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Abstract

We consider two-dimensional Schrodinger operators in bounded
domains. Abstractions of nodal sets are introduced and spectral con-
ditions for them ensuring that they are actually zero sets of eigenfunc-
tions are given.

1 Introduction.

Consider a Schrodinger operator
H=-A+V (1.1)

on a bounded domain  C R? with Dirichlet boundary condition. We assume
that 0€) has finitely many piecewise smooth components and satisfies an
interior and an exterior cone condition. Furthermore we assume that V' €

C* () is real valued.
The operator H is then selfadjoint if viewed as the Friedrichs extension of
the quadratic form associated to H with form domain H(). We denote
H, by H(2). We know that H(f2) has compact resolvent. So the spectrum
of H(Q), o(H(2)) can be described by an increasing sequence of discrete
eigenvalues

AL<A <A< <L

tending to +o00, such that the associated eigenfunctions u; can be chosen to
form an orthonormal basis in L?(2). We can assume that the eigenfunctions
uy are real valued and by elliptic regularity [9] we have

up € C°(Q) NCY(Q) . (1.2)
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It is well known that u; can be chosen to be strictly positive and that the
other eigenfunctions ug, £ > 1, must have nonempty zero sets. We define the
zeroset N (u) of a function u by

N(u) ={z € Q| u(xz) =0}. (1.3)

The nodal domains of an eigenfunction u, which are by definition the con-
nected components of 0\ N (u), will be denoted by D;,j =1,..., u(u), where
p(u) denotes the number of nodal domains of u. For any open subset D C
we denote by H(D) the operator —A+V with form domain Q(H) = Hj(D).

In [1] we considered together with A. Ancona the following situation.
Supposing the €2, are pairwise disjoint open subset of €2, we derived inequal-
ities relating the sum of the spectral counting functions of the H(£2,) with
the counting function of H(2). Here the counting function attached to A
and H (€)) is the number of eigenvalues of H(€2,) that are smaller or equal
to a given A. Also converse results were obtained. Namely for the case of
equality it turned out that these €2, already must be nodal domains or union
of nodal domains.

The problem we address here is related in spirit. Let D be a covering
family of (2, that is a family of x4 connected open subsets of {2 such that

D;ND;=0fori#j, and Int (U'D;) = Q. (1.4)

If the p domains happen to be the nodal domains of an eigenfunction u of
H(Q) such that H(2)u = Au, then A is in the spectrum of any operator H;
where [ is a subset of {1,2,...,u} and

We are interested in the possibility of a converse statement. If we look first
at the one dimensional case when 2 is an interval in R, we easily see that,
if we can find a A € R such that \ is a groundstate energy for each H(D;),
then this A should be an eigenvalue of H(2) and we can find a corresponding
eigenfunction v such that the intervals D; are the nodal domains of u. We
have just indeed to multiply each eigenfunction u; of H(D;) by a constant ¢;
in order to glue them together for getting an eigenfunction wu.

In order to go further, we first observe that this is no longer true in the
case of a circle S*. Some compatibility condition should occur and it is rather
easy to find examples for which one cannot glue together the u;’s. As we shall



see later, this phenomenon could also appear in higher dimension when 2 is
not simply connected.

The second observation is that this gluing procedure does not work any-
more in higher dimension. In order to explain the problem, let us first give
a definition. We say that D;, D; C D are neighbors, or neighbor each
other, or D; ~ D; if

D;; :=Int (D; U D) is connected. (1.6)

Now if for two neighbors D; and D;, A is the groundstate energy of both
H(D;) and H(D;), there is no way in general to construct u,; in the domain
of H(D;;) such that u;; = c;u; in D; and u,;; = cju; in D;. We would indeed
need at 0D; N 0D; the normal derivatives of u; and u; to be proportional.

So it is natural for the analysis of the converse problem to assume in higher
dimension the existence of u;; for all the pairs of neighbouring domains and
to try then to glue those u;; so that an eigenfunction of the whole problem
is obtained. We are consequently led to the following definition :

Definition 1.1

We say that the covering family D = {Ds,...,D,} satisfies the Pair Com-
patibility Condition, for short PCC, if, for some \ € R, and for any pair
(¢,7) such that D; ~ D, there is an eigenfunction u;; # 0 of H(D;;) such
that H(D”)’U,ZJ = /\U,’j with

We can associate (see Figure 1 for an example) to such a covering family
D a graph G or G(D) by placing in each D;, i =1,..., u, a vertex v; and by
associating edges e;; to the v;,v; such that the corresponding D;, D; satisfy
Di ~ Dj .

We say that D is admissible if the associated graph G(D) is bipartite.
Bipartite graphs are just graphs whose vertices can be colored by two colors
so that vertices which are joined by an edge have different colors. This is a
well known notion in graph theory, see e.g. Diestel [8].

We shall see in the next section that the nodal set N(u) of an eigen-
function u of H(2) has, under the condition that 92 is C'*, the following
Abstract Nodal Set Property (or shortly (ANSP)) which we now define.



