the author studied two particular phase choices
of the Bloch functions, namely, those imposed by ψλ(x)
(|λ| = 1) being real at the points of inversion symme-
try, x = 0 and x = b/2. The author warns that other
choices can introduce additional singularities and thus
reduce the exponential localization of the corresponding
Wannier functions. A frequently used method of gener-
ating Wannier functions localized near an arbitrary x0 is
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FIG. 5: a) Ej
nj

(λ) and Ei
ni

(λ) as functions of real kz (λ =

eikzb) for case A. The dashed lines shows the bands after
the non-separable potential was turned on. b) The Riemann
sheets of Ej

nj
(λ) and Ei

ni
(λ) and the type II degeneracies

(solid circles), with arrows indicating how they pair (case A).
c) The Riemann surface at γ > 0. The empty circles represent
the branch points and the arrow indicate how they connect
different points of the Riemann surface.

to impose Imψλ(x0) = 0. Since such a phase choice cor-
responds to choosing ψ(x) = δ(x−x0) in Eq. (29), we can
automatically conclude that it does not introduce addi-
tional singularities and that the exponential localization
of the corresponding Wannier functions is maximal.

IV. LINEAR MOLECULAR CHAINS

We specialize our discussion to 3D and consider Hamil-
tonians of the form:

H = −∇2 + V (r), V (x, y, z + b) = V (x, y, z). (60)

Using the Bloch theorem, we can find the spectrum and
the wave functions of H by studying the following family
of analytic Hamiltonians:

Hλ = −∂2
x − ∂2

y − (∂z)2λ + V (r), z ∈ [0, b], (61)

with the boundary conditions

ψ(x, y, b) = λψ(x, y, 0) (62)
∂zψ(x, y, b) = λ∂zψ(x, y, 0).

in

1in

jn (+)

1jn

(-)

FIG. 6: The Riemann sheets of E±(λ) (case A). The thick line
shows a trajectory on the Riemann surface when λ completes
a loop around the origin.

The general facts about Hλ listed in the previous Section
are still valid. Again, the analytic structure is invariant
to λ→ λ∗ and λ→ λ−1 so we can and shall restrict the
domain of λ to the unit disk, |λ| ≤ 1.

We apply the analytic deformation strategy, as we did
for the 1D case. We start from a Hamiltonian with known
global analytic structure. For this we consider a separa-
ble potential,

H0 = −∇2 + v⊥(x, y) + v(z), v(z + b) = v(z), (63)

and then adiabatically introduce the non-separable part
of the Hamiltonian,

Hγ = H0 + γw(r), w(x, y, z + b) = w(x, y, z). (64)

We assume, for simplicity, that

H⊥ ≡ −∂2
x − ∂2

y + v⊥(x, y) (65)

has only discrete, non-degenerate spectrum. For this, we
will have to constrain x and y in a finite region, which
can be arbitrarily large. To be specific, we assume x, y ∈
[0, b′] and impose periodic boundary conditions. This
is actually the most widely used approach in numerical
calculations involving linear chains. We also assume that
w(r) has square integrable singularities, which guaranties
that it is an analytic potential (see Appendix B).

Let φj(x, y), Ej and ψn,λ(z), En(λ) denote the eigen-
vectors and the corresponding eigenvalues of H⊥ and of

H‖λ ≡ −(∂z)2λ + v(z), (66)

respectively. Then the eigenvectors and the correspond-
ing eigenvalues of H0 are given by:

Ψj
n,λ(x, y, z) = φj(x, y)ψn,λ(z), (67)

Ej
n(λ) = Ej + En(λ).
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FIG. 7: a) Ej
nj

(λ) and Ei
ni

(λ) as a function of real kz

(λ = eikzb) for case A. The dashed lines shows the bands
after the non-separable potential was turned on. b) The Rie-
mann sheets of Ej

nj
(λ) and Ei

ni
(λ) and the type II degenera-

cies, with arrows indicating how they pair (case C). c) The
Riemann surface at γ > 0. The empty circles represent the
branch points and the arrow indicate how they connect dif-
ferent points of the Riemann surface.

