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Abstract

A uniqueness theorem is proven for the problem of the recovery of a complex valued
compactly supported 2-D function from the modulus of its Fourier transform. An
application to the phase problem in optics is discussed.

1 Introduction

Let Ω ⊂ R2 be a bounded domain and f (ξ, η) ∈ C2
(
Ω
)

be a complex valued function.
Consider its Fourier transform

F (x, y) =

∫∫
Ω

f (ξ, η) eixξeiyηdξdη, (x, y) ∈ R2. (1.1)

Let
G(x, y) = |F (x, y)|2 , (x, y) ∈ R2. (1.2)

We are interested in the question of the uniqueness of the following
Problem. Given the function G(x, y), determine the function f (ξ, η) .
The right hand side of (1.1) can often be interpreted as an optical signal whose amplitude

and phase are |F (x, y)| and arg (F (x, y)) respectively, see, e.g., [2]. This problem is also
called the phase problem in optics (PPO) meaning that only the amplitude of such an optical
signal is measured. The latter reflects the fact that it is often impossible to measure the
phase in optics, except of the case when the so-called “reference” signal is present (e.g., the
case of holography [18]), see, e.g., [3]-[9], [11]-[16], [19], and [20].
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We assume that Ω = (0, 1)× (0, 1) is a square and the function f (ξ, η) has the form

f (ξ, η) = exp [iϕ (ξ, η)] , (1.3)

where the real valued function ϕ ∈ C4
(
Ω
)
. Let Γ be the boundary of the square Ω and δ

be a small positive number. Denote

Ωδ (Γ) = {(ξ, η) ∈ Ω : dist [(ξ, η) ,Γ] < δ} ,

where dist [(ξ, η) ,Γ] is the Hausdorf distance between the point (ξ, η) and Γ. Hence, the
subdomain Ωδ (Γ) ⊂ Ω is a small neighborhood of the boundary Γ. The following uniqueness
theorem is the main result of this paper

Theorem 1. Assume that two functions f1 (ξ, η) = exp [iϕ1 (ξ, η)] and f2 (ξ, η) =
exp [iϕ2 (ξ, η)] of the form (1.3) are solutions of the equation (1.2) with real valued func-
tions ϕ1, ϕ2 ∈ C4

(
Ω
)

satisfying conditions (1.4) and (1.5), where

ϕ (1− ξ, η) = ϕ (ξ, η) ,∀ (ξ, η) ∈ Ω, (1.4)

ϕ (ξ, 1− η) = ϕ (ξ, η) ,∀ (ξ, η) ∈ Ω. (1.5)

Also, assume that either

ϕjξ(0, 0) > 0 and ϕjη(0, 0) > 0 for j = 1, 2 (1.6a)

or
ϕjξ(0, 0) < 0 and ϕjη(0, 0) < 0 for j = 1, 2. (1.6b)

In addition, let ϕ1 (0, 0) = ϕ2 (0, 0) = 0 and both functions ϕ1 (ξ, η) and ϕ2 (ξ, η) are analytic
in a small neighborhood Ωδ (Γ) of the boundary Γ of the domain Ω as functions of two real
variables ξ, η. Then ϕ1 (ξ, η) = ϕ2 (ξ, η) in Ω.

Remarks. a. We need conditions (1.4) and (1.5) for proofs of lemmata 2 and 7. We
need conditions (1.6a,b) for the proof of Lemma 2, and, in a weaker form for the proof of
Lemma 7. The condition of the analyticity of functions ϕ1 (ξ, η) and ϕ2 (ξ, η) in Ωδ (Γ) can
be replaced with the assumption that ϕ1 (ξ, η) = ϕ2 (ξ, η) in Ωδ (Γ) . Such an assumption is
often acceptable in the field of inverse problems. It should be pointed out that Lemma 2
does not guarantee the uniqueness in the entire domain Ω. Now, if one would assume a priori
that ϕ1 (ξ, η) = ϕ2 (ξ, η) in Ωδ (Γ) (thus focusing one the “search” of the function ϕ (ξ, η) in
the “major part” Ω�Ωδ (Γ) of the domain Ω), then it would be sufficient for the proof of
Lemma 7 to replace (1.6a,b) with ϕξ(0, 0) 6= 0, see (3.36) and (3.37).

b. To explain the assumption ϕ1 (0, 0) = ϕ2 (0, 0) = 0, we note that if the function
f (ξ, η) is a solution of the equation (1.2), then functions f (ξ, η) eic and f (−ξ,−η) eic with
an arbitrary real constant c are also solutions of this equation. Throughout the paper f
denotes the complex conjugation. Hence, Theorem 1 can be reformulated by taking into
account functions ϕ (ξ, η) + c and −ϕ (ξ, η) + c, along with the function ϕ (ξ, η) .
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Throughout the paper we assume that conditions of Theorem 1 are satisfied. Everywhere
below j = 1, 2. Denote

Fj(x, y) =

∫∫
Ω

fj (ξ, η) e−ixξe−iyηdξdη, (x, y) ∈ R2, (1.7)

Gj(x, y) = |Fj(x, y)|2 , (1.8)

where fj (ξ, η) = exp
(
iϕj (ξ, η)

)
. So, we need to prove that the equality

G1(x, y) = G2(x, y) in R2 (1.9)

implies that f1 (ξ, η) = f2 (ξ, η) in Ω.
The form (1.3) is chosen for two reasons. First of all, if both functions |f (ξ, η)| and

arg [f (ξ, η)] would be unknown simultaneously, then (1.2) would be one equation with two
unknown functions. It is unlikely that a uniqueness result might be proven for such an
equation without some stringent additional assumptions. Another indication of this is an
example of the non-uniqueness in section 3. Second, the representation (1.3) is quite accept-
able in optics, see, e.g., [6], [12] and [13]. Derivations in these references are similar and,
briefly, are as follows. Suppose that the plane {x3 = 0} in the space R3 = {(x1, x2, x3)} is an
opaque sheet from which an aperture Ω is cut off. Suppose that a phase screen S is placed in
the aperture Ω. The “phase screen” means a thin lens which changes only the phase of the
optical signal transmitted through it, but it does not change its amplitude. For each point
(x1, x2, 0) ∈ Ω consider the intersection of the straight line L (x1, x2) orthogonal to the plane
{x3 = 0} with S, i.e., consider L (x1, x2)∩ S. Let ψ (x1, x2) and n(x1, x2) be respectively the
thickness and the refraction index of this intersection. Suppose, a plane wave u0 = exp (ikx3)
propagates in the half-space {x3 < 0} . Consider the positive half-space {x3 > 0} . Then the
function F (x, y) of the form (1.1), (1.3) with ϕ (x1, x2) := k [n(x1, x2)− 1]ψ (x1, x2) is ap-
proximately proportional to the wave field in the so-called Fraunhofer zone [2], i.e., with
kx3 >> 1. Hence, our problem can be viewed as an inverse problem of the determination of
the function ϕ (x1, x2) characterizing the phase screen from the amplitude of the scattered
field measured far away from that screen. In addition, see, e.g., the paper [7], where the
function ϕ (x1, x2) is called “the aberration function (phase errors)” and its reconstruction
seems to be the subject of the main interest of [7].

The function F (x, y) can be continued in the complex plane C as an entire analytic
function with respect to any of two variables x or y, while another one is kept real. It follows
from the Paley-Wiener theorem [10] that the resulting function F (z, y) will be an entire
analytic function of the first order of the variable z ∈ C. The major difference between
1-D and 2-D cases is that, unlike the 1-D case zeros of an analytic function of two or more
complex variables are not necessarily isolated. For this reason, we consider below the analytic
continuation of F (x, y) with respect to x only and keep y ∈ R. Thus, we consider the function
F (z, y), z ∈ C, y ∈ R. The example of the non-uniqueness in section 3 indicates that our
main effort should be focused on the proof that complex zeros of the function F (z, y) can
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be determined uniquely for each y ∈ (a, b), where (a, b) ⊂ R is a certain interval. This is
achieved in two stages. First, we prove that “asymptotic” zeros can be determined uniquely
(Lemma 7). Next, it is shown that the rest of zeros can also be uniquely determined (sections
4 and 5).

The first uniqueness theorem for the PPO was proven by Calderon and Pepinsky [5]; also
see the paper of Wolf [20] for a similar result. These publications were concerned with the
case of a real valued centro-symmetrical function f , which is different from our case of the
complex valued centro-symmetrical function f satisfying conditions (1.3)-(1.6). The latter
causes a substantial difference in proofs of corresponding uniqueness results.

