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Abstract

The study of effective interface models has been quite active recently,
with a particular emphasis on the effect of various external potentials
(wall, pinning potential, ...) leading to localization/delocalization transi-
tions. I review some of the results that have been obtained. In partic-
ular, I discuss pinning by a local potential, entropic repulsion and the
(pre)wetting transition, both for models with continuous and discrete
heights.

This text is based on lecture notes for a mini-course given during the
workshop Topics in Random Interfaces and Directed Polymers held in
Leipzig, September 12-17 2005.
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Figure 1: A one-dimensional interface ¢.

1 Introduction

The aim of these lecture notes is to review briefly some of the results obtained
concerning the localization/delocalization transitions in effective interface mod-
els.

For reasons of time and space (and also, let’s admit it, laziness), I have
made some (debatable) choices concerning the topics discussed in these notes. In
particular, I will not discuss the derivation of the variational problems describing
the shape of interfaces at macroscopic scale (Wulff shape, etc.); neither will I
discuss the dynamical aspects of these models. This review is also restricted
to effective interface models; in particular, the corresponding results for lattice
gases will usually not be mentionned. There are very good reviews and lecture
notes covering in depth these issues. For additional informations on effective
interface models I recommend in particular the lecture notes by Funaki [55]
and Giacomin [58]. Bolthausen has also written several nice review papers on
various topics covered or not in these notes; among them, I think his review on
entropic repulsion [12] is really quite enlightening. Concerning discrete heights
models, I would refer to the older, but still excellent reviews of Fisher [50] and
Bricmont et al [25]. Finally, concerning macroscopic variational formula, as well
as various related issues for lattice gases, I refer to the review paper [I1].

1.1 The free model

The interface is described by a function ¢ : Z% — R (continuous effective inter-
face models) or ¢ : Z¢ — Z (discrete effective interface models); the quantity
©; is interpreted as the height of the interface above (or below) site i; see Fig
To each realization of the random field and any A € Z?, we associate an energy
given by the Hamiltonian

Ha@) =2 S oG —iVigs—e+ S pG—ilVig—¢), (1)
i,jEA 1EN,JEN

Here:



e V:R — R is an even, convex function, satisfying V' (0) = 0. Often, it will
be assumed that it is actually uniformly strictly convex, which means that
c_ <V"(z) < cy for some 0 < c_ < cy < 0.

e p(-) is the transition kernel of an (usually aperiodic, irreducible) random
walk X on Z4. We'll say that the model has finite-range interactions if X
has bounded jumps; we’ll say that it has nearest-neighbor interactions if
X is the simple random walk. When the range of the interaction is not
finite, we’ll always assume that there exists 6 > 0 such that

> 2™ p(a) < oo. (2)

YA

Sometimes, we’ll have to make the stronger assumption that there exists

a > 0 such that
Z elp(z) < 00 (3)

YA

We'll use the notation Q for the d x d covariance matrix of p, Q,s =
ZiEZd 'ersp(z)

The statistical properties of the free interface are described by the following
Gibbs measure on de, resp. 72, Let A € Z% and let 1 be a fixed realization
of the field; let us define, for § > 0, in the case of continuous heights,

PUoe) ™ (207) exp (-0HA@) [[do [[00,de), (@)
i€A jgA

where §, denotes Dirac’s mass at x, and the partition function Z}\p”g is the nor-
malization constant. The corresponding measure in the case of discrete heights
is then given by

—1
PR0) = (207)  exp (=BHA() [] v,
JEA

where 9; ; is Kronecker’s J-function.

Apart from some remarks, these lectures are restricted to a few important
special cases: In the continuous case, our main example will be V' (z) = %xQ, to
which we refer as the case of quadratic, or Gaussian, interactions; notice that
in this case, the measure Pk’ﬁ is actually Gaussian, which makes this model
particularly convenient. In the discrete case, we will focus on V(z) = |z, the

S0S model, or V(z) = 322, the discrete Gaussian (DG) model.

Remark 1. In the Gaussian case the inverse temperature 3 can be set to 1
by a simple change of variables. Therefore in the sequel, when stating results
about this model, it will always be assumed that this has been done, and (8 will
be removed from the notation.



Remark 2. In these notes, I mostly consider 0 boundary conditions, 1 = 0. In
that case, I will therefore omit any mention of the boundary conditions in the
notations.

Remark 3. These effective models are caricatures of the interfaces found in
real systems or in more realistic models. In particular, here the interface is
considered as the basic microscopic object, and not as some emergent property
of some more fundamental model. They should however provide good approxi-
mations of “real” interfaces, at least in suitable regimes. Namely, computations
with discrete effective interface models at large B can be shown to provide good
agreement with real interfaces of lattice systems at large B as long as both models
are below their roughening transition (see Subsection . The description of
“real” interfaces above their roughening transition should be well-described by
continuous effective interface models, but we lack rigorous proof of that, except
for some very special cases (see Subsection . The only situation where this
can be sometimes proved is d = 1. In that case, it is for example possible to
prove that interfaces in the 2D Ising model have the same Brownian asymptotics
as their effective counterparts [28, [63)].

1.2 Continuous effective interface models: basic proper-
ties

I start by discussing basic properties of continuous effective interface models,
as these are in general better understood than their discrete counterparts, and
should be closely related to the latter in important cases. I restrict the discussion
to the case of 0-boundary conditions, ¢ = 0. I also only consider the Gaussian
case, except for a few remarks.

1.2.1 The random walk representation

As pointed out before, in the case of quadratic V', the measure P, is Gaussian.
As such, it is characterized by its covariance matrix. It turns out that there is
a very nice, and extremely useful representation of the latter in terms of the
Green function of the random walk X with transition kernel p(-).

Elementary algebraic manipulations yield

1Y i —i)p;— ) =D (pi(1=P)y;) (5)
i,j 4,
where (1 —P); ; ] i j — p(J — 1); consequently, the covariance matrix is given
by

COVp, ((Pia @j) = [(1 - P)Xl]m' = GA(ZJ) )

where Ga(i,7) is the Green function of the random walk X with transition
kernel p, killed as it exits A,

Gali,§) =D Pi[X, = j,7a > 1],

n>0



with 7, & min{n : X, &€ A}.

Remark 4. Other nice and useful representations are available for the mean
EK((pi), and for the partition function Z}’\b.

Remark 5. This derivation of the random walk representation of course relies
entirely on the Gaussian nature of the measure. Nevertheless, it turns out that
it is possible to derive a generalization of this representation valid for the whole
class of uniformly strictly convex interactions. Such a generalization has been
proposed in [{1|] and is a probabilistic reformulation of an earlier result, in the
PDEFE context, by Helffer and Sjostrand [64)]. It works as follows: One constructs
a stochastic process (®(t), X (t)) where

, o 4 )
o &(-) is a diffusion on RZ" with invariant measure Py ;

e given a trajectory ¢(-) of the process ®, X(t) is an, in general inho-
mogeneous, transient, continuous-time random walk on Z% with life-time
def

A = inf{t > 0| X(t) &€ A}, and time-dependent jump-rates
a(i, j;t) = p(j —)V"(¢;(t) = @i(t)) .

Denoting by 5{% the law of (®(t), X (t)) starting from the point (i,p) € A X RZ*,

we have the following generalization of ,

TA
cova(pis i) = Ea (E1 /O Lix(o-ds) (6)

Thanks to the ellipticity of the random walk X (t) under the assumption of strict
convexity, it is possible to obtain some Aronson type bounds, see [61), (37, show-
ing that this RWRE has the same qualitative behavior as the random walk in the
Gaussian case. This explains why most of the results that have been obtained for
the Gaussian model also hold in the non-Gaussian case. However, since quanti-
tative estimates are still out of reach for this RWRE, the quantitative Gaussian
results are replaced by qualitative ones.

1.2.2 Transverse and longitudinal correlation lengths

Physicists often characterize the statistical properties of random surfaces through
two quantities: the transverse correlation length, which measures the fluctua-
tion in the direction orthogonal to the surface, and the longitudinal correlation
length, which measures the correlations along the surface. From the mathemat-
ical point of view, these two quantities are directly related to, respectively, the
variance of the field, and the rate of exponential decay of its covariance, also
called in the physics literature the mass. The mass associated to an infinite-
volume Gibbs measure Q is defined, for any x € S¢~! by

def

1
mq(z) = = lim - logcovo(wo, Pika) (7)



In the last expression, for any © = (z1,...,2q) € RY, [2] = ([21],..., [z4]) € Z%.

Let us see how these quantities behave in the case of the free interface. Let
Ay = {—N,...,N}?. It follows from the random walk representation and
standard estimates for the Green function of the corresponding random walk
that there exist constants 0 < gq < oo, depending on the transition kernel p( - ),
such that

g N+O(/N) (d=1),
varp, (o) = { g2 log N +O(1) (d = 2), (8)
ga +o(1) (d=>3).
We see that the variance diverges when d = 1 or 2; the corresponding interface
is said to be delocalized, while it remains finite for d > 3. It also follows from
these results that the limiting field P exists if and only if d > 3.
When d > 3, the random walk representation also provides informations on
the covariances of the infinite-volume field; namely, there exists Ry > 0, also
depending on the transition kernel p( - ), such that

cove (o, ¢i) = (Ra +o(1)) [i*~.

Notice that this result requires that the transition kernel has slightly more than
moments of order d (see [73] for a more on that), a condition satisfied when
holds. We see that the corresponding limiting field has very strong correlations
(not summable). In particular, the mass satisfies mp(x) = 0. This is the reason
why these models are usually called massless.

To summarize, the free interface is delocalized when d = 1 or 2, and localized
but strongly correlated when d > 3.

Remark 6. All the results in this subsection also hold true in the general case of
uniformly strictly convex interactions, at least qualitatively (i.e. one has upper
and lower bounds for these quantities that are of the same order as those in the
Gaussian settings, but which do not coincide). Actually, in the Gaussian case,
much more precise information that what is given here can be obtained.

Remark 7. Apart from the random walk representation, there is only one gen-
eral tool to prove localization: the Brascamp-Lieb inequality, see [2])]. Unfor-
tunately, the class to which this approach applies, if already quite large, is still
much too limited. Namely, it is required that V satisfies one of the following
conditions:

1. V(z) = az? + f(x), with f convexr and a > 0;

2.0 < c. <V'z) < ey < o0 forall |x| > M, for some M < oo, and
|V (z) — C2?| < D < oo, for all x and some C > 0.

Concerning the proof of delocalization, on the other hand, several methods exist,
all with their own limitations. One of them is the subject of the next subsection.

Open Problem 1. Prove localization in high dimensions for a more general

class of interactions V' than those treated in [2])]. For example, the case V(x) =

x* is still open.



1.2.3 Delocalization as a consequence of the continuous symmetry

There is another point of view, which is interesting in order to understand the
delocalization of the interface in dimensions 1 and 2, and which shows that
this should be a very common phenomenon, valid for very general interactions
V. The main observation is that the formal Hamiltonian enjoys a continuous
symmetry: H(¢) = H(p + ¢), for any ¢ € R, since the formal Hamiltonian is
actually only a function of the gradient field V. By standard Mermin-Wagner—
type arguments [45] 80, 24], [66], it then follows that this continuous symmetry
has to be present also at the level of the infinite-volume Gibbs measures, when
d =1 or 2 and the interaction does not decay too slowly (a condition automat-
ically satisfied under ) Of course, this is impossible, since it would imply,
for example, that the law of g under this measure is uniform on R; this means
that there cannot be any infinite-volume Gibbs measure when d = 1 or 2. Ac-
tually, it is even possible to derive, using such arguments, qualitatively correct
lower bounds on the size of the fluctuations of the interface. I show here how
such a claim is proved when V is twice continuously differentiable and such that
V" < c. To see how to treat more general V' and general boundary conditions,
I refer to [66].