The global analytic structure of Ej
n(λ) is known: for j

fixed, they are different branches of a multi-valued ana-
lytic function Ej(λ), with a Riemann surface as in Fig. 3.
We now look for type II degeneracies:

E = Ej + Enj
(λ) = Ei + Eni

(λ), (68)

which can occur only for λ on the unit circle or on the
real axis but away from the branch cuts. Indeed, if µ(E)
denotes the Krammers function for H‖λ, then Eq. (68) is
equivalent to

µ(E − Ej) = µ(E − Ei). (69)

In Ref. 1, it was shown that the equation dµ/dE = 0 has
solutions only for E on the real axis. Using exactly the
same arguments, one can show that all the solutions of
Eq. (69) are on the real axis (see Fig. 4). Given that

λ2 − 2µ(E − Ej)λ+ 1 = 0, (70)

with µ(E − Ej) real, it follows that λ must lie either
on the unit circle or on the real axis (away from the

jn

in

(+)

1in

1jn

(-)

FIG. 8: The Riemann sheets of E±(λ) (case C). The thick
lines shows a trajectory on the Riemann surface when λ com-
pletes a loop around the origin.

branch cuts). For example, the solutions A and C in
Fig. 4 have λ on the unit circle, while the solution B
has λ on the real axis, inside the unit circle. We will
refer to this three situations as cases A, B and C. Since
the analytic structure is symmetric to λ → λ∗, the type
II degeneracies on the unit circle always come in pair,
symmetric to the real axis.

We consider first the case A, which corresponds to the
case when two bands intersect as in Fig. 5a. Fig. 5b
shows the Riemann sheets corresponding to these two
bands. There are two type II degeneracies, marked with
solid circles, on the unit circle and symmetric to the real
axis. We assume for the beginning that these are the only
type II degeneracies that split when the non-separable
potential is turned on. When the type II degeneracies
split, avoided crossings occur and the bands split (see
the dashed lines in Fig. 5a). We denote the upper/lower
band by E±(λ). When the non-separable part of the po-
tential is turned on, the already existing branch points
shift along the real axis. For small γ, the shifts can be
calculated from Eq. (42). In addition, two type I degen-
eracies appear (and another two outside the unit disk),
introducing branch points that connect the original Rie-
mann sheets. The connected sheets are shown in Fig. 5c,
where we can also see that, when λ makes a complete
loop on the unit circle, we end up at the same point as
where we started. This means we can re-cut the two,
now connected, sheets so that we stay on the same sheet
when λ moves on the unit circle. These new sheets are
shown in Fig. 6 and correspond now to the upper/lower
bands E±(λ).

We consider now the case C, which corresponds to a
situation when two bands intersect as in Fig. 7a. When
the type II degeneracies split, the bands split in E±(λ)
and a gap appears. This is the only qualitative differ-
ence between cases A and C. The Riemann surfaces, be-
fore and after the non-separable potential was turned on,
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FIG. 9: a) The band Ej
nj

(λ) intersects with Ei
ni

(λ) and

Ek
nk

(λ). The dashed lines shows the bands at γ > 0. b) The
Riemann sheets for these bands and the type II degeneracies,
with arrows indicating how they pair. c) The Riemann sheets
at γ > 0.

are shown in Figs. 5b and 5c. Again, we can re-cut the
Riemann surface so one sheet corresponds to one band.
These new Riemann sheets are shown in Fig. 8.

The case B goes completely analogous. The qualitative
differences are that the branch points split from the real
axis and we don’t have to re-cut the Riemann surface.

We analyze now a more involved possibility, namely
when we have more type II degeneracies on the same
Riemann sheet:

Ej
nj

(λ) = Ei
ni

(λ), Ej
nj

(λ′) = Ek
nk

(λ′). (71)

Such a situation appears when, for example, we have
bands crossing as in Fig. 9a. The Riemann sheets for
these bands and the type II degeneracies are shown in
Fig. 9b. When the perturbation is turned on, the type
II degeneracies split in pairs of type I degeneracies, in-
troducing branch points connecting the original sheets as
shown in Fig. 9c. Again, when λ completes one loop on
the unit circle, we end up at the same point of the Rie-
mann surface as where we started. We can then re-cut
the Riemann surface such that we stay on the same sheet
when λ moves on the unit circle (see Fig. 10). The only
new element is a Riemann sheet (corresponding to the
middle band) with 6 branch points.