Many publications discuss a variety of aspects of the PPO, see, e.g., above cited ones
and references cited there; a recently published introduction to the PPO can be found in
[8]. We also refer to the paper [17], which is concerned with the inverse problem of shape
reconstruction from the modulus of the far field data; the mathematical statement of this
problem is different from the above. A uniqueness result for the discrete case was proven in
[3], where the function f is a linear combination of δ− functions. For the “continuous” 2-D
case, uniqueness theorems for the problem (1.1)-(1.3) were proven in [12] and [13] assuming
that ϕ ∈ C∞

(
Ω
)
. The goal of this publication is to replace the C∞ with the C4 via exploring

some new ideas. The main new idea is presented in section 4. It an opinion of the author
that the proof of Lemma 8 of this section is the most difficult element of this paper.

The rest of the paper is devoted to the proof of Theorem 1. In section 2 we prove that
the function ϕ(x, y) can be reconstructed uniquely near the boundary Γ of the domain Ω. In
section 3 five lemmata are proven. In section 4 one more lemma is proven. We finalize the
proof of Theorem 1 in section 5.

2 Uniqueness In Ωδ (Γ)

Results, similar with lemmata 1 and 2 of this section were proven in [13] (see lemmata 2.5-
2.7 and the proof of Theorem 3.1 in this reference). However, since the reference [13] is not
easily available, it makes sense to present full proofs of lemmata 1 and 2 here. In addition,
these proofs are both significantly simplified and clarified compared with those of [13]. To
prove that ϕ1 = ϕ2 in Ωδ (Γ), we need to analyze some integral equations. For any number
ε ∈ (0, 1) denote Pε = {0 < x, y < ε}, a subdomain of the square Ω.

Lemma 1. Let the number ε ∈ (0, 1) . Let complex valued functions q,Ks (s = 1, 2, 3) be
such that

q(x, y) ∈ C2
(
P ε

)
, K1 (x, y, ξ) , K2 (x, y, η) ∈ C2

(
P ε × [0, ε]

)
,

and K3 (x, y, ξ, η) ∈ C2
(
P ε × P ε

)
. Also, let

K1 (0, 0, 0) = K2 (0, 0, 0) = 1 (2.1)

and
q(0, 0) = qx(0, 0) = qy(0, 0) = 0. (2.2)
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Suppose that the complex valued function u(x, y) ∈ C2
(
P ε

)
satisfies the integral equation

[αx+ βy + q(x, y)]u(x, y) =

α

x∫
0

K1 (x, y, ξ)u (ξ, y) dξ + β

y∫
0

K2 (x, y, η)u (x, η) dη (2.3)

+

x∫
0

y∫
0

K3 (x, y, ξ, η)u (ξ, η) dηdξ, in Pε,

and
u(0, 0) = 0, (2.4)

where α and β are two real numbers such that

αβ > 0. (2.5)

Then there exists such a number ε0 ∈ (0, ε] depending only on numbers α, β and functions
q,Ks (s = 1, 2, 3) that u(x, y) = 0 for (x, y) ∈ P ε0 .
Note that because of the presence of the factor [αx+ βy + q(x, y)] in the left hand side

of the equation (2.3), this is not a standard Volterra equation. Indeed, we cannot simply
divide both sides of (2.3) by [αx+ βy + q(x, y)] , since [αx+ βy + q(x, y)] |x=y=0= 0.

Proof of Lemma 1. We first prove that there exists a number ε̃ ∈ (0, ε] such that

u(x, 0) = 0 and u(0, y) = 0, for x, y ∈ (0, ε̃) . (2.6)

Set in (2.3) y = 0. Denote v(x) = u(x, 0), q0(x) = q(x, 0) and K0 (x, ξ) = K1 (x, 0, ξ) − 1.
Then

[αx+ q0(x)] v(x) = α

x∫
0

[1 +K0 (x, ξ)] v (ξ) dξ, x ∈ (0, ε) .

Differentiating this equation with respect to x, we obtain for x ∈ (0, ε)

[αx+ q0(x)] v
′(x) + q′0(x)v(x) = αK0 (x, x) v(x) + α

x∫
0

K0x (x, ξ) v (ξ) dξ. (2.7)

By (2.1) and (2.2) we have for x ∈ (0, ε)

K0 (x, x) =

x∫
0

d [K0 (ξ, ξ)]

dξ
dξ, q0(x) =

x∫
0

q′′0(ξ) (x− ξ) dξ, q′0(x) =

x∫
0

q′′0(ξ)dξ.
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In particular, this means that q0(x) = o(x) as x → 0. Hence, since by (2.5) α 6= 0, then
there exists a number ε1 ∈ (0, ε] depending on the number α and the function q0(x) such
that functions

x

αx+ q0(x)
, K̃(x) =

K0 (x, x)

αx+ q0(x)
and q̃(x) =

q′0(x)

αx+ q0(x)

are bounded in [0, ε1] .
Divide (2.7) by the function αx + q0(x) and integrate the resulting equality then. We

obtain for x ∈ (0, ε1)

v(x) =

x∫
0

[
K̃ − q̃

]
(ξ) v (ξ) dξ + α

x∫
0

dτ

ατ + q0 (τ)

τ∫
0

K0x (τ , ξ) v (ξ) dξ. (2.8)

Let |αK0x (τ , ξ)| ≤M for (τ , ξ) ∈ Pε1 × Pε1 , where M is a positive number. Then∣∣∣∣∣∣α
x∫

0

dτ

ατ + q0 (τ)

τ∫
0

K0x (τ , ξ) v (ξ) dξ

∣∣∣∣∣∣ ≤M

x∫
0

dτ

|ατ + q0 (τ)|

τ∫
0

|v (ξ)| dξ (2.9)

≤M1V (x) · x, x ∈ (0, ε1) ,

where
V (x) = max

0≤ξ≤x
|v (ξ)| (2.10)

and the positive number M1 depends only on M,α and ‖q0‖C[0,ε1] . Hence, (2.8) and (2.9)
imply that the following estimate takes place with another positive constant M2 depending

only on M,α and norms
∥∥∥K̃ − q̃

∥∥∥
C[0,ε1]

, ‖q0‖C[0,ε1]

|v(x)| ≤M2V (x) · x, x ∈ (0, ε1) . (2.11)

Let t ∈ (0, ε1) be an arbitrary number. By (2.11),

max
0≤x≤t

|v(x)| ≤ max
0≤x≤t

[M2V (x) · x] .

Since the function V (x)x is monotonically increasing, then the latter inequality leads to

V (t) ≤M2V (t) · t, t ∈ (0, ε1) . (2.12)

Choose a number ε̃ ∈ (0, ε1) such that M2ε̃ < 1/2. Then (2.12) leads to

V (t) ≤ V (t)

2
, t ∈ (0, ε̃) .

Hence V (x) = 0 for x ∈ (0, ε̃) . This and (2.10) imply that u(x, 0) := v(x) = 0 in (0, ε̃) ,
which is the first equality (2.6). The second equality (2.6) can be proven similarly.
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Denote
K̂1 (x, y, ξ) = K1 (x, y, ξ)− 1, K̂2 (x, y, η) = K2 (x, y, η)− 1. (2.13)

Let in (2.3) (x, y) ∈ Pε̃, where the number ε̃ ∈ (0, ε) is the same as in (2.6). Apply the
operator ∂y∂x to both sides of (2.3). Using (2.1), we obtain

(αx+ βy + q(x, y))uxy + qxuy + qyux =
[
αK̂1 (x, y, x)uy + βK̂2 (x, y, y)ux

]
+
[
αK̂1y (x, y, x) + βK̂2x (x, y, y) +K3 (x, y, x, y)

]
· u

+

α x∫
0

K̂1x (x, y, ξ)uy (ξ, y) dξ + β

y∫
0

K̂2y (x, y, η)ux (x, η) dη

 (2.14)

+α

x∫
0

K̂1xy (x, y, ξ)u (ξ, y) dξ + β

y∫
0

K̂2xy (x, y, η)u (x, η) dη

+

x∫
0

K3x (x, y, ξ, y)u (ξ, y) dξ +

y∫
0

K3y (x, y, x, η)u (x, η) dη

+

x∫
0

y∫
0

K3xy (x, y, ξ, η)u (ξ, η) dηdξ, (x, y) ∈ Pε̃.