Remark 8. It should be emphasized, however, that even though a large class
of interactions V can be treated in this way, much too strong assumptions on
V' are still required, and as such the situation is still far from satisfactory (the
alternative approach, pioneered in [2])] and based on Brascamp-Lieb inequali-
ties, also imposes unsatisfactory (though different) assumptions on V). More
precisely, current methods of proof require that V' satisfies one of the following
conditions:

LV - Voo < € for some small enough € and some function V such that
V" (x) < ¢ < o0, for all x;

2. limz oo (7| + [V (2)]) exp(=V (2)) = 0, and |V'(x)| > ¢ < o0, for all x;
8. iMoo (7| + [V (2)]) exp(=V (z)) = 0, V is conver and

/ (V/(2))? exp (~V () < oo.

Open Problem 2. Prove localization in low dimensions for a larger class of
interactions than those treated in [2])] and [66]. For example, the interesting
case of the Hammock potential, V(x) = 0 for |x| < 1 and V(z) = oo for |z| > 1,
is still open.

Let us fix some configuration ¢, such that ¢, = 0, for all i« € Ay, and
po = R, for some R > 0. We’ll choose R and optimize over ¢ later on. Let us
introduce the tilted measure Py .5(-) = Pay (- + @ ). Observe that

Pay (9o > R) = Payip(po > 0). (9)



Recall the standard entropy inequality (actually a simple consequence of Jensen
inequality, see, e.g., [68, Appendix B.3])

p(A) = v(A)exp (—(H(v|p) +e7h)/v(A)) (10)

where 1 and v are probability measures such that v < pu, A is some event
with v(A) > 0, and H(v|p) = E, (log g—;) is the relative entropy of v w.r.t. p.
Applying this inequality, we get that

PAN;@(QOO > 0) > PAN (300 > 0) exp (_ (H(PAN;¢|PAN) + 671) /PAN (900 > O))
=1 exp (“2(H(Pay;5/Pay) +e7h) .

Therefore, it follows from (9] that
Pay(po> ) > § exp (~2(H(PayiplPay) +¢7) .

and therefore it only remains to control the relative entropy. A simple compu-
tation yields (observe that the partition functions are equal, since the Jacobian
is 1)

H(Pay:a/Pay) =Eay (H(p — @) — H(p))
=13 (i —0) Eay (V(ej — i — 5+ @) = Vs — i) +
i,JEA
+ D P =) Eay (Vg —0i — @5+ @) = V(e — 91)
1EN,JEN
C . . _ _ C . . _ _
ST P (@ -e) g Y pli—1) (9 -9
,JEA i€EN,JEA

The last inequality follows from a Taylor expansion, keeping in mind that
Ean(¢; — i) = 0 by symmetry and that V" <.

Therefore, choosing @; = RP; [T{O < TAN], where T ] min{n : X, =
0}, and using the well-known estimat

log(]i] + 1)
P, [T ~oemT )
[T101 > 7a] log(N + 1)
we see that H(Pa.5/Pay) = O(R?/log N), and therefore
Pay(po > T/log N) > exp(—cT?).

1.2.4 Tail of one-site marginals

When the interface is localized, the finiteness of the variance provides only rather
weak information on the fluctuations. Another quantity that is of interest is the

IThe notation a < b means that there exist two constants 0 < c1 < ¢2 < 00, depending
only on the dimension, such that c1b < a < c2b.
y



tail of the one-site marginal, as this shows how strongly the interface is localized.
As we have just seen, the free interface is only localized when d > 3. Evidently,
when the measure is Gaussian, g is just a Gaussian random variable with
variance varp(¢g) < 0o, and therefore its tail satisfies

P(po > T) = e,
for some ¢ = ¢(d).

Remark 9. Of course, the tails have also Gaussian decay in the case of uni-
formly strictly convex interaction V, as follows, e.g., from Brascamp-Lieb in-
equality [25].

1.2.5 Thermodynamical criteria of localization

The above quantities are those one would very much like to compute in every
situations. Unfortunately, this often turns out to be too difficult, and we have
to content ourselves with much more limited informations, often at the level of
the free energy. These thermodynamical criteria work by comparing the free
energy of the system under consideration with that of the free interface. They
can usually be reinterpreted (by the usual “differentiate, then integrate back”
technique) as estimates on the expected value of a suitable macroscopic quantity.
Let us consider a simple example of the latter.

Let A > 0, and set py = |Ay| ™! > ican Ll <ay- One could then say that
the interface is localized when liminfy py > 0 and delocalized otherwise. By
itself, such an estimate does not guarantee that the interface is really delocalized,
in a pathwise sense, but it is a strong indication that it should be the case. Note
that for the free interface, this yields again localization if and only if d > 3.

A similar thermodynamical criterion is used when discussing the wetting
transition in Section [6l

1.2.6 Some additional properties of the Gaussian model

Extrema of the field In order to understand properly the entropic repulsion
phenomenon discussed in Section [3] it is important to know the behavior of
the large fluctuations of the interface. These have a very different behavior in
dimension 1, 2, and 3 or more.

One is not really interested in the behavior when d = 1, as the latter is
dictated by the behavior of the corresponding quantity for the Brownian bridge.
In higher dimension the results are more interesting, since the extrema of the
field turn out to be much larger than the typical values. It is proved in [15]
that the maximum of the 2-dimensional finite-range Gaussian field in the box
AN satisfies, for any § > 0,

sup <p,»—2¢g§logN‘26]ogN) =0. (11)

i€EAN

lim P/\N (

N—oo

10



where g4 was introduced in (8)). Similarly, it is proved in [16] [I7] that the
maximum of the d-dimensional, d > 3, finite-range Gaussian field in the box
Ay satisfies, for any 6 > 0,

lim Pp,, ( sup @; — \/ngd\/logN’ > 6\/10gN) =0. (12)
i€EAN

N —o0

It is interesting to note that one bound is actually obvious, since, e.g.,

Pay (Sup v > (2¢g§+6)10gN> < |An| sup Pay (i > (2¢/92 +0)log N) ,
1€EAN

i€EAN

which vanishes as N — oo (use the fact that varp, (¢;) < varp, (¢0))-

The spikes We have just seen that the d-dimensional interface (d > 2) can
make huge fluctuations, called spikes. It is interesting to investigate the geom-
etry and distribution of these spikes.

The most interesting picture emerges when d = 2. A detailed study of
the spikes of the 2-dimensional nearest-neighbor Gaussian model can be found
in [34]. The main results can be stated as follows.

e The spikes are rather fat. Let 0 < A < 1,0 < e < 1, and

Dn(\) = sup {a eN: dieAn, |
J

n}in< p; > 2A@10gN} .

Then log D (A 1 A
]\;me Ogloglj\;) =573 in probability.

This means that the largest spike of height 2, /g2 log N has width N1/2=2/2,
e The spikes’ spatial distribution displays a non-trivial multi-fractal struc-

ture. In particular, let Sy(\) = {i € Acy @ ¢; > 2\/gzlog N} be the
set of A-high points. Then the number of A-high points asymptotically

satisfies
log |S(A)]
N—oco logN
On the other hand, letting A < v < 1 it is proved that

log |S(A\) N %Nuoo <N} 2y (1 (A\/7)?)

=2(1-)\? in probability.

lim max P <

N—ooi€AN

>6):0.

We thus see that there are fewer high-points than would be expected if
their distribution was uniform over the box (in which case, one would
expect N20=2) 5 N20=**/%)_ This indicates that the A-high points
cluster together, as is confirmed by this other estimate,

log |S(A) N{lj —iloo < N7}|
log N

lim max P < 2y (1 — /\2)

N—ooi€A.N

>0 | ieSN()\))zo.

11



Reference [34] also contains interesting informations on the pairwise spa-
tial distribution of high points, but I do not discuss this here.

The geometry and distribution of spikes in dimensions d > 3 is much simpler.
Actually, it turns out that they have the same behavior at leading order as the
extremes of the field of i.i.d. Gaussian random variables with the same variance.
In particular, their spatial distribution is uniform, and the spikes are thin (i.e.
their size is logarithmic).

Pinning by a single site A crucial property of low-dimensional (d = 1 or 2)
continuous interfaces is that the local variance of the field has a slow growth. In
particular, it turns out that pinning a single point in sufficient to “localize” the
field, in the sense that an infinite-volume Gibbs measure exists. More precisely,
let us consider the Gaussian measure P\ (o}, t-€. the Gaussian model with
0 boundary conditions outside Ay and at the origin. Then it follows from the
random walk representation that, for any i € Z,

li| (d=1),
logli| (d=2).

N—o00

lim varp, | (p;) < {

Actually, one even has that

Vaerd\{O) (SD'L) -

su =1

i#0 VAP, (‘Pi)

)

where A(i) = {j € Z? : |j —iloo < |jloo}. Therefore, up to a multiplicative
constant, the variance of ¢; under P\ o} is the same as it would be in a finite
box of radius |i|s, see Fig. [2l (Actually, in two dimensions, it would be better
to say that the variance of ¢; under P\ (o) is the same as it would be in a
finite box of radius [i|%, as the two expressions become then asymptotically
equal.)

Remark 10. [ have taken 0-boundary conditions outside Ay, but any boundary
conditions not growing too fast with N would have given the same result. This
shows that pinning of a single point in low dimensions can screen the behavior
at infinity.

Convergence to the continuous Gaussian free field Let f be a contin-
uous real-valued function with compact support in D, a non-empty, compact
subset of R?. Let oV denote a realization of the Gaussian field under Pyp.
The action of ¥ on f can then be defined as

(@, ) =N fi/N)p)

1END

It can then be proved that the sequence (¢”, f) converges in law to the con-
tinuous Gaussian (massless) free field @, which is the centered Gaussian family

12
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Figure 2: The variance at site i of the field pinned at site 0 is asymptotically
proportionnal, as |i| becomes large, to its variance in a finite box of radius |i|.

(P, f) indexed by functions f as above, such that

cov((®, ), (8,9)) = /V  F@)gl6) Gp(ay) dedy

where Gp is the Green function of the Brownian motion killed as it exits V.
Actually convergence to a continuous Gaussian free field with suitable co-

variance also holds for any interaction V' which is uniformly strictly convex [78§].
A more detailed introduction to the Gaussian free field can be found in [84].

1.3 Discrete effective interface models: basic properties

Let us now turn to the case of discrete effective interface models. It turns out
that they have very different behavior in different situations.

1.3.1 Dimension 1

In dimension 1, continuous and discrete effective interface models should always
have identical behavior, at least qualitatively. This is easy to understand, since
it essentially reduces to replacing a random walk on the integers by a random
walk on the real line, and both have Brownian asymptotics.

1.3.2 Dimension 2: roughening transition

The behavior in dimension 2 crucially depends on the boundary conditions and
on the temperature. In this review, only the case of tilted boundary conditions
will be discussed, i.e. boundary conditions t; approximating a hyperplane
through the origin with normal 7 € R%t! (not horizontal). It is then expected
that for all 77 non-vertical, the large-scale behavior of these random interfaces
is identical to that of their continuous counterpart. In particular they should
have Gaussian asymptotics. This turns out to be quite delicate, and the only
rigorous works I am aware of are [70] [7T], 56]: they establish weak convergence
of a suitably rescaled version of the SOS interface at 8 = oo to the continuous

13



Figure 3: The oriented level lines of a discrete effective interface; the orientation
specify the type of the contour, i.e. whether it is increasing or decreasing the
surface height. For convex interactions V', the resulting contours satisfy a Peierls
estimate and are therefore amenable to a rigorous study through perturbative
arguments.