Figure 1: Covering family and associated graph



Definition 1.2 (Abstract Nodal Set Property)

A closed set N in Q belongs to J\7(Q) if N meets the following requirements :
N is the union of smooth arcs connecting points in 052 and smoothly imbedded
circles in €2.

There are finitely many distinct x; € QN N and associated positive integers
v; (v; > 2) such that, in a sufficiently small neighborhood of each of the x;,
N is the union of v(x;) C* curves (non self-crossing) two by two crossing
transversally at x; (with positive angle) and such that in the complement of
these points in 2, N is locally diffeomorphic to a regqular curve.

IQNN consists of a (possibly empty) finite set of points z;, such that, at each
zi, p; (p;i = 1) nodal lines hit the boundary. Moreover, for each z; € 0%,
assuming that we have rotated and translated Q2 such that z; = {0}, that OS2
15 at the origin tangent to the x1-axis and that Q) lies locally above the x1-axis,
then N is near z; the union of p; distinct C™° half-curves which hit the origin
with strictly positive angles.

By smooth we mean as usual that each arc, respectively circle, is a com-
ponent of the zeroset of a C'™° function which has at the zero nonvanishing
gradient.

The points x; will be called “critical” points of the (abstract) nodal set.
Let us also observe that this definition implies that the family of abstract
nodal domains which are by definition the components of 2\ N is an admis-
sible covering.

Our main theorem is the following
Theorem 1.3
Suppose that §) is simply connected with smooth boundary and that, for some
N € N(Q) and X € R, the associated family D = {Ds,...,D,} satisfies

(PCC). Then there is an eigenfunction of H(Q2) with corresponding eigen-
value A such that U;0D; \ 02 = N(u).

Remarks 1.4

(i) The regularity assumptions can probably be relazed, but we do not strive
for generality here. See [1] for the type of conditions which could be
given and Section 8.

(i) If Q2 is not simply connected then our result does not hold in general
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as will be explained through examples in Section 6. There we also give
additional conditions on the admissible covering family D such that
Theorem 1.3 still holds.

(#i) There are simple cases in higher dimensions for which Theorem 1.8
easily can be shown to hold (for example in some simple tree situations).

Organization of the paper.

In Section 2 we collect some well known facts about zero sets and nodal
domains. In Section 3, we analyze the properties of coverings of €2 in con-
nection with graph theory. Section 4 is devoted to the proof of the main
theorem. In Sections 5, we illustrate the theorem by discussing examples.
Section 6 is devoted to a general criterion for non simply connected domains.
We then analyze in Section 7 the optimality of these sufficient conditions by
considering families of examples for which (PCC) does not imply a general
compatibility condition. In Section 8, we come back to a conjecture concern-
ing the nodal structure of eigenfunctions in domain with corners, which can
be of independent interest. Concluding remarks are given in Section 9.

2 Regularity of eigenfunctions and Abstract
Nodal Set Property.

We investigate the properties of nodal domains and nodal sets. This will
lead us to propose and justify the corresponding abstractions. In particular
we will show that for a smooth 2 the zerosets of the eigenfunctions satisfy
the Abstract Nodal Set Property introduced in Definition 1.2. First we recall
some basic regularity results (cf [9]).

Proposition 2.1

Every eigenfunction u of H(2) belongs to C*(Q)NCY(Q) . Furthermore, for
any etgenfunction u, any nodal domain 0D is piecewise smooth and satisfies
an interior cone condition. If in addition the boundary is C* then u €

C=(Q)

The next property justifies the introduction of A (Q).

Proposition 2.2
Suppose 00 € C*® and u is an eigenfunction of H(2). Then N(u) belongs



to N(Q).

Moreover the nodal lines can only cross at interior points with equal angles,
and at boundary points crossing nodal half-lines determine also together with
the boundary equal angles.

The proof follows rather directly from the local behaviour of eigenfunctions
near their zeros.

Lemma 2.3
Let u in Hy(Q N B(xo, po)) with QN B(xo, po) # O where B(xo, po) = {z €
R? | [z — x| < po} and xq € Q. Let us assume that :

(a)

Suppose xy € N(u) N then there is v such that,
u(z) = P,(z — x9) + P,y1(z — o) + (9(|x — x0|”+2> , (2.1)
in a sufficiently small neighborhood of xy. Thereby P, #Z 0, defined by

P,(z) =r"(acosvw + bsin vw) , (2.2)

is a harmonic homogeneous polynomial of degree v. For simplicity we have
written this in polar coordinates r,w. Note that the zeroset of any P, consists
of m straight lines which intersect with equal angles.

(b) :

If zy € N(u)NOQY then there exist p > 1 and 1o > 0 such that, in QN B(zg, 1),
u(z) = Ppir(z — 2) + (9(|x - zo|”+2> . (2.3)

Thereby P,i1 # 0 in (2.3) is defined as in (2.2) and has the property that
the line tangent to O at zg is in the zeroset of Pyi1(z — 2p).