The Taylor’s formula and (2.2) imply that the function q1(x, y) = q(x, y)/ (x2 + y2) is
bounded in P ε̃. Hence, (2.5) implies that there exists such a number ε2 ∈ (0, ε̃] that functions

x

αx+ βy + q(x, y)
and

y

αx+ βy + q(x, y)
(2.15)

are bounded in P ε2 . To see this, it is sufficient to introduce polar coordinates x = r cos θ
and y = r sin θ with θ ∈ [0, π/2] . Further, the Taylor’s formula, (2.1) and (2.13) imply that
functions

αK̂1 (x, y, x)

αx+ βy + q(x, y)
and

βK̂2 (x, y, y)

αx+ βy + q(x, y)
(2.16)

are also bounded in P ε2 . In addition, by (2.4)

uy(0, y) = ux (x, 0) = 0 and u(x, y) =

y∫
0

uy (x, η) dη =

x∫
0

ux (ξ, y) dξ. (2.17)

For t ∈ (0, ε2) denote

w(t) = max
0≤x,y≤t

[|ux(x, y)|+ |uy(x, y)|] . (2.18)
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Using (2.17), substitute

u(x, y) =

y∫
0

uy (x, η) dη (2.19)

in the right hand side of (2.14). Next, divide both sides of (2.14) by the function
[αx+ βy + q(x, y)] and apply the operator

x∫
0

(...) dξ (2.20)

to both sides of the resulting equality. Note that all kernels of integral operators in (2.14)
are bounded. Also, since functions (2.15) are bounded, then

x∫
0

dξ

|αξ + βy + q(ξ, y)|

y∫
0

|ux (ξ, η)| dη ≤ Qw(t) · t, for (x, y) ∈ P t, t ∈ (0, ε2) (2.21)

and

x∫
0

dξ

|αξ + βy + q(ξ, y)|

ξ∫
0

|uy (τ , y)| dτ ≤ Qw(t) · t, for (x, y) ∈ P t, t ∈ (0, ε2) . (2.22)

Here and below in this proof Q denotes different positive constants independent on the
parameter t ∈ (0, ε2) and functions u and w. Thus, using the fact that functions (2.15)
and (2.16) are bounded and using also estimates (2.21) and (2.22), we conclude that the
application of the operator (2.20) to the equality, which is obtained from (2.14) after the
substitution (2.19) and division by the function [αx+ βy + q(x, y)] leads to the following
estimate

|uy(x, y)| ≤ Qw(t) · t, for (x, y) ∈ P t, t ∈ (0, ε2) . (2.23)

On the other hand, substituting in (2.14)

u(x, y) =

x∫
0

ux (ξ, y) dξ,

dividing it then by the function [αx+ βy + q(x, y)] and applying the operator

y∫
0

(...)dη,

we similarly obtain

|ux(x, y)| ≤ Qw(t) · t, for (x, y) ∈ P t, t ∈ (0, ε2) . (2.24)
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Summing up (2.23) and (2.24), we obtain

|ux(x, y)|+ |uy(x, y)| ≤ Qw(t) · t, for (x, y) ∈ P t, t ∈ (0, ε2) .

By (2.18), this is equivalent with

|ux(x, y)|+ |uy(x, y)| ≤ Qt · max
0≤x,y≤t

[|ux(x, y)|+ |uy(x, y)|] ,

for (x, y) ∈ P t, t ∈ (0, ε2) . Hence,

max
0≤x,y≤t

[|ux(x, y)|+ |uy(x, y)|] ≤ Qt · max
0≤x,y≤t

[|ux(x, y)|+ |uy(x, y)|] , t ∈ (0, ε2) .

The latter inequality and (2.18) lead to

w(t) ≤ Qw(t) · t, for t ∈ (0, ε2) .

Choose the number ε0 ∈ (0, ε2) such that Qε0 < 1/2. Then the latter inequality implies that

w(t) ≤ w(t)

2
, for t ∈ (0, ε0) .

Hence, w(t) = 0 for t ∈ (0, ε0) . This, (2.6) and (2.18) imply that u(x, y) = 0 for (x, y) ∈ P ε0 .
�

Lemma 2. ϕ1 = ϕ2 in Ωδ (Γ) .
Proof. For the sake of definiteness, we assume in this proof that the condition (1.6a) is

fulfilled. The proof in the case (1.6b) is similar. Consider the function h(x, y),

h(x, y) = 2 sin

[(
ϕ1 − ϕ2

2

)
(x, y)

]
Since (ϕ1 − ϕ2) (0, 0) = 0, then

h(0, 0) = 0. (2.25)

Since both functions ϕ1 and ϕ2 are analytic in Ωδ (Γ) , it is sufficient to prove that h(x, y) = 0
for (x, y) ∈ Pσ for a number σ ∈ (0, 1) .

Let G̃ (x, y) be the inverse Fourier transform of the function G(x, y) defined in (1.2).
Then

G̃ (x, y) =

∫∫
R2

f(x+ ξ, y + η)f (ξ, η)χ (x+ ξ, y + η)χ (ξ, η) dξdη, (2.26)

where χ (ξ, η) is the characteristic function of the square Ω. Assuming that (x, y) ∈ Ω, we
can rewrite the equality (2.26) in the form

G̃ (x, y) =

1−x∫
0

1−y∫
0

f(x+ ξ, y + η)f (ξ, η) dξdη. (2.27)
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Suppose that ϕ1 (ξ, η) 6= ϕ2 (ξ, η) in Ωδ (Γ) . Recall that f1 (ξ, η) = exp [iϕ1 (ξ, η)] and
f2 (ξ, η) = exp [iϕ2 (ξ, η)]. Denote g(ξ, η) = f1 (ξ, η)− f2 (ξ, η) . Then (2.27) leads to

1−x∫
0

1−y∫
0

f1(x+ ξ, y + η)f 1 (ξ, η) dξdη −
1−x∫
0

1−y∫
0

f2(x+ ξ, y + η)f 2 (ξ, η) dξdη = 0. (2.28)

Since
f1(x+ ξ, y + η) · f 1 (ξ, η)− f2(x+ ξ, y + η) · f 2 (ξ, η)

= f1(x+ ξ, y + η) · g (ξ, η) + g(x+ ξ, y + η) · f 2 (ξ, η) ,

then (2.28) implies that

1−x∫
0

1−y∫
0

f1(x+ ξ, y + η)g (ξ, η) dηdξ +

1−x∫
0

1−y∫
0

g(x+ ξ, y + η)f 2 (ξ, η) dηdξ = 0. (2.29)

Consider the second integral in (2.29). Changing variables, we obtain

1−x∫
0

1−y∫
0

g(x+ ξ, y + η)f 2 (ξ, η) dηdξ =

1∫
x

1∫
y

g(ξ, η)f 2 (ξ − x, η − y) dηdξ. (2.30)

Note that by (1.4) and (1.5) g(ξ, η) = g(1− ξ, 1− η). Substituting this in the integral in the
right hand side of (2.30) and changing variables (ξ′, η′) = (1− ξ, 1− η), we obtain

1∫
x

1∫
y

g(ξ, η)f 2 (ξ − x, η − y) dηdξ = (2.31)

1−x∫
0

1−y∫
0

g (ξ′, η′) f 2 (1− (ξ′ + x) , 1− (η′ + y)) dη′dξ′.

Since by (1.4) and (1.5) f 2 (1− (ξ′ + x) , 1− (η′ + y)) = f 2 (ξ′ + x, η′ + y), then (2.29)-(2.31)
lead to

1−x∫
0

1−y∫
0

f1(x+ ξ, y + η)g (ξ, η) dηdξ (2.32)

+

1−x∫
0

1−y∫
0

f 2 (x+ ξ, y + η) g(ξ, η)dηdξ = 0, for (x, y) ∈ Ω.
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It is convenient to make another change of variables (x, y) ⇔ (x′, y′) = (1− x, 1− y)
and still keep the same notations for these new ones (for brevity). Since by (1.4) and (1.5)
fj(1− x+ ξ, 1− y + η) = fj (x− ξ, y − η) , j = 1, 2, then (2.32) becomes

x∫
0

y∫
0

[
f1(x− ξ, y − η)g (ξ, η) + f 2 (x− ξ, y − η) g(ξ, η)

]
dηdξ = 0, for (x, y) ∈ Ω.