Gaussian free field (see Subsection 7 for general non-vertical directions 7,
using the relationship between these random surfaces and domino tilings. I am
not aware of a single rigorous proof for finite 3, not even of the delocalization of
the interface (one might think that at least delocalization should easily follow
from these 0-temperature results, since thermal fluctuations should intuitively
increase fluctuations, but there is a delicate problem of exchange of limits, and
there are examples in which fluctuations at zero-temperature are much larger
than at finite temperatures, see [10]).

The behavior when 71 is vertical, i.e. the case ¥ = 0, is more interesting.
It is expected that there is a phase transition, the roughening transition, at an
inverse temperature 0 < ; < oo such that:

e For all § > (,, the interface is localized and massive;
e For all 8 < 3, the interface has a Gaussian behavior.

The behavior at very large (8 is very well understood. Thanks to the discrete
nature of these models, contour techniques are available (see Fig. [3)) and most
questions can be answered in great details using suitable versions of Pirogov-
Sinai theory. Actually, at very large (3, the picture of discrete horizontal inter-
faces turns out to be the following: The interface is given by the plane z = 0
(which is nothing but the ground-state of the model) perturbed by small local
fluctuations. In particular, one can easily show that the variance is bounded,
the mass positive, the spikes are thin, etc.

The small 3 regime, on the other hand, is still poorly understood. There
are no result concerning the Gaussian asymptotics. The stronger results known
to date are those given in the celebrated (and difficult!) work of Frohlich and
Spencer [53], who proved that, at small enough 3,

varps (pi — ;) <loglj —1i|,
for any 7,7 and A large enough.

Open Problem 3. Prove the existence of a roughening transition directly in
terms of the interface, without using the mapping to a Coulomb gas, as done
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in [53]. Prove convergence to a Gaussian field in the rough phase, maybe at
least in some limit as 0 — 0.

1.3.3 Dimension 3 and higher

The behavior in dimensions 3 and higher is expected to be radically different:
For any 8 > 0, the interface should be localized and massive. This was proved
n [62] for the DG model in dimension 3 (note that localization is not very
surprising since the same is also true for continuous effective interface models;
it is the exponential decay of correlations that is remarkable).

1.4 Additional results

Comparison between discrete and continuous models It would be inter-
esting to have general inequalities between discrete models and their continuous
counterparts. For example, it seems rather plausible that the fluctuations of the
discrete models should be dominated by those of the continuous ones. There
are indeed a few comparison inequalities of this type, but they are restricted to
V(z) = 22 [52] (the subscripts “D” and “C” serve to distinguish between the
discrete and continuous models):

varps | (i00) < varps (o), (13)

R p(e%°) < ER o(e%), (14)

for any ¢ > 0. Actually these inequalities also hold in presence of a mass term,
see Section 2 for the definition.

Roughening in one dimension It is also possible to study the roughening
transition in one-dimensional models. It can be proved that the one-dimensional
DG model with p(7) ~ [i|~" describes a rigid interface at any temperatures if
1 < r < 2, while it is always rough when r > 2. The marginal case r = 2 has
been studied in [54], where it is proved that there is a roughening transition
from a rigid to a rough phase as the temperature increases. Moreover in the

rough phase, varps(p; — @;) > ¢(8)log|j — i|.

Membranes Beside the one described above, there is another important class
of effective models used to describe membranes, whose main representative is
still Gaussian, with covariance matrix given by (A)~2, instead of A™1 as for
effective interface models. This change gives rise to radically different proper-
ties (especially, these surfaces display huge fluctuations, known in this context
as undulations, which have dramatic effects on all (de)localization properties).
Unfortunately, they are much less tractable from the mathematical point of
view, due to the lack of nearly all the main tools used in the study of effective
interfaces: no nice random walk representation, no FKG inequalities, etc. I refer
to [82, [72] for rigorous results (concerning the entropic repulsion phenomenon)
on such models in dimensions 5 and more.
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2 Massive model

2.1 Description of the model

A very crude way to localize the interface is by adding a mass term to the
Hamiltonian. This is a very well-known problem, which is particularly easy to
analyze in the continuous Gaussian case thanks to the fact that the measure
remains Gaussian. I briefly state the results, to allow comparison with those
described in other sections. I limit the discussion to the case of the Gaussian
model.

Let 1 € Ry. Let us consider the following perturbation of the measure Py,

P (dg) o exp <—§u2 > w?) PA(dy).

€A

The reason for the square in 2 in the definition will become clear in a moment.

2.2 Main results

The measure P/ is still Gaussian, of course, and a similar argument as before
yields the following generalization of the random walk representation in this
case:
COVPX (9003 <)Oz) = Z Pl[XTL =J,TAa>nV TIL] ;
n>0

where 7, is a geometric random variable of parameter p?/(1+ p?), independent
of the random walk. We thus see that, at each step, the random walk has a
probability u?/(1+u?) of getting spontaneously killed. This makes it transient in
any dimension, and consequently the infinite-volume field is always well-defined.
Of course, much more can be said, and precise estimates can be obtained for
the variance, mass, maximum, etc. Here I just briefly state some rather rough
results, to allow the reader to easily compare with the corresponding ones in
other sections: Uniformly in p small enough (and under assumption for the
last claim)

vart(po) < p~t (d=1) (15)

var(go) = (mV/det Q) *|log | + O(log[logul) ~ (d=2)  (16)
Ph(po > T) < e ?BT* (4> 1) (17)

mpw(z) = p+o(p)  (d>1) (18)

The last result shows that p is in fact equal (to leading order as p | 0) to the
mass (defined in . This explains why it was introduced through its square in
the definition of P/.

Statements of explicit formulas for some of the above quantities can be found
in [55], Section 3.3].
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3 The interface above a wall: entropic repulsion

3.1 Description of the model

In this section, I briefly recall what is known about the interaction of an interface
with a neutral hard wall, i.e. the phenomenon of entropic repulsion; since
excellent reviews about this (and related) topic can be found in [13, 58] (for
continuous effective models) and [25] (for discrete ones), our discussion will stay
rather superficial.

The presence of the hard wall at the sites of Aj; is modeled by the positivity
constraint Qs 4 = {¢i; > 0, Vi € Aps}. The measure describing this process is
def

then the conditioned measure Pi;:r(M)( )= PiN( | Qar,+) (I simply write +
instead of +(NV), when N = M).

3.2 Main results

When d = 1, it is very well-known that the interface conditioned to stay above
the wall converges to the Brownian excursion. This holds both for discrete and
continuous models, and for virtually any interaction V for which the model
is well-defined (the corresponding random walk should have increments with
bounded variance). Let us therefore turn our attention to what happens in
higher dimensions, d > 2.

I first describe what is known in the case of discrete models. Here one can
assume that N = M, i.e. that the positivity constraint extends all the way to
the boundary of the box. The following estimates are proved in [25] for the SOS
and DG models at large values of 3:

AN Y ERT (@) < (871 log [AN])*,
1€EAN

where a = 1 for the SOS model, and o = % for the discrete Gaussian model.
The heuristic behind these results is rather simple. We have already seen that
these models describe rigid interfaces when [ is sufficiently large. Assuming that
this rigid interface lies at a distance h from the wall, all downward excitations
(the downward spikes) of height larger than h are forbidden; this implies that
moving the interface from h to h + 1 provides a gain of entropy of order

> e ]
T = = e (Anloe)
1EAN =—n=

for the SOS model, and of order exp(\AN|O(6_ﬁh2)) for the discrete Gaussian
model. On the other hand, there is an associated energetic cost, since one has
to raise the interface from height h to height A+ 1; this multiplies the Boltzman
weight by exp(3]0Ax]|) (for the SOS model) or exp(B]0AN]|((h+1)2 —h?)) (for
the DG model). Balancing these terms yields the claimed result.
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Figure 4: A picture of the wedding cake model. Gradients can take only values
0 and +1, and the interface height can only increase. The level lines of this
model are exactly identical to the contours of the Ising model.

Remark 11. To see that this repulsion effect is really due to the downward
spikes, it is interesting to compare with what happens in the wedding cake model
of [3,[4]; see Fig. . The latter is a discrete model of random surface which has
the following properties: 1. The difference between meighboring heights is 0, 1
or —1; 2. a connected region of constant height always has a height larger than
that of the region in which it is contained. So, in a sense, fluctuations can only
raise the interface, and one might think that it should grow even faster than the
SOS or DG models conditioned to be positive. However, a Peierls argument can
be used to prove that its height is actually finite at low temperature, uniformly
in N. Notice that in this model, there are no downward spikes.

At higher temperatures, when d = 2, we have seen that the interface be-
comes rough, and that it is expected to have Gaussian behavior. In this case,
the entropic repulsion effect should be the same as the one for the continuous
Gaussian model, to which we turn now, but this has not been proved.

The rest of this subsection is devoted to continuous effective interface models.
Let us start with the simpler case of dimensions d > 3. In this case, it is
customary to first take the limit N — oo, thus studying the measure P+(M) &
P(-|Qar+). One is then interested in the large M asymptotics. It is proved

in [I6] that, in the case of Gaussian interactions,

E+(M)(90i)
lim sup |———=—=
M—ooien,, | Vlog M

where gq = varp(yg). This shows that the field has a behavior completely
similar to its discrete counterpart. Again, it is not to accommodate its typical
fluctuations (remember that the variance of the field is finite when d > 3, and
the same can actually be proved for the field conditioned to be positive, by a
simple application of Brascamp-Lieb inequality), but rather to accommodate
the large downward spikes, exactly in the same way as for the discrete models.
Remember (see Subsection that the typical height of the larger spikes is
of order v/log M in a box of size M, and therefore of the same order as the
repulsion height.

—2/gal =0, (19)
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The above estimate remains qualitatively true (that is, without matching
upper and lower bounds) for uniformly strictly convex interactions [40].

In the Gaussian case, even more is known about the repelled field: Once the
new average is subtracted, it is weakly converging to the unconstrained infinite-
volume field [39], which means that both fields look locally the same: There
exists a sequence apy, with limpy; o apr/v/4galog M = 1, such that

PHOD (L 4 qy) =P

I emphasize however that the two fields have the same behavior only locally.
For example, the minimum of the field in the box Ay is much smaller than that
of the centered repelled field, compare and .

The case N = M, i.e. the measure PX](VN) has been treated in [38] and [40];
it turns out that still holds, with the same constant, provided the sup is
restricted to ¢ € Aey, 0 < € < 1). Moreover, estimates for the growth of the
interface near to the boundary have also been obtained, showing that the height
above a site at distance L from the boundary grows like v/log L.

It remains to discuss the two-dimensional case. It is not possible to consider
the conditioned infinite-volume measure, since the unconditioned limiting field
does not exist. In that case M is chosen such that M = eN with 0 <e < 1. It
is then proved in [I5] that

. N
lim sup PX](VE ) (
N—oo i€eAN

<pi—\/4gglogN‘ZelogN) =0, (20)

where g5 is defined in . The same, without matching upper and lower bounds,
also holds for uniformly strictly convex interactions [40]. In the latter case, the
case M = N has also been considered, showing that the same qualitative result
also holds in that case; moreover the average height above a site at distance L
from the boundary grows like log L.