About the proof of Lemma 2.3.
This lemma is well known among specialists (see for instance [12]) but it
is difficult to give a reference where all the statements are proved in detail.
Therefore we sketch? some of the arguments. For inner points, i.e. for (a)
it is already in the work of Bers [3] where it is shown that locally this be-
haviour holds. Note that the Strong Unique Continuation Theorem gives

2The first author would like to thank L. Robbiano for useful discussions.



first that a local solution which is not identically zero cannot vanish faster
than polynomially at a point inside €. It is then easy to see that the first
non zero homogeneous term appearing in the Taylor expansion at a point xg
in N(u) N Q should be a harmonic polynomial.

For boundary points, i.e. case (b), it seems useful to explain how the Strong
Unique Continuation Theorem can be extended. One can actually straighten
the boundary and reflect. The change of variable should however be done
carefully in order that the main term of the operator becomes, in the new
coordinates T = (&1, Z2),

—851(11(5:)8551 — 85251,2(57)6@2 s (24)

and that the boundary becomes locally defined by #; = 0 (with Q locally
defined by z; > 0).

Note that an important point in (2.4) is that no cross term 03,0z, appears.
Forgetting the tilda’s, we now reflect the solution u by

ez, 29) = u(x1,x2), forzy >0,

= —u(—x1,22), forz; <O0.

u

Then the boundary critical point becomes an inner point and the above
argument carries over with u®** appearing as a solution of a new second or-
der operator with less regular coefficients. The fact that the Laplacian is
transformed by this flattening and extension by reflection to an operator in
divergence form does not cause any trouble for the application of the Strong
Unique Continuation Theorem. Indeed, the principal term is Lipschitz and
the lower order terms are L. We refer to [14] (p. 104) for a variant of this
trick used in a similar context (Carleman estimates).

To show that the nodal arcs respectively circles are smooth also near or
through the crossing points or an arc when approaching the boundary one
can look up for example at the proof given in [10] (see more precisely the
argument given p. 1010, lines 1-10). O

Remarks 2.4

(i) Note that for each component of 02 the number of nodal lines hitting
this component has to be even. This is implied by the property that
the graph associated to N 1is bipartite. Indeed, otherwise the associated
graph would contain an “odd circle” (that is a circle with an odd number
of vertices) and this would make it impossible to color the associated
graph with two colors.



(1) It should be useful to have also a description of the zeroes of eigen-
functions in the case of domains with piecewise C* boundaries and to
describe the local structure of the zeroes near the corners. This is dis-
cussed for example in [4] or [5]. The main difficulty for having a local
structure lemma at the corner is to show that the solution cannot be flat
at the corner, that is cannot decay faster than polynomially. Although
quite reasonable®, this seems without additional assumptions to be open
and will be discussed further in Section 8.

3 Graphs and circulation along paths

3.1 Preliminaries

We start with a covering family D = {D;, ..., D,} so that
N =[JoD;\ 89 € N (Q).

We assume that for some given A, D satisfies (PCC).

We introduce various normalizations. For ¢+ = 1,...,u, let u; be the
positive normalized groundstate of H(D;). Similarly, for any oriented pair
(¢,7) such that D; and D; are neighbors, let u;; be the eigenfunction of
H(D;;) having 0D; N 0D; as nodal set, hence D; and D; as nodal domains.
We normalize u;; and impose that u;; is strictly positive in D;. Then w;; is
uniquely determined and negative in D;. Note that with this choice

Uij = —Uj; , (3.1)
and that we can write
uig = dij(us = Vi) (3.2)
with v;; and d;; strictly positive.
We can then write
Yij = €XP Cij , (3.3)

and we call ¢;; the circulation from D; to D;.
Having in mind (3.1), we get the relations :

dij = djiVji » dijvij = djs -

3We thank H. Koch for discussions.



In particular we get the important relation :

Yijvii =1, (3.4)
which in the circulation terminology becomes

Cij + Cj; = 0. (35)

3.2 Good paths

We now consider continuous paths in {2 wandering between the nodal do-
mains. More precisely the following notion of good path is useful :

Definition 3.1

We say that the path [0,1] 5 t — B(t) € Q is good (with respect to D) if
(1) 5(0),8(1) € Q\ N, p(t)n o =0 fort e [0,1].

(ii) B(t)N N®) =0 for v > 2 where

N ={z e NNQ|v nodal lines locally cross in x}.

(ii2) If for some ty € (0,1), B(to) € OD; N OD;, then there is an € > 0 such
that, for t € (to — €,t0), B(t) € D; (or D;) and for ty € (to,t0 + €), B(t) €
Dj (07“ Dz)

To any good path, we can associate a finite sequence ig, i1, - - , % of in-
dices expressing the restriction of the path to the graph G. We call this
restriction the associated G-path and denote it by fg.

This simply means that the path starts from 3(0) € D;,, then leaves D;,
for entering in D;, and a new index is added at each crossing of a bound-
ary. The length of the path is then exactly the number of crossing of the path.

As usual, we say that the path is closed if 3(0) = 5(1). Note that if 5(0)
and ((1) belongs to the same D; then we can always close the path (using
the property that D; is arcwise connected), keeping the corresponding graph
fixed, which is in any case a circle.
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3.3 Circulation along Sg

We can associate to each good path §(t) two numbers

k—1
B _

v = H%g,ie+1 )

=0
and

k—1

Cﬂ = § :c’il,il+1 )
=0

the second one being called the circulation along /.
Of course, we have
7P = exp Cs .