Apply the operator ∂y∂x to this equality. Note that f1 (0, 0) = f2(0, 0) = 1. We obtain for
(x, y) ∈ Ω

g(x, y) + g(x, y) = −
x∫

0

[
f1x (x− ξ, 0) g(ξ, y) + f 2x (x− ξ, 0) g(ξ, y)

]
dξ

−
y∫

0

[
f1y(0, y − η)g(x, η) + f 2y(0, y − η)g(x, η)

]
dη (2.33)

−
x∫

0

y∫
0

[
f1xy (x− ξ, y − η) g(ξ, η) + f 2xy (x− ξ, y − η) g(ξ, η)

]
dηdξ.

We have
g = eiϕ1 − eiϕ2 = (cosϕ1 − cosϕ2) + i (cosϕ1 − cosϕ2)

= 2 sin

(
ϕ2 − ϕ1

2

)[
sin

(
ϕ1 + ϕ2

2

)
− i cos

(
ϕ1 + ϕ2

2

)]
.

Hence,

g(x, y) = h(x, y)

[
sin

(
ϕ1 + ϕ2

2

)
− i cos

(
ϕ1 + ϕ2

2

)]
. (2.34)

Hence,

g(x, y) + g(x, y) = 2h(x, y) sin

[(
ϕ1 + ϕ2

2

)
(x, y)

]
. (2.35)

Denote

r1(x, y) = 2 sin

[(
ϕ1 + ϕ2

2

)
(x, y)

]
.

Since ϕ1(0, 0) = ϕ2(0, 0) = 0, then the Taylor’s formula implies that the function r1(x, y)
can be represented in the form

r1(x, y) = αx+ βy + q(x, y), (2.36)

where
α = ϕ1x(0, 0) + ϕ2x(0, 0), β = ϕ1y(0, 0) + ϕ2y(0, 0) (2.37)
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and the function q(x, y) ∈ C2
(
Ω
)

satisfies conditions (2.2). By (1.6a) and (2.37)

α, β > 0. (2.38)

Hence (2.35) and (2.36) imply that the function g(x, y) + g(x, y) can be represented as

g(x, y) + g(x, y) = [αx+ βy + q(x, y)]h(x, y). (2.39)

Consider first two integrals in the right hand side of (2.33). Using the Taylor’s formula,
(2.34) and (2.37), we obtain

−
[
f1x (x− ξ, 0) g(ξ, y) + f 2x (x− ξ, 0) g(ξ, y)

]
= −iϕ1x(0, 0) [1 + r2(x− ξ)]×[

sin

(
ϕ1 + ϕ2

2

)
(ξ, y) + i cos

(
ϕ1 + ϕ2

2

)
(ξ, y)

]
· h(ξ, y)+

iϕ2x(0, 0) [1 + r3(x− ξ)]× (2.40)[
sin

(
ϕ1 + ϕ2

2

)
(ξ, y)− i cos

(
ϕ1 + ϕ2

2

)
(ξ, y)

]
· h(ξ, y)

= [ϕ1x(0, 0) + ϕ2x(0, 0)] · [1 +G1(x, y, ξ)] · h(ξ, y) = α [1 +G1(x, y, ξ)] · h(ξ, y),

where functions r2(x), r3(x) ∈ C2 [0, 1] , the function G1(x, y, ξ) ∈ C2
(
Ω× [0, 1]

)
and r2(0) =

r3(0) = G1(0, 0, 0) = 0. Similarly

−
[
f1y (0, y − η) g(x, η) + f 2y (0, y − η) g(x, η)

]
= β [1 +G2(x, y, η)] · h(x, η), (2.41)

where the function G2(x, y, η) ∈ C2
(
Ω× [0, 1]

)
and G2(0, 0, 0) = 0.

Denote
K1 (x, y, ξ) := [1 +G1(x, y, ξ)] , K2 (x, y, η) := 1 +G2(x, y, η),

K3 (x, y, ξ, η) := f1xy (x− ξ, y − η) ·
[
sin

(
ϕ1 + ϕ2

2

)
(ξ, η) + i cos

(
ϕ1 + ϕ2

2

)
(ξ, η)

]
+f 2xy (x− ξ, y − η) ·

[
sin

(
ϕ1 + ϕ2

2

)
(ξ, η)− i cos

(
ϕ1 + ϕ2

2

)
(ξ, η)

]
.

Thus,
K1, K2 ∈ C2

(
Ω× [0, 1]

)
, K3 ∈ C2

(
Ω× Ω

)
.

Further, (2.34) and (2.37)-(2.41) imply that the function h(x, y) satisfies the following integral
equation

[αx+ βy + q(x, y)]h(x, y) =

α

x∫
0

K1 (x, y, ξ)u (ξ, y) dξ + β

y∫
0

K2 (x, y, η)u (x, η) dη (2.42)
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+

x∫
0

y∫
0

K3 (x, y, ξ, η)u (ξ, η) dηdξ, in Ω,

where numbers α, β and functions q,K1, K2 and K3 satisfy conditions of Lemma 1. Thus,
by Lemma 1 there exists a number σ ∈ (0, 1) such that h(x, y) = 0 for (x, y) ∈ Pσ. �

Note, however that it does not follow from the proof of Lemma 2 that the function
[αx+ βy + q(x, y)]−1 has no singularities at points (x, y) ∈ Ω, which are located far from
the boundary Γ. Hence, it is unclear what does the equation (2.42) imply for these points.
Thus, we should proceed with the proof of Theorem 1.

3 Lemmata

By (1.2)
G(x, y) = F (x, y) · F (x, y), ∀ (x, y) ∈ R2. (3.1)

Hence, the analytic continuation G(z, y) of the function G(x, y) is

G(z, y) =

∫∫
Ω

f(ξ, η)e−izξe−iyηdξdη

 ·
∫∫

Ω

f(ξ, η)eizξeiyηdξdη

 . (3.2)

Denote F̂ (z, y) = F (z, y). Then one can rewrite (3.2) as

G(z, y) = F (z, y)F̂ (z, y). (3.3)

Hence, G(z, y) and F̂ (z, y) are entire analytic functions of the first order of the variable
z ∈ C for every y ∈ R. Since functions F1(z, y) and F2(z, y) are analytic with respect to
y ∈ R as functions of the real variable, it is sufficient to prove that F1(z, y) = F2(z, y) for
z ∈ C and for every y ∈ (a, b) for an interval (a, b) ⊂ R. And this is what is done in this
paper below.

Consider an example of the non-uniqueness, which is sometimes called the “complex
zero-flipping” in the physics literature, see, e.g., [8]. The function F (z, y) can be represented
in the form [1]

F (z, y) = zk(y)eg(z,y)

∞∏
n=1

(
1− z

an(y)

)
exp

(
z

an(y)

)
, ∀y ∈ R, (3.4)

where k(y) ≥ 0 is an integer, g(z, y) is a linear function of z and {an(y)}∞n=1 is the set of
zeros of the function F (z, y). Each zero is counted as many times as its multiplicity is.
The integer k(y), the function g(z, y) and zeros {an(y)}∞n=1 depend on y as on a parameter.
Specific types of such dependencies (e.g., analytic, continuous, etc.) do not affect the rest
of the proof of Theorem 1. Thus, for brevity we will not indicate dependencies of these on
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y in some (but not all) formulas below. Suppose, for example that Im a1 6= 0. Consider the
function F?(x, y),

F?(x, y) =
x− a1

x− a1

· F (x, y).

Note that ∣∣∣∣x− b

x− b

∣∣∣∣ = 1, ∀x ∈ R,∀b ∈ C. (3.5)

Hence, by (3.5) |F?(x, y)| = |F (x, y)| for all (x, y) ∈ R2. In addition, it can be easily shown
that the inverse Fourier transform f? (ξ, η) of F?(x, y) has its support in Ω. Thus, the most
difficult aspect of the PPO is to determine complex zeros in (3.4).

Lemma 3. For an y ∈ (−∞,∞) let {an}∞n=1 ⊂ C be the set of all zeros of the function

F (z, y) as indicated in (3.4). Then {an}∞n=1 is the set of all zeros of the function F̂ (z, y).

Thus, F (a, y) = 0 ⇔ F̂ (a, y) = 0. The multiplicity of each zero z = a of the function F (z, y)

equals the multiplicity of the zero z = a of the function F̂ (z, y). The set of zeros of the
function G(z, y) is {an}∞n=1 ∪ {an}∞n=1 .

Proof. Let F (a, y) = 0. This means that∫∫
Ω

f(ξ, η)e−izξe−iyηdξdη |z=a= 0.

Consider the complex conjugate of both sides,

0 =

∫∫
S

f(ξ, η)e−izξe−iyηdξdη |z=a=

∫∫
S

f(ξ, η)eizξeiyηdξdη |z=a= F (a, y) = F̂ (a, y).