A few remarks should be made. First of all, it should be noted that the result
is qualitatively different from what happens in the two-dimensional DG model,
where the height of the repelled interface has the same order in all dimensions
d > 2. This is due to the fact that the two-dimensional interface is delocalized:
As was discussed in Subsection the spikes in dimension 2 are much fatter
than they are in higher dimensions or for the 2-dimensional DG model, and
cannot be considered as essentially independent objects; spikes can (and do)
actually grow on each other. In order to obtain the sharp result stated above,
it is necessary to make a delicate multi-scale analysis. Second, it is interesting
to observe that, contrarily to what happens when d > 3, the repulsion height
coincide exactly (at leading order) to the height of the largest downward spikes
of the unconstrained field.

A detailed analysis of the downward spikes of the repelled two-dimensional
field was done in [34]. It turns out that all the results stated in Subsection m
about the spikes of the unconstrained field remain true for the repelled field,
both for upward and downward spikes. This indicates that the repelled and
original fields are much more alike than in higher dimensions.
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Open Problem 4. Prove (or disprove) that the centered repelled field weakly
converges to the continuous Gaussian free field.

Open Problem 5. Prove similar results (even without the proper constants)
when V(x) is not uniformly strictly convex. In particular prove it for the con-
tinuous SOS model, that is, the continuous effective interface model with inter-
action V(x) = |z|. Note that the behavior should be different as soon as the tail
of V' changes. This has important impact on other related issues, as is discussed
in Sections[]] and [

3.3 Additional results

Pinning by a single site Remember that we saw in Subsection [T.2.6] that
the field pinned at the origin is always well-defined. One can wonder what
happens if one moreover conditions the field to be positive. It turns out that in
dimensions 1 and 2 the infinite-volume field still exists, and actually

_ Vil (d=1),
EZ2\{O}(<)01') -~ {log M (d _ 2). (21)

The situation is however completely different in higher dimensions, since it
can be proved that even the expectation of the sites neighboring the origin
is infinite! I refer to [68, Lemma 4.4] for nice, probabilistic proofs of this. This
is another manifestation of the very different geometry of the spikes in low and
high dimensions. Unfortunately, the above result in dimension 2 has only been
established for the Gaussian model; an extension to uniformly strictly convex
V would also allow an extension of the results of [29], discussed in Section @ to
this class of interactions.

Open Problem 6. Eztend (when d = 2) to the case of uniformly strictly
convez interactions V.

Disordered wall In the above, the wall was considered to be perfectly planar.
I briefly mention here some studies of this phenomenon in the presence of a rough
substrate.

In [7], the wall is modeled by a family of i.i.d. random variables o;, i € Z9,
d > 3 independent of the interface . The constraint becomes of course ¢; > oy,
for all i € Z%. It is proved that the behavior of the interface depends on the
upward-tail of the random variables o;:

e Sub-Gaussian tails: Assume that

lim 7 ?P(og > 1) = —o00.

T—00

Then there is no effect and the repulsion height is almost-surely the same
as for a flat wall (at leading order), i.e. v/4gqlog N. This is not so sur-
prising as in this case the extremes of the wall live on a much smaller scale
than the repelled field.
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Figure 5: When 745 > Tac +7Bc, a layer of the equilibrium phase C' is sponta-
neously created at the interface between the equilibrium phases A and B, thus
giving rise to a problem of entropic repulsion between multiple interfaces.

e Super-Gaussian tails: Assume there exists @ > 0 and v € (0, 1) such that

lim r~2P(oo > r) = —1/2Q.
Then the repulsion height is almost-surely given (at leading order) by
(vV4Qlog N)7, which is much bigger than the repulsion height in the case
of a flat wall.

e Almost-Gaussian tails: Assume that there exists @@ > 0 such that

lim 7 ?P(og > r) = —1/2Q.

™00

Then the repulsion height is almost-surely given (at leading order) by

V4(ga + Q) log N.

In [8], the wall was itself sampled according to the law of a Gaussian effective
interface model. It is then proved that, at leading order, this strongly correlated
substrate gives almost-surely rise to precisely the same repulsion height as the
iid. wall with the corresponding almost-Gaussian upward-tail. This should
not be too surprising as only the extreme values of the field modelizing the wall
play a role, and those have the same behavior (at leading order) in both cases.

Several interfaces Another problem of interest is the analysis of the entropic
repulsion effect for several interface (with or without a wall). This models
situations in which there are more than two equilibrium phases. For example,
one might have three equilibrium phases A, B and C' and one wishes to analyze
the coexistence of phases A and B. It may then turn out that it is more
favourable for the system to create a layer of phase C between phases A and
B (this will happen if the corresponding surface tensions satisfy the inequality
TAB > Tac + Tpe); see Fig.

The case of two Gaussian fields ¢! and 2, with the constraint that p? >
@}, for all 4, can be mapped to the case of one interface and a flat hard-wall
by making a simple change of variables, as long as the covariance matrices of
the two fields commute. For example, if both field have a covariance matrix
given by the d-dimensional discrete Laplace operator, then one can consider
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Figure 6: A stack of interfaces between two fixed walls. Another variant consist
in an infinite “one-dimensional” gas of d-dimensional interfaces with positive
fugacity.

@' = (¢? — ") /V2 and @% = (¢! + ¢?)/V2. Then the constraint reduces to
@' > 0, and the two new fields are still Gaussian and independent, so the results
of the present section apply directly. I learned from G. Giacomin, however, that
the case of two fields with non-commuting covariance matrices, which he has

treated [57], is more subtle, and actually requires a new proof.

In [9], the authors consider two d-dimensional, d > 3, Gaussian interfaces
! and ¢?, with the constraint that ¢? > ¢! > 0 for all i. The main result
is that the height of (! is still given (at leading order) by V/4g3log N and is
therefore unaffected by the presence of ©? (there is no “pressure” on the lower
interface from the upper one). The height of ¢? itself is given by (y/4g} +

4(g4 + 93))V1og N.

In [83], the corresponding question was considered for K > 2 two-dimensional
Gaussian interfaces above a hard wall. The results obtained are completely sim-
ilar.

4 Confinement between two walls

4.1 Description of the model

The case of several interfaces considered at the end of the previous section has
the property that the interfaces have all the room they wish to move away
from each other. There are important situations where this is not the case (for
example, when modelling commensurate/incommensurate transitions, see [25]
for more on this). In that case one would like to study a stack of interfaces with
fixed separation (in other word, one would like to study a “one-dimensional” gas
of d-dimensional interfaces with fixed density, or fugacity); see Fig. @ This is a
much more difficult problem, and essentially only a very simple caricature of this
situation has been studied rigorously so far: the case of a single interface between
two walls. It turn out that this is a nice model (in the Gaussian case, anyway),
as its critical behavior can be analyzed in enough details to prove deviations
from mean-field in low dimensions; see Section [5| on pinning for another one of
the few situations where this can be done.

Let ¢ > 0. Let us consider the following modification of our basic Gibbs
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measure
def .
P/B\;K('> = PI(-|lesl < 0Viezd).

This models an interface constrained to lie inside a horizontal slab of height 2.

4.2 Main results

Continuous effective interface models Of course, once constrained inside
a slab, the interface is localized in any dimension. It has also been proved
in [70] that it becomes massive in any dimension, but with an estimate for the
mass that is only correct in dimensions 3 and above. This result has later been
improved in order to get the qualitatively correct behavior for the mass and
related quantities in [25]. Their results, which are restricted to the nearest-
neighbor Gaussian model, can be stated as follows: Set v(2) =1 and v(d) = 2
if d > 3, then

e The mass of the confined interface has the following large-¢ asymptotics:

o) (=1,
mp, = exp(=0(())  (d=2), (22)
exp(—O(£?)) (d > 3).

e The variance of the confined interface has the following large-¢ asymp-
totics:
2 (d=1),

¢ (d=2), (23)

varp, (o) = {

and satisfies 0 < varp(pg) — varp, (o) < exp(—O(£?)), for d > 3.

e The probability that the Gaussian interface remains inside the slab of
height 2¢ has the following asymptotic large-¢ behavior,

o(e2) (d=1),
[An| " log Pa, (1] < £.Vi € Ay) = { exp(—0(0)  (d=2),  (24)
exp(~0(2)) (d > 3),

for all N > Ny(¥).

The last result has very recently been given a sharper form in dimensions d > 3
in [81]; it turns out, unsurprisingly, that this probability has the same leading-
order behavior as the corresponding i.i.d. Gaussian field,
1 e
AN logPa, (Joi] < 4,Vie Ay) = exp(—Q—gd(l +o0(1)).
The lower bound is actually an immediate consequence of Griffiths’ inequality.

Remark 12. The estimate (24) can be interpreted as an estimate of the asymp-
totic behavior of the free energy of the constrained interface.
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Figure 7: The probability that a random walk stays in a slab of height 2¢ for a
time N can be estimated from below as follows. One splits the time-interval in
pieces of length ¢? and force the walk to come back to the interval [—£/2,£/2] at
the end of each piece; this has a probabilistic cost exp(—O(N/¢2)). Inside each
piece the desired event has strictly positive probability, uniformly in ¢, which
gives an additional factor exp(—O(N/f?)). An analogous reasoning yields the
corresponding upper bound; see, e.g., [65].

Remark 13. A completely different proof of , valid for arbitrary uniformly
strictly conver interactions, can be found in [80]; it makes use of the results of
the preceding section on entropic repulsion, together with correlation inequali-
ties. However, it does not permit to recover the estimates and for the
variance and the mass of the confined interface.

Open Problem 7. Prove the claims and on the variance and the
mass beyond the Gaussian case. Also, in the Gaussian case, try to get sharper
results.

Of course, all these three results should be closely connected. Indeed, once
the mass has been computed, one should be able to replace the slab-constraint
by this effective mass, and all computations become purely Gaussian. Doing
this does indeed yield the above estimates for the variance (just plug the above
expression for the mass into or ) and the free energy. This is actually
the way the proof in [25] works.

It is simple to understand heuristically the scaling of the free energy
when d = 1, see Fig. [7} actually this can easily be turned into a rigorous proof.
To understand in higher dimensions, observe that the maximum of the
Gaussian field over the box Ay is of order log N (d = 2), resp. v/log N (d > 3),
and therefore the typical distance over which the interface feels the confinement
should be given by log N ~ ¢ (d = 2), resp. logN ~ (? (d > 3). So one
essentially has to pay a fixed price for each portion of the box of linear size
exp(¢) (d = 2), resp. exp(¢?) (d > 3), which is precisely ([24). The proof in [86]
goes along these lines.

Discrete effective interface models The corresponding results for discrete
heights have also been established in [25]. For d = 1, and any interactions V/,
one has the same results as before. So only the higher-dimensional ones are
discussed here. The most detailed results concern the free energy in the case of
the DG model:

=exp(—0(?)) (d=2,8>1),

[An|" log PR (il < £,¥i € Ay) § < exp(—O(0))  (d=2,Y3),
- ) (42 3,Y9)
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In the case of the SOS model, it is only proved that when d = 2 and 8 > 1,
the above quantity is of order exp(—O(¢)). This is one example of the fact that
in phenomena depending on the behavior of spikes, the tail behaviour of the
interaction is crucial.

There are only few results about the mass for the DG model. Basically,
it is only known that, unsurprisingly, the mass is positive for ¢ < oo if it is
already positive for £ = oo (remember that this is the case when d = 2 and
is large, or d > 3 and f is arbitrary). The only result pertaining to the most
interesting case of d = 2 and [ small is that the covariances are summable (i.e.,
the susceptibility is finite), for any d > 1, f < 0o and ¢ < cc.