Note that Cs depends only on the G-path g, so Cs will also be called
the circulation along f¢.

When we deform these paths by homotopy, it is clear that as long as the
path keeps the property of being good the circulation is constant.

But one of our goals will be to follow this circulation when changing in
the homotopy the corresponding G-path (that is the path in the homotopy
does not remain a good path).

4 Proof of the main theorem

4.1 General Compatibility Condition

The general condition for constructing an eigenfunction of H(2) by gluing
the w;; of H(D;;) is quite reminiscent of the problems occuring for example
when analyzing the triviality of a line bundle over a manifold or, as will be
seen below, of the analysis of contour integrals in complex analysis. The
following criterion is quite natural :

Proposition 4.1 _

If we have an admissible covering D in Q generated by some N in N (Q) such
that (PCC') holds for some A € R, then an eigenfunction of H(S)) associated
with A can be constructed if and only if, for any closed path on the graph of
length k > 2, the condition

(GCO) ?:_é Vigsigsr = 15 (4.1)

11



15 satisfied.

In other words, the circulation along any closed path on the graph
must be 0.

Remarks 4.2

(i) At this stage, it is not necessary to assume that Q is simply connected.

(i) Note that because we are, in a bipartite graph, k has to be even in (4.1).

Proof of Proposition 4.1

One starts from one domain D,, and from its groundstate u;,. Then the
extension of u;, to all neighboring domains is obtained by using assumption
(PCC). One can then propagate the extension to the next neighbors till
is covered. (GCC) just permits a construction which is independent of the
path used for the extension. This gives a global construction of an element
u in H§() belonging to HE (2 \ N¢) where N¢ is the set of critical points
of N lying in €2, and satisfying in the distribution sense

(~A+V =Au=0inQ\N°.

But (—A+V —X)u belongs to H~! () so it remains to show that a distribution
in H~! with support in N¢ is 0.
But N°€ is a finite set and it is enough to recall the standard

Lemma 4.3
If w is an open set in R? and zy € w, there are no distribution in H;,. (w)
with support in {zq}.

This achieves the proof of the proposition.

So the proof of our main theorem consists in showing that Condition (4.1)
is always satisfied when (2 is simply connected.

In particular, it is not too difficult to see that the condition is automat-
ically satisfied in the case when the graph associated to the covering is a
tree.
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4.2 Further reduction

We now explain how to reduce the computation of the circulation along a
good closed path to the case where a given good path encloses only one or
no critical points. The proof is by induction. Suppose that a closed good
path 7 parametrized by ¢ € [0,1] encloses exactly k critical points (with
k > 2). The claim is that we can find two points (inside nodal domains) on
this closed path corresponding to times ¢ and ¢;, and construct a continuous
curve £y, going from y(ty) to y(t;) avoiding the critical set such that the path
71 defined by v; = v on [0, to], by £o;1 on [to, t;] (after reparametrization) and
by 71 = 7 on [t1,1] is a good path containing only in its interior one critical
point.

If now /1y denotes the opposite path to £y;, we can consider the closed good
path Yo such that Yo = 510 on [0, to], Yo = 7y O [to, tl].

It is clear that -y, encloses in its interior (k — 1) critical points and that the
circulation along 7y is the sum of the circulation along 7, and of the circulation
along v,. If (k — 1) > 2, we can iterate the procedure till each path encloses
at most one critical point.

So the general proof is reduced to the analysis of the condition (4.1), in
the case when a good closed path either encloses no critical point or one
critical point. This will be the object of the two next subsections.

We will actually show that in these two situations the circulation along
the path is zero, when the path is homotopic in 2 to a point, which is
automatically the case if () is simply connected.

4.3 Proof when a good closed path does not enclose
any critical point and is homotopic to a point

In this case we can find a homotopy 7(s,t) such that v(0,%) is the initial
path, v(1,%) is a single point living in some D;.

Of course the graph trace of the path, i.e. B¢ is changing with this homo-
topy. But since each nodal domain has only finitely many critical points in
its boundary a continuity argument shows that, by modifying the homotopy,
we can get one for which there are only finitely many s, for which the paths
are no more good paths. Moreover one can pick this homotopy in such a
way that, at these sy, the paths (s, -) have still the property that they are
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good except at one point #;. So the transition near the point* (s, t) is the
following (or the converse). There exists some pair of neighboring D; and
D; such that y(sk,tx) € 0D; N0OD;. For s < s ((s,t) near (sg,?)) the path
v(s,t) (see Figure 2) is contained in D;,, with i, = i. For s = s;, and ¢ near
tx, then (s, t) belongs to D;, except at y(sk,tx). For s > si (s near si), the
path enters the neighbor D; = D,ﬁa{), before returning to D;, and entering
D;,,. In particular we can pick the homotopy always so that the path avoids
any critical point.

So the initial corresponding G-path 41, 1%9,%3, - ,%p—1,%¢, tes1, - - -, 0k DE-
comes 4,9y, 13, " , 1,0, Uy 1, e, ber1, -+, 1. LThe fact that the circulation
is conserved in this transformation is an immediate consequence of (3.4).