Further, let z = a be a zero of the multiplicity s. Then differentiating last two formulas
k (1 ≤ k ≤ s) times with respect to z, we obtain the statement of this lemma about the
multiplicity. �

Lemma 4. For each y ∈ R real zeros of functions F1(z, y) and F2(z, y) coincide.
Proof. By (1.9) G1(z, y) = G2(z, y),∀z ∈ C,∀y ∈ R. Hence, for any fixed y ∈ R all zeros

(real and complex) of functions G1(z, y) and G2(z, y) coincide. By (3.3) and Lemma 3 the
multiplicity of each real zero x = a of the function Gj(x, y) is twice the multiplicity of the
zero x = a of the function Fj(x, y). �

First, consider the problem of the determination of the number k(y) and the function
g(z, y) in (3.4). For a positive integer m denote Im = (2mπ + π/2, 2mπ + 3π/2) .

Lemma 5. Suppose that there exists a positive number N0 such that for every integer m
> N0 sets of zeros of functions F1(z, y) and F2(z, y) coincide for every y ∈ Im. Then there
exists a number N > N0 such that for every integer m > N and for every number y ∈ Im
corresponding numbers k1(y) and k2(y) and functions g1(z, y) and g2(z, y) in products (3.4)
for functions F1 and F2 coincide.
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Proof. Denote

pj(ξ, y) =

1∫
0

e−iyηfj (ξ, η) dη. (3.11)

By Lemma 2 p1(ξ, y) = p2(ξ, y) for ξ ∈ [0, δ) ∪ (1− δ, 1] . Hence, we can denote

p (ξ, y) := p1(ξ, y) = p2(ξ, y) for ξ ∈ [0, δ) ∪ (1− δ, 1] . (3.12)

By (1.4)
p(1, y) = p(0, y) (3.13)

and
pξ (1, y) = −pξ (0, y) . (3.14)

Using (1.7), (3.11) and (3.13) we obtain

Fj(z, y) = − 1

iz

(e−iz − 1
)
p(1, y)−

1∫
0

e−izξpjξ(ξ, y)dξ

 . (3.15)

Hence,

Fj(z, y) = −e
−iz

iz
[p(1, y) + o(1)] , for Im z →∞ (3.16a)

and

Fj(z, y) =
1

iz
[p(1, y) + o(1)] , for Im z → −∞. (3.16b)

Setting in (3.11) ξ := 1, integrating by parts and recalling that f(1, 1) = f(0, 0) = 1, we
obtain

p(1, y) = − 1

iy

(e−iy − 1
)
−

1∫
0

e−iyηfξ (1, η) dη.

 (3.17)

Because of the choice of intervals Im, we have∣∣e−iy − 1
∣∣ ≥ √

2, ∀y ∈ Im, ∀m = 1, 2, ... (3.18)

The Riemann-Lebesgue lemma implies that one can choose a positive integer N > N0 so
large that ∣∣∣∣∣∣

1∫
0

e−iyηfξ (1, η) dη

∣∣∣∣∣∣ ≤ 0.1, ∀y ∈ {y > N} . (3.19)

Hence, (3.17)-(3.19) imply that

|p(1, y)| ≥ 1

y
, ∀m > N, ∀y ∈ Im. (3.20)
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Choose an arbitrary integerm > N . Then zeros of functions F1(z, y) and F2(z, y) coincide
for all y ∈ Im. Also, (3.16a,b) and (3.20) imply that

Fj(z, y) = −e
−iz

iz
p (1, y) (1 + o(1)) , for Im z →∞,∀y ∈ Im, (3.21a)

Fj(z, y) =
1

iz
p (1, y) (1 + o(1)) , for Im z → −∞,∀y ∈ Im, (3.21b)

and
p (1, y) 6= 0, ∀y ∈ Im. (3.22)

Let

Fj(z, y) = zkj(y)egj(z,y)

∞∏
n=1

(
1− z

an(y)

)
exp

(
z

an(y)

)
.

Then for all y ∈ Im

log

[
F1(z, y)

F2(z, y)

]
= (k1(y)− k2(y)) log z + g1(z, y)− g2(z, y). (3.23)

On the other hand, by (3.21a) and (3.22)

log

[
F1(z, y)

F2(z, y)

]
= o(1), for Im z →∞,∀y ∈ Im.. (3.24)

Since g1(z, y) and g2(z, y) are linear functions of the variable z (for every y ∈ R), then
comparison of (3.23) and (3.24) shows that k1(y)− k2(y) = 0 and g1(z, y)− g2(z, y) = 0 for
all y ∈ Im. �

Lemma 6. There exists a positive number N = N(F1, F2) and a positive number T =
T (N) such that for every integer m > N and for every y ∈ Im all zeros of functions F1(z, y)
and F2(z, y) are located in the strip {|Im z| < T} .

Proof. Choose a number N = N(F1, F2) such that (3.19) and (3.20) hold. Let m > N
be an integer. By (3.21a,b) and (3.22) there exists a positive number T = T (N) independent
on m (as long as m > N) such that

|Fj(z, y)| ≥
exp(Im z)

2 |z|
|p(1, y)| 6= 0 for Im z ≥ T, y ∈ Im

and

|Fj(z, y)| ≥
1

2 |z|
|p(1, y)| 6= 0 for Im z ≤ −T, y ∈ Im.

�
Lemma 7. There exists a positive number N = N(F1, F2) such that there exists a positive

number M = M(N) such that for all integers m > N and for every y ∈ Im zeros of functions
F1(z, y) and F2(z, y) coincide in {|z| > M} .
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Proof. We use notations of the proof of Lemma 5. Choose a positive number N1 =
N1(F1, F2) such that (3.19) and (3.20) are fulfilled. Let T = T (N1) be the number of Lemma
6. First, we prove that for every integer m > N1 and for every y ∈ Im both functions
F1(z, y) and F2(z, y) have infinitely many zeros. Fix an y0 ∈ Im. Let, for example the
function F 0

1 (z) = F1(z, y0) has only a finite number s ≥ 0 zeros in C. Then (3.4) implies that

F 0
1 (z) = Ps(z)e

γz, (3.25)

where γ is a complex number and Ps(z) is a polynomial of the degree s. However, by (3.15)
and the Riemann-Lebesgue lemma

h(x) = − 1

ix

[(
e−ix − 1

)
p(1, y0) + o

(
1

x

)]
for x→∞, x ∈ R. (3.26)

Since by (3.20) p(1, y0) 6= 0, then (3.26) contradicts with (3.25).
The latter and Lemma 6 imply that for every integer m > N1, for every y ∈ Im and

for each positive number K there exists a zero zj(K) ∈ {|z| > K} ∩ {|Im z| < T} of the
function Fj(z, y). Integrating by parts in (3.15) and using (3.13) and (3.14), we obtain for
every integer m > N1 and for all y ∈ Im

−iz · Fj(z, y) =
(
e−iz − 1

)
p(1, y) +

1

iz

(
e−iz + 1

)
pξ(1, y) (3.27)

− 1

z2

(
e−iz − 1

)
pξξ(1, y) +

1

z2

1∫
0

e−izξ∂3
ξpj(ξ, y)dξ.

Lemma 6 tells one that in order to find the asymptotic behavior of zeros of functions
Fj(z, y), one should investigate the behavior of these functions at |Re z| → ∞ with |Im z| < T.
Integrating by parts in (3.11) and using (1.5), we obtain

∂k
ξ pj(ξ, y) = − 1

iy

(e−iy − 1
)
∂k

ξ fj(ξ, 1) +

1∫
0

e−iyη∂k
ξ ∂ηfj (ξ, η) dη

 , k = 0, 1, 2, 3. (3.28)

It follows from (3.12), (3.20) and (3.28) that one can the choose a number M1 = M1(N1) so
large that ∣∣∣∣p(1, y) +

1

iz
pξ(1, y)

∣∣∣∣ ≥ 1

2y
, for m > N1, y ∈ Im, |z| > M1. (3.29)

Also, (3.20) implies that

1

p(1, y) + pξ(1, y)/iz
=

1

p(1, y)

(
1− pξ(1, y)

izp(1, y)
+
p̃(z, y)

z2

)
, (3.30)

for m > N1, y ∈ Im, |z| > M1, where |p̃(z, y)| ≤ C. Here and below in this proof C denotes
different positive numbers which are independent on z ∈ {|ż| > 1}∩{|Im z| < T} , N1, N2,Mk
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(k = 1, ..., 5), complex numbers zj (which are chosen below) and the parameter y ∈ Im, as
long as the integer m > N1. Although, in principle at least each function Fj, j = 1, 2 “has
its own” constant Cj, but we always choose C = max(C1, C2).