4.3 Additional results

Centering of the interface in the slab In this section, I have always con-
sidered 0-boundary conditions. However, it can be proved (see [25]) that for the
DG and SOS models at large (3, as well as for the continuous Gaussian model
in d > 3, all boundary conditions lead to the same infinite-volume Gibbs state,
as long as ¢ < co. This is due to a “centering” of the interface in the middle of
the slab, which can heuristically be understood in a way similar to what we saw
for entropic repulsion: a simple computation shows that there is loss of entropy,
due to the spikes, when the interface is not centered.

Two confined interfaces The case of two d-dimensional Gaussian interfaces,
d > 3, has recently been studied [81]. The result is that, when the two interfaces
have the same covariance matrix, the ratio between the average distance between
the two interfaces and between each of them and the closest wall is v/2 at leading
order.

5 Pinning

5.1 Description of the model

In this section, we are going to investigate the effect of a self-potential favouring
a finite neighborhood of zero. Namely, letting a > 0, b > 0, and W, (z) =
—b1{z<a}, let us consider the following perturbed probability measure:

PR () ox exp(= 3 Wasli)) Palde) )
i€EA

and similarly in the case of discrete heights.

There are several reasons why this an interesting problem: its relation to
the wetting phenomenon, which can be seen as a competition between localiza-
tion by such a self-potential and entropic repulsion; the fact that, in the case
of continuous effective interface models, it provides a weak perturbation of the
measure P, breaking the continuous symmetry ultimately responsible for the
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unbounded fluctuations of the interface in low dimensions, as explained in Sub-
section [1.2.3} and the fact that the corresponding non-trivial critical behavior
can be rigorously studied in great details.

Historically, its analysis for one-dimensional effective interface models was
initiated by a desire to better understand the wetting phenomenon discov-
ered through exact computations by D. Abraham in the two-dimensional Ising
model [1]& more on that in Section @ It was thus considered useful to prove a
similar result in the simpler context of one-dimensional effective interface mod-
els. Of particular interest to these earlier works [31], 85l 27, 2] was the dramatic
difference in behavior between cases where the localizing self-potential was cou-
pled or not with a positivity constraint: in the former case there is a delocalized
phase for weak enough self-potential, while localization always occur in the lat-
ter case. After these early works limited to the one-dimensional model, the first
rigorous work I am aware is [26] in which the authors introduced a new ran-
dom walk representation (different from the one described in the introduction)
and applied it in particular to prove exponential decay of the 2-point function
under the measure P%? in dimensions d > 3 for the Gaussian model. A study
of the much more delicate two-dimensional case was then done by Dunlop et
al. [48], who proved that the field is localized for any strictly positive values of
a and b, in the sense that E**(|g|) < co. This result was improved to show
finiteness of the variance, as well as exponential decay of the 2-point function by
Bolthausen and Brydges [14]. All these results were limited to Gaussian inter-
actions. A more general approach was then developed in [43] in order to treat
the case of non-Gaussian (but uniformly strictly convex) interactions and, as a
side-product, provided stronger results such as the correct tail for the one-site
marginals. This method was then successively improved, first in [67] to prove
exponential decay of the 2-point function for this class of models, and then
in [I9] to establish precise estimates on the critical behavior in any dimensions
for possibly long-range Gaussian interactions.

Concerning discrete effective interface models, the situation is as follows: in
one-dimension, there is no difference with the case of continuous heights, which is
discussed below; in dimensions 3 and more, since the interface is expected (and,
for the DG model, proved) to be localized and massive at all temperatures,
the pinning potential has no interesting effect. The only interesting case is
thus the two-dimensional one. Of course, at low temperatures, the interface
is also localized and massive, so the pinning potential is irrelevant At higher
temperature, however, we know that the free model should undergo a roughening
transition (as proved for the SOS and DG models). One would then expect that
the presence of an arbitrarily weak pinning potential will localize and render
massive the corresponding interface. However, as we’ll see below, the interface
gets more and more weakly localized as the pinning strength goes to zero (the
variance diverges, the mass vanishes), so one might still expect a transition from
a microscopically flat interface to a weakly localized one, although it is not clear

2 Actually, this was done earlier by McCoy and Wu [77], but they failed to interpret properly
what they had computed.
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whether this should happen smoothly, or through a real phase transition. There
are no results on this model unfortunately.

Open Problem 8. What happens to the roughening transition of the two-
dimensional DG model in the presence of a pinning potential?

In the rest of this section, we restrict our attention to the (continuous)
Gaussian measure, with a few remarks on what is known in the more general case
of uniformly strictly convex interactions. Although most of what is discussed
below also holds for W, 3, I only discuss a particular limiting case of the measure
Pf\’b, having the advantage of being nicer from a mathematical point of view,
and of depending only on a single parameter. Let n > 0, the measure with
d-pinning is defined by the following weak-limit

PX d:ef H.*)loi,IbIl*’OO P(;Cb ’

2a(eb71)4>77
The latter can also be written more explicitly as
Pl(dg) = (Z) ™" exp (—Ha(9)) [ [ (dei +ndo(dei)) [ do(dey),  (26)
i€A JEA

where the partition function Z} is the normalization constant, dy is the Dirac
mass at 0, and Hy () is the Hamiltonian (T]).

5.2 Mapping to a problem of RWRE

To analyze the properties of this model, it is very useful to first map it onto a
model of random walk in an annealed random environment of killing obstacles.
This is done by simply expanding the product in and using the random
walk representation ﬂ

First observe that for any function f

EL(f) = (Z])"! / 1) exp (~Ha(e)) [T (dgr + nbo(des)

e
Zp\A

=y g Z>7 Eaxa(f),
ACA A

and thus the measure P} is nothing but a convex combination of measures
Pa\a indexed by subsets of the box A weighted according to the probability

measure (J(A) = 741 Zy\4/Z}. Now, combining this with the random walk
representation , we obtain

B} (pips) = Y CR(A) D Pi[Xy = j, Tava > 7], (27)
ACA n>0

3In the case of the square-well potential Wb, the expansion of the product in (26) is
replaced by the expansion of the product of terms of the form Hleil<ay = (1 + (eb —
D1{jp;<aly)-
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where I recall that 75 = min{n : X,, ¢ B}. We thus see that the control
of the covariance of the field is reduced to the analysis of the Green function
of the random walk X in an annealed random environment of killing traps
distributed according to ¢}. It has become standard terminology to call these
traps pinned sites (for obvious reasons). Let us denote by A the random subset
of A distributed according to (}l.

Of course, this is not very useful without information about the behavior of
the probability measure (J.

5.3 The distribution of pinned sites

In this subsection I briefly describe what is known about the distribution ¢
of the traps. Let us denote by v/} the restriction of the Bernoulli process with
density p to the box A. Then it is proved in [19] that there exist constants
0 < ¢1(d) < ea(d) < oo such that, for any A, any B C A, and any 1 > 0 small
enough,

P DANB=0) <N ANB=0) <~ DUAnB=90), (28)
et (1) n? (d=1)
where ps(d) = { cx(2) gllogn|~/* (d=2).
cx(d)n (d>3)

Informally, as long as we are only interested in controlling the covariances of
the field, this shows that the random environment can be thought of as being
Bernoulli. Indeed, can be rewritten as

EX (i) = Y Bl lix,=j) Lixca) CHAN Xjo = 0)]

n>0

where Xjo,) = {Xi : 0 < k < n} is the range of the random walk. The
previous result thus allows us to substitute in the last equation the measure ¢
by a Bernoulli measure of suitable density.

Remark 14. One might wonder whether it is possible to compare the measures
¢} and the corresponding Bernoulli in a stronger sense than above. This is

indeed possible, but only when d > 3. In that case, it can be proved that () is
p+(d)

actually strongly stochastically dominated by v} and strongly stochastically
dominates I/X_(d), see below. This is not true when d < 2, see [19].

Remark 15. In the case of uniformly strictly convex interactions, both the
representation and the above results on | hold trucﬂ However, in that
case the law of the random walk depends on the distribution of pinned points.
It is therefore much more delicate to make use of than in the Gaussian
case. This is the main difficulty in proving the exponential decay of correlations

m 1’67/.

4The only estimate where the Gaussian assumption was used in the proof in [19], see
Footnote 2 therein, can be extended using Brascamp-Lieb inequality, as shown in [60].
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Since these estimates on the distribution of pinned sites constitute the core
of the analysis of pinning, I now give some ideas of the proof (in the Gaussian
settings, to make things easier); the complete argument can be found in [19].

In dimensions d > 3, it is actually possible to give the complete proof as it
is very elementary. Let C' C A\ {i}. Then
1 Zyne >1 _ 1+ o(1)

(T(A3i|A=C off i) = <1+
N ZA\(CU{i})

U
27T-V'arPA\c (i)

observing that Zx\(cufiy)/Za\¢ is nothing else but the density at 0 of the Gaus-
sian random variable ¢; under Pp\c. Now, since d > 3, we know that the vari-
ance in the last expression is bounded away from 0 and oo, uniformly in A and
C. This immediately implies in that case (actually, this implies the much
stronger claim in Remark .

Of course, such an argument cannot be used in lower dimensions, since the
original field is delocalized, and therefore the variance in the last expression
diverges with A. I now describe how to deal with this problem when d = 2, in
order to prove the upper bound in (the lower bound is much easier). The
idea is to prove first when B is composed of cells of a square grid of spacing
Kn’l/z\ 10g77|1/4, for some K to be chosen later. I assume that B is connected,
to simplify the argument.

Let us write B® % B, and define B¥, k > 1, as being the set of cells obtained
by adding to B*~! all its neighboring cells. Let also k be the largest value of k
such that B¥ C A, and set A= AU (Z2\ A). We can then write

E
QANB=0) <> L (AnBF =0|ANB" £0) .
k=0
It is therefore sufficient to prove our claim for the conditional probabilities in the
RHS, as this implies the same claim with a different constant for the LHS. This
shows that there is no loss of generality in assuming that there is at least one
point of A among all cells neighboring B; let us denote by £ the corresponding
event. We then write

gy
(T(ANB=0|&) = =
A ( | ) ZAeg n‘AlZA\A

> ace nMNZya
ANB=0

IC] Al 7
dccp ZAF;lJEag:@ n A\ (AUC)
-1
Z
< Z n\c\ min A\ (AUC)

A€g 7
ccB ANB=0 A

Z
Z 77|C’\ min A\(AUC)

AcE Z
CeD(B) ANB=0 A4

IN
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In the last expression, the sum has been restricted to all

C € D(B) = {C C B : C contains exactly one point in each cell of B} .

We now need to bound from below the ratio of partition functions. This is
done by relying on the fundamental property of the two-dimensional interfaces
discussed in Subsection Pinning the interface at one site is enough to bring
it down, and in particular to reduce drastically its variance in the neighborhood
of this site. To make use of this fact, it is convenient to write the ratio as a
telescopic product, so that the problem is reduced to that of the ratio between
two partition functions differing by a single pinned site. Let us number the sites
of C = {t1,...,t|} in such a way that for any k, at least one of the sites of
AU {t1,...,tx—1} belongs to a cell neighboring the one containing #; this is
always possible because A € £. Using the notation A = AU{ty,...,t;}, k> 1
and Ay & A, the ratio can be rewritten in the following way,

|C|
Z Z
ZA\(AUC) H CAM\A, (29)

Za\A S ZA\Ai .