The last situation we consider is the emergence of a

in
1kn

kn

jn

1jn
1in

FIG. 10: The Riemann sheets corresponding to the three
bands (dashed lines) of Fig. 9a, for γ > 0.

complex band. Suppose that H has a symmetry with an
irreducible representation of dimension 2. Suppose that
this symmetry is also present for the Bloch Hamiltonian
at λ = 1. In this case, the separable Hamiltonian will
have bands that touch like in Fig. 11a. Such situations
are no longer accidental. In this case, the function G(λ)
introduced in Eq. (12) behaves as

G(λ) = (λ− 1)4g(λ), (72)

with g(λ) non-zero at λ = 1. Following our previous no-
tation, this will be a type IV degeneracy (see Fig. 11b).
When the non-separable potential is turned on, the de-
generacy at λ = 1 cannot be lifted because of the sym-
metry. This means G(λ) must continue to have a zero at
λ = 1. Generically, the order of this zero is reduced to 2
and two other zero’s split, symmetric relative to the unit
circle. In other words, the type IV degeneracy splits into
a pair of type I degeneracies plus a type II degeneracy.
E(λ) remains analytic at λ = 0, but now the two bands
are entangled, in the sense that we need to loop twice on
the unit circle to return back to the same point of the
Riemann surface (see Fig. 11c) and we can no longer cut
the Riemann surface so that we stay on the same sheet
when λ moves on the unit circle. A complex band can
involve an arbitrary number of bands. For example, the
new bands shown with dashed lines in Fig. 11a can en-
tangle with other bands at λ = −1, through the same
mechanism, and so on. Rather than cutting the Rie-
mann surface in individual sheets, we think it is much
more convenient to think of a complex band as living on
a surface made of all the individual sheets that are en-
tangled through the mechanism described in Fig. 11. We
note that the complex band can split in simple bands as
soon as the symmetry is broken.

We can continue with further examples but we can al-
ready draw our main conclusions. The eigenvalues of
Hλ,γ are different branches of a multi-valued analytic
function E(λ). The Riemann surface of E(λ) can be cut
in sub-surfaces, such that each sub-surface describes one
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band. For a simple band, this subsurface consists of the
entire unit disk, with cuts obtained by connecting a fi-
nite number of branch points to the essential singularity
at λ = 0. For a complex band, the sub-surface consists
of a finite number of unit disks that are connected as in
Fig. 11a. On this sub-surface we can have an arbitrary
number of branch points, that connect this sub-surface
to the rest of the Riemann surface. For both simple and
complex bands, the branch points are symmetric relative
to the real axis and, generically, they are of order 1 (“ac-
cidental” higher degeneracies can lead to branch points
of higher order).

As we analytically deform the Hamiltonian, the un-
split type II degeneracies stay on the unit circle or real
axis and the positions of the branch points shift smoothly.
In contradistinction to the 1D case, the branch points can
move from one sheet to another and their trajectories
can intersect. When two of them intersect, they either
become branch points of order 2 or recombine into a type
II degeneracy. Higher order branch points are not stable,
in the sense that small perturbations split them into two
or more branch points of order 1.

The Riemann surface of the spectral projector Pλ is
the same as for E(λ). When the inversion symmetry is
present, the analytic structure of the Bloch functions can
also be completely determined from the analytic struc-
ture of E(λ): the Riemann sheets of ψλ(x) are the same
as for E(λ), but the branch points are generically of order
3 (see Eq. (36)).