Figure 2: Deformation argument in three pictures : before, at the touching
and after.

For the converse transition, we just replace a sequence iy, 137, t¢, To41
by i,. After finitely many operations of this type, we will obtain a path
reduced to a single point whose G-path is also a point.

Actually the main point here is that the associated closed G-path is a
path on a tree !

4.4 Proof when a good closed path encloses a unique
critical point and is homotopic to a point.

Let us now consider the case of a closed path encloses a unique critical point.
We can reduce the computation to the case when this closed good path is a
small circle turning once and positively around this point zy. There exists
v > 2 so that the v nodal arcs 0y, 04, ...,0, 1 pass locally through zy. This

“denoted by Sy in the figure,
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means that there is an ¢y > 0 such that for 0 < € < ¢
N N B(xg,€) = UiZg0; N B(x, €)

where B(zg,€) = {z € R? | |z — zo| < }. We shall also use the (2v) half arcs
o, (such that o, = 0f Uo,,). Without loss we might assume that zo = {0}
and that og is tangent to the z;-axis at xy. The arc oq splits B(zo, €) in two
parts and we denote by BT (g, €) the upper part which lies ”above” oy.

Figure 3: Picture in the case when v = 3.

Assume now (PCC) for D. The abstract nodal set (intersected with
B(z,€)) defines 2v curved sectors Sy (also intersected with B(zg,€))° (£ =
1,...,2v) delimited® by o/ , and o/, each one belonging to some D;,. Take
the first domain S; starting from o . Starting from u;, , the pair compatibility
condition can be used iteratively to extend the restriction of u; to S; as a
local solution v; € C*°(B™ (g, €)) such that (—A + V)v; = vy in Bt (zg, €),
vy = 0 for NN B*(zg,€) and v; = u;, on S;. We can now apply Lemma 2.3
(b) to v; in B* so that’

v1 = ¢y’ sinvw + O(r' 1)

5We omit from now on recalling the fact that we are always in a small ball around .
But the whole proof is local.

6By convention, o3, is oy .

"Here there are two possibilities in the choice of polar coordinates. We can either
flatten the boundary of BT and take polar coordinates after flattening or keep the initial

ones. In any case, the two choices lead to the same main term.
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for some constant ¢; # 0. In particular this means that though we have not
assumed that the nodal lines cross at the point xy under equal angles this is
enforced by Lemma 2.3. The second point is that by restriction to Sy, we get
u;; = cyr’sinvw + O(r**1) in S .
and a similar expansion is true for u;,;, :
Ujiiq = 0127'“ sin vw + 0(7‘U+1) in Int (§1 U §2) .

Of course we can do the same thing starting from any S,. So, for each ¢, we
have shown the existence of ¢, > 0 such that u;, has the asymptotics

u;, = —cgr’ sin (V(w — weey1)) + O, (4.2)

in Sy, where wy 41 is the argument of the tangent to 05, N 0Se;; at 0 and a
similar expansion holds for u;,;,_,
But reusing (PCC) (through (3.2)) gives that

Ce+1
,Yilail—{—l = C—é . (43)

Coming back to the definition of the circulation and using (4.3) we get the
vanishing of the circulation along the good path enclosing the critical point.
This completes the consideration of this case and finishes also the proof of
the main theorem.

Remark 4.4 o
In this section we could also have tried to consider directly Int (S1USy). But
then we would need to know more about the structure of the nodal set and the

behavior of an eigenfunction near a corner. This will be discussed in Section
8.

5 Examples.

We apply the general constructions above for the analysis of specific exam-
ples.

5.1 Three examples whose corresponding graph is a
tree

A simple covering.
The left subfigure in Figure 4 presents a covering by five domains, whose
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corresponding graph is a tree. Moreover, there are no critical points inside
the domain.

The eight.

Take the case of the eight as in the central subfigure of Figure 4 with (0, 0) as
critical point. Let Dy and D3 the two interior ”abstract” nodal domains and
D, the “exterior” nodal domain meeting 9€2. Then D; ~ D, and D; ~ Ds.
Suppose that, for some A, we have (PCC). We apply Lemma 2.3 (case (b))

locally to uyo in D]y™, (ro > 0 small enough), where D}5" = Int (ﬁ; U D{’i>,

D7* being the two components (for r small enough) of D; N B(0,7). This
shows that the groundstate u; (which is up to a multiplicative constant the
restriction to D; of u;5) satisfies

up = c1r?sin(2(w — wz)) + O(r?) ,

near o = 0, where the constant ¢; is the same for the two “opposite” sectors
describing D; near x,. But the associate graph is a tree. It is trivial in
this case that the trace of a good closed path on the graph has always zero
circulation. We do not need to use the information given by the local analysis
around the critical point. The only additional information given by this
analysis is that u; has the same asymptotics near 0 in the two opposite
sectors.

The clover leaf intersection.

This example (right subfigure in Figure 4) does not lead to any difficulty.
The graph is a tree. On can directly extend from D; toward respectively Dy,
D3 and Dy.