Observing, as before, that Zy\a,/Z\a,_, is the density at 0 of the Gaussian
random variable g, under the measure Py 4, _,, we have that

InAy 1
Z\Aj,_, \/27TV8,I‘PA\AI€71 (1))

(30)

To estimate the variance, remember that the points of C' were numbered in such
a way that, under Py\ 4, _,, there is already a pinned point in a cell neighboring
the one containing tj, and thus, by (21| . we have

VaIPy\a, , (¢1,) < c|logn|.

Putting all this together, we obtain
-1

QANB) << Y 5% (ey/Tlogn])~ !¢

ceD(B)
Since, for all C' € D(B), |C| = |B|/(Kn~*|logn|'/?), and, moreover,
#D(B) = (Kn™ Y 10gn|1/2)|B|/(Kn*1\lognll/z) 7

we see that the claim follows once we choose K large enough.

To prove for arbitrary subsets B is more delicate. The idea is to use the
previous result to show that “most” points of B must typically be at a distance
at most O(n~'|logn|'/?) from pinned sites, and therefore the variance of the
field cannot be too large and arguments similar to what we did before apply
again.

The proof in dimension 1 can be done in the same way.
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5.4 Main results

Now that we have informations on the distribution of pinned sites, we can turn
to the behavior of the field itself. As mentioned earlier, it turns out that an
arbitrarily weak J-pinning is sufficient to localize the interface, in a very strong
sense: It is proved in [43] that, for any n small enough, and uniformly in all T’
large enough,

T (=1
—logP" (o >T) =< T?*/logT (d=2)
T2 (d>3)

In particular the infinite-volume Gibbs measure P" is well-defined in any di-
mension d > 1. The heuristic behind this result is elementary (in dimension 2;
dimension 1 is completely similar): The probability of having no pinned sites

at distance smaller than R from 0 is e~ @1/ Ilogn |)R27 while when this happens
o is a Gaussian variable with variance of order log R. Combining these two
estimates yields the claim above.

In addition to localizing the field in low dimensions, the pinning potential
generates a mass in any dimension [67]: For any d > 1, for any 7 small enough,

inf mpn(x)>0.
z€eSd—1

Notice that the tail in dimensions 1 and 2 are not Gaussian, which shows
that, even though there is localization and exponential decay of correlations,
the resulting field is very different from the massive Gaussian field of Section [2]

Remark 16. Although stated here for Gaussian interactions, these results hold
for arbitrary strictly convex interactions.

Of course, as the intensity 7 of the pinning goes to zero, the localization
of the interface becomes weaker and weaker. In order to understand how this
progressive delocalization occurs (or, as the physicists say, to analyse the cor-
responding critical behavior), it is useful to study the variance and the mass of
the field. The most precise results in this context are those of [19] and can be
stated as follows:

e Consider the one-dimensional model with an arbitrary nearest-neighbor
1 1
interaction V : R — R™ such that feiiv(ﬂdx < 00, fa?ef?ww)dm =0,
1 1
and [22e72V®dz/ [e72V®dz = 1. Then
E"(¢5) = 3172 +o(n?).

and
men = 0% + o(n?).
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e (Gaussian only) Assume that d = 2 and holds. Then, for all n small
enough,

~1
E'(¢f) = (2nV/det Q) |logn| + Oflog log]) (31)
e (Gaussian only) Assume holds. Then, for all n small enough,

o [VlTognl (@ =2)
Vi (>3)

Remark 17. In dimension 1, only the nearest neighbor case was considered
in [19], in order to benefit from the simple renewal structure available in that
case. Extensions to long-range interactions should be possible though, since the
main result on the trap distribution, see Subsection also holds in that case.

Remark 18. The assumptions on the range of the interaction, in dimensions
d > 2, are essentially optimal. Indeed, when p(-) has no second moment, the
variance of the field may remain finite even when n = 0 (the random walk X
may become transient). Similarly, when p(-) does not have exponential mo-
ments, then the mass is zero for every values of n, since in the random walk
representation of E"(¢op;i), the random walk can go from 0 to i in a single step,
a strategy which obviously has a subexponential cost in this case.

Remark 19. Again, if one takes the asymptotic behaviour of the mass given
above for granted, then one can (on a heuristic level) easily recover the claim
on the variance by replacing the model with pinning potential by the Gaus-
sian model with the corresponding effective mass. In particular, injecting p =
O(\/1 | logn|=%/*) into (16), one immediately gets (31)), with the correct con-
stant. Of course, this is no rigorous argument, and the measure with pinning
is not at all a Gaussian measure, as we already saw at the beginning of this
subsection.

Remark 20. In dimension d = 2, in the case of non-Gaussian, but strictly
conver interactions, a corresponding qualitative result for the variance is also
known [43]: For n small enough,

E"(¢5) = |logn] .

Quantitative results in that case, however, would require a much better under-
standing of the corresponding random walk representation.

I briefly give some partial proofs for the results when d > 2. The schemes
of proof of these estimates are not very difficult, but it turns out that, in order
to get results as sharp as those stated above, rather precise informations on the
random walk are necessary. In particular, one needs delicate estimates on its
range, going beyond Donsker-Varadhan’s asymptotics. As this is not specific
to random surfaces and quite technical, this will not be discussed here, and we
refer to the appendices in [I9] for the details.
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The variance I assume that d = 2 and only prove the simpler lower bound.
This is very easy. Let B, = {i € Z? : |li]oc < 377 /?|logn|~*/*}. The Green
function can be estimated from below by imposing that no trap enter the box
B,; notice that, according to , this box is small enough that this is event
has probability close to 1. Assuming that the box A is very large (we want to
take the thermodynamic limit in the end, anyway), we can write

EX(¢3) = Y CR(A) Enva(e))
ACA

> QX(-A N Bn = 0) Arg%in:w EA\A(@%)

n

= (AN B, =0)Epp, (#0),

where the last identity follows from, e.g., the random walk representation of the
variance. Now, the estimate implies that

CX(-AQBU = 0) >1- C| 10g77|_17

and the conclusion follows from the following standard asymptotics for the Green
function of a random walk killed as it exits a box of large radius R

GRr(0,0) = (mVdet Q)~! log R+ O(1).

The mass I only discuss the simpler upper bound on the mass. Denoting
by ]EEZ) the expectation for the random walk starting at ¢ and conditioned on
X, = j (provided the probability of the latter event is positive), we can write

E"(popi) > Y o [exp (—cnl log 1| ™% | X(g.n)| 3 Xn = z)}

n>0

= Bo[X, =] E() [eXp (—cnl log n|~*/2 IX[om]\ﬂ
n>0

> ZIF’() = 1] exp (—cn| log |~ 1/? E(()Z') [\X[o,n]ﬂ)
n>0

> Po[X5 = 1] exp (—077\ logn|~*/2 E(()Z‘) [‘X[o,n]u) ;

where, in the last expression, the sum has been restricted to the single term
n=n(|il,n) = [n —1/2| log77|3/4|i|] ifd=2,and n = [7]71/2|i|] ifd>3.
The first factor can be bounded by
12
oo [EE]
n

for some ¢, ¢’ > 0. It only remains to control the tied-down expectation of the
range. For d > 3, this is trivial, since the bound JE(()Z) [|X[o,ﬁ] H < 7 + 1 suffices
to prove the claim. In dimension 2, in order to get the correct logarithmic

Po[Xn =14 >

3o
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Figure 8: The pinning potential considered in [46] and its quadratic approxima-
tion yielding the effective mass.

correction, more care has to be taken, and one has to resort to the following,
less elementary bound, reflecting the effect of the recurrent behavior of the walk,

(Alil) Ali
Boi ™ [ Xoamnl] < ejp -

I refer to [19, Proposition C.1.] for a proof.

5.5 Additional results

Random potential There have also been several works on the study of lo-
calization by a random pinning potential, in particular in dimension 1. For
example, in [0l [79], it is proved (in a rather general 1-dimensional setup) that
if the pinning potential at site i is given by w + W;, with w € R a constant,
and W; a family of i.i.d. real-valued random variables with mean zero, then the
interface still almost surely gets localized (in the sense that there is a density
of pinned sites) even when w is slightly negative (that is, in average the reward
is actually a penalty). In [59], it is proved for the same type of models that
the presence of disorder induces a smoothening of the phase transition in the
sense that it becomes higher order than in the corresponding deterministic case

In a different spirit, the case of a diluted pinning potential (that is, a pinning
potential taking value ¢ > 0 or 0 at each site of the box) is considered in [69]. It
is proved that, for d = 1 or 2, the interface is localized (again, in the sense that
there is a density of pinned sites) if and only if the sites at which the pinning
potential is non-zero have positive density (notice that the disorder is fized, not
sampled from some given distribution).

Finally, pinning of an SOS interface by spatial disorder not restricted to a
plane but present everywhere in space was studied in [21] 22]. The main results
are that: 1) In dimensions d > 3, the interface is rigid, provided that S be
large enough and the disorder sufficiently weakly coupled to the field. 2) In
dimensions d < 2, the interface is never rigid.

Mean-field regime The critical behavior of the covariance has also been
obtained in a mean-field regime in [46, [47], see also [75]. I briefly describe the
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setting and the result in order to show the difference with the regime discussed
in this section. The measure considered in [46] is the following perturbation of
the Gaussian model

P{(dp) o [T eV Pa(dy),
€N

where the self-potential is given by

22

U(z) = —c(e 2 —1).

Then, providedﬂK log(14+c71) < /q for some sufficiently large constant K and
0 < ¢ <1, it is proved that

Ve s s
covpu (@i, ;) < K log(q/v/c)e P 7 1i=il,

with the constant D — 1 if ¢ is fixed and ¢ — oo. The heuristic behind this
result is rather clear. Under the above assumption, the quadratic approximation
U(z) = ﬁ 22 holds over a huge range of values of z. Over this range of values
the measure PU behaves like a massive Gaussian model with mass p = /c/q,
and therefore, provided the interface stays mostly there, the exponential decay
should be given by this mass. The main part of the proof in [46, [75] was then
to control perturbatively this approximation.

The é-pinning corresponds to an opposite regime, where instead of having a
very wide and shallow potential well, one has a very narrow and deep one. It is
far less clear a priori what the behavior of the correlation lengths should be in
this case, since the latter cannot be read from the self-potential.

6 Wetting

6.1 Description of the model

This section deals with the wetting transition. This is a surface phenomenon of
major theoretical and practical interest, and still the object of active study. It
occurs each time some substance occupies the bulk of a system, while another
substance (or another phase of the same substance) is favoured by the boundary.
In this case a layer of the preferred substance can exist in the vicinity of the walls,
and the question is to understand its behavior. It turns out that varying some
external parameters, say the temperature, can give rise to a phase transition:
In one regime (called partial wetting), the thickness of the layer is microscopid®}
while it is mesoscopic in the other regime (called complete wetting); see Fig. [9]

51t is emphasized in [46] that this condition is actually too strong and that the result
should be true under the weaker condition that K log(1 + ¢~ ') < ¢, which characterizes the
mean-field regime.

6Microscopic means here that the layer has an average width which is bounded uniformly
in the system size, while mesocopic means that the width diverges (sub-linearly) with the
system size.
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Figure 9: The wetting transition. Left: partial wetting regime; the liquid phase
adsorbed on the wall forms microscopic droplets (of size not diverging with the
size of the system). Right: complete wetting regime; the liquid phase adsorbed
at the wall forms a mesoscopic layer (its size diverges with the system size).
The wetting transition is the phase transition between these two regimes.

Practically the manifestation is a transition from a situation where the wall is
covered by a multitude of microscopic droplets, to a situation where the wall is
covered by a mesoscopic, homogeneous film.