V. THE GREEN’S FUNCTION

With the analytic structure at hand, it is a simple exer-
cise to find a compact expression for the Green’s function
GE ≡ (E − H)−1, which is a generalization of the well
known Sturm-Liouville formula in 1D. Indeed, using the
eigenfunction expansion,

GE(r, r′) =
∑

n

∫
|λ|=1

ψn,1/λ(r)ψn,λ(r′)
E − En(λ)

dλ

2πiλ
, (73)

where the sum goes over all unit disks of the Riemann
surface. Changing the direction of integration if neces-
sary, the above expression can also be written as:

GE(r, r′) =
∑

n

∫
|λ|=1

ψn,1/λ(r<)ψn,λ(r>)
E − En(λ)

dλ

2πiλ
, (74)

where r> = r if z > z′, r> = r′ if z′ > z, and similarly
for r<. The integrand (including the summation over
n) is analytic at the branch points. Also, for λ → 0,
En(λ) → ∞ and ψn,1/λ(r<)ψn,λ(r>) ∝ λ|z−z′|, so there
is no singularity at λ = 0. Then, apart from poles, which
occur whenever En(λ) = E, the integrand is analytic.
Using the residue theorem, we conclude

GE(r, r′) =
∑

j

ψ1/λj
(r<)ψλj

(r>)
λj∂λE(λj)

, (75)

FIG. 11: a) Two bands, Ei
ni

(λ) and Ej
nj

(λ), touch tangen-

tially at kz = 0 (λ = 1). The dashed lines show the bands
after the non-separable potential was turned on. b) The Rie-
mann sheets for these bands and the type IV degeneracy (solid
circle). c) The Riemann sheets after the non-separable poten-
tial was turned on.

where the sum goes over all λj on the Riemann surface
such that E(λj) = E. This expression is valid for sys-
tems with and without inversion symmetry, since it is the
projector, not the individual Bloch functions, that enters
into the above equations. Eq. (75) is closely related to the
surface adapted expression of the bulk Green’s function
derived in Ref. 19.

VI. THE DENSITY MATRIX

As a simple application, we derive the asymptotic be-
havior of the density matrix n(r, r′) for large |z − z′|,
when there is an insulating gap between the occupied
and un-occupied states. We start from

n(r, r′) =
1

2πi

∫
C
GE(r, r′)dE, (76)

where C is a contour in the complex energy plane sur-
rounding the energies of the occupied states. Using
Eq. (75), we readily obtain

n(r, r′) =
1

2πi

∫
γ

ψ1/λ(r<)ψλ(r>)λ−1dλ, (77)
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where γ is the pre-image of the contour C on the Riemann
surface of E(λ). We now restrict r and r′ to the first unit
cell and calculate the asymptotic form of n(r, r′ +mbez)
for large m. Using the fundamental property of the Bloch
functions, we have

n(r, r′ +mbez) =
1

2πi

∫
γ

ψ1/λ(r<)ψλ(r>)λm−1dλ. (78)

We deform the contour γ on the Riemann surface such
that the distance from its points to the unit circle is max-
imum. In this way, we enforced the fastest decay, with
respect to m, of the integrand. This optimal contour,
will surround (infinitely tide) the branch cuts enclosed
by the original contour. The asymptotic behavior comes
from the vicinity of the branch points λc and λ∗c (they
always come in pair) that are the closest to the unit cir-
cle. Using the behavior of the Bloch functions near the
branch points, we find

n→ Re c̄(r)c(r′)λm
c

∫
(λ/λc)m−1d(λ/λc)
π(1− λ/λc)1/2

, (79)

where the integral is taken along the branch cut of λc.
This integral is equal to 2

πB(m, 1/2), with B the Beta
function. We conclude:

n(r, r′ +mbez) →
1
π
B(m, 1/2)Re[c̄(r)c(r′)λm

c ]. (80)

Again, this expression holds for systems with and with-
out inversion symmetry, since it is the projector, not the
individual Bloch functions, that enters in the above equa-
tions.

VII. CONCLUSIONS

First, we want to point out that the formalism pre-
sented here can be also applied to cubic crystals, to de-
rive the analytic structure of the Bloch functions with
respect to kz, while keeping kx and ky fixed. Prelimi-
nary results and several applications have been already
reported in Ref. 20.