5.2 Examples with circles

The cross.

When (2 is the disk B(0,1), the cross (say {z; = 0} U {zo = 0} determines
four nodal domains D; (j = 1,2,3,4) (see the left subfigure in Figure 5
and its corresponding graph below) so we have a ”circle” (1,2,3,4). The
corresponding graph can be represented by a square. Here we cannot avoid
the local analysis around the center.
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Figure 4: Three examples with associated graph below : simple, eight and
clover.

Two intersecting circles.

Although the corresponding graph is the same, the nodal structure is differ-
ent. There are two critical points. There are three typical paths enclosing
critical points. One is living in D; and turning positively and once around
Dy U D3 U Dy4. By definition, the circulation along this path is trivial. The
second one is a small positively oriented circle around the left critical point.
Its corresponding trace in the graph is the sequence (1,2,3,4). Here we need
to perform the local analysis.

The third one is a small positively oriented circle around the right critical
point. Its corresponding trace in the graph is the sequence (4,3,2,1). One
can perform the local analysis but also observe that the circulation along this
path is just the opposite of the previous one.

6 Sufficient conditions in the non simply con-
nected case

In the non simply connected case, what remains from the previous proof can
be formulated as follows.

Proposition 6.1
In each homotopy class of ), all the good paths have the same circulation.

In particular we can speak of a circulation attached to a homotopy class.
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2 3 2 3

Figure 5: Two other examples in simply connected domains with square
graph.

Remark 6.2

As a consequence of Proposition 6.1, for a given covering family satisfying
(ANSP) and (PCC), the proof that (GCC) holds is reduced to the proof that
in each homotopy class there is a representative with circulation 0. Of course
we recover in the simply connected case Theorem 1.5.

Remark 6.3
It is actually enough (using the properties of the fundamental group of Q) to
verify (GCC) for a set of generators of this group.

In this spirit the case of one hole can be treated in greater detail. The
homotopy group is generated by the (class of) simple path (s) turning once
and anticlockwise around the hole. This leads to the following sufficient
condition :

Proposition 6.4

We assume that Q) has just one hole and that, for some covering D and ),
(PCC) is satisfied. If there is a good path of index 1 around the hole, which
intersects the abstract nodal set at at most two points, then the conclusions
of Theorem 1.3 hold.
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The proof is immediate using Proposition 6.1, Remark 6.2 and the fact that
the circulation along a good path with no crossing is 0 by definition and is
also 0 in the case of two crossings by (PCC).

Typically the assumptions are satisfied when the hole or the exterior
boundary are hit by no or two nodal lines. The left subfigure in Figure 10
can be treated in the same way (its associated graph is actually a tree). We
believe that the last criterion is in the case of one hole optimal.

7 On the optimality in the non simply con-
nected case

Let us consider the case with one hole and let A be an eigenvalue of multi-
plicity 1 such that the corresponding eigenfunction u has at least four nodal
domains. We would like to present a family of examples for which one can
then construct a new potential so that the main theorem does not hold any
more in spite of (PCC).

7.1 Examples where (PCCQC) is not sufficient

We first discuss here a preliminary case where the proof is easier to analyze.

Assumption 7.1

We assume that there exists one nodal domain D such that Q \ D becomes
simply connected and such that the boundary of D with each of its neighbors
1s connected. We also assume that 0D N 0S) meets the regular parts of the
exterior boundary and of the interior boundary.

Then the claim is

Proposition 7.2

Under the previous assumptions, we can find a new potential V. such that A
satisfies the pair compatibility condition corresponding to N(u) and such that
A is not an eigenvalue of —A + V. with an eigenfunction having the same
nodal domain as u.
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The proof is inspired by the analysis of the case of the circle presented in
the introduction.

By assumption 0D contains two distinct non crossing continuous curves
L. joining the two boundaries.

We proceed by constructing a C'*° function b in D, such that the support
of Vb does not meet Ly, b = 0 near L, , and b = b_ near L_, where
b_ € R\ {0}. Moreover, we can require that

Vb-n=00n00QNaoD , (7.1)

where n is the outward normal to 0f2.

supp Vb

Figure 6: Construction of b in the simplest case

We note that b can be extended by 0 outside D to 2\ L_ but NOT to
Q2. On the contrary, Vb and Ab can be extended to the whole 2 !

We now introduce
ue = (14 eb)u . (7.2)

We note that u is well defined in © \ L_ and can also admit an extension,
when crossing L_, by (1 + eb_)u to the neighbors of D touching D in L_ .
Moreover, if € # 0, it cannot be extended to a C*° function in €.
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We now claim that, for small enough € # 0, u, is an eigenfunction of
—A + V. in Q\ L_, with eigenvalue A\ and with
Ab Vb-Vu

= 2 . .
V. V+e 1+eb+ w (7.3)

We observe, using the property (7.1) and that Vu is not vanishing on the
boundary on the support of Vb, by Hopf’s boundary point Lemma (see [9]),
that V. admits a C'*° extension to €2.

Now (PCC) is satisfied for A, —A + V, in Q and the family associated to
N(u). If A was an eigenvalue of the Dirichlet realization of —A + V in Q
with a corresponding eigenfunction v, with nodal set N(u), then comparing
ve and u, in D, we would get v, = ccu..