The first rigorous treatment of the wetting transition in the framework of
Statistical Mechanics is due to D. Abraham, who, through exact computations,
was able to prove its existence for the two-dimensional Ising model [I]. Im-
mediately following this work, there was a series of papers [311 27, [85] B3] (see
also [50]) analyzing the same question in the simpler settings of one-dimensional
effective interface models (still through exact computations), and [32] establish-
ing the existence of the wetting transition in the SOS model in any dimension.
Only recently has the rigorous analysis of this problem been reconsidered, both
providing stronger and more general results in one-dimension, and establish-
ing some preliminary results in higher dimensions. It should be noted that if
the problem is well understood, even rigorously, in the two-dimensional Ising
model, the situation in the three-dimensional Ising model is still controversial,
even among physicists. In particular, it has been suggested [51] that another
kind of effective models should be considered if one wants to correctly predict
the behavior observed in this model. From a mathematical point of view, these
new effective models are too complicated, and even our understanding of the
original ones is very far from being satisfactory.

A natural model for the rigorous study of wetting in the framework of ef-
fective interface models is obtained by introducing simultaneously a hard wall
and a local pinning potential. The latter models the affinity of the wall toward
the two equilibrium phases separated by the interface. The basic measure hence
takes the form

PIH() = PR 9), (32)

where O, < {p; > 0,Vi € 2}.

6.2 Main results

Apart from the one-dimensional case, the only rigorous result for discrete models
I am aware of is [32], where it is proved for the SOS model in any dimension that
there is a phase transition from a regime (at small 1) where there is a density
of heights taking value 0, to a regime (at large n) where this density vanishes.
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Actually, there should not be any major obstacle to establishing a complete
picture at large values of 3, using a suitable version of the Pirogov-Sinai theory.
In fact, there is a claim of such a proof in [25], but the statement seems unlikely
(an infinite sequence of first order transitions) and no proof is given there.

In the rest of this section, we’ll stick to continuous effective interface mod-
els. For ease of notations, only the nearest neighbor case will be discussed,
but all that is said here can be straightforwardly extended to any finite-range
interactions, and probably to long-range interaction with more care.

Since the presence of a hard wall has a strongly repulsive effect on the in-
terface, while the action of a local pinning potential has a strongly localizing
effect, their simultaneous presence gives rise to a delicate competition.

The first natural question is whether a non-trivial transition from a localized
to a delocalized regime can occur as the intensity of the pinning potential is
varied. A good way to study this problem at the thermodynamic level is through
the density of pinned sites, which is defined by

py AN Y 1m0y
i€EAN

and its limit p théDO pn; the existence of this limit follows easily from
the FKG property satisfied by the set pinned sites, see [19, Lemma 2.1]. As

= |[Ax|™! ndn log ZX , we immediately obtain that p is a non-decreasing
function of 1. Obviously p(0) = 0. It is also easy to see that p(n) > 0 for large
enough 7. Indeed, since

Z7]+ nq
An|™ :/ = pn(7)dn, 33
|AN| 20 ; ﬁpN(n) n (33)

the result follows from Z}\’;r > n‘AN‘ and the existence of a constant C such
that Z/O\’Jj < CIANI. To prove the latter inequality, one can consider a shortest
self-avoiding path w on Z¢ starting at some site on the boundary of Ay and
containing all the sites of Ay, and use Hy () > El‘”l V(@w, = Punyy)/4d

to write
] ‘AN‘
0+</He V(un—Punr)/4d (/ e—V(;c)/4ddx> ,
— 00

This implies that the following critical value is well deﬁnecﬂ

ne < inf{n : p(n) > 0}. (34)

"Notice that, since py = |AN|*177% log ZXN, the critical value can also be defined as

the largest value of n for which the free energy of this model is the same as that of the free
interface. This is the standard definition in the Physics literature (namely the partial wetting
regime is characterized by the fact that the surface tension of the interface along the wall is
strictly smaller than that of an interface with the same orientation, but located in the bulk of
the system).
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The basic question is therefore whether 7. > 0. The answer turns out to depend
both on the dimension and on the tail of the gradient interaction.

1. V(z) = 2% n. > 0 if and only if d < 2.
2. V Lipschitz: n. > 0 for all d > 1.

The “only if” part of the first statement is proved in [I8], while the “if” part and
the second statement are proved in [29]; heuristic for these results are provided
in Subsection 6.3

Remark 21. The usual derivation of Gaussian effective interface models from a
really microscopic model (e.g. a 3-dimensional Ising model above the roughening
temperature), relies mainly on a second-order expansion of the free energy along
the interface. Such an approximation can be relevant only when large values of
gradients have no influence on the physics of the problem. The striking difference
in behavior between a harmonic interaction and a Lipschitz one (which may
coincide on an arbitrarily large, but finite range of values) shows that it will be
very delicate to determine the correct effective interaction (if any) to mimic the
behavior of the real system.

This of course also shows that results obtained for the harmonic model, de-
pending on the properties of large local fluctuations (e.g. the spikes in the en-
tropic repulsion phenomenon) might not be generic. It would thus be extremely
interesting to have some results for models with other tail behaviors.

By and large, in spite of quite some work, this is unfortunately all that is
known when d > 2. Considering the very detailed pathwise description available
both in the case of pure pinning and that of pure entropic repulsion, one might
expect to have at least some pathwise informations for the wetting problem.
This turns out to be very difficult. Actually, the only results known to date
are [80],

e Weak form of delocalization in the whole complete wetting (i.e. delocal-
ized interface) regime (d = 2):

Jim B3 (o) = oo,
for any i € Z¢ and 1 < 7..
e Strong form of delocalization in the deep complete wetting regime (d = 2):
EXJ(%) =log N,
for any i € Ay, 0 < € < 1, and 5 sufficiently small.

e Strong form of localization in the deep partial wetting regime (i.e. local-
ized interface) (d = 2):

Jim Bl (e < €,
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for all i € Z% and 7 sufficiently large. Moreover, the mass is positive:
mpn,+(x) >0,
for all x € S, provided 7 is taken large enough.

As can be seen, the results are still very limited. Particularly annoying is the
total absence of pathwise localization results in the full partial wetting regime
(even the deep partial wetting regime might be nontrivial when d > 3).

Open Problem 9. Prove the lacking pathwise estimates associated to the wet-
ting transition.

Let us remark that the approach used in the study of the pinning potential
can of course also be applied here, yielding an expression of the form:

EXT(f) =D (T EL L),

ACA

where (' (A) = n'A‘ZX\A/ZX’JF. Unfortunately, this is much less useful than
before, for two reasons. First, one has very little control over the distribution
of pinned sites; essentially the only result that can be easily obtained is the
stochastic domination
+
< (35)

stating the rather intuitive fact that there are less pinned sites in the presence
of the wall than in its absence. The second reason why this approach seems
less promising is that the random walk representation does not apply to the
conditional expectation EY (¢i¢;) (and this would not even be the most inter-
esting quantity, since the 2-point function does not coincide with the covariance
anymore).

Still, there is one non-trivial consequence that can be extracted from :
The density of the pinned sites (and therefore also the height of the interface,
thanks to the entropic repulsion results of Section 3 see [86]) diverges continu-
ously as i | 7., provided n. = 0. This is the case, e.g., for the Gaussian model
in dimension d > 3. This shows that the wetting transition is a continuous
transition in that case. It is also known to be continuous in dimension 1 [42],
but nothing at all in known in the two-dimensional case, although it is clearly
expected that the transition is also continuous.

Open Problem 10. Determine the nature of the phase transition in the two-
dimensional model.

In dimension d = 1, however, the understanding is pretty much complete.
After an initial result [68], restricted to a particular choice of underlying random
walk, the following result, valid for essentially arbitrary interaction/underlying
random walk was proved in [42]. Suppose that the interaction V : R — R U oo
is such that exp(—V(-)) is continuous, V(0) < oo, k = [exp(—V(z))dz < oo,
[xexp(—V(z))dz = 0, and [z?*exp(—V(z))dz < co. Then, for the corre-
sponding nearest-neighbor model:
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Figure 10: The transformation: A random subset of the pinned sites is unpinned
and the height at the corresponding sites is chosen at random in the interval
(0,1). To avoid overcounting, the whole interface, except the pinned sites, is
lifted by 1 before this procedure is applied.

1. MNe = /4//(1 =+ Z?\?:l KZ_NZ{L”“N}) > 0

2. For n € [0,7.), under diffusive scaling, the law of the path converges to
that of a Brownian excursion. Moreover, before rescaling, there are only
pinned points at a finite (microscopic) distance from the endpoints of the
path.

3. For n = 1., under diffusive scaling, the law of the path converges to that
of the absolute value of the Brownian bridge.

4. For n € (ne,o0], under diffusive scaling, the law of the path converges
to the measure concentrated on the constant function taking value zero.
Actually, in that case the measure P7{71,..., N} converges, without rescaling,
to the law of a finitely recurrent, irreducible Markov chain on R, which
can be explicitly described.

Remark 22. [t is worth noting that the corresponding claims also hold when
there are free boundary conditions at N, see [42).

6.3 Ideas of proofs

Delocalization at small pinning Let us start with the case of V' Lipschitz.
To simplify, I only consider the special case V(z) = |z|.

The idea is to show that the total contribution to the partition function ZXN+
of the configurations having a positive density of pinned sites is negligeable.
This is done by unpinning a random subset of the pinned sites; in this way, one
obtains a new set of configurations, whose contribution to ZX’;is exponentially
(in N9) larger than the original ones. Let ¢ > 0 and denote by ZX; (€) the total
weight of the configurations having at least e N pinned sites. Let also ZXJ (¢e)

be the total weight of the configurations having at least eN? sites such that
p; < 1. Starting from any configuration in ZX’;_(E), one can construct a family
of configurations in ZX;F(e) by first lifting all the unpinned sites by 1, and then
choosing a random subset of the pinned sites and unpinning them, selecting
for each of them a height in the interval (0,1) (see Fig. [L0). This ensures that
the transformation is invertible and that there is thus no overcounting. There
are three contribution to the energetical cost of doing that: (i) a boundary
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term, due to the lifting, which is of order e=@N"""; (ii) a factor 1/n for each
unpinned site; (i) a factor never smaller than e=2? for each originally pinned
sites, because of the local deformations due to the lifting/unpinning. Therefore,
given a configuration ¢ in ZX’;, with set A of pinned sites, we see that

weight(p) < (||g|)e"A'e‘del (1>|BZX’,T(¢)

BCA n

—dN4?! -1 1 4 n,+
=€ € (1—"_5) ZA’N (‘p)v

where Z}ZN+ (p) denotes the total contribution to the partition function of the
configurations arising from ¢ after having applied the procedure described above.
The conclusion follows, since e~ (1 4+ 1) > 1 if 5 is small enough.

The reason this argument does not work immediately in the Gaussian case is
that the energetic cost depends in a nonlinear way on the original configuration.
However, it is possible (using Jensen inequality) to show that the cost at any
site i feeling the lifting is at worst eXp(EXN\ 4(®i)). But, in two dimensions,
implies that this cost is finite. Therefore, the above argument still applies
for the two-dimensional Gaussian model. In higher dimensions, the expectation
is infinite so that the argument fails (as it should, since, as we have seen, the
interface is localized for any 1 > 0 in this case).

Localization for the Gaussian model with d > 3 The proof that the
Gaussian interface is always localized when d > 3 is more delicate.Here, I only
give some heuristic.