We come now to the question of how to locate the
branch points for a real system. In a straightforward ap-
proach, one will have to locate those λ inside the unit
disk where Hλ displays degeneracies. Although such a
program can be, at least in principle, carried out nu-
merically, there are few chances of success without clues
of where these points are located. This is because, in
more than one dimension, these degeneracies occur, in
general, at complex energies. One possible solution is to
follow the lines presented in this paper: locate the type II
degeneracies for a separable potential vs, chosen as close
to the real potential v as possible, and follow the trajec-
tory of the branch points as the potential is adiabatically
changed vγ = vs + γ(v − vs), from γ = 0 to 1. We plan
to complete such a program in the near future.

The analytic structure of the band energies and Bloch
functions of 3D crystals, viewed as functions of several
variables kx, ky and kz is a much more complex problem,
with qualitatively new aspects. It will be interesting to
see if this problem can be tackled by the same analytic
deformation technique.

The main part of this work was completed while
the author was visiting Department of Physics at UC
Santa Barbara. This work was part of the “Near-
sightedness” project, initiated and supervised by Prof.
Walter Kohn and was supported by Grants No. NSF-
DMR03-13980, NSF-DMR04-27188 and DOE-DE-FG02-
04ER46130. The complex bands were investigated while
the author was a fellow of the Princeton Center for Com-
plex Materials.

VIII. APPENDIX A

We prove here that if {Hλ}λ∈C is an analytic family in
the sense of Kato,15 then Fm(λ) defined in Eq. (9) are an-
alytic functions. If Rz(λ) ≡ (z −Hλ)−1, by definition,15
the limit

lim
λ′→λ

Rz(λ)−Rz(λ′)
λ− λ′

(81)

exist in the norm topology, for any λ ∈ C and z ∈ ρ(Hλ).
We denote this limit by ∂λRz(λ). Consider now an arbi-
trary λ0 ∈ C, and a contour Γ ∈ ρ(Hλ0) surrounding N
eigenvalues of Hλ0 . For λ in a small neighborhood of λ0,
Γ ∈ ρ(Hλ) and we can define

F̂m(λ) ≡
∫

Γ

zmRz(λ)
dz

2πi
, (82)

and Fm(λ) = TrF̂m(λ). F̂m(λ) is an analytic family of
rank N operators for λ in a small neighborhood of λ0.
Indeed, if

F̂ ′m(λ) ≡
∫

Γ

zm∂λRz(λ)
dz

2πi
, (83)

then ∥∥∥∥∥ F̂m(λ)− F̂m(λ′)
λ− λ′

− F̂ ′m(λ)

∥∥∥∥∥ → 0 (84)

as λ′ → λ, since it can be bounded by∫
Γ

|z|m
∥∥∥∥Rz(λ)−Rz(λ′)

λ− λ′
− ∂λRz(λ)

∥∥∥∥ |dz|2π
. (85)

This means the limit

lim
λ′→λ

F̂m(λ)− F̂m(λ′)
λ− λ′

(86)

exists and is equal to F̂ ′m(λ). Since F̂ ′m(λ) is the difference
of rank N operators, it is at most rank 2N . In particular,
|TrF̂ ′m(λ)| <∞. Then∣∣∣∣Fm(λ)− Fm(λ′)

λ− λ′
− TrF̂ ′m(λ)

∣∣∣∣ → 0 (87)
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as λ′ → λ, since∣∣∣∣∣Tr
[
F̂m(λ)− F̂m(λ′)

λ− λ′
− F̂ ′m(λ)

]∣∣∣∣∣
≤ 4N

∥∥∥∥∥ F̂m(λ)− F̂m(λ′)
λ− λ′

− F̂ ′m(λ)

∥∥∥∥∥ , (88)

and Eq. (87) follows from Eq. (84). Thus, the limit

lim
λ′→λ

Fm(λ)− Fm(λ′)
λ− λ′

(89)

exists and is equal to TrF̂ ′m(λ).