Remark 7.3
Note that we do not know if \ is an eigenvalue of the Dirichlet realization of
—A+ V. in €.

But v, is C* in Q and u, has a discontinuity ! Hence a contradiction.

Remark 7.4

One could ask naturally if replacing (PCC) by the Triple Compatibility Con-
dition (TCC) will lead to other results. Using the same ideas as above, it is
easy to construct examples for which (TCC) does not imply (GCC).

7.2 Further examples and analysis of the optimality

We still discuss the case with one hole. The construction of the previous
subsection can be extended in the following more general situation.

We keep the same starting point and assume now that we have found a
closed set F' in €2 which has the following properties :

(i) There exists a set of indices I such that :

F = Uer, D; -

(ii) Q\ F is simply connected and the intersection of its boundary with 09
has two components contained respectively in each connected compo-
nent of 0€), each one being an arc with non empty interior.
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(iii) OF \ 0 is the union of two distinct non crossing continuous nodal lines
(possibly touching at isolated critical points) L_ and L., joining the
two components of 02.

(iv) For any pair of neighboring nodal domains D;, D; such that D; C F
and D; C Q\ F, 0D; N 0D, meets only L_ or L.

Under these assumptions, the proof given in Subsection 7.1 goes through
with D replaced by Q \ F. The generalization is that © \ F' can contain
nodal lines. So in addition with the previous constraints, the construction
of b should be done more carefully, with the additional conditions that Vb
vanishes in the neighborhood of critical points and is orthogonal to Vu when
u = 0. This can be done by first constructing a smooth line in Q\ F starting
from the interior boundary and ending at the exterior boundary, with the
properties that it crosses orthogonally the boundaries, avoids all the critical
points, has no selfintersection, and intersects nodal lines orthogonally. The
function b can then be constructed by integrating along a vector field obtained
by extending in a tube around this line the normal vector field to the line.
This implies that the potential V. is C'*°.

The last condition (iv) in the above enumeration permits to verify that
(PCC) is satisfied as in the previous case. The function u, is defined as before
in Q\ L_ and cannot be extended as a C* function in 2. Looking at (PCC)
for A and —A+7V in €2, we first see that the compatibility condition is clearly
satisfied for the pairs of neighboring nodal domains contained simultaneously
in F'or Q\ F. Then the condition permits to treat the case when the neighbors
belong respectively to F' and 2\ F'. One has just to observe that the property
that only L_ or L, is involved in the extension in D;; permits to use u or
(14 €b_)u for the extension.

Conjecture 7.5
If any good path turning once anticlockwise around the hole meets the nodal
set at at least three points (hence four), one can always construct F' with the
above properties.

Towards the construction of F

We color our covering with two colours, (+) and (-), and consider 2, the
closure of the nodal domains corresponding to the positive sign and define
similarly Q_. We now take in Q. a minimal closed, arcwise connected, set
satisfying (i) and touching the two components of 9€2. This gives us some
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F.. We note that the assumption of minimality with respect to these prop-
erties implies that F); can only contain two distinct (that is non touching
except at critical points) non crossing nodal lines L and L, joining the two
components of the boundary of €2 and they are necessarily contained in the
boundary of F'y. Then the hope is that ©Q \ F' should be the exterior con-
nected component C_ of Q\ F,. Examples show that it does not always work.
Although, C_ contains by assumption and construction four distinct contin-
uous nodal lines joining the two boundaries, 2\ F; could be not connected
(in the case these four lines have a common touching point in 2) and also
in the case when it is connected, we could still have problem with condition
(ii) if these four lines touched the interior boundary at the same point.

If this does not work, the next try consists in exchanging the roles of + and
— by looking for an F in C_. The analysis of examples shows that it works
very often but we have no proof that this works in full generality.

Note also that a sufficient condition for the construction is the existence
of one continuous nodal line joining the two boundaries and not touching
simultaneously any point of L_ and L.

Q ’ supp Vb

Figure 7: A new example
In the example described by Figure 7, we can take Ir = {1}, hence in

this example F' = D;. The assumptions of the previous subsection are not
satisfied but the construction of this subsection can be applied.

Another example which did not enter in the domain of validity of the
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analysis in Subsection 7.1, is given by the right subfigure of Figure 8 (take
Ir ={1,4} and see the right subfigure of Figure 9 for the description of the
support of Vb).

7.3 On the sufficiency of (PCC) in the case of holes.

Although it is very likely that the same techniques work in the case of many
holes, we do not have (except what was said in Remarks 6.2 and 6.3), general
compact assumptions or conjectures like in the case of one hole.

1 4 1 4 1 4

2 3 2 3 2 3

Figure 8: Non simply connected examples with square graph

For example, in the middle subfigure of Figure 8, we can follow the pre-
vious proof by constructing b such that Vb is supported in D3 as described
in the middle subfigure of Figure 9.

e

supp Vb supp Vb supp Vb

Figure 9: ... and the corresponding localization of Vb
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Figure 10 below gives two examples where Theorem 1.3 holds. The left
subfigure corresponds to a tree.
For the right subfigure there is a circle (2543). But following Remark 6.3,
we observe that the fundamental group is generated by the trivial path, a
simple path turning once around the right hole and a simple path turning
once around the two holes. In each of these last two homotopy classes, we
can find a representative with respectively two crossings and no crossing.