By (3.27) and (3.28) we have
−iz · Fj(z, y) =

e−iz

(
p(1, y) +

1

iz
pξ(1, y)

)
−
(
p(1, y)− 1

iz
pξ(1, y) +Bj (z, y)

)
, (3.31)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,m > N1 and y ∈ Im,

where the function Bj can be estimated as

|Bj (z, y)| ≤ C

y |z|2
. (3.32)

Dividing (3.31) by the function [p(1, y) + pξ(1, y)/iz], using (3.29), (3.30) and (3.32), we
obtain for m > N1,∀y ∈ Im, |Im z| < T

−iz · Fj(z, y) ·
(
p(1, y) +

1

iz
pξ(1, y)

)−1

= e−iz − 1 +
2pξ(1, y)

izp(1, y)
+ B̃j (z, y) , (3.33)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,m > N1 and y ∈ Im,

where the function B̃j (z, y) satisfies the estimate∣∣∣B̃j (z, y)
∣∣∣ ≤ C

|z|2
, (3.34)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,m > N1 and y ∈ Im.

Choose an integerm0 > N1 and fix a number y0 ∈ Im0 . Let zj ∈ {|z| > M1}∩{|Im z| < T}
be a zero of the function Fj (z, y0) . Then (3.33) implies that

exp(−izj) = 1− 2pξ(1, y0)

izjp(1, y0)
− B̃j (zj, y0) .

Since exp(−izj) = exp(−izj +2iπs) for any integer s, then there exists an integer n (zj) such
that

−izj + 2iπn (zj) = log

(
1− 2pξ(1, y0)

izp(1, y0)
− B̃j (z, y0)

)
. (3.35)

By (1.6a,b)
ϕξ(0, 0) 6= 0 (3.36)

Hence, (1.4), (1.5) and (3.36) imply that

ϕξ(0, 0) = −ϕξ(1, 1) 6= 0. (3.37)
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Thus, (1.3), (3.17), (3.18), (3.28), (3.37) and the Riemann-Lebesgue lemma imply that one
can choose the number N2 = N2 (F1, F2) ≥ N1 and

2pξ(1, y0)

ip(1, y0)
= 2ϕξ(1, 1) (1 + g (y0)) 6= 0, (3.38)

where g(y) is a complex valued function such that

|g(y)| < 1

8
,∀m > N2,∀y ∈ Im. (3.39)

Without loss of generality we assume from now on in this proof that the integer m0, which
was chosen after (3.34) is so large that m0 > N2 and the fixed number y0 ∈ Im0 . By (3.34),
(3.38) and (3.39) one can choose the number M2 = M2(N2) ≥M1 so large that

log

(
1− 2pξ(1, y0)

izp(1, y0)
− B̃j (z, y0)

)
= −

2ϕξ(1, 1)

z
(1 + g̃j (z, y0)) , (3.40)

where the function g̃j (z, y) is such that

|g̃j (z, y)| < 1

4
, (3.41)

∀ z ∈ {|z| > M2} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.

Substituting the right hand side of (3.40) in the right hand side of (3.35) and setting y := y0,
we obtain

zj = 2πn (zj)− i
2ϕξ(1, 1)

zj

(1 + g̃j (zj, y0)) . (3.42)

Since we are concerned in this lemma with the asymptotic behavior of zeros of functions
Fj(z, y), then we can assume now that the zero zj ∈ {|z| > M2} ∩ {|Im z| < T} . Choose the
number M3 = M3(N2) ≥ M2 so large that C/M3 < M3/8. Similarly with the above we now
assume that zj ∈ {|z| > M3} ∩ {|Im z| < T} . Hence, (3.41) and (3.42) lead to

|Im(zj)| ≤
∣∣∣∣2ϕξ(1, 1)

zj

(1 + g̃j (zj, y0))

∣∣∣∣ < C

M3

<
M3

8
. (3.43)

On the other hand, since |zj| > M3, then (3.42) and (3.43) imply that
M3 < |zj| < |2πn (zj)|+M3/8. Hence,

|2πn (zj)| >
7

8
M3. (3.44)

Combining (3.44) with (3.42) and (3.43), we obtain

zj = 2πn (zj) [1 + λj (zj, y0)] , (3.45)
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where the function λj (z, y) satisfies the following estimate

|λj (z, y)| < 1

7
, (3.46)

∀ z ∈ {|z| > M3} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.
It follows from (3.45) and (3.46) that

Re (zj) 6= 0 (3.47a)

and
sgn [Re (zj)] = sgn (n (zj)) , (3.47b)

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0 for x ∈ R.
Note that for each above zero zj of the function Fj there exists only one integer n (zj) .

Indeed, if there exists a second one n′ (zj) , then (3.42) implies that

zj = 2πn′ (zj)− i
2ϕξ(1, 1)

zj

(1 + g̃j (zj, y0)) .

Subtracting this formula from (3.42), we obtain 2π [n′ (zj)− n(zj)] = 0.
Consider now sgn(Im(zj)). It follows from (3.41)-(3.46) that one can choose a number

M4 = M4(N2) ≥M3 so large that for any zero zj ∈ {|z| > M4}∩{|Im z| < T} of the function
Fj(z, y0) the following equality is true

Im(zj) = −
ϕξ(1, 1)

πn (zj)

(
1 + µj (zj, y0)

)
, (3.48)

along with (3.47), where the function µj (z, y) satisfies the estimate∣∣µj (z, y)
∣∣ ≤ 1

2
, (3.49)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.
Since ϕξ(1, 1) 6= 0, then (3.47a,b)-(3.49) lead to

Im(zj) 6= 0 (3.50)

and

sgn(Im(zj)) = −sgn
[
ϕξ(1, 1)

]
· sgn [Re (zj)] = −sgn

[
ϕξ(1, 1)

]
· sgn (n (zj)) . (3.51)

We show now that the multiplicity of the zero zj is one, as long as
zj ∈ {|z| > M5} ∩ {|Im z| < T}, where the number M5 ≥ M4 is chosen below. Since the

formula (3.31) was derived from formulas (3.27) and (3.28), then (3.31) can be rewritten in
the form

−iz · Fj(z, y) =
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e−iz

(
p(1, y) +

1

iz
pξ(1, y)

)
−
(
p(1, y)− 1

iz
pξ(1, y)

)
(3.52)

− 1

z2

(
e−iz − 1

)
pξξ(1, y) +

1

z2

1∫
0

e−izξ∂3
ξpj(ξ, y)dξ,

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.

Differentiating both sides of the formula (3.52) with respect to z, setting then m := m0, y :=
y0, z := zj ∈ {|z| > M4} ∩ {|Im z| < T} and assuming that Fj(zj, y0) = ∂zFj(zj, y0) = 0, we
obtain

exp (−izj)

(
p(1, y0) +

1

izj

pξ(1, y0)

)
=
Hj(zj, y0)

y0z2
j

, (3.53)

where the function Hj(z, y) satisfies the estimate

|Hj(z, y)| ≤ C, (3.54)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.

Hence, dividing (3.53) by (p(1, y0) + pξ(1, y0)/izj) and using (3.29) and (3.54), we obtain

exp (−izj) =
H̃j (zj, y0)

z2
j

, (3.55)

where the function H̃j(z, y) satisfies the following estimate∣∣∣H̃j(z, y)
∣∣∣ ≤ C. (3.56)

∀ z ∈ {|z| > M4} ∩ {|Im z| < T} ,∀m > N2,∀y ∈ Im.

Since |exp (−izj)| ≥ exp (− |Im (zj)|) and |zj| > M4, then replacing in (3.43) M3 with M4,
we obtain |exp (−izj)| ≥ exp (−C/M4) . Hence, (3.55) and (3.56) imply that

C

M2
4

≥ exp

(
− C

M4

)
. (3.57)

Choose a number M5 = M5 (N2) ≥M4 so large that

C

M2
5

<
1

2
exp

(
− C

M5

)
. (3.58)

Again, we can assume (similarly with the above) that zj ∈ {|z| > M5} ∩ {|Im z| < T} . On
the other hand, it follows from (3.57) that if the multiplicity of the zero zj is greater than 1,
then one should have

C

M2
5

≥ exp

(
− C

M5

)
. (3.59)
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Inequalities (3.58) and (3.59) contradict with each other. This contradiction proves that the
multiplicity of the zero zj is 1, as long as zj ∈ {|z| > M5} ∩ {|Im z| < T} .