IX. APPENDIX B

We discuss here the analytic perturbations for linear
molecular chains. As we did in the main text, we con-
strain x and y in finite intervals. The Bloch functions are
determined by the following Hamiltonian:

Hλ,γ = −∆λ + γw, x, y ∈ [0, b′] and z ∈ [0, b], (90)

where ∆λ is the Laplace operator with periodic bound-
aries in x and y and the usual Bloch conditions in z. We
show that if

‖w‖L2 ≡
[∫

w(r)2dr
]1/2

<∞, (91)

then Hλ,γ is an analytic family for all γ ∈ C. For this we
need the following technical result.

Proposition. Suppose w satisfies Eq. (91). Then, for a
positive and sufficiently large, there exists εa such that
lim

a→∞
εa = 0 and:

‖wf‖L2 ≤ εa‖(Hλ,0 + a)f‖L2 , (92)

for any f in the domain of Hλ,0.
Now, pick an arbitrary γ0, let z ∈ ρ(Hλ,γ0) and de-

note dz = ‖(Hλ,γ0 − z)−1‖ < ∞, where ‖ ‖ denotes the
operator norm. Since

(1− εa|γ0|)‖wf‖L2 ≤ εa‖(Hλ,γ0 + a)f‖L2 , (93)

for any f in the domain of Hλ,0, taking a sufficiently
large, we obtain:

‖w(Hλ,γ0 − z)−1‖ ≤ εa[1 + |z + a|dz]
1− εa|γ0|

<∞. (94)

If M denotes the right hand side of the above equation,
then (Hλ,γ−z)−1 is bounded for |γ−γ0| < M−1 and has
the following norm convergent expansion:

(Hλ,γ − z)−1 = (Hλ,γ0 − z)−1

×
∞∑

n=0

(γ − γ0)n[w(Hλ,γ0 − z)−1]n. (95)

Thus, (Hλ,γ − z)−1 is analytic at the arbitrarily chosen
γ0.

We now give the proof of the proposition. For f in the
domain ofHλ,0, let g = (Hλ,0+a)f . IfGλ = (Hλ,0+a)−1,
we have

f(r) =
∫
Gλ(r, r′; a)g(r′)dr′ (96)

and Schwartz inequality gives (‖f‖L∞ ≡ sup
r
|f(r)|)

‖f‖L∞ ≤ sup
r

[∫
|Gλ(r, r′; a)|2dr′

]1/2

‖g‖L2 . (97)

If we denote

αa =
[∫

|Gλ(r, r′; a)|2dr′
]1/2

, (98)

with the aid of Eq. (97), we obtain:

‖wf‖L2 ≤ αa‖w‖L2‖(Hλ,0 + a)f‖L2 , (99)

i.e. Eq. (92), if we identify εa ≡ αa‖w‖L2 . We remark
that αa defined in Eq. (98) is optimal, in the sense that
there are f ′s when we do have equality in Eq. (99). It
remains to show that lima→∞ αa = 0.

If G0 = (−∆+a)−1, with ∆ the Laplace operator over
the entire R3, then we have the following representation:

Gλ(r, r′; a) =
∑
R∈Γ

λ−nzG0(r− r′ + R; a), (100)

where the sum goes over all points of the lattice Γ defined
by R = (nxb

′, nyb
′, nzb). Since G0 is real and positive, we

can readily see that |Gλ(r, r′; a)| ≤ G|λ|(r, r′; a). More-
over,∫

G|λ|(r, r′; a)2dr′ = (H|λ|,0 + a)−2(r, r), (101)

and we have the following representation:

(H|λ|,0 + a)−2(r, r) =
∑
R∈Γ

|λ|−nzC0(R; a), (102)

where C0 = (−∆+a)−2. C0 can be explicitly calculated,
leading to:

αa ≤

[∑
R∈Γ

|λ|−nz
e−

√
a|R|

2π
√
a

]1/2

, (103)

with equality for λ real and positive. The right hand side
is finite for a sufficiently large and goes to zero as a→∞.
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