Figure 10: Non simply connected examples where Theorem 1.3 holds
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8 On the local structure of the nodal set near
the corner

Though for our results a detailed investigation of the local behaviour near
the boundary of {2 was not necessary we collect in this section a few results
which are of independent interest and present a natural conjecture. These
results could actually permit to propose weaker assumptions in the Abstract
Nodal Set Property.

We consider a bounded domain Q C R? with piecewise smooth boundary
0f) which satisfies a uniform interior cone condition. A uniform interior cone
condition means for the two dimensional case that we can inscribe at each
corner y; € 082 a sector with opening angle say, «; € (0, 27), and sufficiently
small radius p(y;). More precisely, we have :

Proposition 8.1

Let u be an eigenfunction of H()) and assume that u has near a corner y; a
nodal domain D such that y; € 02 and so that D satisfies a uniform interior
cone condition at y;. Then u cannot be flat at y;.

This is an immediate consequence of a local version of the following theo-
rem of Davies-Simon [7] (see also B. Davies [6] — Theorem 4.6.8 and Remark
4.6.10-) which states that the ground state of the Dirichlet Laplacian (or
more generally the Dirichlet realization of a Schrodinger operator with regu-
lar coefficients) in a bounded domain {2 satisfying an interior cone condition,
then there exists ¢ > 0 and o > 0 such that

u(z) > ed(z, 00)* .

The proof relies on Harnack’s inequality® combined with a comparison theo-

rem”.

When v is not flat at y;, a classical theorem of Kondratiev [13] gives (see
[4] and [5]) :

Proposition 8.2
Suppose Q C R? is locally diffeomorphic'® near the corner to a sector of angle

8See also [2] or [15], which permit extensions to less regular cases

9Gee also [11], permitting a better control of the non-flatness

10We take here a local diffeomorphism which preserves the angle at the corner. So the
derivative of the diffeomorphism at the corner is assumed to be a rotation and the angle
a is well defined.
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a. Let W € C®(Q) and let u in HE(QNB(0,70)) be a distribution solution of
(—A+W)u=0in QNB(0,7). Assume also that u is not flat at the corner.
Then, after a local diffeomorphism sending §2 on a sector, there exists £ and
C # 0 such that :

Uw — wo)T

u(r,w) = Cra sin + o(r%) : (8.1)

(67

Note that the leading term is harmonic and homogeneous in the sector.
Kondratiev gives actually a complete expansion for which (because we are
in the case of Schrédinger) only higher order terms can contain logarithmic
terms.

Corollary 8.3
Let Q C R? be again a bounded domain as above. Then the groundstate of
H(R2) satisfies (8.1) with ¢ =1 near each corner.

For excited states the proof also goes through as long as we assume that
one of the nodal domains at each corner satisfies an interior cone condition!!
or that the eigenfunction we look at is not flat near the corners.

From the above it is natural to expect that the following strengthening
of Proposition 8.2 holds true.

Conjecture 8.4

Let Q C R? be a a bounded domain with piecewise smooth boundary satisfying
a uniform interior cone condition. Let V € C*() be real valued, then any
real valued eigenfunction u Z 0 satisfying H(Q2)u = Au has in the neighbor-
hood of a corner with opening angle « locally the behaviour given by (8.1).
In particular each nodal domain of u satisfies an interior cone condition.

Remarks 8.5

(i) The conjecture holds if we assume that V is real analytic and § is a
polygon, see [4].

(i) What is missing for a possible proof of Conjecture 8.4 is for example a
sustable version of strong unique continuation in the neighborhood of a
corner.

1 This was for example the case in the previous sections when considering u;;.

28



9 Final remarks

In this paper we have analyzed some of the properties (local, global, spectral)
satisfied by a family of sets formed by nodal domains of an eigenfunction.
We have then proposed a sufficient natural Pair Compatibility Condition per-
mitting to glue together eigenfunctions attached to each pair of neighboring
domains.

We have shown its sufficiency in the case when 2 is a simply connected open
set in R? and described how one can extend the analysis in the non sim-
ply connected situation. The analysis of a family of examples shows that the
sufficient conditions we have proposed are in some sense not far from optimal.

Except trivial cases, where no circle in the corresponding graph can occur,
the analysis of the same question in dimension > 2 is completely open. A
precise description of the structure of the nodal set of the eigenfunction near
its critical point is indeed missing.

Let us finally mention that the same problem can be considered for a
Schrédinger operator on a surface either with or without boundary. Then
the genus has to play a role. While for the flat case and actually also for the
sphere N € N (Q) automatically guarantees that the nodal domains created
by Q\ N lead to an admissible family D this has to be required for the case
of surfaces in general. Take for instance the torus : then an N which is
just a simple closed loop which is not zero-homotopic creates just one nodal
domain, hence not an admissible D.
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