Set now N = N(F1, F2) := N2 and M = M(N) := M5. For the sake of definiteness,
let j = 1. Consider the zero z1 ∈ {|z| > M} ∩ {|Im z| < T} of the function F1(z, y0), i.e.,
F1(z1, y0) = 0. We are going to prove now that F2(z1, y0) = 0, which would be sufficient for

the validity of Lemma 7. By (1.9) and (3.3) F1(z1, y0) · F̂1 (z1, y0) = F2(z1, y0) · F̂2 (z1, y0) = 0.

Suppose that F2(z1, y0) 6= 0. Then F̂2 (z1, y0) = 0. Hence, Lemma 3 implies that F2(z1, y0) =
0. Since Re z1 = Re z1, then (3.47a) implies that Re z1 = Re z1 6= 0. Formulas (3.50) and
(3.51) are valid for any zero zj ∈ {|z| > M} ∩ {|Im z| < T} of the function Fj for j = 1, 2.
Denote z2 := z1. Then F2(z2, y0) = 0. Hence, using (3.50) and (3.51), we obtain

Im(z1) 6= 0 and sgn(Im(z1)) = −sgn
[
ϕξ(1, 1)

]
· sgn (Re z1) .

But since F1(z1, y0) = 0, then formulas (3.50) and (3.51) are also true for z1, i.e.,

Im(z1) 6= 0 and sign(Im(z1)) = −sgn
[
ϕξ(1, 1)

]
· sgn (Re z1) .

Thus, we have obtained that Im(z1) · Im(z1) 6= 0 and sign(Im(z1)) = sgn(Im(z1)), which is
impossible, since Im(z1) = − Im(z1). This proves that F2(z1, y0) = 0. �

4 Zeros In {|z| < M}
Both in this and next sections numbers N = N (F1, F2) and M = M(N) are those, which
were chosen in Lemma 7. Let m > N be an integer. Fix an arbitrary number y1 ∈ Im. So,
in both sections 4 and 5 we assume that y = y1 and do not indicate the dependence on the
parameter y (for brevity), keeping in mind, however that this dependence exists. Recall that
we assume the existence of two functions f1 (ξ, η) and f2 (ξ, η), which correspond to the same
function G in (1.2). Hence, (1.9) and (3.3) imply that

F1(z) · F̂1 (z) = F2(z) · F̂2 (z) ,∀z ∈ C. (4.1)

Let Φ(z), z ∈ C be an entire analytic function. Denote Z(Φ) the set of all zeros of this
function. Also, denote

Z(M,Φ) = Z(Φ) ∩ {|z| < M} ,

Z0(Φ) = Z(Φ) ∩ {Im z = 0} ,

Z+(M,Φ) = Z(M,Φ) ∩ {Im z > 0}

and
Z−(M,Φ) = Z(M,Φ) ∩ {Im z < 0} .

Using Lemma 4, we obtain
Z0 (F1) = Z0 (F2) . (4.2)
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By Lemma 7
Z(F1)�Z(M,F1) = Z(F2)�Z(M,F2). (4.3)

Hence, Lemma 5 and (4.2) imply that in order to establish Theorem 1, it is sufficient to
prove that

Z+(M,F1) = Z+(M,F2) (4.4)

and
Z−(M,F1) = Z−(M,F2) (4.5)

Let
{ak}n1

k=1 = Z+(M,F1) and {bk}n2

k=1 = Z+(M,F2). (4.6)

In both cases each zero is counted as many times as its multiplicity is. Consider functions
B1 (z) and B2 (z) ,

B1 (z) = F1(z) ·
n1∏

k=1

z − ak

z − ak

, (4.7)

B2 (z) = F2(z) ·
n2∏

k=1

z − bk
z − bk

. (4.8)

The main result of this section is
Lemma 8. Z (B1) = Z (B2) .
Proof. By (4.2) and (4.6)-(4.8)

Z0 (B1) = Z0 (B2) (4.9)

and
Z+ (M,B1) = Z+ (M,B2) = ∅. (4.10)

Also, it follows from (4.3) and (4.6)-(4.8) that

Z(B1)�Z(M,B1) = Z(B2)�Z(M,B2). (4.11)

Thus, (4.9)-(4.11) imply that all what we need to prove in this lemma is that

Z− (M,B1) = Z− (M,B2) . (4.12)

Let
{ck}s

k=1 = Z− (M,B1) . (4.13)

In (4.13) we count each zero c of the function B1 as many times as its multiplicity is. The
main idea of this proof is to show that a combination of Lemma 3 and (4.1) with (4.7) and
(4.8) leads to

{ck}s
k=1 ⊆ Z− (M,B2) . (4.14)

To establish (4.14), we should consider several possible cases for zeros {ck}s
k=1 . Consider

the zero c1 ∈ Z− (M,B1) . Either F1(c1) = 0 or F1(c1) 6= 0. We consider both these cases.
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Case 1. Assume first that
F1(c1) = 0 (4.15)

By (4.1) and (4.15) at least one of the two equalities (4.16), (4.17) takes place,

F2(c1) = 0, (4.16)

F̂2(c1) = 0. (4.17)

Assuming that (4.15) is true, consider cases (4.16) and (4.17) separately. We denote them
C11 and C12 respectively.

Case C11. Suppose that (4.16) is true. Since by (4.13) Im c1 > 0, then c1 ∈
Z+ (M,F2). Let, for example c1 = b1. Then c1 = b1. Therefore, c1 is present in the nominator
of the first term of the product in (4.8), which implies that B2 (c1) = 0. Hence,

c1 ∈ Z− (M,B2) . (4.18)

Case C12. Assume that (4.16) is invalid, i.e.,

F2(c1) 6= 0. (4.19)

Then (4.17) holds. Because of (4.19), the number c1 is not present in denominators of
the product in (4.8). On the other hand, (4.1), (4.15), (4.19) and Lemma 3 imply that
F2(c1) = 0. Hence, by (4.8) B2 (c1) = 0, which implies (4.18).

Thus, the assumption (4.15) led us to (4.18) in both possible cases C11 and C12. Consider
now the Case 2, which is opposite to the Case 1.

Case 2. Suppose that
F1(c1) 6= 0. (4.20)

By (4.13)
B1(c1) = 0. (4.21)

Since Im c1 > 0, then (4.20) implies that c1 /∈ Z+(M,F1), which means that c1 is not present
in nominators of the product in (4.7). Hence, (4.7) and (4.21) lead to F1(c1) = 0. Hence,
by (4.1) at least one of the two equalities (4.22), (4.23) takes place

F2(c1) = 0, (4.22)

F̂2(c1) = 0. (4.23)

Assuming that (4.20) is true, consider cases (4.22) and (4.23) separately. We denote these
two cases C21 and C22 respectively.

Case C21. Suppose that (4.22) is true. Since Im c1 < 0, then c1 is not present in
denominators of the product in (4.8). Hence, B2 (c1) = 0. This means that (4.18) is true.

Case C22. Assume now that (4.22) is invalid. Hence, (4.23) holds. Hence, Lemma
3 implies that (4.16) holds (note that we cannot now refer to the above case C11, because
being “inside of Case 2”, we do not assume that (4.15) is valid). Since Im c1 > 0, then
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(4.16) means that c1 ∈ Z+ (M,F2) . Let, for example c1 = b1. Hence, c1 = b1. Therefore,
c1 is present in the nominator of the first term of the product in (4.8), which implies that
B2 (c1) = 0. This means that (4.18) is true.

Thus, the conclusion from Cases 1 and 2 is that (4.18) holds.
We show now that

c2 ∈ Z− (M,B2) . (4.24)

Hence, using (4.13) and (4.18), we obtain that

B11(z) =
B1(z)

z − c1
and B21(z) =

B2(z)

z − c1
. (4.25)

are entire analytic functions. Also, by (4.13) and (4.25)

{ck}s
k=2 = Z− (M,B11) . (4.26)

It follows from (4.25) that in order to prove (4.24), it is sufficient to prove that

c2 ∈ Z− (M,B21) . (4.27)

We again consider two possible cases.
Case 3. Suppose that (4.15) is true. Because of (4.1) and (4.15), at least one of

equalities (4.16) or (4.17) holds. We again consider cases (4.16) and (4.17) separately and
denote them C31 and C32 respectively. Since (4.15) holds, we can assume that c1 = a1.