The main idea is to get, for any n > 0, a strictly positive lower bound on
7+
AN

0,4 *
ZNy

[An| " log

This would then imply that p(n) > 0 for all n > 0, using (33). It is thus
sufficient to construct a suitable set of configurations producing a large enough
contribution. The latter configurations are chosen as follows: Ay is partitionned
into cells of spacing A > 0 (chosen large enough); then, inside each cell, exactly
one site is pinned in the central cube of sidelength A/5. The number of choices
for the pinned sites is exp ((dlog A+ c)|AN|/Ad). On the exponential scale we
are interested in, we can replace ZX; by Za, (their ratio is exp(O(N9~1))).
Therefore, one has to get a lower bound on

+, +
I _ g i Zhna Zaa
Ian S Zan\A  Zay

where the sum is restricted on sets of pinned sites as described above. The last
ratio is easily seen to be larger than exp(—c|Al), for some ¢ > 0, for example
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Figure 11: A sketch of the type of potential considered in [46] [75]. The hard
wall is replaced by a fast growth, the pinning part is very shallow, very wide,
and very well approximated by a parabola, the curvature of which yields the
effective mass of the system.

using and . One is therefore left with estimating the probability that
the field pinned on a such a set A (and at the boundary) is positive. Due to
the fact that the spikes in dimensions 3 and larger are very thin, the cost due
to these additional pinned sites is not too large (this is not true when d < 2,
and that is why the interface delocalizes at small pinning: it is entropically too
expensive to touch the wall). A careful analysis [18] shows that this probability
is bounded below by

+

ZAN\A d
——2 > exp (—(dlog A + cloglog A)[Ay|/AY) .
ZAn\A

Notice that this is a result that even goes beyond leading order! Putting all this
together, we see that Z/J{]’V" /Za, (and thus ZX;r /ZR;:) is exponentially large in
|An]| as soon as A is chosen large enough, depending on 7.

6.4 Additional results

Mean-field regime In the already-mentionned papers [46] 47, [75], a model
of the wetting transition completely similar to the one discussed for pinning in
Subsection has also been studied, and similatr results have been obtained.
Namely, modelling the attractive potential by a very flat, essentially quadratic
potential well, it is possible to prove that the mass of the system is again given
by the curvature at the bottom of the well.

Long-range surface/wall interaction In the model discussed in this sec-
tion, the attractive potential has a very short range: It is only in the direct

42



phase coexistence line

Figure 12: How does the width of the layer of unstable phase diverges as the
coexistence line is approached, in the regime of parameters where complete
wetting occurs?

vicinity of the wall that the interface gets a reward. It is claimed in the physics
literature that a long-range wall/interface interaction, decaying algebraically
with the distance, would yield a first-order wetting transition, or even entirely
suppress the transition depending on the decay exponent. I am not aware of
any rigorous results in that direction, although physicists might have some exact
computations in dimension 1...

Open Problem 11. Analyze the wetting transition in the presence of a long-
range wall/interface interaction.

Disordered wall The model in the presence of a disordered substrate has
also been studied in several works, see e.g. [35, B6, [49, 20]. Two types of
disorder have been considered: random pinning potentials (similar to what is
discussed in Subsection , and rough walls (similar to what is discussed in
Subsection . The main concern of these work is to understand how the
surface tension of the system is affected by the disorder, in particular in relation
with phenomenological formulas given by physicists (Cassie’s law and Wenzel’s
law).

The works [6], 59], which were already cited in Subsection also apply in
the case of wetting over a disordered substrate, and the same results as described
there also hold in this case.

7 Prewetting

7.1 Description of the model

The wetting transition occurs exactly on the phase coexistence line: Both the
phase occupying the bulk of the system and the phase occupying its boundary (in
the complete wetting regime) are thermodynamically stable. One might wonder
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what happens if one approaches the region of complete wetting from outside the
phase coexistence line. Indeed, in that case the phase occupying the boundary
is not thermodynamically stable anymore, and can only exist sufficiently close
to the boundary thanks to the stabilizing effect of the wall. Consequently, even
when the film has “infinite” thickness on the phase coexistence line, the latter
must be finite away from coexistence. It is then natural to study the way this
thickness diverges as the system gets closer and closer to phase coexistence.

In order to model the thermodynamical instability of the wetting layer, we
consider the following modification of the measure PX’;,

1

7,4
ZAN

PP (dyp) & e A Zieay WO prt(qpy (36)

where A > 0 measures the distance to phase coexistence, and the self-potential
W should be thought of as being given by W (x) = |z|. Actually, since this does
not make any essential differences at the level of proofs, at least in the case of
continuous heights, one allows any potential W which is convex, increasing on
R*, and satisfies the following growth condition: There exists f : Ry — Ry
such that for any o > 0, we have

lim sup W(az)

< fla) < .

In particular any convex increasing polynomial function is admissible, including
our basic example W (z) = z. In the latter case, this measure gives a penaliza-
tion proportional to the volume of the wetting layer (i.e. the volume between
the wall and the interface modeled by ¢), and A can be interpreted as the dif-
ference in free energy between the unstable phase below the interface and the
stable phase above.

7.2 Main results

It turns out that the actual behavior depends strongly on the nature of the sys-
tem. When the system is below its roughening transition (e.g. for low temper-
ature Ising model in dimensions d > 3, or for low temperature discrete effective
interface models in dimensions d > 2), the divergence occurs through an infinite
sequence of first-order phase transitions, the layering transitions, at which the
thickness of the film increases by one microscopic unit. This phenomenon has
undergone a detailed rigorous study, at sufficiently large 3, for the discrete SOS
model with W (z) = |z| in [44], B0} [74].

Let us now turn to rough interfaces. For systems above their roughening
temperatures (e.g. Ising model in dimension d = 3 between T} and T, the 2-
dimensional Ising model at any subcritical temperature, or continuous effective
interface models at any temperature), the divergence of the film thickness occurs
continuously; this is the so-called critical prewetting.
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In order to have delocalization of the interface when A N\, 0, it is necessary
that 1 be such that the model at A = 0 is in the complete wetting regime. Let us

def

therefore introduce the following set of admissible values of n: CW = {0}U{0 <
n<nc} (see (34)).

I first discuss the case d > 2. Set Hy 2 = |log \|, and Hy 4 = |log A|'/? when
d > 3. Tt is shown in [86] that, for all € CW, uniformly in A\ small enough,

EW’A’—’_ (Lpo) = H)\7d . (37)

Open Problem 12. Prove that the model is massive, and study the asymptotic
behaviour of the mass as A — 0.

In the one-dimensional case, substantially stronger informations can be ex-
tracted, valid for a much larger class of models. This is particularly valuable
since we’d like to understand the degree of universality of the critical behav-
ior displayed here. This is the content of the work [65], in which the follow-
ing model is studied: Configurations of the interface are given by ¢ € Zﬁ” ,
Ay ={=N,...,N}, i.e. discrete effective interface models are considered; the
analysis could also be performed in the case of continuous heights, but would be
slightly more cumbersome. Of course, in one dimension, both continuous and
discrete heights models have the same behavior. The probability measure on
the set of configurations is given by

N
1
0, .
PAN+(<P) = ZONT exp{—A\ E W(pi)} H T(pit1 — i),
An i€AN i=—N-1

with the usual boundary conditions p_n_1 = ¢n+1 = 0. As above A > 0 and
W is a convex function satisfying the same growth condition. 7( - ) are transition
probabilities of an aperiodic one-dimensional integer-valued random walk with
increments of zero mean and finite variance. These assumptions on 7 should be
optimal (in the sense that otherwise the critical behavior would be different).

Remark 23. The only case previously rigorously studied in the literature is the
one-dimensional continuous SOS model with W(x) = |z| [5]. This case turns
out to be exactly solvable; in particular, the authors also obtain some explicit
constants, which are out of reach in the general case. See also the heuristic
discussion in [50)].

Remark 24. Notice that there is no pinning potential (i.e. n = 0), since
this would not change anything in the results (as long as n € CW), but would
complicate substantially the analysis. Of course, the analogue of the result stated
above for dimensions d > 2 above can be proved for strictly convex interactions
also in the case d =1 with any n € CW.

In one dimension, a rather precise description of the full trajectory can be
given. Here I don’t give the strongest results that can be obtained, but focus on a
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few specific ones, namely estimates on typical heights, and decay of correlations;
see [65] for additional informations.

The typical width of the interface in dimensions d > 2 does not change
qualitatively as the form of the self-potential W is modified. In dimension 1,
this is no longer the case, and the quantity describing the typical width of the
interface is Hy, which is the unique solution of the equation

NHAW (2H) = 1.

In particular, in the case we are mostly interested in, which is W (z) = x, H, is
of order to A\=1/3.

The first result is analogous to what was obtained in higher dimensions:
There exists ¢ > 0 and A\g > 0 such that, uniformly in A < A\g and N > c¢H3,

EQ) (po) < Ha.

Actually, in one dimension, one can obtain more precise estimates on the law of
fluctuations on the scale Hy: For any T large enough, and N large compared
to H3, there exist 0 < ¢2 < ¢; < oo such that

1 1 STE

—c T3/ 0,\,+
ae al?? < Py ((po > TH(A)) < ge ,

for all A € (0, A\o(7T")] (uniformly on compact subsets).

Remark 25. For a fized, small A > 0, this does not provide informations on
arbitrarily large fluctuations on the scale H(X). It turns out that the behavior
deeper in the tail is not universal anymore. In the case of transition probabilities
7( ) with Gaussian-like tails, the same result holds uniformly in all small A, for
all T large enough. However, when the tail of w(-) becomes fatter, the behavior
changes qualitatively. It is therefore rather remarkable that one can still extract
some universal information (the exponent 3/2).

Moreover, in one dimension, it is possible to obtain estimates on the decay
of correlations: There exists ¢, c1,c2 > 0, Ag > 0 and § > 0 such that, uniformly
in A < Ao and N > cH3,

5/2 .
COVP/O\,A,Jr(QOi, @;) < ClHA/ exp (—calj —i|/H3) -
N
In particular, the mass satisfies mpox+ =< H;2.

7.3 Some heuristic

Even though the proofs are somehow technical, it is not difficult to get some
intuition about the results, in particular the critical exponents. I only discuss
the case W(x) = |z|, but the general case is similar.

Suppose d = 1. First, if one expects that the interface does indeed remain at
an average distance H from the wall, then the corresponding energetic cost is of
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Figure 13: Idea behind the proof of the tail exponent.

order AHN. Once this energetic contribution is removed, one is left with a pure
random walk problem: what is the entropic cost for a random walk conditioned
to stay positive, to remain below some fixed level H for a time N? This is
the same problem which is discussed in Section [d] where we have seen that the
probability of such an event is of order e~ ©(N/H *). Therefore an energy /entropy
balance gives, \HN ~ N/H?, i.e. H ~ \~1/3,

The same heuristic also applies when d > 2, provided one uses the corre-
sponding results of Section 4} and yields the claim .

Let us return to d = 1. Suppose that you have two paths staying in the
tube between the wall and height Hy. Assume they really never leave the tube,
and assume one can neglect the energetic term, then these two paths will meet
in a time of order Hi, and therefore an elementary coupling between the paths
would yield the result on the covariance.

Finally, the “tail” exponent 3/2 can also be understood easily (at this heuris-
tic level). If one assumes that the width of the excursion to height TH ), i.e. the
size of the interval where the path is actually above, say, %THA is A, then we
have an energetically cost )\%T’H AA and an entropic cost (assuming Gaussian

tails) e~O(T*H3/2) | which once balanced give A ~ VTHx/A and therefore the

probability of such a deviation should be, using Hy ~ A~/3, of order e=OT*?),
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