Case C31. Suppose that (4.16) holds. Let, for example c1 = a1 = b1. Introduce
functions F11(z) and F21(z) by

F11(z) =
F1(z)

z − a1

and F21(z) =
F2(z)

z − a1

. (4.28)

Since F1(a1) = F2(a1) = 0, then F11(z) and F21(z) are entire analytic functions. Hence,
Z+ (M,F11) = {ak}n1

k=2 and Z+ (M,F21) = {bk}n2

k=2 . It follows from (4.7), (4.8), (4.15),
(4.25), and (4.28) that formulas for functions B11(z) and B21(z) can be written as

B11(z) = F11(z)

n1∏
k=2

z − ak

z − ak

and B21(z) = F21(z)

n2∏
k=2

z − bk
z − bk

. (4.29)

Note that by (4.28)

F̂11(z) = F 11 (z) =
F̂1(z)

z − a1

and F̂21(z) = F 21 (z) =
F̂2(z)

z − a1

.

Hence,

Fj1(z) · F̂j1(z) =
Fj(z) · F̂j(z)

(z − a1) (z − a1)
.
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Hence, (4.1) leads to

F11(z) · F̂11(z) ≡ F21(z) · F̂21(z). (4.30)

Relations (4.15), (4.25), (4.26) and (4.28)-(4.30) enable us to repeat arguments of the above
Case 1 replacing c1 with c2, B1(z) with B11(z), B2(z) with B21(z), F1(z) with F11(z), and
F2(z) with F21(z). Thus, we obtain (4.27), which, in turn leads to (4.24).

Case C32. Assume now that (4.16) is invalid. Then (4.17) holds. Since we are still
“within Case 3”, then c1 = a1. Hence, (4.17) and Lemma 3 imply that F2 (a1) = 0. Introduce
entire analytic functions F12(z) and F22(z) as

F12(z) =
F1(z)

z − a1

, F22(z) =
F2(z)

z − a1

. (4.31)

Then

Fj2(z) · F̂j2(z) =
Fj(z) · F̂j(z)

(z − a1) (z − a1)
.

Hence, (4.1) implies that

F12(z) · F̂12(z) ≡ F22(z) · F̂22(z). (4.32)

Hence, using (4.7), (4.8), (4.15), (4.25), and (4.31), we conclude that formulas for functions
B11(z) and B21(z) can be written as

B11(z) = F12(z)

n1∏
k=2

z − ak

z − ak

and B21(z) = F22(z)

n2∏
k=1

z − bk
z − bk

. (4.33)

Therefore, relations (4.15), (4.25), (4.26), and (4.31)-(4.33) enable us to repeat arguments
of the above Case 1 replacing c1 with c2, B1(z) with B11(z),B2(z) with B21(z), F1(z) with
F12(z), and F2(z) with F22(z). This leads to (4.27), which, in turn implies (4.24).

Thus, both cases C31 and C32 led us to (4.24). This proves that if F1(c1) = 0, then
c2 ∈ Z− (M,B2) .The alternative (to the Case 3) Case 4 with F1(c1) 6= 0 is considered
similarly. The only difference is that instead of Case 1 we should refer to Case 2 for the
repetition of the arguments. Thus, we have established that both zeros c1, c2 ∈ Z− (M,B2) .
To prove that c3 ∈ Z− (M,B2) , we need to consider entire analytic functions

B12(z) =
B11(z)

z − c2
and B12(z) =

B21(z)

z − c2

and repeat the above. Therefore, repeating this process, we obtain (4.14). Hence, (4.13)
and (4.14) lead to Z− (M,B1) ⊆ Z− (M,B2). Similarly, Z− (M,B1) ⊆ Z− (M,B2) . Thus,
(4.12) is true. �

Consider now zeros of functions F1(z) and F2(z) in {Im z < 0}∩{|z| < M} . Let {a′k}
n3

k=1 =
Z−(M,F1) and {b′k}

n4

k=1 = Z−(M,F2). Similarly with (4.7) and (4.8) we introduce functions
B−

1 (z) and B−
2 (z) by

B−
1 (z) = F1(z) ·

n3∏
k=1

z − a′k
z − a′k

and B−
2 (z) = F2(z) ·

n4∏
k=1

z − b
′
k

z − b′k
.
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Lemma 9. Z
(
B−

1

)
= Z

(
B−

2

)
.

We omit the proof of this lemma, because it is quite similar with the proof of Lemma 8.

5 Proof of Theorem 1

We recall that in this section numbers N = N (F1, F2) and M = M(N) are those, which
were chosen in Lemma 7, m > N is an integer, an arbitrary number y1 ∈ Im is fixed, and
we set y := y1. So, for brevity we do not indicate in this section the dependence on the
parameter y. It was established in the beginning of section 4 that in order to prove Theorem
1, it is sufficient to proof (4.4) and (4.5).

By (1.8), (1.9), (3.5), (4.7) and (4.8) |B1(x)|2 = |B2(x)|2, ∀x ∈ R. Hence, lemmata 5
and 8 imply that the function g(z) and the integer k in analogs of infinite products (3.4)
for functions B1 and B2 are the same for both these functions. Hence, Lemma 8 and (3.4)
imply that B1(z) = B2(z),∀z ∈ C. Hence, (4.7) and (4.8) lead to

F1(z) +

(
n1∏

k=1

z − ak

z − ak

− 1

)
F1(z) = F2(z) +

(
n2∏

k=1

z − bk
z − bk

− 1

)
F2(z),∀z ∈ C. (5.1)

Set in (5.1) z := x ∈ (−∞,∞) and apply the inverse Fourier transform with respect to x,

1

2π

∞∫
−∞

(...) eixξdx.

We can write each of functions

Q1(x) =

[
n1∏

k=1

x− ak

x− ak

− 1

]
and Q2(x) =

[
n2∏

k=1

x− bk
x− bk

− 1

]

as a sum of partial fractions, i.e., as a sum of

Dsk

(x− dk)
s , Im dk > 0, j = 1, ..., t, t ≤ max(n1, n2)

with certain constants Dsk, where dk ∈ Z+ (M,F1)∪Z+ (M,F2) . The theory of residuals [1]
implies that

∞∫
−∞

1

(x− dk)
s · eixξdx = H (ξ)Ps−1 (ξ) eidkξ, (5.2)

where H (ξ) = 1 for ξ > 0 and H (ξ) = 0 for ξ < 0 is the Heaviside function and Ps−1 (ξ) is
a polynomial of the degree s− 1.
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Let V1(ξ) and V2(ξ) be the inverse Fourier transforms of functions Q1(x) and Q2(x)
respectively. By (5.2) V1(ξ) = V2(ξ) = 0 for ξ < 0. Thus, (5.1) and (5.2) imply that

p̂1 (ξ) +

ξ∫
0

p̂1 (ξ − θ)V1 (θ) dθ = p̂2 (ξ) +

ξ∫
0

p̂2 (ξ − θ)V2 (θ) dθ, (5.3)

where functions p̂1 (ξ) and p̂2 (ξ) are defined as p̂1 (ξ) := p1 (ξ, y1) , p̂2 (ξ) := p2 (ξ, y1) and
functions p1 (ξ, y) and p2 (ξ, y) were defined in (3.11). By (3.12) p̂1 (ξ) = p̂2 (ξ) := p̂ (ξ) for
ξ ∈ (0, δ) . Denote W (ξ) = V1(ξ)− V2(ξ). Hence, (5.3) leads to

ξ∫
0

p̂ (ξ − θ)W (θ) dθ = 0, ξ ∈ (0, δ) . (5.4)

Differentiate (5.4) with respect to ξ and note that by (3.13) p̂(1) = p̂(0) and by (3.22)
p̂(0) 6= 0. We obtain the following Volterra integral equation with respect to the function
W (ξ)

W (ξ) +
1

p̂(0)

ξ∫
0

p̂ (ξ − θ)W (θ) dθ = 0, ξ ∈ (0, δ) . (5.5)

Hence, W (ξ) = 0 for ξ ∈ (0, δ) . Since the function W (ξ) is a linear combination of functions
Ps−1 (ξ) eidkξ for ξ > 0, thenW (ξ) is analytic with respect to ξ ∈ (0,∞) and can be continued
in C as an entire analytic function W (z). Therefore, W (z) = 0 for all z ∈ C. Hence,
Z+ (M,F1) = Z+ (M,F2), which proves (4.4). We omit the proof of (4.5), since it can be
carried out quite similarly via the use of Lemma 9 instead of Lemma 8. �
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